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Abstract 

 The compound cesium niobate, Cs2Nb4O11, is an antiferroelectric, as demonstrated by 

double hysteresis loops in the electric-field versus polarization plot.  The crystal structure 

refinement by X-ray diffraction at both 100 and 297 K shows it to have a centrosymmetric 

structure in point group mmm and orthorhombic space group Pnna, which is consistent with its 

antiferroelectric behavior.  The 100-K data is reported herein.  The lattice is comprised of 

niobium-centered tetrahedra and octahedra connected through shared vertices and edges; cesium 

atoms occupy channels afforded by the three-dimensional polyhedral network.  The critical field 

for onset of ferroelectric behavior in a single-crystal sample is 9.5 kV/cm. 
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1. Introduction 

 Cesium niobate (or CNO), which has the chemical formula Cs2Nb4O11, was first 

reported as a component of the Cs2O/Nb2O5 phase diagram by Reisman and Mineo in 1961 [1], 

and the crystal structure was subsequently refined in the polar point group mm2 and 

noncentrosymmetric space group Pnn2 by Gasperin in 1981 [2].  Kharitonova et al. studied its 

physical properties [3] and reported it to have a ferroelectric-type phase transition at 164 °C with 

little temperature hysteresis, from which they surmised the transition to be second-order.  It has 

also recently been reported to be a photocatalyst for the decomposition of water [4]. 

 As part of our on-going investigation into ferroelectrics and high-dielectric materials, we 

embarked on a project to further investigate the reported ferroelectric transition and explain its 

origin.  In the course of this project, we confirmed the transition at 165 °C from the temperature 

dependence of complex capacitance, impedance, and polarized Raman spectra of a single-crystal 

sample [5].  Upon examination of the room-temperature hysteresis, however, we were surprised 

to observe a double hysteresis loop indicative of an antiferroelectric rather than the single loop 

indicative of a ferroelectric material. 

 Ferroelectricity requires a noncentrosymmetric structure in a polar point group, but 

antiferroelectricity requires a nonpolar point group.  The reported structure of CNO in space 

group Pnn2 (and polar point group mm2) would therefore be incorrect if CNO were 

antiferroelectric. 

 Because of these conflicting results, we sought to resolve the matter by conducting a 

second harmonic generation (or SHG) experiment.  A second harmonic can only be produced 

from noncentrosymmetric materials and can be viewed as a necessary result of such materials.  

The results of the SHG experiment were negative, so we decided to determine the actual 
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structure and space group through our own single-crystal refinement, which is reported herein 

along with the antiferroelectric hysteresis results.  Crystal structure refinement at 100 K and 

room temperature showed the material to be in the nonpolar point group mmm and space group 

Pnna. 

 

2. Experimental 

X-ray Diffraction and Structure Refinement 

 Large single crystals of CNO were grown from the binary system using the flux method, 

the details of which have been described elsewhere [3].  From a larger crystal mass, we cut a 

block-shaped single crystal with dimensions 0.07 x 0.12 x 0.17 mm and mounted it on a 20-

micron Hampton CryoLoops for subsequent X-ray diffraction data collection.  Geometry and 

intensity data were obtained at 100 K and 297 K on a Bruker diffractometer equipped with a 

SMART Apex CCD area detector and Oxford Cryosystems 700 cooler [6].  Both data sets 

yielded the same results, and only the 100-K data and refinement are reported herein.  Radiation 

was monochromatic Mo Kα (λ = 0.71073 Å).  Data were collected with the ω-scan method. 

 Data were processed with the SAINT+ program [7] for reduction and cell refinement.  

