
Marshall University
Marshall Digital Scholar
Weisberg Division of Computer Science Faculty
Research Weisberg Division of Computer Science

3-2013

Audio convolution on GPUs: a follow-up
Davide Andrea Mauro
Marshall University, maurod@marshall.edu

Follow this and additional works at: https://mds.marshall.edu/wdcs_faculty

Part of the Computational Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Weisberg Division of Computer Science at Marshall Digital Scholar. It
has been accepted for inclusion in Weisberg Division of Computer Science Faculty Research by an authorized administrator of Marshall Digital Scholar.
For more information, please contact zhangj@marshall.edu, beachgr@marshall.edu.

Recommended Citation
Mauro DA. Audio convolution on GPUs: a follow-up. Paper presented at the AIA-DAGA Conference on Acoustics, March, 2013,
Merano (Italy)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Marshall University

https://core.ac.uk/display/232744942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://mds.marshall.edu?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/wdcs?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/wdcs_faculty?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=mds.marshall.edu%2Fwdcs_faculty%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu


Audio convolution on GPUs: a follow-up

Davide A. Mauro1,2
1 Laboratorio di Informatica Musicale (LIM), Universitá degli Studi di Milano, Milan, Italy

2 Institut Mines-Télécom, TÉLÉCOM ParisTech, CNRS-LTCI, Paris, France

davide-andrea.mauro@telecom-paristech.fr

Introduction
This paper focuses on the use of GPGPU (General-
Purpose computing on Graphics Processing Units) for
audio processing. This is a promising approach to
problems where a high parallelization of tasks is de-
sirable. Within the context of binaural spatialization
we will develop a convolution engine having in mind
both offline and real-time scenarios, and the support for
multiple sound sources. Details on implementations and
strategies used with both dominant technologies, namely
CUDA and OpenCL, will be presented highlighting
both advantages and issues. Comparisons between this
approach and typical CPU implementations will be
presented as well as between frequency (FFT) and time-
domain approaches. Results will show that benefits exist
in terms of execution time for a number of situations.

Convolution Engines
Even if the process is well known and understood in
terms of mathematics, the realization of implementations
that work in real-life scenarios is not trivial. One of
the greatest obstacle is the computational complexity
that convolution requires both in the time and frequency
domain approaches. This means that the problem could
be theoretically solved but the computer architecture
does not allow it to be solved in a reasonable time for
some practical cases of interest. As shown in Figure 1 the
system requires as input an anechoic signal (monophonic)
and a impulse response (stereo) and the overall output
will be two channel spatialized sound that can feed both
headphones or loudspeakers (with crosstalk cancelation
algorithms [3]). For a review of the state of the art in
convolution engines please refer to [7].

Overlap-add algorithm

Since the size of the filter kernel can become very high, it
is not convenient to use a single window to transform the
entire signal so a number of methods can be implemented
to overcome this. We choose to use a method called
Overlap-add (OA, OLA). It is an efficient way to evaluate
the discrete convolution of a very long signal x[n] with a
finite impulse response (FIR) filter h[n]. The concept is
to divide the problem into multiple convolutions of h[n]
with short segments of x[n]:

y[n] = x[n]∗h[n] :=

∞∑
m=−∞

h[m]x[n−m] =

M∑
m=1

h[m]x[n−m]

(1)
where h[m] = 0 for m outside the region [1,M ].

Figure 1: The workflow diagram of the system.

Figure 2: Schematic view of the overlap-add convolution
method.

xk[n] :=

{
x[n + kL] n = 1, 2, ···, L

0 otherwise
(2)

where L is an arbitrary segment length.

x[n] =
∑
k

xk[n− kL] (3)

So y[n] can be written as a sum of convolutions:

y[n] =

(∑
k

xk[n− kL]

)
∗ h[n] =

∑
k

(xk[n− kL] ∗ h[n])

(4)
The method is depicted in Figure 2

It is particularly interesting for our tasks since it works
on independent pieces of input and thus is well suited for
a parallelized approach such as one that employs a GPU.

mailto:davide-andrea.mauro@telecom-paristech.fr


Implementations
In order to make comparisons with the GPU imple-
mentations that we will present we need a reference
implementation that can serve as a basis in terms of
execution time and bitwise precision. For this reason
three different prototypes have been developed that use
different algorithms.

