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ABSTRACT

The inflammatory response is the body’s response to some pathogen or foreign invader. When
infected by a pathogen, a healthy individual will mount a response with immunological factors to
eliminate it. An inflammatory response that is either too strong or too weak can be detrimental
to the individual’s health. We will look at a qualitative mathematical model of the inflammatory
response, in scenarios that represent varying disorders of the immune system. Using sensitivity
analysis we determine which parameters of this model are most influential in the different
scenarios. By determining which parameters are most influential we can suggest possible targets

for treatments to these conditions which are traditionally difficult to control.
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CHAPTER 1

INTRODUCTION

The human body faces external threats from pathogens, or disease causing agents, every day.
Pathogens can be viruses, bacteria, fungi, or multi-cellular parasites. The first lines of defense
against these invaders are the skin and mucous membranes. If this barrier is breached, be it
through a simple cut or ingesting some infected substance, then the second line of defense is
activated [7].

The second line of defense is called the innate immune system. The innate immune system is a
chemical defense system that is activated by white blood cells called macrophages. When a
macrophage detects a pathogen it begins to engulf the pathogen for destruction, a process known
as phagocytosis. Macrophages also secretes enzymes, known as cytokines, to begin the process of
inflammation. Inflammation involves the recruitment of many different chemicals and cells from
elsewhere in the body in order to neutralize the pathogens that the macrophages have detected.

Inflammation involves physical symptoms such as heat, redness, swelling, and pain. Symptoms
such as these are intended functions of the inflammatory response that strengthen the immune
response. One of the earliest components of inflammation is the recruitment neutrophils, a type
of white blood cell. Like the macrophages, the neutrophil’s function is to engulf the pathogens
and destroy them through phagocytosis.

One of the effects of the inflammatory response is to increase the permeability of blood vessels.
The increased bloodflow allows a faster exchange of cells and chemicals from the bloodstream to
the infected tissues. Swelling and pain is also associated with inflammation. The pain, while
uncomfortable, serves to inform the infected party of an injury. Ideally the pain will indicate that
the affected area needs rest [3].

The inflammatory response is intended to aggressively attack any and all invading pathogens
and eliminate them while causing minimal damage to the healthy parts of the body. Of course,
this can go wrong, and when it does there are a wide range of associated consequences. There are

numerous conditions and diseases of the immune system in which the inflammatory response does



not function correctly. Too weak of a response allows the invading pathogen to multiply and
cause damage and disease. Too strong of a response and healthy tissues can be damaged or
destroyed by the immune system.

If there is a systemic infection where a pathogen is present across many different parts of the
body, a condition known as sepsis can occur. While a general term, sepsis can occur when
pathogens, usually bacteria, are present across a large portion of the body. The widespread
infection then causes an immune and inflammatory response across many different systems at
once. An inflammatory response on this scale is known as septic shock, which can be fatal. There
are few known treatments for sepsis, which makes it a prime target for research. Any treatment
that could reduce the risk of sepsis, without reducing the efficacy of the immune system, would be
valuable.

Autoimmune disorders are another set of conditions under which the immune system can fail.
Autoimmune disorders occur when the immune system recognizes itself as a pathogen.
Autoimmune disorders include insulin-dependent diabetes mellitus (Type I), multiple sclerosis,
lupus, and many others. Furthermore, individuals with these disorders can suffer more severe
symptoms when a pathogen invades, as these disorders activate the immune system and cause
more healthy cells to be damaged.

Finally, the conditions in which the immune system is insufficient at clearing a pathogenic
infection are commonly referred to as immunodeficiencies. One of the most well known
immunodeficiencies is acquired immune deficiency syndrome (AIDS) caused by the human
immunodeficiency virus (HIV). There are also a few other immunodeficiency conditions, such as
severe combined immunodeficiency syndrom (SCIDS), and DiGeorge syndrome. These conditions
result in an immune system that is either weakened or entirely incapable of defending the body
against foreign pathogens. A simple bacterial infection that a healthy individual would clear in a
matter of hours could lead to severe illness in a person with an immunodeficiency [7].

The purpose of this study is to take an existing model of the inflammatory response, whether it
be healthy, overactive, or immunodeficient, and examine the variables and parameters. Using
sensitivity analysis we determine which parameters are most influential on the output of the

system. The inflammatory response is a delicate system; if it is too effective, it harms the host



body. If it is not effective enough pathogens can grow unchecked. By determining which
parameters of a model of the inflammatory response are most influential, new targets for

treatment could be found.



CHAPTER 2

THE MODEL

This chapter presents a basic mathematical model for the inflammatory response. While there are
many complex factors that make up the immune system, many of them can be simplified into
constants and initial conditions. We are also presenting a few sets of initial conditions that

adequately model some common disorders of the immune system.
2.1 Equations

While simple in construction, the system of differential equations presented here adequately
models the inflammatory response. This model was presented in the 2004 paper The Dynamics of
Acute Inflammation [2]. The model is entirely qualitative, and unitless. Here, p represents the
pathogen, or infectious agent, m represents early pro-inflammatory mediators, and ¢ is the late

pro-inflammatory mediators. The equations are

d

d_ﬁ; = pp(l _p) - kpmmp (2'1)
dm

pr (kmpp +O)m(1 —m) —m (2.2)
Z—f = kom [1 + tanh <mT—e>} — kol (2.3)

All parameters and variables are positive. The general idea is that with the introduction of some
initial pathogen, p, we induce a response from the early inflammatory mediators, denoted by m.
Part of the function of the early inflammatory mediators is to recruit late inflammatory
mediators, £. The late inflammatory mediators strengthen the immune response, and eventually
slow the response after the pathogen has been cleared.

The pathogen, p, can represent any invader into the body that would elicit an inflammatory
response. Pathogens include viruses, fungi, bacteria, protozoa, etc. The early pro-inflammatory
mediators, m, are the first responders to foreign entities. Early mediators include neutrophils,

macrophages, Tumor Necrosis Factor-a (TNF-a), Interleukins (IL-1), and others. The late



pro-inflammatory mediators, ¢, are stimulated by the early effects of inflammation; they include
IL-6, High Motility Group Box-1 (HMGB-1), and others [2].

