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Abstract 
 
We examined machine learning methods to predict death within six months using data derived 

from the United States Renal Data System (USRDS). We specifically evaluated a generalized 

linear model, a support vector machine, a decision tree and a random forest evaluated within the 

context of K-10 fold validation using the CARET package available within the open source 

architecture R program. We compared these models with the feed forward neural network 

strategy that we previously reported on with this data set.  

 

Keywords 
 
hypertension, blood pressure, chronic renal disease, correlation, machine learning  

 
Introduction 

 
Patients with end stage renal disease (ESRD) have an extremely high extra renal morbidity and 

age adjusted mortality compared with the general population in the United States.1-3 A number of 

factors have been identified which predict risk in this patient population, and some of these factors 

are reasonably powerful at predicting risk.4-8 We have previously reported on patient records kept 

within the United States Renal Data System (USRDS);9 a number of qualitative and quantitative 

measurements are presented which can be accessed rather easily from the National Institutes of 

Health.10,11 In our previous study, we found that a neural network approach was not superior to 

that obtainable with a logistic linear approach at predicting time to death. However, since that 

report, advances in machine learning have allowed for the relatively easy application of other 

approaches which might help clinicians estimate mortality risk in this population. For that reason, 

the following study was performed.  

Methods 

 
Files containing de-identified patient records from the USRDS in 2007 were read in the program 

SAS (version 9.1), SAS Institute Inc., Cary, NC, and exported in a CSV format. Forty-two 

variables were selected to be used in the analysis based on their potential clinical significance 

and their wide availability within the USRDS as we had previously reported.9  

 

All analysis was performed using the open source program R. We used a generalized linear 

model as our default.12 In addition, we examined the utility of a support vector machine,13 

decision trees with the RPART package, neural networks (1 hidden layer, feed forward as 

previously studied(9)),  and random forests.14,15  The CARET package was used for comparison 

of the mature models employing 10 K- folds and 3 repeats performed on a training set (5% of 

total) chosen with different randomization seeds to allow for reproducibility.16 Other packages 

within R were used for different specific tasks (e.g., NNet for construction of the neural network, 

randomForest (RFor) for constructing random forests)17 as we recently demonstrated with the 

Modification of Diet with Renal Disease (MDRD) dataset.18  

 

For these studies, we focused on the categorical output of survival less than six months. This 

outcome variable was chosen for its clinical relevance to nephrology practice.  
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Results and Discussion 
 

In the records that were selected for analysis, just over 67 thousand subjects died within the first 

six months of starting hemodialysis (HD) therapy whereas the remaining 330 thousand subjects 

survived longer. The data in these two groups are summarized in Table 1. Those that died early 

tended to have poorer nutrition as evidenced by a lower serum albumin, serum creatinine (SCr) 

and body mass index (BMI) (all p<0.01). They also tended to be significantly older (68.3+/15.0 

vs 61.3+/-15.8, p<0.01), have a lower prevalence of insulin dependent diabetes (p<0.01) and 

higher EPO dosages (p<0.01). The prevalence of ischemic heart disease and prevalence of 

pulmonary disease were both higher in those dying early (both p<0.01). Many of the data were 

quite similar in the two groups although because of the large numbers involved, statistical 

significance was noted (Table 1).  The high rates of HIV and AIDS reflects the time that these 

data were obtained; it is quite likely that a more recent data set would have much lower 

prevalence for HIV and related conditions.  
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Table 1: Comparison of Early Death (< 6 months) and Others 