Multi-scan absorption corrections were applied to data sets by the SADABS program [8].  The 

structure was solved by direct methods and refined using SHELXTL [9].  Systematic absences 

(including that for the a-glide) unambiguously indicated space group Pnna.  All atoms were 

refined with anisotropic displacement parameters.  Crystal data and refinement results are listed 

in Table 1.  Further details of the crystal structure investigation can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein–Leopoldshafen, Germany, (fax: (49) 

7247-808-666; e-mail: crysdata@fiz.karlsruhe.de) on quoting the depository number CSD ###. 

mailto:crysdata@fiz.karlsruhe.de
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Ferroelectric Hysteresis 

 Electric-field dependence of polarization was measured with a Radiant Technology 

Precision LC ferroelectric tester with a Trek signal amplifier.  Gold films were sputtered on a 

single crystal as electrodes on both faces normal to the c axis, which is the polarization axis.  The 

electric field applied was –12.5 to 12.5 kV/cm and 1 Hz. 

 

3. Results 

 Atomic coordinates and isotropic thermal coefficients for the 100-K refinement are 

shown in Table 2.  A view of the structure is shown in Fig. 1. 

 The structural motif of CNO in our refinement is very similar to that reported in reference 

2, though in a different space group.  The structure is comprised of niobium-centered tetrahedra 

and octahedra connected through shared vertices and edges.  Cesium atoms occupy channels 

afforded by the three-dimensional polyhedral network.  The structure is of a type derived from 

pyrochlore, as has already been reported [2]. 

 Average tetrahedral Nb–O bond distances are 1.85 ± 0.04 Å, and average octahedral Nb–

O bond distances are 2.00 ± 0.12 Å.  These values compare well with the expected values of 1.88 

and 2.04 Å, respectively, derived from the ionic radii reported by Shannon [10].  The polyhedra 

are fairly regular: tetrahedral bond angles range from 106.8 to 110.6º, and octahedral bond angles 

for adjacent atoms range from 74.6 to 105.5º, with most within a few degrees of the ideal.  The 

cesium atoms are twelve and ten-coordinate with average Cs–O bond distances of 3.50 ± 0.22 Å 

and 3.35 ± 0.27 Å, respectively.  These are slightly larger than the expected values of 3.28 and 

3.21 Å.  Table 3 lists some selected bond distances and angles. 
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 Fig. 2 displays the electric-field dependence of polarization at room temperature for 

CNO.  It clearly exhibits double hysteresis loops, which are the basic characteristics of an 

antiferroelectric material.  Generally, an antiferroelectric crystal has a zero net switchable dipole 

moment due to the antiparallel alignment of elementary dipoles in its unit cell [11].  When the 

external electric field is weak, the induced polarization is proportional to the field and exhibits no 

macroscopic polarization hysteresis.  When the electric field exceeds a threshold value, called 

the critical field, the crystal becomes ferroelectric and the polarization displays hysteresis with 

respect to the field.  A hysteresis loop also forms in the negative field, the two loops being 

associated with antiparallel dipoles in adjacent unit-cell sublattices.  From the hysteresis loops in 

Fig. 2, we deduce the critical field to be 9.5 kV/cm for CNO. 

 

4. Discussion 

 The symmetry considerations of ferroelectricity have been described by Zheludez [12], to 

which we direct the interested reader for a more thorough treatment.  What follows herein is a 

short summary of these considerations and how they pertain to our experimental results. 

 Ferroelectric materials must have structures in one of the ten polar point groups, i.e., 

those with a unique polar axis.  These point groups are 1, 2, m, mm2, 3, 3m,  4, 4mm, 6, and 

6mm.  Antiferroelectric materials, in contrast, must be in one of the eleven centrosymmetric, 

nonpolar point groups: –1, 2/m, mmm, –3, –3m, 4/m, 4/mmm, m–3, m–3m, 6/m, and 6/mmm.  

(We also note that while the symmetry considerations are requirements for the respective 

ferroelectric properties, they are not sufficient for the property to occur.) 

 In accordance with the preceding symmetry considerations, the structure for CNO 

reported in the literature (i.e., in point group mm2 and space group Pnn2) could be correct if the 
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material were a ferroelectric though not if it were an antiferroelectric.  It is therefore crucial to 

examine the crystallographic evidence as to which point group and space group is correct.  We 

assert that the correct point group is mmm and the correct space group is Pnna.  Our reasons are 

as follows. 