The three variables in this model follow the properties of logistic growth. The equations are
similar to those used in modeling populations. That is to say that they each have some carrying
capacity defined by the system, past which they can no longer grow. In the case of p and m, the
(1 —p) and (1 —m) components of (2.1) and (2.2) set the carrying capacity of p and m to 1. For ¢
the carrying capacity is more variable and dependent on the value of m through the use of a
switching function.

The growth and decay components of these equations include &y, kpy, Emp, kem, and ky. These
parameters represent the growth or decay rates of their respective variables. For instance, in (2.1)
the parameter k, is the fixed growth rate of the pathogen, p. We would expect a high k, with a
particularly virulent invader. The factor £, represents the capability of the early mediators, m,
at destroying the pathogen. A higher k,,, represents a more effective inflammatory response. In
(2.2) kyyp is the recruitment rate of m with respect to p. That is, a higher value of k,,,, means
more early mediators are recruited in response to the pathogen.

In (2.3) we have kg, which is the growth rate of £ with respect to m. A higher value of kg,
represents a stronger late mediator response. The decay rate ky represents the natural expiration
of the late mediators. A high k; indicates the late mediators do not last long. The value of ky is
fixed at 1 for the purposes of this study.

The hyperbolic tangent in (2.3) serves as a switching function. It “turns on” once a sufficient
value of m has been achieved to simulate the recruitment of late mediators by early mediators.
Figure 2.1 shows the standard shape and possible changes to tanh (mT_G) The activation
threshold, 6, is the point in the model where the production of £ begins. Increasing 6 causes the
function to shift left, meaning the production of late mediators is switched on at a lower value of
m. The activation width, w, simulates the amount of time it takes for the function to increase.
Making the activation width wider would cause a more gradual increase in ¢ starting at an earlier
time. Changing the activation width to be more narrow has little effect, but makes the jump to

producing late mediators faster.
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Figure 2.1: Hyperbolic Tangent Functions Examples of the hyperbolic tangent function in
m—_g), and effects of possible changes.

(2.3), which is tanh (2=
2.2 Immunological Responses
These model equations simulate certain real world conditions. The included simulations are a
healthy response to infection, both infectious and non-infectious persistent inflammation, a
recurrent infection, and immunodeficiency. The initial conditions and constant parameter values
of each of these scenarios can be found in Table A.1. There is also a threshold set for the
pathogen of p = 0.0005. Once the pathogen drops below this threshold, it is considered to be
cleared, and held at zero. At this point the infection is considered to have been eliminated.
Note that the values presented here are all qualitative. In reality, the pathogen, early, and late
mediators would correspond to some real valued concentration in an individual’s blood serum.
For the purposes of this study, however, qualitative values are used. Quantitative information

associated with the inflammatory response is much more difficult to process, as it varies greatly

between pathogens and affected individuals.
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Figure 2.2: Healthy Response In this healthy response the solid line solution holds the value
of the pathogen at 0 once it has dropped below a threshold of p = 0.0005. The dotted line
represents the model without the use of a threshold. Initial conditions are p(0) = 0.01, m(0) = 0.05,
£(0) = 0.539. Parameter values are k, = 3, kppm = 30, kpp = 25, kg, =15, kg =1, 0 =1, w = 0.5.
Note that these values are unitless as this is a qualitative model.

2.2.1 Healthy Response

In a healthy response to a pathogen, as shown in Figure 2.2, we start with a small infection, and
some early and late mediators set to simulate a healthy individual. As expected we see a rapid
growth of the pathogen after initial infection followed by an equally quick spike in the early
inflammatory mediators. As the late mediators begin to rise we see the pathogen levels drop off.
The pathogen crosses the minimum threshold around ¢ = 5 and is considered to be cleared at that
point.

The late mediators end at an equilibrium value near their initial value. As a consequence of the
pathogen value being set to zero, the value of the early mediators drop to zero as well, which
occurs due to the nature of the model. In reality a healthy individual would see early mediator

levels return to their initial value as well. The dashed line indicates the solution without the use

of the threshold.
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Figure 2.3: Persistent Non-Infectious Inflammation In persistent non-infectious inflamma-
tion the pathogen is successfully cleared, but the inflammatory response continues anyway. Initial
conditions and parameters are the same as healthy response except for p(0) = 0.2.

2.2.2 Persistent Non-Infectious Inflammation

Looking at Figure 2.3, we have an example of persistent non-infectious inflammation. Persistent
non-infectious inflammation is what we expect in the case of an autoimmune disorder, where after
clearing the pathogen, the immune system remains activated attacking healthy cells. The initial
conditions of this scenario are the same as in the healthy response, with the exception of the
initial pathogen, which is p(0) = 0.2.

The large amount of initial pathogen causes an overly aggressive response by the immune
system. Despite the pathogen being completely cleared, the inflammatory response does not
return to baseline levels. The early mediators come to an equilibrium value around 0.9, which is

near the carrying capacity. The late mediators reach a final value of about 12.5.
2.2.3 Persistent Infectious Inflammation

Moving on to Figure 2.4, we see a case of persistent infectious inflammation. Persistent infectious
inflammation is where the infection is not able to be cleared, and the immune response remains

active. Here we use everything from the healthy example, but change the value of kyy,, to 3 (down
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Figure 2.4: Persistent Infectious Inflammation With persistent infectious inflammation, the
inflammatory response escalates very aggressively to a pathogen that cannot be entirely eliminated.
Initial conditions and parameters are the same as healthy response except for kp,, = 3.

from 30). Recall that k,y, is the rate at which the early mediators are able to kill the pathogen,
thus the ability to clear infection is reduced.

The level of pathogen drops from the initial value, but never fully clears, and stays constant
around p = 0.1. A constant presence of pathogen causes the equilibrium values of early and late
mediators to remain elevated, around 0.95 and 12.5. These levels are similar to that of the

non-infectious case seen in Section 2.2.2.
2.2.4 Recurrent Infection

In Figure 2.5 we have a recurrent infection, where the pathogen is never eliminated and is able to
grow again at regular intervals. Thus the infection flares up after the immune response dies down
and the cycle continues. In this scenario the value of ks, has been lowered to 5 (down from 15).
The initial amount of late mediators has also been lowered to ¢£(0) = 0.179. Note that kg, is the
parameter responsible for recruiting late inflammatory mediators. As a result too few late
mediators are recruited and the infection is able to return.