 Not Dead at 6 months Dead at 6 months P value 

N 330452 67139  

Hemoglobin 9.79+/-1.67 9.96+/-1.62 P<0.01 

Albumin 3.16+/-0.67 2.95+/-0.68 P<0.01 

SCr 7.45+/-3.41 6.41+/-3.00 P<0.01 

BMI 27.3+/-7.0 26.0+/-6.7 P<0.01 

BUN 82.9+/-27.6 83.8+/-29.2 P<0.01 

SEX 53%Male 53%Male NS 

RACE 59%White 31% Black 

10% other 

71%White 22% Black  

7% other 

P<0.01 

AGE 61.3+/-15.8 68.3+/-15.0 P<0.01 

DIALYSIS 

SETTING 

91% In Center 93% In Center P<0.01 

DIALYSIS 

TYPE 

93% IHD 96% IHD P<0.01 

INCIDENT 

ESRD AGE 

62.6+/-15.6 69.3+/-14.5 P<0.01 

AIDS 19%  17%  P<0.01 

HIV 19%  17%  P<0.01 

ALCOH 1.3%  2.0%  P<0.01  

CANCER 5.1%  10,2%  P<0.01 

CARFAIL 31%  42%  P<0.01 

CVA 9%  13%  P<0.01 

INSULIN 24%  21%  P<0.01 

DIABETES 

PRIMARY DX 

46%  41%  P<0.01 

DRUG 1.1%  1.0%  P<0.05 

DYYSRYTH 5.6% 10.4% P<0.01 

EPO 68% 75% P<0.01 

HYPER 81% 72% P<0.01 

Ischemic Heart 

Disease 

24% 32% P<0.01 

MI 8% 12% P<0.01 

NOAMBGUL 3.3% 9.1% P<0.01 

PERICARD 0.7% 0.7% NS 

PULMON 6.9% 11.7% P<0.01 

PVASC 14% 19% P<0.01 

SMOKE 5.6% 4.8% P<0.01 

*Note that because number of subjects is so high in both groups, confidence intervals around 

point estimate for prevalence are <<1% for all categorical values.  

SCr – serum creatinine, BUN – serum urea nitrogen, ALCOH – alcohol dependency, CANCER 

– cancer present, CARFAIL- cardiac failure, CVA – cerebrovascular accident, HIV – human 

immunodeficiency virus positive, AIDS – acquired immunodeficiency syndrome present,  

DRUG – drug dependency, DYYSRYTH- cardiac arrhythmias, EPO – erythropoietin utilization, 
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HYPER – hypertension present, Ischemic Heart Disease present, MI – history of myocardial 

infarction, NOAMBGUL- not able to ambulate, PERICARD – pericarditis, PULMON – 

pulmonary disease present, PVASC – peripheral vascular disease present, SMOKE – active 

smoker.  

 

Different machine learning approaches yielded somewhat different fits as assessed by ROC 

curves (Figure 1, Table 2). In general, the best fits were obtained by either the generalized linear 

model (logistic regression, GLM) or the random forest (RForest) approach with the feed-forward 

neural network (NNet) just slightly behind. The SVM was next with the decision tree (RPart) 

least effective. Because the decision tree method was so weak, we did not investigate its 

predictions further. In contrast to the ROC curves which demonstrated significant differences 

(Table 2), the accuracy values obtained by the remaining four methods were remarkably similar 

although statistical inferiority to the linear model was evidenced by both the SVM and the NNet 

models. Accuracy achieved by the Rforest was similar to that obtained by the GLM. Sensitivity 

of the GLM was inferior to that obtained by the SVM and RForest methods whereas specificity 

of the NNet method was the best. Along those lines the NNet method had the highest positive 

predictive value (PPV) where the RForest had the highest negative predictive value (NPV).  

These data are all summarized in Table 3.  

 

 

Figure 1: Receiver operator curves (ROC) achieved with generalized linear model (GLM) 

- red, support vector machine (SVM) – green, decision tree (RPart) – blue, feed forward 

neural network (NNet) – orange and random forest (RFor) – purple on testing set (95%) 

after training on training set (5%) with seed 33 used for randomization.   