 First, the systematic absences from our two data sets are the same as the literature report 

except that ours also include absences for an a-glide plane, i.e., hk0, h = 2n + 1.  The only space 

group possible with such a combination is Pnna (no. 52) in point group mmm. 

 Second, when we attempted to refine the structure in Pnn2, the refinement would not 

converge and the thermal ellipsoids became non-positive definite.  Nonsensical thermal 

ellipsoids are frequently due to choosing an incorrect space group [13], as we believe was done 

in the previous structure report. 

 Third, the literature structure reports tetrahedral Nb–O bond lengths that vary from 1.74 

to 1.93 Å while in our structure the same bond lengths are 1.817 to 1.884 Å, a more narrow 

distribution.  Regular bond lengths and angles are a major factor in the evaluation of the 

“correctness” of a structure, along with such refinement criteria as residuals and goodness of fit, 

so the structure reported herein is superior in this regard as well. 

 Finally, the presence of certain physical properties, such as pyroelectricity or second 

harmonic generation, are conclusive proofs for certain structural aspects of materials.  For 

example, lack of a second harmonic generation may be due to a very small nonlinear coefficient 

in a noncentrosymmetric space group rather than the actual presence of a center of symmetry, but 

the presence of a second harmonic generation is proof for a noncentrosymmetric structure.  In 

the case of CNO, the presence of the antiferroelectric hysteresis requires the structure to be in a 

nonpolar point group (such as mmm) and a space group derived therefrom. 
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 Antiferroelectricity (as well as ferroelectricity) is partially due to long-range interactions 

between microscopic dipoles created by atomic displacements within the lattice.  Usually, a 

group theoretical treatment can be applied to obtain local distortions about a particular Wyckoff 

position within a crystal lattice, which would allow one to determine the atomic displacements 

that produce the antiferroelectric phase from the paraelectric phase.  We shall describe this 

treatment, as well as the high-temperature paraelectric structure of CNO (which has not yet been 

refined), in a separate report. 

 The study of antiferroelectricity in solid materials is fairly sparse, and the number of 

reported solid-state antiferroelectrics few, although antiferroelectricity in liquid crystals is a field 

of growing interest because of their ability to switch rapidly between three stable states in optical 

displays [14].  Some examples of solid-state antiferroelectric materials studied recently include 

Sr9In(PO4)7 [15], BaFCl [16], and PbZrO3 [17], the last of which has been studied extensively, 

along with solid solutions pertaining thereto.  CNO is thus a noteworthy addition to the field of 

study. 
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Table 1 

Crystallographic data for Cs2Nb4O11. 

Formula mass (amu) 813.46 

Space group Pnna (No. 52) 

a (Å) 7.46660(10) 

b (Å) 28.9047(4) 

c (Å) 10.48570(10) 

V (Å3) 2263.02(5) 

Z 8 

ρcalcd (g cm–3) 4.775 

Temperature (K) 100(2) 

Crystal dimensions (mm) 0.16 x 0.12 x 0.07 

Radiation Graphite monochromated Mo Kα, λ = 0.71073 Å 

µ(Mo Kα) (mm–1) 10.336 

Transmission factors 0.2886-0.5315 

2θ limits 2.82° ≤ 2θ(Mo Kα) ≤ 55.98° 
Data collected –9 < h < 9, –38 < k < 38, –13 < l < 13 

No. of data collected 28,176 

No. of unique data 2728 

Rint 0.0300 

No. of variables 156 

R(F) for Fo
2 > 2σ(Fo

2) 0.0172 

Rw(Fo
2) 0.0473 

Goodness of fit 1.118 

(∆ρ)max, (∆ρ)min (e Å–3) 0.941, –0.849 
 

 



 
12 

Table 2 

Atomic coordinates and equivalent isotropic displacement parameters for Cs2Nb4O11. 