The value of the pathogen, while constantly fluctuating, reaches an equilibrium around 0.03.



0.2 T T 0.5

—Pathogen
—— Early Mediators
—Late Mediators

0.375

o
N
wn

0.1 0.25

Late Mediators

0.125

Pathogen and Eary Mediators
o
=}
(%))

0 5 10 15 20 25

Figure 2.5: Recurrent Infection With recurrent infection a pathogen keeps coming back despite
the inflammatory response. The recurring inflammation results in cycles of pathogen levels and
responses from the early and late mediators. Initial conditions and parameters are the same as
healthy response except for £(0) = 0.179 and kg, = 5.

The early mediators fluctuate around 0.1, which is double their initial values. The late mediators

become the most stable component of this system, leveling off almost exactly at 0.26.
2.2.5 Severe Immunodeficiency

Figure 2.6 shows the case of immunodeficiency. Recall that this is meant to simulate an
inflammatory response that has been weakened. The value of ky,, is now k;,,, = 0.4 which is down
from 25 in the other examples. A lower k,,, causes fewer early mediators to be recruited from the
presence of the pathogen, which in turn causes a vastly reduced inflammatory response.

The reduced inflammatory response results in the pathogen growing to nearly the carrying
capacity, 1.0. In an individual this would mean the infection is spreading to other parts of the
body. The early mediators, despite having the same initial value as the other examples, drop to
very near zero. The late mediators have a slight bump at the start, due to the presence of m, but

quickly return to their starting value of around 0.54.
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Figure 2.6: Severe Immunodeficiency With severe immunodeficiency we have a reduced re-
sponse from the late mediators. The reduced late mediators in turn leads to the pathogen growing
to carrying capacity rapidly. Initial conditions and parameters are the same as healthy response
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CHAPTER 3

LOCAL SENSITIVITY ANALYSIS

Utilizing these model equations, the next component of this study is the application of local
sensitivity analysis. Using sensitivity analysis, we will look more closely at the described model to

determine which of the parameters are the most influential.
3.1 What is sensitivity analysis?

Sensitivity analysis is a method used for determining the importance of parameters on a system of
equations or model. It encompasses varying techniques that help determine which inputs in a
system have a significant effect on the output and which do not. In a system that has multiple
inputs, both in the form of fixed constants and initial conditions of variables, it may not be
obvious how changes to these parameters could impact the output of the model. Sensitivity
analysis attempts to both qualitatively and quantitatively assess what role each factor plays in a
given model.

One use of sensitivity analysis is the identification of which parameters in a given system are
the most important. Sensitivity analysis allows the identification of which parameters should be
prioritized for more accurate measurement or further study. Sensitivity analysis can help identify
which inputs give the largest variability to the output of the system. Once determined these
factors can then be fixed at the value where they least impact the system, offering less overall
variance in the system [1].

Global sensitivity analysis is a method that helps determine how different input factors work
realative to one another[5]. For example, does parameter x have a larger or smaller impact on the
output of the system when parameter y is small? What if parameter y is large? Global sensitivity
analysis is a valuable tool, but for systems with many different inputs this can be computationally
expensive, and as such will not be the method used in this study.

Local sensitivity analysis uses a one-at-a-time (OAT) approach to examining model parameters.
Each factor is looked at individually, with the others held constant. We accomplish this by taking

derivatives with respect to the desired parameter. The sensitivities are then normalized to look at

12



the impact of each factor relative to the scale of the model [6]. Local sensitivity analysis is ideal

for this study, since we are modeling specific scenarios where each parameter is fixed.
3.2 Applying local sensitivity analysis to our model

First, we want to identify which parameters of our model to analyze. Looking at (2.1), (2.2) , and
(2.3) we have the factors ky, kpm, kmp, kim, ke, 6, and w. The values for these parameters will
vary based on the particular simulation we are running, as shown in Table A.1.

To find the sensitivities of each parameter we will use derivatives. We begin by stating our

entire output of the system, presented in (2.1), (2.2), and (2.3) as y, thus

p, kpp(l - p) - kpmmp
y=|m|= (kmpp + O)m(1 —m) —m
14 kom [1+ tanh (Z=2)] — kll¢

For an arbitrary parameter x we call Sy, the sensitivity of k and S, = %. Taking the derivative of

the sensitivity, with respect to ¢, gives us S/, = % <%>. Now, by utilizing the symmetry of

. . Jé) : dy
second derivatives, or Schwarz’s Theorem, we can say that S/, = a% (%) 8]. Notice that 57 is
our original system of differential equations. So, the derivative of the sensitivity of a specific
parameter is just the derivative of our system with respect to that parameter.

From here we will use a specific variable, p, and parameter, k,. We have that the derivative of

the sensitivity of p to k, is

ok, \ ot

8S£p 0 (0op
ot Ok, '

Note that % is (2.1), and is a function, say g, of kp, p, m, and ¢. Also note that p, m, and ¢ are

also functions of k,. So, we have that

% = kyp (1 — p) — kpmmp = g(k’pap(kp)vm(kp)vg(kp))'

Now we take to total derivative of g with respect to &, and we get

_ g ok, Dgdp  Dgdm _dg o
akpg(kp,p(kp))m(kp)7 ( p)) - akp (9k'p ap 8kp am (9]{3[) + 8£ akp

Here we have that a%% is the derivative of g with respect to k,, and % is 1. The terms (%’;, g_Z;’

13



and aaTe are the sensitivities of each variable with respect to k,. Plugging this in we now have
P

o8},
ot

+

Jg dg 09
=p(l — —Z 8P m
P(L=p)+ 5 5%, + 56+ 3 Sk

Now we want to apply this technique to the whole system. Let % = f(kp,p(kp), m(kp), l(kp)), a
function representing our three model equations. Note that y is a vector containing p, m, and £.