The first two prototypes are Matlab scripts that use
both a Time Domain and a Frequency Domain approach.
Since the computational complexity for the Time Domain
approach is O(n2) this can not be used when the filter
kernels are big. In our experiments, according to a
Max/MSP implementation that will be introduced in
the following section, we choose to limit the size to 256
samples.

The frequency domain implementation (presented in [6])
will be used to validate the results in terms of bitwise
precision. Since Matlab is mainly intended as a pro-
totyping environment there is no focus on performance
and every other implementation can outperform our
Matlab testbase by orders of magnitude. Moreover, this
implementation works only in “direct mode”; this implies
that a single FFT is performed for the entire signal and
therefore the algorithm may not be applicable for long
sequences due to memory constraints or implementation
limits.

One of the CPU implementation is written in C++ and is
based on the FFTW3 library (see [5]). It is based on the
architecture previously presented and implements both
modalities (Direct and OLA) previously discussed.

The FFTW library itself is based on Cooley-Tukey algo-
rithm [4]. As presented by the authors, the interaction
of the user with FFTW occurs in two stages: planning,
in which FFTW adapts to the hardware, and execution,
in which FFTW performs useful work for the user.
To compute a DFT, the user first invokes the FFTW
planner, specifying the problem to be solved. The
problem is a data structure that describes the “shape”
of the input data - array sizes and memory layouts -
but does not contain the data itself. In return, the
planner yields a plan, an executable data structure that
accepts the input data and computes the desired DFT.
Afterwards, the user can execute the plan as many times
as desired.

A CUDA convolution engine
For the CPU implementation with CUDA we were able
to implement both Direct and OLA algorithm. We
consider the benefits of both approaches in the following
section while presenting performance comparisons. For
FFT we use a library called CUFFT which is actually
based on FFTW3 library with some other optimizations
specifically designed for GPUs. One of the current issue
is the CUFFT limit of 64 millions of points.

An OpenCL convolution engine
The FFT used is based on Apple implementation (http:
//developer.apple.com/library/mac/#samplecode/

OpenCL_FFT/Introduction/Intro.html). One of the
current limitations is that the factorization algorithms
works only for powers of 2 (radix-2). So the payload
should be adapted to make the sum with the length of
the filter kernel to be the closest greater power of 2.

The cGPUconv prototype
From a number of the previously cited prototypes we
derived a single application that allows the user to choose
between a CPU- or a GPU-based algorithm and between
a direct mode (a single window for the entire signal) and
an Overlap-add mode. It is structured as a “wrapper”
around the single module that has the capability of
opening audio files and writing them back to disk thanks
to libsndfile (see [2]). There is also an early-stage support
for realtime convolution acquiring sound from audio
input and playing it back through audio output. It is
a command line tool that compiles and executes both on
Microsoft Windows, Apple OSX, and Linux applications
as long as they have, or there exists a version of:

• Boost Library;

• PortAudio;

• Libsndfile for I/O;

• FFTW3 library for CPU implementation;

• CUDA (Versions 4 or 5) Framework;

• OpenCL (1.1) driver.

The program can be adapted removing functionalities
provided by subsets of the previous requirements by
removing the components that make use of those pre-
requisites. The source code is available from the author
at
https://code.google.com/p/cgpuconv/.

