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ABSTRACT 

A growing body of research suggests that dopaminergic cell death seen in Parkinson’s 

disease is caused by mitochondrial dysfunction.  Oxidative stress, with subsequent generation of 

reactive oxygen species, is the hallmark biochemical product of mitochondrial dysfunction. The 

ketogenic diet has been found to enhance mitochondrial energy production, protect against 

reactive oxygen species-generated cell death, and increase adenosine, a purine that modulates 

dopamine activity.  The current study evaluates the effects of a long-term (5-month) ketogenic 

diet on behavioral, neurochemical, and neuroanatomical measures in PINK1-KO rats, a new 

animal model of Parkinson’s disease.  Both wild-type and PINK1-KO animals fed a ketogenic 

diet exhibited significantly higher blood beta-hydroxybutyrate levels.  PINK1-KO animals fed a 

normal diet experienced a decrease in stride length and an increase in stride frequency over time 

which was absent in PINK1-KO animals fed a ketogenic diet. Animals fed the ketogenic diet had 

decreased tissue content of both adenosine and inosine in the nucleus accumbens, posterior 

caudate, hippocampus, and substantia nigra. Finally, immunohistochemical staining for tyrosine 

hydroxylase-positive cells in the substantia nigra suggest a ketogenic diet-induced protection of 

dopaminergic cell death.  The results of the present study indicate that a long-term ketogenic diet 

may positively impact both motor and neuroanatomical correlates and alter neurochemical 

systems in a genetic rodent model of Parkinson’s disease. 
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INTRODUCTION 

 

Etiology, Symptomology, & Current Treatment 

Parkinson’s disease (PD) is a neurological condition which causes motor impairments 

such as bradykinesia, muscular rigidity, postural instability, and resting tremors.  The National 

Institute of Health (NIH) estimates that 500,000 people in the United States suffer from PD; 

prevalence of PD is expected to double by the year 2030 as the average age of our population 

grows older (NIH, n.d.; Dorsey et al., 2007).  PD symptoms have been attributed to the 

progressive loss of dopamine (DA) cells in the substantia nigra (SN), but often do not manifest 

until 60-70% of these cells are already lost (for review see - Mhyre et al., 2012).  These 

symptoms do not typically present until later in life with only 10% of diagnoses occurring before 

the age of 50 (“Parkinson’s Disease: Hope Through Research,” NIH).  According to the NIH, the 

average age of symptom onset is 60 while other sources report that the mean age at diagnosis is 

70.5 (NIH, n.d.; Van Den Eeden et al., 2003).  Furthermore, incidence of PD increases by more 

than 350% in people over the age of 50 (Van Den Eeden et al., 2003).  The most common 

therapy for patients suffering from PD is levodopa (L-DOPA), the precursor to DA, which can 

reduce the motor deficits to an extent.  Still, treatments which attenuate or prevent dopaminergic 

(DAergic) cell death have yet to be discovered. 
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Neuroanatomy of PD 

 

Fig. 1 The figure above displays the nigrostriatal pathway in the rat brain, relevant neuronal pathways, and relative 

dopamine D2 and adenosine A2A receptor localization in the basal ganglia. Graphic created by Tom Naragon ’17. 

 

The motor deficits associated with PD have been attributed to the loss of DAergic 

neurons of the basal ganglia, particularly in the SN (Parkinson, 2002).  The basal ganglia include 

the dorsal striatum (caudate nucleus and putamen), ventral striatum (nucleus accumbens and 

olfactory tubercle), globus pallidus internal and external (GPi and GPe), SN, and the subthalamic 

nucleus (STN) (Purves et al., 2001; Fig 2).  An expansive discussion of each of these 

components is beyond the scope of the current paper but those with direct relevance to motor 

function and PD will be discussed.  The SN is the main source of DA in the brain and provides 

the neurotransmitter to the striatum via the nigrostriatal pathway (Beckstead et al., 1979; Fig 

1).  The nigrostriatal pathway is the network most affected by Parkinsonian pathology (Dauer 
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and Przedborski, 2003).  Interestingly, the striatum projects only to other components of the 

basal ganglia yet it receives input from a variety of other brain regions; a full anatomical 

description is beyond the scope of this thesis. 

 

 

Fig. 2 The figure above depicts the neuronal pathways of the basal ganglia which play a crucial role in the 

facilitation of smooth motor movement in Parkinson’s disease. 