Using this we have that
of  Of o | Of

S]/gp = 87 + 8—Sk a Skp

Of

BY 505k ke

As before we have 6%%, which is the derivative of our system with respect to k,. The terms %}é,

of

5o, and % are components of the Jacobian of y, which we will show later. The sensitivities Sgp,

S}g;, and S,f,p make up our total sensitivity of k,. Putting all of this together gives us

of of
(A
Skp 67 + 8_ Skp.
Where %f is the Jacobian of the system,
kp(1 = 2p) — kpmm —RpmpP 0
% = kpmm(1 —m) Empp(1 —2m)+ £ —2ml —1 m(1—m)

kgmsech? (M= 0)

w

0 —kell.

Applying this process for every parameter gives us

St = %Sk, +[p(1 —p),0,0]"
S]’Cp = 8—{Skpm + [—mp,O,O]T
Sty = 0t Sy + [0, pm(1 —m), ]

Sk = 6t Skzm [0,0, 1+ tanh(™=* 9

SQ - 8t 59 + |:0 0 kfmqech (m1 :|
2
A [0,0, ol e ]

St, = SE Sk, +10,0,-11"
We now have a differential equation for the sensitivity of each parameter. We assume that the

14



parameter values do not affect the initial conditions of the model, and so the initial conditions of
each sensitivity is zero. The sensitivities were solved using the ode45 function in MATLAB. The
time step for each solution was dt = 0.1.

These sensitivities will vary greatly, based on the output of the model. Since the output is
dimensionless, the relative difference between these sensitivities and the model output, or
elasticity, will be more useful. So, the sensitivities presented in the next chapter are normalized in

the following way. For an arbitrary parameter x we have the normalized sensitivity as

5 _ kY _ 9y (&
S = S (y)_af%(y)'

Where k is the value of the parameter and y is the output vector of the model. The normalization
is applied pointwise for every time step. For example, at some arbitrary time t* we have that the

sensitivity of an arbitrary parameter x is a vector containing the sensitivities for each variable at
time t* as such: S, = [SE", ST, Sﬁ*}T. To obtain the normalized sensitivity at t* we multiply

each of these by the fixed scalar k, and divide by the output vector of the model at time ¢*, which

is y* = [p*,m", E*]T. Thus at time ¢* we have that the normalized sensitivity is

N

S = [52*7 sm* Se,*

T K
K]'

[p*’ m*’ g*]T ’
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CHAPTER 4

RESULTS

Presented here are the results of the local sensitivity analysis for each of the simulation cases from
Chapter 2. The sensitivities are displayed based on the associated variable, so each simulation has
figures for sensitivities with respect to p, m, and ¢. The value of the sensitivity indicates the effect
of that parameter. A positive sensitivity means that an increase in the parameter causes an
increase in the variable. A negative sensitivity indicates that an increase in that parameter’s
value will cause a decrease in value for a respective variable. For example, if the sensitivity of &,
with respect to p is positive at some point in time, then increasing the value of k, would lead to a

higher value of p at that same point in time.
4.1 Healthy Response

The healthy response was the first model simulation we looked at. The healthy response scenario
was established to represent the standard way in which an infection could be cleared. The
conditions are set to represent the response of a healthy individual to a standard infectious agent.
The output of this model was presented in Figure 2.2. Recall that in this scenario the value of p
was fixed at zero once it dropped below the threshold of p = 0.0005. We fix p to simulate the
infection being “cleared” and thus unable to return. The threshold is crossed around ¢t = 5.

Starting with Figure 4.1 we have the sensitivities of p with respect to the healthy response.
After the threshold for p is crossed the value of p is fixed at 0. Thus the sensitivities of p are zero
once the threshold is passed, since the parameters no longer affect the model. In Figure 4.1 the
sensitivities are not shown once p = 0, for clarity.

We see k, with a strong positive swing at the outset of the healthy response, which is expected
as it is the growth rate of the pathogen, p. However, once the early mediator, m, builds up, the
sensitivity dips to strongly negative, as m has a strong negative influence on p.

We see k,, start with a negative influence on p, which is expected since k,,, is the decay rate
of p with respect to m. In the same way that k, shifts negative, we see that kj,, shifts to the

positive with the decline of p and the rise of m. For ky,,, the growth rate of m with respect to p,
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we see a decreasing negative sensitivity that starts to increase when the value of m peaks.

As for the rest, we have f with an increasing positive sensitivity, since an increase in 6 causes a
decrease in £, which causes an increase in p. Similarly, k, is always positive and increasing in
sensitivity towards p since it is the decay rate of £. A lower value of £ causes there to be less m
and thus more p. The activation width, w, is always negative and decreasing, because a higher w
will cause £ to rise which leads to lower p. The growth rate of £ with respect to m, kg, also has a
negative and decreasing trend. Higher kg, leads to more ¢ which causes lower p.

In Figure 4.2 and Figure 4.3 we have the sensitivities of m in the healthy response scenario,
with the latter being the same data with a smaller y-axis. We see w and ky,, with increasing
positive sensitivities as both of these only serve to increase £. Increased ¢ causes increased m. The
pathogen growth rate, k,, has an early spike that lines up with the growth of the pathogen in the
model. Since p stimulates growth in m, the effect of k, on m is relative to the value of p. The
sensitivity of k, stabilizes after p is cleared, maintaining positive sensitivity. The growth rate of m
with respect to p, ky,p, has a sensitivity near zero throughout the model. The negative
sensitivities of kym, 0, and &y is due to 6 and k, reducing the value of ¢ which lowers m, and
similarly £, reduces p which also reduces m.