 

 

 

 

79

Khitan et al.: Machine Learning and the USRDS

Published by Marshall University's Joan C. Edwards School of Medicine, 2018



 

 

Table 2: ROC areas with the different methods: 

 GLM SVM RPart NNet RForest 

Mean 0.7140 0.6546 0.6119 0.6980 0.7152 

SD 0.0007 0.0114 0.0087 0.0023 0.0006 

P value  P<0.01 P<0.01 P<0.01  

GLM – generalized linear model, SVM – support vector machine, RPart – decision tree, NNet – 

feed forward neural network with 1 hidden layer, RForest – random forest. P value vs GLM. 

Each ROC determined for each method with 6 different seed values to generate selection of 

training and testing sets. Training sets chosen to 5% of the total patient records.  

 

Table 3: Diagnostic accuracy with different methods: Calculated from N=6 seeds.  

 GLM SVM RPart NNet RForest 

Accuracy 0.8319+/-

0.0002 

0.8311+/-

0.0001** ND 

0.8272+/-

0.0004** 

0.8317+/-

0.0001 

Kappa 0.073+/-

0.005 

0.013+/-

0.008** ND 

0.091+/-

0.006** 

0.048+/-

0.004** 

Sensitivity 0.989+/-

0.001 

0.998+/-

0.001** 

ND 0.978+/-

0.002** 

0.993+/-

0.001** 

Specificity 0.058+/-

0.005 

0.010+/-

0.006** 

ND 0.084+/-

0.006** 

0.037+/-

0.004** 

PPV 0.838+/-

0.001 

0.832+/-

0.001** 

ND 0.840+/-

0.001** 

0.835+/-

0.001** 

NPV 0.521+/-

0.009 

0.491+/-

0.032** 

ND 0.440+/-

0.005** 

0.526+/-

0.007 

Data shown as mean +/- SD of six determinations. PPV – positive predictive value, NPV – 

negative predictive value. Positive class is “alive > 6 months.” ** p<0.01 vs GLM.  
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The factors that were most important to the models are shown in Table 4. It is clear that patient 

age, serum creatinine and serum albumin are important to the different models. Other 

measurements made it to the top of some of the models but not others. The different models were 

remarkably consistent with the importance order with which variables were chosen with the 

different seeds (data not shown).  

  

Table 4: Variable importance among the different methods  

 GLM SVM NNet RForest 

1 

Albumin Age 

Disease 

Group Age 

2 

Disease Group 81% 

Incident Age 

98% 

Age 77% 

 

BMI 

 92% 

3 Non-Ambulatory 78% SCr 69% SCr 72% SCr 86% 

4 Hypertension 

70% 

Albumin 57% Albumin  

67% 

BUN  

81% 

5 EPO  

58% 

DisGrp 45% Incident Age 63% Albumin 74% 

Albumin- serum albumin, Incident Age – age of first ESRD treatment, SCr – serum creatinine, 

BUN – serum urea nitrogen, EPO – erythropoietin use, Hypertension – presence of hypertension.  

 

 

As the entire data set had a relative paucity of early deaths, we examined how our algorithms 

performed with a balanced training set constructed from drawing from a subpopulation where the 

fraction of patients with early (< 6 month) deaths was 50:50. When we did this, all training 

algorithms had dramatic increases in kappa values (to about 0.2) as well as specificity values (to 

between 0.60 and 0.65) with marked decreases in sensitivity to be essentially matched to the 

specificity value obtained with that algorithm. As accuracy also decreased by about 20%, we 

chose to leave the training dataset unbalanced. Manuscripts addressing the challenge of 

unbalanced data sets recognize this problem but do not offer a universal solution.19  

 

The results we observed were not very surprising based on our previous experience with this data 

set where we saw that the neural network model did not afford advantages over linear or 

actuarial strategies at predicting time to death.9 In the current study, the logistic linear model (as 

we were predicting a categorical outcome) was, to all intents and purposes, comparable or 

superior to more sophisticated strategies at predicting early death after the initiation of dialysis 

therapy. Cross talk between variables clearly wasn’t all that important in the determination of 

this important outcome; evidence strongly supported the contention that a logistic linear model 

captured most of the information present in this large data set.  