 

In the context of movement, the structures of the basal ganglia play key roles in allowing 

the initiation and inhibition of movement (Purves et al., 2001).  The thalamus is the main target 

for these effects due to thalamocortical projections which facilitate activation of the motor 

cortex.  The GPi projects GABAergic neurons to the thalamus which inhibit the thalamus from 

activating the motor cortex (Purves et al., 2001).  When a movement is made, glutamatergic 

projections from the motor cortex activate striatal GABAergic neurons.  These striatopallidal 

GABAergic cells inhibit the GABAergic neurons of the GPi and thus allow for increased 
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thalamic activation. The GPe also receives inhibitory input from the striatum and sends its own 

GABAergic projections to the STN (Purves et al., 2001).  The STN sends excitatory 

glutamatergic projections to the SN as well as the GPi.  In the SN, glutamatergic neurons 

originating from the STN synapse at DAergic neurons which project to the striatum (Purves et 

al., 2001).  In the GPi, glutamatergic projections from the STN augment firing of GABAergic 

projections to the thalamus which reduces thalamocortical facilitation of the motor cortex. 

DAergic neurons of the nigrostriatal pathway act on two different dopamine receptors; D1 and 

D2.  Agonistic action at D1 receptors located on striatopallidal GABAergic neurons augment 

inhibition of the GPi.  D2 receptors, however, are localized to striatal glutamatergic neurons 

which synapse with striatal GABAergic projections to the GPe.  Activation of D2 receptors 

enhances inhibition of the GPe which sends GABAergic projections to the glutamatergic neurons 

of the STN (Purves et al., 2001).  It is also important to note the presence of circuitry which 

serves as self-modulating feedback inhibition between the SN and the STN via nigral 

GABAergic neurons (Purves et al., 2001). 

In PD, the death of nigrostriatal DAergic cells would reduce the ability of the GPi to 

attenuate excitatory thalamocortical projections.  This effect would be compounded by decreases 

in the STN’s ability to augment GPi inhibition of thalamocortical projections that would result 

from reduction of the SN’s indirect control of the STN by way of the striatopallidal GABAergic 

projections to the GPe.  Disinhibition of thalamocortical projections to motor areas may explain 

the jerky and unwanted movements associated with PD. 

 

Modeling PD 

In order to study PD, models that induce the death of nigrostriatal DAergic neurons have 

been developed.  Several animal models of PD use the administration of toxins specifically 
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designed to produce selective death of DAergic cells.  6-hydroxydopamine (6-OHDA) was one 

of the earliest toxin-induced models used to model PD and causes neurotoxicity by generating 

oxidative products when it breaks down extracellularly through auto-oxidation (Hanrott et al., 

2006).  The reactive oxygen species (ROS) produced cause oxidative stress which has been 

observed to lead to mitochondrial dysfunction, nuclear fragmentation, activation of the apoptotic 

caspase pathways, and selective DAergic cell death (Hanrott et al., 2006). 

Another toxin-induced model was discovered by inhibiting activity of complex I of the 

mitochondrial electron transport chain using 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine 

(MPTP) and was found to produce selective DAergic cell death (Langston et al., 1983).  The 

mitochondrial dysfunction created by MPTP leads to the generation of ROS, like in the 6-

OHDA model, which can result in the activation of programmed cell death (PCD) mechanisms.  

Evidence of elevated activation of mitochondrial PCD mechanisms in nigral DAergic cells has 

been observed in PD which further strengthens the link between mitochondrial dysfunction and 

neurodegeneration in PD (Tatton, 2000; Hartmann et al., 2001).  Furthermore, mitochondrial 

energy failure has been proposed to disrupt vesicular sequestration of DA (Dauer and 

Przedborski, 2003), which results in extravesicular auto-oxidation of DA into DA-quinone, 

which reacts with cysteine residues and destroys proteins (Graham, 1978). 

These toxin-induced models selectively produce DAergic cell death because these cells 

are particularly susceptible to the generation of ROS (Dauer and Przedborski, 2003).  This 

proclivity for creating ROS is a direct result of enzymatic metabolism of DA, which produces 

hydrogen peroxide (H2O2) and superoxide (O2
-) radical, and auto-oxidation of cytosolic DA 

(Graham, 1978). 