The sensitivity of £ is shown in Figure 4.4. Here we see that k,, kp,,, and k,,;, have sensitivities
very near to zero throughout. For ky,, we see a generally positive sensitivity, as this is the growth
rate of ¢ with respect to m. For k;, we see a generally negative sensitivity as expected due to its
role as a decay rate for . For w and 6 we have that 6 has a negative sensitivity, and w has a

positive sensitivity.
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Figure 4.1: Sensitivities of p in Healthy Response Since p becomes zero near t = 5 the

sensitivities would also become zero. They are not displayed after ¢ = 5 for clarity.
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Figure 4.2: Sensitivities of m in Healthy Response
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Figure 4.3: Sensitivities of m in Healthy Response (Alternative) The y-axis has been
constrained here for clarity in the early portions of the graph.
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Figure 4.4: Sensitivities of / in Healthy Response
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4.2 Persistent Non-Infectious Inflammation

Recall that persistent non-infectious inflammation is the case where the immune system clears the
infection, but the inflammatory response continues despite the infection being gone. The output
of the model was presented in Figure 2.3. The sensitivity of p in non-infectious inflammation is
shown in Figure 4.5. Since the infection is cleared completely, the value of the pathogen is fixed at
zero once it drops below the threshold of p = 0.0005. Once again, the sensitivities are not shown
past this point for clarity, but they are zero once the threshold is crossed.

The sensitivities of p are very similar to the healthy response case. We see k, starts positive,
but quickly turns negative, as once the value of m is high enough, k, becomes a decay factor. For
kpm we see it begin negative, then increase, similar to the healthy response. The increased
sensitivity of kpp, is again due to m becoming significantly larger than p. The sensitivity of &, is
different from the healthy response, rather than increasing it continues to decrease over the entire
time for which p is active. The increasing sensitivity is due to the value of m being unchanging
here, while in the healthy response m declines.

The sensitivities of kg, and k; are similar to the healthy response. We have that k, is positive
because it is a decay rate of £, and kg, is negative as it is the decay rate. Similarly € is positive,
and w is negative. These sensitivities indicate that ¢ affects p similarly here as it does in the
healthy response.

The sensitivity of m in non-infectious inflammation is shown in Figures 4.6 and 4.7 where the
latter has a smaller y-axis. We again have a lot of similarities to the healthy response, with 6 and
w having sensitivities nearly double in magnitude to the nearest counterpart. Around t = 0.5 we
sce a small peak in the sensitivity of k,,. All of the sensitivitics of m approach zero once the
system reaches equilibrium.

Figures 4.8 and 4.9 show the sensitivities of ¢ in persistent non-infectious inflammation. The
overall shape and position of the curves is nearly identical to the sensitivities of m. The
parameters more specific to £ play a larger role, so the magnitudes of ky, ky,,,, 0, and w are larger.
The final state of the sensitivities are larger than in m, but still relatively near zero. We again

have that around ¢ = 10 is when the sensitivities are largest, and after ¢ = 15 they become
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Figure 4.5: Sensitivities of p in Persistent Non-Infectious Inflammation A threshold of
p < 0.0005 is used here, similar to the healthy response. Without it, the sensitivities are very
erratic as p is very near zero.

negligible.
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Figure 4.6: Sensitivities of m in Persistent Non-Infectious Inflammation
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Figure 4.7: Sensitivities of m in Persistent Non-Infectious Inflammation (Alternative)
Reproduction of Figure 4.6 with restricted y-axis for clarity.
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Figure 4.9: Sensitivities of ¢ in Persistent Non-Infectious Inflammation (Alternative)
Reproduction of Figure 4.8 with restricted y-axis for clarity.

23



4.3 Persistent Infectious Inflammation

The model for persistent infectious inflammation, presented in Figure 2.4, is similar to persistent
non-infectious inflammation. One difference is that the pathogen is never fully cleared, despite the
early and late mediators rising to levels similar to non-infectious inflammation. Since the infection
remains, the threshold of p = 0.0005 is never reached, unlike the previous two simulations.

The sensitivities of p with persistent infectious inflammation are shown in Figure 4.10. At the
beginning we see k), is the only parameter with significant sensitivity. Since it is the growth factor
of p, this seems reasonable. Around ¢ = 2 the other parameters spread out a small amount, with
and ky being slightly positive while w, ki), and ky,, are slightly negative. Another parameter of
note for p is ky,, as it becomes strongly negative as the system reaches equilibrium. Since £k, is
a decay rate of p with respect to m this is expected.

For the sensitivities of m in persistent infectious inflammation we have Figure 4.11. We have
that m is only significantly sensitive to the parameters very early in the model, around ¢ = 2. The
parameter k, has the most significant positive influence on m. It is the growth factor for p and a
higher value of k, would lead to a higher value of p which would recruit more m. By t = 2.5 all
the sensitivities are very near zero.

Figure 4.12 has the sensitivities of ¢ for persistent infectious inflammation. Again we see w and
0 quickly become respectively positive and negative, as we have seen in previous sensitivities.
However, as this system reaches equilibrium, w falls below k¢,,,. The parameter k, has the largest
positive sensitivity around ¢ = 2.5 which means it has the greatest positive sensitivity at some

point for all three variables.
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Figure 4.12: Sensitivities of ¢ in Persistent Infectious Inflammation

4.4 Recurrent Infection

Recurrent infection is the simulation where the pathogen has recurrent spikes of growth
throughout, which in turn causes the early and late mediators to rise and fall in value. The
pathogen is never cleared completely, so it is able to recover from the effects of the inflammatory
mediators. The recurrent infection scenario was presented in Figure 2.5.

The sensitivities of p in recurrent infection are shown in Figure 4.13. While very busy at first
glance, most of these sensitivities are fairly intuitive. For instance, the sensitivity of k, rises and
falls with p. We have k, at its maximum value when p is increasing, and is at its lowest value
while p is decreasing.

After the system stabilizes around ¢t = 5, 0, k¢, and kj,,, have peaks at the same time as k),
implying that these parameters are most sensitive when p is increasing. Similarly, k;,, also moves
in phase with the rest of the system but is always negatively valued. Parameters w and kg, peak
when the value of p is decreasing.

The sensitivities of m, shown in Figure 4.14, are similar to those of p, only they line up with m.
For example k, is most sensitive when m is increasing and least sensitive while m decreases. The

same is true of k,,. After t = 5 the parameters k¢, kp,p, and w have peaks with k, and k,,, as
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Figure 4.13: Sensitivities of p in Recurrent Infection

well. Note, though, that &k, and k,,, are positive when m is increasing, while w is always negative.
Thus, w is least sensitive when m is increasing, while ky and k;,;, are most sensitive at this time.