 

In the analysis performed, sensitivity was calculated based on the model’s ability to predict 

survival.  Along with the high prevalence of survivors, the positive predictive value was 

generally in excess of 80%. This seems to be more than high enough to merit a trial of dialytic 

therapy. In contrast, the negative predictive value of the models hovered around 50%. Frankly, 
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this does not come close to meeting the authors’ threshold for futility of care, and it would seem 

irresponsible to withhold dialytic therapy for such a prediction. However, it seems that such a 

prediction might be of a precision sufficient to recommend additional vigilance in monitoring. 

With the ease of implementing the logistic linear model, this seems to be a reasonable approach 

based on the data used in this study which are readily available from routine clinical records (and 

usually submitted with the CMS-2728-U3 form).  
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Appendix: 

rm(list=ls()) #empty memory 

setwd("C:/Users/shapiroj/Dropbox/Current Stuff/work") #set working directory 

#load csv file and erase empty columns  

library(dplyr) 

dat <- read.csv("esrd.csv",stringsAsFactors=FALSE,na.string=c("",NA," ","U","Unk")) 

dim(dat) 

dat1 = dat[,!apply(is.na(dat), 2, all)]   # automatically get rid of empty cols at the end 

#set up outcome variable as “yes”  or “no” for subsequent machine learning 

A=NULL 

mm=dim(dat1)[1] 

for(i in 1:mm){ 

if(dat1[i,39]<6){ 

A[i]="yes" 

}else{ 

A[i]="no" 

} 

} 

#make all data used for fitting numeric; essential for most machine learning algorithms 

dat2=dat1[,1:38] 

for(i in 1:38){ 

  dat2[,i]=as.numeric(dat2[,i]) 

} 

#reconstitute file z with output1 variable having outcomes as yes or no.  

z=cbind(dat2,A) 

colnames(z)[39]="output1" 

#clean up some variables 

z=z[,-c(1,5,38)] 

#load additional libraries 

library(rJava) 

library(ROCR) 

library(pROC) 

library(rpart) 

library(caret) 

library(nnet) 

library(C50) 

library(ggplot2) 

library(lattice) 

library(randomForest) 

library(rminer) 

library(xgboost) 

library(rBayesianOptimization)  ## Bayesian Optimization  

#run simulations and save data 

vv=c(2,33,15,19,5) #create vector with different seeds 

#loop with different seeds 

for(i in 1:5){ 
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  set.seed(k) 

  #split into training and testing subsets based on seed 

  ind = sample(2, nrow(z), replace = TRUE, prob = c(0.5, 0.95)) 

  trainset = z[ind == 1,] 

  testset = z[ind == 2,] 

  #save files with output data 

  vvv=paste0("esrd_10_seed_",k,".txt") 

  www=paste0("esrd_10_seed_",k,".png")   

  #set up training with CARET for different machine learning methods 

  control = trainControl(method = "repeatedcv", number = 10, repeats = 3, classProbs =  

  TRUE, summaryFunction = twoClassSummary) 

  glm.model = train(output1 ~ ., data = trainset, method = "glm", metric = "ROC", trControl =           

control, preProc=c("center","scale")) 

  tunGrid_svm=expand.grid(sigma=c(0.015), C=c(1)) #sigma and C fit optimized 

  separately based on ROC on training set 

  svm.model = train(output1 ~ ., data = trainset, method = "svmRadial",metric = "ROC", 

  tuneGrid=tunGrid_svm, trControl = control, preProc=c("center","scale")) 

  rpart.model = train(output1 ~ ., data = trainset, method = "rpart", metric = "ROC", 

  trControl = control, preProc=c("center","scale")) 

  tunGrid=expand.grid(size=c(9),decay=c(0.2)) #number of hidden neurons (size) and  

  decay rate optimized separately based on ROC on training set 

  nnet.model = train(output1 ~ ., data=trainset, method = "nnet", metric="ROC", 

  trace=FALSE, trControl=control, tuneGrid=tunGrid, 

  preProc=c("center","scale")) 

  tunegrid=expand.grid(.mtry=c(12)) #mtry which is number of branches to random forest  

  optimized based on ROC on training set 

  rfor.model = train(output1 ~ ., data=trainset, method = "rf", metric="ROC", 

  trControl=control,tuneGrid=tunegrid, preProc=c("center","scale")) 

