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Abstract 

 Attempts to synthesize the hypothetical anhydrous fluoroperovskite NaCdF3, which has 

been predicted to be stable, resulted instead in a hydrated fluoride of nominal composition 

NaCdF3·3H2O.  It decomposes to sodium fluoride, cadmium fluoride, and water at 60 ºC.  Its 

structure has been determined by single-crystal X-ray diffraction.  Na0.92(2)Cd1.08F3.08·2.92H2O 

crystallizes in the cubic space group Fm 3 m with a = 8.2369(4) Å and Z = 4.  The structure is 

based on the NaSbF6-type (an ordered variant of the ReO3-type) and features tilted sodium- and 

cadmium-centred octahedra that are linked by shared vertices to form a three-dimensional 

network.  Substitutional disorder occurs on the nonmetal site, which is occupied by both F and O 

atoms, and on one of the metal sites, which is occupied by 92% Na and 8% Cd.  A four-fold 

orientational disorder of the tilted octahedra is manifested as partial occupancy (25%) of the 

nonmetal site.  A scheme to synthesize the anhydrous fluoride is presented. 

 

Keywords:  A. Fluorides; B. Crystal Growth; C. X-ray Diffraction; D. Crystal Structure 
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1. Introduction 

 Perovskites constitute a very important niche within materials science, being used in such 

applications as ferroelectrics, piezoelectrics, and frequency converters.  Each of these 

applications requires the material to be acentric, i.e., to have no center of symmetry.  

Fluoroperovskites, with the general formula ABF3, constitute a subcategory distinguished by 

being more ionic than the oxide perovskites, which are the most common type of perovskite 

materials used in technological applications.  The greater electronegativity of fluorine compared 

to oxygen results in a larger band gap for fluoroperovskites than for oxide perovskites and a 

corresponding absorption edge further into the ultraviolet region [1].  Acentric fluoroperovskites 

should thus be useful for frequency conversion by second harmonic generation in the ultraviolet 

region. 

 The stability of fluoroperovskites (as with any perovskite) is roughly judged by the 

Goldschmidt tolerance factor,  = ( rA + rX ) / 2  ( rB + rX ), where rA, rB, and rX are the ionic 

radii of the large cation, small cation, and anion, respectively [2].  Perovskites with a tolerance 

factor equal to one will have the ideal cubic perovskite structure.  Perovskite materials with 

tolerance factors less than one become increasingly unstable in the cubic symmetry and distort 

by various modalities to tetragonal, orthorhombic, or rhombohedral structures, though with the 

same vertex-sharing arrangement of B-centered octahedra as in the cubic structure [3].  Below a 

particular tolerance factor, a material will no longer crystallize in any perovskite-related 

structure.  For example, RbCaF3 has a cubic perovskite structure at room temperature [4] 

whereas RbSrF3 does not form at all, and in the homologous series ACdF3 (A = K, Tl, Rb, Cs), 

the room-temperature structure is orthorhombic for KCdF3 [5] but cubic for the others [6].  Table 
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1 shows the tolerance factors, calculated using the effective ionic radii reported by Shannon [7], 

for some ABF3 compounds. 

 Sodium cadmium trifluoride, NaCdF3, has a tolerance factor slightly higher than that of 

NaCaF3, a material not yet prepared but predicted by computer simulations to be a ferroelectric 

material and to be isostructural with LiNbO3 [8].  A recent report predicts that NaCdF3, if made, 

would have a distorted perovskite structure at room temperature, either orthorhombic or 

rhombohedral, the structures being degenerate and about 60 meV below the energy of the 

separate binary fluorides, implying chemical stability [9].  Furthermore, either structure would be 

ferroelectric, with a room-temperature polarization of 0.23 C/m
2
 in the rhombohedral and 0.11 

C/m
2
 in the orthorhombic form, and would have a band gap of 8.5 eV, corresponding to an 

absorption edge of about 150 nm.  In contrast, no fluoroperovskite listed in Table 1 is 

ferroelectric. 