However, before ¢t = 5 we have that 6 and k,,, have troughs where m is increasing, while %, is
effectively zero. The troughs could be caused by the high value of p at this time or the rapidly
increasing value of £. A similar effect occurs with w and k; which have small peaks for the first
rise of m, but both are strongly negative every other time m increases.

Figure 4.15 shows the sensitivities of £ in recurrent infection, which are significantly different
than p and m. While the sensitivities of £ still cycle up and down, the sensitivities retain their
values relative to one another. Similar to the other sensitivities of £ we have that w and 8 are the
most sensitive, with w being positive, and 0 negative. Also, kg, is the second most positive
sensitivity, with &, right below it. Likewise, k, is the second strongest negative sensitivity,

followed by kpp,.
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Figure 4.14: Sensitivities of m in Recurrent Infection
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Figure 4.15: Sensitivities of / in Recurrent Infection
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4.5 Severe Immunodeficiency

The model of immunodeficiency was shown in Figure 2.6. Recall that it had rapid proliferation of
pathogen with almost no rise in m or £ due to a very low value of k;,;,. The scenario is meant to
simulate the effects of an immunodeficiency disorder, such as AIDS.

The sensitivities of p, shown in Figure 4.16, begin with a strong positive sensitivity of k, and
negative sensitivity for k,,. Both of these paramecters, however, are very necarly zero by ¢t = 10 as
p approaches its carrying capacity. As with the other sensitivities for p, we have positive
sensitivities for 6 and k, and negative sensitivities for ks, and k;,,. The sensitivity of k), is
negligible, though, as it is almost always zero.

Figure 4.17 has the sensitivities of m with immunodeficiency. Since the value of the early
mediators is very small and relatively unchanging in this case, we have that the sensitivities are
almost identical to that of the healthy response. The parameters w, k¢, and &, are positive,
while 6 and k, are negative. Similar to the healthy case, k, and k,,, are negligible.

The sensitivities of £ in immunodeficiency, shown in Figure 4.18, are also very similar to the
healthy counterparts. The parameters w and kg, are again positive, while § and k, are negative.
The others, however, are different from what we have seen before, as kpp,, kmp, and k, are all
effectively zero for all ¢. The low sensitivities likely arise from how static the late mediators are in

immunodeficiency, as ¢ does not change significantly from its starting value.
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Figure 4.17: Sensitivities of m in Severe Immunodeficiency
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CHAPTER 5

DISCUSSION

One of the first things worth addressing is the overall impact of each parameter in our model.
Across most of the scenarios presented here there are clear patterns in the sensitivities of the
parameters. We will also compare the overall sensitivities as they pertain to the three variables, p,
m, and £. It is also worth noting that there are other models of the inflammatory response that
better emulate the biological processes involved. We will look at one of those models and compare

the differences to the one we used.
5.1 Parameters

The growth rate of the pathogen, k,, is unsurprisingly positive at the start of every simulation.
Since we always begin at similar values of m and ¢, we have that k, has a positive influence on all
three variables at the start. The sensitivity of k, only becomes negative in a few cases. In Figures
4.1 and 4.5 p becomes a negative influence on itself causing the sensitivity of k, to be negative
until the threshold is reached. The sensitivity of k), is also negative in parts of Figures 4.13 and
4.14 due to the periodic nature of those sensitivities.

The positive sensitivity of k, is because p is necessary for the growth of m and /¢, so while &, is
the direct growth rate of p, it indirectly causes growth in m and £ as well. A decrease in k, would
have the effect of both lowering the growth of p and preventing an inflammatory response. The
parameter £, is not an ideal target for treatment, however, as it is generally a property of the
pathogen itself. Thus k, is not easily controlled and will vary based on the pathogen.

For kpp,, which is the value of the effectiveness at which m is able to destroy p, we see that its
sensitivity is generally negative for p, m, and ¢ in every scenario. The only place where k,,, has a
positive sensitivity is in Figures 4.1 and 4.13. In Figure 4.1 the negative sensitivity is due to the
previously explained nature of p in the healthy response, and in Figure 4.13 the negative
sensitivity is due to the nature of recurrent infection.

The effect of k,,,, opposes kp, and since it is the decay rate of p this is expected. In terms of

treatment for sepsis, increasing the value of k,,, would suppress the inflammatory response and
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could still allow for the pathogen to be cleared. Care needs to be taken, though, to ensure that
the immune response is left strong enough to effectively clear the pathogen.

Moving on to ki, which is the growth rate of m due to p, we have that the sensitivity is
mostly negative for p, while positive for m and ¢. While this holds across every scenario, it is also
the case that k;,, is almost always the least sensitive parameter as well. It frequently holds a
value of zero, and outside of a few spikes, is almost always the sensitivity of the lowest magnitude.

Increasing k,,, both increases the immune response, and ultimately suppresses the growth of
the pathogen. The combined effect makes it an ideal avenue for potential treatment of the case of
immunodeficiency. The parameter k,,, is the only value lowered in the model from the healthy
response to produce the immunodeficient case, so this may be obvious. However, the low
magnitude of the sensitivities could indicate that kj,, might not be enough by itself.

Recall that kg, is the growth rate of £ due to m. Similar to k,,, the sensitivities of kg, are
generally negative for p and positive for m and ¢. The only exception here is the recurrent
infection case where kg, cycles from positive to negative in the sensitivities of p and m. Also, the
magnitude of the sensitivities are generally higher than £,,,.

Since kg, is dependent on m, it is likely not suitable for use as a treatment for
immunodeficiency, as there is little change in m to stimulate a growth for £. For the septic cases,
kem could be more useful. Within our model ¢ has a fixed decay rate and will correct for itself.
Thus, increasing kg, stimulates higher ¢, lowering the value of p. Then ¢ will decay back to
equilibrium on its own. However, a high value of ¢ could cause unintended damage, initiating
secondary inflammatory responses, which this model does not account for.