atom Wyckoff 
position 

x y z Ueq (Å2) a 

Cs(1) 8e 0.7552(1) 0.1924(1) 0.1230(1) 0.014(1) 

Cs(2) 8e 0.7522(1) 0.0756(1) 0.3535(1) 0.010(1) 

Nb(1) 4c ¼ 0 0.2312(1) 0.005(1) 

Nb(2) 4d 0.2401(1) ¼ ¼ 0.006(1) 

Nb(3) 8e 0.2455(1) 0.1253(1) 0.2613(1) 0.005(1) 

Nb(4) 8e 0.5015(1) 0.0613(1) 0.0018(1) 0.005(1) 

Nb(5) 8e 0.5164(1) 0.1883(1) 0.4887(1) 0.005(1) 

O(1) 8e 0.0615(3) 0.0998(1) 0.1335(2) 0.008(1) 

O(2) 8e 0.0650(3) 0.1368(1) 0.3778(2) 0.007(1) 

O(3) 8e 0.0645(3) 0.2335(1) 0.3749(2) 0.007(1) 

O(4) 8e 0.2493(2) 0.0517(1) 0.3298(2) 0.007(1) 

O(5) 8e 0.2481(2) 0.1844(1) 0.1859(2) 0.007(1) 

O(6) 8e 0.4525(3) 0.0002(1) 0.1241(2) 0.006(1) 

O(7) 8e 0.4392(3) 0.1002(1) 0.1330(2) 0.008(1) 

O(8) 8e 0.4362(3) 0.1365(1) 0.3761(2) 0.007(1) 

O(9) 8e 0.4365(3) 0.2340(1) 0.3727(2) 0.007(1) 

O(10) 8e 0.7508(2) 0.0529(1) 0.0514(2) 0.008(1) 

O(11) 8e 0.7529(2) 0.1854(1) 0.4352(2) 0.007(1) 

 a Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. 
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Table 3 

Selected bond distances and angles for Cs2Nb4O11; <  > indicates the average bond length. 

bond distance (Å) bond distance (Å) 

Nb(1)–O(4) 1.817(2) x 2 Nb(4)–O(1) 1.858(2) 

Nb(1)–O(6) 1.884(2) x 2 Nb(4)–O(6) 2.214(2) 

< Nb(1)–O > 1.85 ± 0.04 Nb(4)–O(6) 2.240(2) 

Nb(2)–O(3) 1.913(2) x 2 Nb(4)–O(7) 1.837(2) 

Nb(2)–O(5) 2.013(2) x 2 Nb(4)–O(10) 1.948(2) 

Nb(2)–O(9) 2.005(2) x 2 Nb(4)–O(10) 1.968(2) 

< Nb(2)–O > 1.98 ± 0.05 < Nb(4)–O > 2.01 ± 0.18 

Nb(3)–O(1) 2.056(2) Nb(5)–O(1) 2.074(2) 

Nb(3)–O(2) 1.849(2) Nb(5)–O(1) 1.971(2) 

Nb(3)–O(4) 2.247(2) Nb(5)–O(1) 1.998(2) 

Nb(3)–O(5) 1.881(2) Nb(5)–O(1) 1.892(2) 

Nb(3)–O(7) 2.105(2) Nb(5)–O(1) 1.855(2) 

Nb(3)–O(8) 1.892(2) Nb(5)–O(1) 2.125(2) 

< Nb(3)–O > 2.01 ± 0.16 < Nb(5)–O > 1.96 ± 0.10 

    

bonds angle (º)   

O(4)–Nb(1)–O(4) 110.62(13)   

O(4)–Nb(1)–O(6) 109.83(8) x 4   

O(6)–Nb(1)–O(6) 106.81(13)   
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Figure Captions 

 

Fig. 1 View of the CNO structure along the a axis.  Large atoms are Cs, small atoms are O. 

 

 

Fig. 2 Electric-field dependence of polarization for CNO at room temperature. 
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