 To date, we have been unable to prepare anhydrous NaCdF3 by standard solid-state 

techniques.  Direct combination at high temperatures yields NaF and CdF2 as determined by X-

ray diffraction.  A solution route, however, affords the hydrated fluoride of nominal composition 

NaCdF3·3H2O.  Herein we report its structure and thermal properties, and discuss their 

implications on how the anhydrous fluoroperovskite could be prepared. 

 

2. Experimental 

2.1 Synthesis 

 NaCdF3·3H2O was prepared by evaporating the solvent from either methanol or aqueous 

solutions containing equal molar concentrations of NaF and CdF2; the methanol solutions 

presumably afforded waters of hydration from atmospheric water vapor.  The resulting 



 5 

crystalline solid was examined by powder X-ray diffraction on a Scintag Model PAD V powder 

diffractometer equipped with Cu K radiation and a graphite monochromator.  The product was 

single phase, contained neither NaF nor CdF2, and was identical in all respects whether made 

from methanol or aqueous solutions. 

 

2.2 Thermal Analysis 

 Thermal properties were determined by differential scanning calorimetry conducted on a 

DuPont Thermal Analyzer 2000.  A 25-mg sample was placed in an aluminum pan and heated 

from room temperature to 200 ºC at 10 ºC/minute.  A large endothermic peak occurred at 60 ºC.  

Mass change upon heating a 30-g sample to 200 ºC indicated 2.8 waters of hydration per formula 

unit if the anhydrous chemical formula is assumed to be NaCdF3.  Powder X-ray diffraction 

analysis of the sample after heating revealed it to be a mixture of NaF and CdF2. 

 

2.3 X-ray Diffraction 

 After several regularly shaped crystals mounted on fibers were screened for integrity, a 

specimen was chosen on which intensity data were collected by single-crystal X-ray diffraction 

on a Bruker Platform / SMART 1000 CCD diffractometer equipped with Mo K radiation.  

Crystal data are shown in Table 2.  Calculations were carried out with the SHELXTL (version 

5.10) package [10].  Face-indexed numerical absorption corrections were applied.  The 

centrosymmetric space group Fm 3 m was chosen and initial atomic positions for Na, Cd, and 

F/O were easily located by direct methods at Wyckoff sites 4b, 4a, and 96k, respectively.  The 

atomic positions were standardized with the program STRUCTURE TIDY [11].  On the basis of 

the nominal formula NaCdF3·3H2O and the similarity of the scattering factors for F and O, the 
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96k site was initially fixed to have a partial occupancy of 0.25 with equal numbers of F and O 

atoms (i.e., occupancies of 0.125 F and 0.125 O).  In the course of the structure refinement, a low 

displacement parameter at the Na site was found, implying that there was greater electron density 

there than presumed.  Contamination by potassium was ruled out because an EDX (energy-

dispersive X-ray) analysis revealed only the presence of Na, Cd, F, and O.  Given that Na–F and 

Cd–O distances are similar (2.35 Å from Shannon ionic radii for CN6), a refinement was 

performed in which the 96k site was allowed to be occupied by a mixture of Na and Cd atoms.  

The occupancies converged to 0.92(2) Na and 0.08(1) Cd, the displacement parameter became 

more reasonable, and R(F) (for Fo
2
 > 2(Fo

2
)) improved from 0.031 to 0.016.  To maintain 

charge neutrality, the formula was revised to Na0.92Cd1.08F3.08·2.92H2O and the occupancies of 

the 96k site with F and O atoms were fixed accordingly.  Hydrogen atoms were not refined.  In 

the final refinement, the difference electron density map was featureless.  Final values of the 

positional and displacement parameters are given in Table 3.  A calculated powder diffraction 

pattern precisely matched the experimental diffraction pattern. 