Performance Comparisons
Performances of these algorithms depends on the size
of input. Therefore, to characterize the “trade-off”, we
tested them with different input sizes. We then compute
the time spent on the convolution procedure, excluding
the load procedure that reads from audio files and the
write to disk procedure for the results, which are collat-
eral to our primary goal. A special case is represented
by the first execution for both the CUDA and OpenCL
implementation where for the former there exists some
extra time devoted to the load of the environment while
for the latter, apart from the aforementioned setup, we
have to take into account the time that the driver allocate
to compile kernel functions.

The algorithms were tested on a number of different
platform:

• A1: Apple Macbook Pro 13.3” (MacBookPro5,5),
OSX 10.6.8. Intel Core 2 Duo processor @2,53 GHz,
8 GB Ram, NVIDIA GeForce 9400GM 256 MB
vRAM shared memory. OpenCL 1.1, CUDA 4.0.

• A2: Asus M50S, Ubuntu 12.10 32bit. Intel Core
2 Duo processor @2,50 GHz, 4 GB Ram NVIDIA

http://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Introduction/Intro.html
http://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Introduction/Intro.html
http://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Introduction/Intro.html
https://code.google.com/p/cgpuconv/


 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

N. of samples

Comparation of execution time for Direct Mode

A1 CPU
A1 CUDA

A1 OpenCL
A2 CPU

A2 CUDA
A3 CPU

A3 CUDA
A3 OpenCL

Figure 3: Execution time for Direct mode depending on
input size. Part 1

GeForce 9500M G, 512 MB vRAM dedicated mem-
ory. CUDA 5.0.

• A3: ASUS CG8250 Windows 8 64bit. Intel Core
i7-2600 processor @3,40 GHz, 8 GB Ram NVIDIA
GeForce GTX 560 Ti, 1024 MB vRAM dedicated
memory. OpenCL 1.1, CUDA 5.0.

All the audio files are high quality PCM uncompressed
files and have a sample rate of 96 kHz and a quantization
word of 24 bit. With this bit depth the theoretical
dynamic range is ∼ 144 dB.

For each algorithm we measured the difference computed
between the signal under test and the reference (coming
from the Matlab implementation) with a phase inversion.
So the difference on a sample by sample basis gives us a
new signal that can be used as a degree of similarity
between the two original signals. For each and every
proposed approach this signal is below -122 dB FS (dB
on the full scale) meaning there is no practical difference,
and the result is in the order of magnitude of the noise
floor.

Coming to the execution time of the algorithms we
propose a summary of the results presented in Figures
3 - 4, and 5 - 6. Results are depicted as a function of the
number of input samples, averaged over 100 runs, results
are split in two parts for better clarity.

The exploit of CUDA 5 framework, as well as the new
architectures supported by PCIxpress 3.0 standard show
the continuous improvements that can be obtained using
GPGPU. We also present in Table 1 results for a “real-
case scenario”. We have a violin sound that is three
minutes long and a reverberant impulse response of 1
second (sample rate 96kHz):

• Input: 17703123 samples (∼3’10”)

• Kernel: 96000 (∼1”)

Please note that “-” occurs when there is not enough
free RAM / vRAM to handle the data. The idea
behind this work is to have a system that can run
on most home computer so the relatively old and low

 0

 5000

 10000

 15000

 20000

 25000

2
17

2
18

2
19

2
20

2
21

2
22

2
23

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

N. of samples

Comparation of execution time for Direct Mode

A1 CPU
A1 CUDA

A1 OpenCL
A2 CPU

A2 CUDA
A3 CPU

A3 CUDA
A3 OpenCL

Figure 4: Execution time for Direct mode depending on
input size. Part 2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

N. of samples

Comparation of execution time for Overlap-add

A1 CPU
A1 CUDA

A1 OpenCL
A2 CPU

A2 CUDA
A3 CPU

A3 CUDA
A3 OpenCL

Figure 5: Execution time for Overlap-add depending on
input size. Part 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2
17