  #make predictions based on models 

  glm.probs = predict(glm.model, testset[,! names(testset) %in% c("output1")], type = "prob") 

  svm.probs = predict(svm.model, testset[,! names(testset) %in% c("output1")], type = "prob") 

  rpart.probs = predict(rpart.model, testset[,! names(testset) %in% c("output1")], type = "prob") 

  nnet.probs=predict(nnet.model,  testset[,! names(testset) %in% c("output1")], type = "prob") 

  rfor.probs=predict(rfor.model,  testset[,! names(testset) %in% c("output1")], type = "prob") 

  #make ROC graphs 

  png(www) 

  glm.ROC = roc(response = testset[, c("output1")], predictor = glm.probs $yes, levels = 

  levels(testset[, c("output1")])) 

  plot(glm.ROC,add=F, col =" red",main=k) 

  svm.ROC = roc(response = testset[, c("output1")], predictor = svm.probs $yes, levels = 

  levels(testset[, c("output1")])) 

  plot(svm.ROC, add = TRUE, col ="green") 

  rpart.ROC = roc(response = testset[, c("output1")], predictor = rpart.probs $yes, levels = 

  levels(testset[, c("output1")])) 

  plot(rpart.ROC, add = TRUE, col ="blue") 
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  nnet.ROC=roc(response = testset[, c("output1")], predictor = nnet.probs $yes, levels = 

  levels(testset[, c("output1")])) 

  plot(nnet.ROC, add = TRUE, col ="orange") 

  rfor.ROC=roc(response = testset[, c("output1")], predictor = rfor.probs $yes, levels = 

  levels(testset[, c("output1")])) 

  plot(rfor.ROC, add = TRUE, col ="purple") 

  dev.off() #close ROC graph 

  sink(vvv) #open text output 

  #confusion matrices and variable importance lists 

  glm.pred=predict(glm.model,testset[,!names(testset)%in% c("output1")]) 

  t=table(glm.pred,testset[,c("output1")]) 

  tt=confusionMatrix(glm.pred,testset[,c("output1")]) 

  print("glm.model") 

  print(tt) 

  print(glm.ROC) 

  print(varImp(glm.model)) 

  svm.pred=predict(svm.model,testset[,!names(testset)%in% c("output1")]) 

  t=table(svm.pred,testset[,c("output1")]) 

  tt=confusionMatrix(svm.pred,testset[,c("output1")]) 

  print("svm.model") 

  print(tt)#  

  print(svm.ROC) 

  print(varImp(svm.model)) 

  rpart.pred=predict(rpart.model,testset[,!names(testset)%in% c("output1")]) 

  t= table(rpart.pred,testset[,c("output1")]) 

  tt=confusionMatrix(rpart.pred,testset[,c("output1")]) 

  print(rpart.ROC) 

  print(varImp(rpart.model)) 

  nnet.pred=predict(nnet.model,testset[,!names(testset)%in% c("output1")]) 

  t= table(nnet.pred,testset[,c("output1")]) 

  tt=confusionMatrix(nnet.pred,testset[,c("output1")]) 

  print("nnet.model") 

  print(tt) 

  print(nnet.ROC) 

  print(varImp(nnet.model)) 

  rfor.pred=predict(rfor.model,testset[,!names(testset)%in% c("output1")]) 

  t=table(rfor.pred,testset[,c("output1")]) 

  tt=confusionMatrix(rfor.pred,testset[,c("output1")]) 

  print("rfor.model") 

  print(tt) 

  print(rfor.ROC) 

  print(varImp(rfor.model)) 

  sink() #close text file 

  }#end loop 
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