 

3. Results and discussion 

 The hydrated fluoride of nominal composition NaCdF3·3H2O decomposes to NaF, CdF2, 

and H2O at 60 ºC.  As determined by the X-ray diffraction study, the solid-solution formula 

Na0.92Cd1.08F3.08·2.92H2O results from the occurrence of two types of disorder in the crystal 

structure.  Substitutional disorder is manifested by 8% Cd substitution on the Na sites and by the 

mixing of F and O atoms on the nonmetal sites.  Fluorine is present as F
–
 anions and oxygen as 

belonging to H2O molecules.  Slightly more F than O atoms are present to give the additional 

negative charge required to balance the excess Cd cations substituted on the Na site.  
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Orientational disorder of the metal-centred polyhedra in the structure is related to the partial 

occupancy (25%) of the nonmetal sites.  For simplicity, we refer to the compound by its ideal 

formula NaCdF3·3H2O in the subsequent discussion. 

 As shown in Fig. 1(a), the structure consists of a rocksalt arrangement of the Na and Cd 

atoms with nonmetal sites (X) in the intervening space.  Each Na and Cd site has 24 equivalent 

nonmetal sites within the coordination sphere, of which only 1/4 are occupied, resulting in 

sixfold coordination on a local level.  Fig. 1(b) shows one possible local site occupation of 

nonmetal atoms around a Cd atom to give octahedral coordination geometry (with bond angles of 

83.9(2)º and 96.1(2)º).  A similar picture applies to the Na atom, which is also octahedrally 

coordinated (with bond angles of 84.3(2)º and 95.7(2)º).  The interpretation is that these Na- and 

Cd-centred octahedra are tilted so that the metal–X bonds are aligned 26.4(2)º and 27.4(2)º away, 

respectively, from the <100> directions in a random fashion among four possible orientations.  

No supercell structure was detected, at least for temperatures at or above 193 K, the temperature 

at which diffraction data were collected. 

 The metal-centred octahedra are connected through shared vertices to give a three-

dimensional framework.  The structure can be regarded as a distortion of the NaSbF6-type (an 

ordered variant of the ReO3-type), in which the metal-centred octahedra are arranged linearly in 

all three dimensions, with ideal Na–F–Sb bond angles of 180º [12,13].  In contrast, the Na–X–Cd 

bond angle is significantly smaller at 126.2(2)º in NaCdF3·3H2O.  This distortion is similar to 

that seen in the hexafluorophosphate salts KPF6 and CsPF6, where a four-fold orientational 

disorder of octahedra must also be invoked [14].  A related case where substitutional and 

orientational disorder occur has been recently reported for ammonium elpasolites such as 

(NH4)2TiOF5 [15].  The Na–X distances (2.351(3) Å) are shorter than the Cd–X distances 
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(2.268(3) Å), consistent with the larger radius of Na
+
 compared to Cd

2+
.  Calculation of bond 

valence sums [16] nicely corroborates the assignment of the metal and nonmetal atoms.  With 

each metal centre bonded to three F and three O atoms, the bond valence sums are 1.1 for the Na 

site and 2.0 for the Cd site.  Each O atom is bonded to one Na, one Cd, and two H atoms (at ~1.0 

Å), yielding a bond valence sum of 2.0.  It can also be concluded that each F atom must be 

bonded to at least one H atom (at ~1.1 Å), in addition to one Na and one Cd atom, in order to 

attain a reasonable bond valence sum of 1.0.  Hydrogen bonding interactions (O–H···O and O–

H···F) are thus quite extensive in this structure. 

 

4. Concluding Remarks 

 Although the preparation of the hydrated fluoride NaCdF3·3H2O was unintended, it helps 

provide insight into possible means to produce the anhydrous fluoroperovksite NaCdF3, which 

was the originally targeted compound.  That the trihydrate, when it is dehydrated, collapses into 

the binary fluorides rather than into the fluoroperovskite implies that no stable atomic-

rearrangement pathway exists to go from the hydrate to the anhydrous fluoroperovskite.  It is 

therefore unlikely that the anhydrous material can be prepared under equilibrium conditions; 

rather, some sort of kinetically favorable synthetic route will be required.  One possibility is to 

use thin-film deposition on a substrate with a lattice and orientation appropriate to the structure 

of the desired material.  A suitably well-matched substrate provides a template upon which even 

a thermodynamically unstable material can grow.  For example, YMnO3 with a distorted 

perovskite structure has been grown as a thin film even though its thermodynamically stable 

structure is a non-perovskite type [17].  A thin-film technique such as pulsed laser deposition, 
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which provides a stoichiometric transfer of elements from target to substrate, may prove suitable 

for synthesis of the anhydrous fluoroperovskite. 
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Table 1 