2
18

2
19

2
20

2
21

2
22

2
23

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

N. of samples

Comparation of execution time for Overlap-add

A1 CPU
A1 CUDA

A1 OpenCL
A2 CPU

A2 CUDA
A3 CPU

A3 CUDA
A3 OpenCL

Figure 6: Execution time for Overlap-add depending on
input size. Part 2

(A1/A2/A3) (ms) Direct OLA
CPU -/-/- 9699/10160/3543

CUDA -/-/- 6181/ 5930/1381
OpenCL 7486/-/658 6699/-/1526

Table 1: Performance comparisons. Time in ms.



powerful graphic card is a good example of what can be
achieved with standard equipment. There are difference
between implementations and this can be explained by
the different way of encoding real and complex numbers.
Also note that there does not exist a concept of “paging”
for video RAM so if a structure is too big to fit in memory
there is no automatic way to handle the situation.

Conclusions and Future Works
In this paper we presented a number of prototypes that
are suitable for spatialization of sounds exploiting the
potentialities of GPUs. Some issues are still present
but we want to point out that the basic concepts here
expressed are valid and mark a profitable direction.

Performance results suggest that for a number of real
case applications there are benefits that can be at least
of 1/3 of the execution time, compared to the reference
CPU implementation, using old framework and outdated
hardware. and can be further improved with other
GPU-specific, but not hardware specific, optimizations.
Benefits are increasingly evident as the size of the
filter kernel grows and this is particularly useful for
convolution with long reverberant impulse responses (e.g.
BRIRs) that can be employed in order to render real
environments.

Some of the limitations previously presents, in CUDA
4.0 framework, or like bandwidth with PCIxpress 2.0
standard are overcame by new architecture that allows
to stream data back and forth from the GPU in realtime
and solve a number of the previous issues.

Further improvements will consider the application of
partitioned convolution, a technique first introduced by
Armelloni, Giottoli, and Farina [1]. It is also possible to
partition in a non-uniform manner for latency reduction
purposes [9]. [8] also used this algorithm for an efficient
FFT implementation on GPU.

Acknowledgments
The author would like to thank Lorenzo Picinali and
Brian F.G. Katz for extensive conversations concerning
these researches, and Andrea Trentini for the remote
host for testing purposes. This work has been partially
funded by the Enhanced Music Interactive Platform for
Internet User (EMIPIU) project and by the European
Commission under contract “FP7-287723 REVERIE”.

References
[1] E. Armelloni, C. Giottoli, and A. Farina. Implemen-

tation of real-time partitioned convolution on a DSP
board. In Applications of Signal Processing to Audio
and Acoustics, 2003 IEEE Workshop on., pages 71–
74. IEEE, 2003.

[2] E. Castro Lopo. Libsndfile [computer software].
Retrieved December, 28:2005, 2005.

[3] E. Y. Choueiri. Optimal crosstalk cancellation for
binaural audio with two loudspeakers. 2011.

[4] J. Cooley and J. Tukey. An algorithm for the machine
calculation of complex Fourier series. Math. Comput,
19(90):297–301, 1965.

[5] M. Frigo and S. Johnson. The design and
implementation of FFTW3. Proc. IEEE (Special
Issue on Program Generation, Optimization, and
Platform Adaptation), 93:216–231, 2005.

[6] D. A. Mauro. Effetti della distanza nella spazial-
izzazione e localizzazione binaurale. B.A. Thesis,
Università degli Studi di Milano, July 2006.

[7] D. A. Mauro. On Binaural Spatialization and the use
of GPUs for audio processing. PhD thesis, Università
degli Studi di Milano, March 2012.

[8] M. Rush. Modeling a GPU-based Convolution Engine
EEC 289Q.

[9] F. Wefers and M. Vorländer. Potential of
non-uniformly partitioned convolution with freely
adaptable fft sizes. In Audio Engineering Society
Convention 133, 2012.


	Marshall University
	Marshall Digital Scholar
	3-2013

	Audio convolution on GPUs: a follow-up
	Davide Andrea Mauro
	Recommended Citation


	tmp.1539029045.pdf.Ec46q