The death rate of ¢, which is ky, opposes the effect of ky,,. The sensitivities of k; are generally
positive for p and negative for m and £. Similar to k, the sensitivities of p and m switch back and
forth in the recurrent infection case. The magnitude of the sensitivities of k; are generally similar
to that of ky,, as well.

Increasing ky could be a viable treatment for the septic cases, as it lowers £ which should also
bring m down as well. Care would need to be taken, however, as lowering ¢ too far could lead to a
proliferation of p. Another opportunity would be to increase both kg, and ky in tandem. Doing

both would cause a larger response of £ to eliminate the pathogen followed by a faster decline in /.

33



Balancing the two together could be a challenge, but it could be an effective way to clear the
pathogen in a way that prevents sepsis from occurring.

Recall that 6 and w are the activation threshold and width, respectively. The activation
threshold, 6, controls when £ is recruited in response to m. The activation width, w, represents
how quickly this occurs once the threshold is crossed. We have that the sensitivities of these two
parameters are generally opposed to one another. The sensitivities of 6 are mostly positive for p
and negative for m and ¢, while w is generally has a negative sensitivity for p and positive for m
and /.

While these two parameters seems to be mostly linked to ¢, and their sensitivities are similar to
kem and kg, the magnitudes indicate that the effects for 0 and w are much more significant. In
terms of treating potential septic situations, increasing 6, or decreasing w, would drastically
reduce the response of m and ¢, but would also have a large positive effect on the growth of the

pathogen.
5.2 A Different Model

It has already been discussed that the model presented here is not completely consistent with the
biology of inflammation. Recall that the late mediators, which involve both pro and
anti-inflammatory components, are difficult to simulate with one equation. A more advanced
model could be constructed which better simulates the underlying biology. One such model
already exists [4].

The model presented in [4] separates the pro and anti-inflammatory elements of the late
mediators and has separate equations for each. It also includes a fourth variable to account for
tissue damage, which can be a significant cause of further inflammation. In addition, it takes into
account the availability of inflammatory factors that have not been activated.

The primary drawbacks of this more biologically accurate model are that it has more than 20
different parameters. That is more than three times the amount in the model used in this study.
It is also a four-dimensional system, which further increases complexity. So while the model

better fits the biological process of inflammation, it is more difficult to utilize numerically.
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5.3 Conclusion

While the model presented is not the most biologically accurate one available, the output of it is
consistent with what is expected biologically. The numerous variables and factors involved with
the inflammatory response make accurate models difficult to construct. In addition, every step to
make the model better emulate biology adds more numerical complexity to the system.

All of the parameters of this model correspond to some real-world factors, and local sensitivity
analysis has shown which of these parameters are more influential in certain scenarios. The
positive feedback involved with inflammation makes sepsis a difficult condition to treat, but

further work with modeling it could indicate the best factors to target.
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APPENDIX A

Model Parameter Values

Model p(0) m(0) £(0) kp kpm kmp kem ke 0 w

Healthy Response 0.01 005 0539 3 30 25 15 1 1 0.5

Persistent Non-Infectious Inflammation 0.2 0.05 0539 3 30 25 15 1 1 05
Persistent Infectious Inflammation 0.01 0.05 0.539 3 3 25 15 1 1 0.5
Recurrent Infection 0.01 0.05 0.179 3 30 25 5 1 1 05

Severe Immunodeficiency 0.01 005 0539 3 30 04 15 1 1 0.5

Table A.1l: Scenario Parameter Values and Initial Conditions These are the parameter
values for each scenario presented in Chapter 2. These scenarios and their initial condtions are
presented in the 2004 paper The Dynamics of Acute Inflammation|2].
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APPENDIX B

MATLAB Code for Model Solutions

% The following code solves the model equations

%presented in Chapter 2

global kpm kp kmp klm kl theta w;

kpm = 30; %Parameters for Healthy Response
kp = 3.1; %Replace with values in Table A.1
kmp = 25; %To recreate other simulations
klm = 15;

kl =1;

theta = 1;

w = 0.5;

p0 = 0.01; %Initial pathogen

m0 = 0.05; %Initial early mediator

10 = 0.539; %Initial late mediator

initialt = 0; %Initial time

finalt = 25; %Final time

dt = 0.1; %Time—step interval

tspan = initialt :dt: finalt ; %Construct time vector

y0 = [p0,m0,10]; % Vector of initial conditions

[t,y] = oded5(Qodefun,tspan,y0); %Solve system without threshold
[a,b] = oded5(@odesol,tspan,y0); %Solve system with threshold

%This function solves the system as is
Ywithout the use of the threshold for p
function dydt = odefun(t,y)
global kpm kp kmp klm kl theta w;
dydt = zeros (3,1); %non—threshold output vector
dydt(1) = kpxy(1)*(1—y(1))—kpmxy(2)*xy(1); %Equation 2.1 for pathogen

dydt(2) = (kmpxy(1) 4+ y(3))*y(2)x(1—y(2))—y(2); %Equation 2.2 for early mediators
dydt(3) = klmx(1+tanh((y(2) — theta)/w)) — klxy(3); %Equation 2.3 for late mediators
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end

% This function is for solving the system with threshold

%p is held at 0 after dropping below 0.0005, note this

Y%will only effect Healthy response and persistent

Znon—infectious inflammation

function dbdt = odesol(a,b)

end

global kpm kp kmp klm kl theta w;

if b(1) < 0.0005 %Apply threshold

b(1l) =0;

dbdt = zeros (3,1); %threshold output vector

dbdt(1) = kpxb(1)x(1—b(1))—kpmxb(2)xb(1); %Equation 2.1 for pathogen

dbdt(2) = (kmpx*b(1) 4+ b(3))*b(2)x(1-b(2))—b(2); %Equation 2.2 for early mediators
dbdt(3) = klm*(1+tanh((b(2) — theta)/w)) — klxb(3); %FEquation 2.3 for late mediators
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APPENDIX C