Tolerance factors for fluoroperovskites (ABF3) 
a 

 Mg
2+

 Zn
2+

 Cd
2+

 Ca
2+

 Sr
2+

 Pb
2+

 Ba
2+

 

Na
+
 0.938 0.929 0.844 0.825 0.766 0.763 0.718 

K
+
 1.024 1.015 0.921 0.901 0.837 0.833 0.784 

Tl
+
 1.045 1.035 0.940 0.920 0.854 0.850 0.799 

Rb
+
 1.052 1.042 0.946 0.926 0.859 0.856 0.805 

Cs
+
 1.107 1.097 0.996 0.974 0.904 0.901 0.847 

 
a
 Calculated from Shannon effective ionic radii for A

+
 (CN12), B

2+
 (CN6), and F

–
 (CN6) 

ions.  Tolerance factors are underlined for compounds not known to exist. 
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Table 2 

Crystallographic data for Na0.92Cd1.08F3.08·2.92H2O 

Formula mass (amu) 253.67 

Space group 5
hO –Fm 3 m (No. 225) 

a (Å) 
a
 8.2369(4) 

V (Å
3
) 558.85(5) 

Z 4 

calcd (g cm
–3

) 3.015 

Crystal dimensions (mm) 0.31  0.15  0.09 

Radiation Graphite monochromated Mo K,  = 0.71073 Å 

(Mo K) (cm
–1

) 42.65 

Transmission factors 0.435–0.687 

2 limits 8.58  2(Mo K)  66.14 

Data collected –12  h  12, –12  k  12, –12  l  12 

No. of data collected 1834 

No. of unique data, including Fo
2
 < 0 79 

No. of unique data, with Fo
2
 > 2(Fo

2
) 79 

No. of variables 10 

R(F) for Fo
2
 > 2(Fo

2
) 

b
 0.012 

Rw(Fo
2
) 

c
 0.028 

Goodness of fit 1.28 

()max, ()min (e Å
–3

) 0.48, –0.44 

 
a
 Obtained from a refinement constrained so that a = b = c and  =  =  = 90. 

 
b
   oco FFFFR )( . 

 
c
   2/142222 ]][[)(   ocoow wFFFwFR ; ])02.0()(σ[ 2221 pFw o   where 

3/]2)0,[max( 22

co FFp  . 
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Table 3 

Atomic coordinates and equivalent isotropic displacement parameters for 

Na0.92Cd1.08F3.08·2.92H2O 

Site Wyckoff 

position 

Occupancy x y z Ueq (Å
2
) 

a
 

A 4b 0.92 Na, 0.08 Cd 1/2 1/2 1/2 0.0134(3) 

B 4a 1.00 Cd 0 0 0 0.0101(2) 

X 96k 0.13 F, 0.12 O 0.0897(3) x 0.2444(3) 0.0155(5) 

 
a
 Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. 
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Figure captions 

Fig. 1. (a) Unit cell of NaCdF3·3H2O.  The large open circles are Na atoms, the medium 

solid circles are Cd atoms, and the small open circles are nonmetal sites X, partially 

occupied (25%) by a mixture of F and O atoms.  (b) One of four possible orientations 

of the Cd-centred octahedron, generated by local occupation of 1/4 of the nonmetal 

sites in sixfold coordination. 

 



 15 

 

 

 

Cd 

Cd 

X 

(a) 

(b) 

a 

b 

c 
Cd 

X 

Na 


	University of Nebraska at Omaha
	DigitalCommons@UNO
	3-2006

	Orientational Disorder in Sodium Cadmium Trifluoride Trihydrate, NaCdF3·3H2O
	Robert W. Smith
	Arthur Mar
	Jianjun Liu
	Stan Schnell
	John R. Hardy
	Recommended Citation


	Table 1