MATLAB Code for Sensitivities

% The following code calculates the

% sensitivities presented in Chapter 4

y0 = zeros(1,24); %Define Container vector

% Initial Conditions

y0(1) = 0.01; %lInitial pathogen

y0(2) = 0.05; %Initial early mediators

y0(3) = 0.539; %Initial late mediators

% The previous three IC’s are for the healthy response

% Update with value from Table A.1 for other simulations

initialt = 0;
dt = .1;
finalt = 25;

tspan = initialt :dt: finalt ;

% % Parameter Definition$$

kpm = 30; %Along with variable IC’s

kp = 3; %these are for Healthy Response
kmp = 25; %For other simulations update

klm = 15; %with values from Table A.1

kl =1;
th = 1;
w = 0.5;

para = [kp kpm kmp klm kl th w|; %Zparameter vector

% %Solve the DE set up in the JacCalc function%%

[t,y] = oded45(@JacCalc,tspan,y0,[],para);

% Threshold for sensitivities of p below 0.0005
Jthis prevents divergence
for i =1 : length(y(:,1))

if y(i,1) < 0.0005
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y(i,1:3:24) = 0;
end

end

% Normalize Sensitivities by dividing by parameter and variable value

yiixed (:,4:6) =y (:,4:6) .x(para(1)./y (:,1:3) ); % kp

ylixed (:,7:9) =y (:,7:9) .x(para(2)./y (:,1:3) ); % kpm

ylixed (:,10:12) = y(:,10:12) .x(para(3)./y (:,1:3) ); % kmp

13:15) = y(;,13:15) .(para(4)./y (:,1:3) ); % klm
) = y(:,16:18) x(para(5)./y (:,1:3) ); % ki

19:21) = y(:,19:21) .x(para(6)./y (:,1:3) ); % th

( 7).y (513)); Bw

%Note the positions for output of sensitivities

yfixed

(:
yfixed (:,16:18
yfixed (:

(:

(
ylixed (:,22:24) = y(:,22:24) .*( para(
% They are arranged by paramaeter so yfized(:,4) is the
% sensitivity of kp with respect to p, and yfized (:,5) is
%the sensitivity of kp with respect to m

%For all sensitivities of p use yfived (:,4:8:24)

%yfized (:,5:3:24) for all sensitivities of m

%and yfized (:,6:3:24) for all sensitivities of 1

function dydt = JacCalc(t,y,para) %Function to update system
% Redefine parameters
kp = para(1);
kpm = para(2);
kmp = para(3);
klm = para(4);

kl = para(5);
th = para(6);
w = para(7);

% Threshold for pathogen below 0.0005
if y(1) < 0.0005
y(1:3:24) = 0;

end
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% Apply initial condtions

p=y(1);
m = y(2);
1 =y(3);

dp = kpxy(1)*(1—y(1))—kpmx*y(2)xy(1); %FEquation 2.1 for pathogen
dm = (kmpxy(1) + y(3))*y(2)*(1—y(2))—y(2); %Equation 2.2 for early mediators
dl = klmx(1+tanh((y(2) — th)/w)) — klxy(3); %Equation 2.3 for late mediators

%Jacobian Definition
Jaco = zeros(3);
Jaco(1,1) = kpx(1—2%p)—kpmsxm;

Jaco(1,2 —kpmxp;

Jaco(1,3
Jaco(2,1

0;

kmp*mx*(1—m);
Jaco(2,2 kmp#p#(1—2%m)+1—2xmxl—1;
Jaco(3,1 05

(klm*(sech((m th)/w))"2)/w;

) =
)
)
) =
Jaco(2,3) = mx(1—m);
) =
Jaco(3,2) =
) =

Jaco(3,3

% Derivative vectors for sensitivies

dkp = [p*(1—p);0;0]; %4,5,6
dkpm = [—mxp;0;0]; %7,8,9
dkmp = [0;p*mx(1—m);0]; %10,11,12
dklm = [0;0;1+tanh((m—th)/w)]; %183,14,15
dkl = [0;0;—1]; %16,17,18
dth = [0;0;—(klm#(sech((m—th)/w)"2))/w]; %19,20,21

dw = [0;0;— (klm*(m—th)x(sech((m—th)/w)"2))/(w"2)]; %22,23,24

% Sensitivity equations

skp = y(4:6);

skpprime = Jaco * skp + dkp;
skpm = y(7:9);
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102 skpmprime = Jaco * skpm + dkpm;

103 skmp = y(10:12);

104 skmpprime = Jaco * skmp + dkmp;

105 sklm = y(13:15);

106 sklmprime = Jaco * sklm + dklm;

107 skl = y(16:18);

108 sklprime = Jaco * skl 4 dkl;

109 sth = y(19:21);

110 sthprime = Jaco * sth + dth;

111 sw = y(22:24);

112 swprime = Jaco * sw + dw;

113

114 % Vector for exporting the model equation and sensitivity data
115 dydt = [dp;dm;dl;skpprime;skpmprime;skmpprime;sklmprime;sklprime;sthprime;swprime;
116

117 end
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APPENDIX D

LETTER FROM INSTITUTIONAL RESEARCH BOARD
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www.marshall.edu
Office of Research Integrity

March 15, 2017

James N. Martin
RR 3 Box 81
Ona, WV 25545

Dear Mr. Martin:

This letter is in response to the submitted thesis abstract entitled “Local Sensitivity
Analysis of Acute Inflammation.” After assessing the abstract it has been deemed not to
be human subject research and therefore exempt from oversight of the Marshall
University Institutional Review Board (IRB). The Code of Federal Regulations
(45CFR46) has set forth the criteria utilized in making this determination. Since the
information in this study does not involve human subjects as defined in the above
referenced instruction it is not considered human subject research. If there are any
changes to the abstract you provided then you would need to resubmit that information to
the Office of Research Integrity for review and a determination.

1 appreciate your willingness to submit the abstract for determination. Please feel free to
contact the Office of Research Integrity if you have any questions regarding future protocols
that may require IRB review.

Sincerely,

2IPAN
K Y
{{ o i ]\)’\;._

Bruce F. Day, ThD, CIP
Director

One John Marshall Drive * Huntington, West Virginia 25755 ¢ Tel 304/696-4303
A State University of West Virginia ¢ An Affirmative Action/Equal Opportunity Employer
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