12	

The major drawback to acute toxin-induced models of PD is that they do not accurately 

mimic the progressive loss of nigrostriatal DAergic neurons associated with human 

manifestations of the disease.  However, a recent genetic model developed by Sage Laboratories 

has been able to address this challenge.  By inhibiting the synthesis of phosphatase and tensin 

(PTEN)-induced kinase 1 (PINK1) the PINK1-knockout (PINK1-KO) model induces 

mitochondrial dysfunction and progressive loss of DAergic cells in the SN (Villeneuve et al., 

2014).  In healthy cells, decreases in mitochondrial membrane potential trigger the accumulation 

of PINK1 on the outer mitochondrial membrane (Imai, 2012).  PINK1 recruits another protein, 

Parkin, from the cytosol which triggers the degradation and clearance of the damaged 

mitochondria.  Without PINK1, dysfunctional mitochondria are not disposed of and produce 

toxic levels of ROS.  Furthermore, it has been reported that PINK1-KO rats display hind limb 

dragging associated with their mutation (Dave et al., 2014).  The PINK1-KO model presents a 

unique opportunity to study the progressive loss of DAergic neurons and observe Parkinson’s-

like motor deficits.  Again, mitochondrial dysfunction is a well-established means for inducing 

DAergic cell death, making the PINK1-KO a useful model of human PD.   

 

Purine Involvement in PD 

 While L-DOPA may be the most common treatment for PD, its long-term use has 

frequently been associated with decreased efficacy (“off” periods) and dyskinesias (Ahlskog and 

Muenter, 2001).  As a result, the need for non-dopaminergic (non-DAergic) therapies to address 

PD symptoms is necessary. 

Several members of the purine neurochemical family like guanosine and uric acid have 

been linked to PD.  Recent in vitro work has revealed that guanosine is able to activate cell 



13	

survival pathways in the presence of 6-OHDA (Giuliani et al., 2014).  A large body of literature 

has been published which points to uric acid as a potential biomarker for disease progression in 

PD (Cipriani et al., 2010; Gao et al., 2016).  Uric acid has also been shown to be neuroprotective 

against the free radical peroxynitrite, which has been associated with the pathology of several 

inflammatory CNS diseases (Scott and Hooper, 2001).  Additionally, reduced levels of uric acid 

have been reported in postmortem SN tissue (Church and Ward, 1994).  The most prominent 

findings however, are those concerning the purine adenosine.  The neuroprotective properties of 

adenosine are well studied.  Although adenosine A1 receptors are not directly linked to PD 

pathology, they are widely expressed throughout the CNS in glia and neurons (Dixon et al., 

1996).  A1 receptors can exert neuroprotective effects by reducing the influx of presynaptic 

calcium and inhibiting glutamate release (Masino et al., 2002).  Further research has indicated 

that this effect may in fact be one of feedback inhibition of hyper-excitatory firing, which may 

otherwise deplete energy and result in neural death (Lovatt et al., 2012). 

A large body of research has revealed significant expression of adenosine A2A receptors 

in the basal ganglia (Rivkees et al., 1995; Rosin et al., 1998; Hettinger et al., 2001; Rebola et al., 

2005; Morelli et al., 2010).  In striatopallidal neurons, activation of A2A receptors increases the 

secretion of GABA in the globus pallidus (Ochi et al., 2000).  Excess GABA in the globus 

pallidus suppresses the firing of pallidal GABAergic projections to the STN.  A reduction in the 

inhibitory action of these projections leads to increased activation of glutamatergic neurons in 

the STN, which form synapses in both the globus pallidus and the SN.  In a slightly more 

macroscopic perspective, highly active GABAergic projections of the basal ganglia attenuate 

the thalamocortical impact on the motor cortex and, ultimately, reduce the ability to elicit 

smooth motor function, as seen in patients with PD (Hauser RA and Schwarzschild MA, 2005). 
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In light of the localization and function of A2A receptors, the purinergic neurochemical 

system represents a unique non-dopaminergic target for modulating the striatal signaling altered 

in PD.  Numerous studies have explored the effects of antagonistic action at A2A receptors in 

animal models of PD.  A 1974 paper induced a unilateral lesion of the nigrostriatal DA pathway 

using 6-hydroxydopamine (6-OHDA) (Fuxe and Ungerstedt, 1974).  Fuxe and Ungerstedt 

(1974) found that 6-OHDA-lesioned rats treated with L-DOPA displayed significant 

improvements in turning behavior following application of the A2A antagonists theophyllamine 

and caffeine.  Later studies confirmed this finding using other A2A antagonists such as 7-(2-

phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 

58261), (E)-8-(3,4-Dimethoxystyryl)-1,3-diethyl-7-methylxanthine, 8-[(1E)-2-(3,4-

Dimethoxyphenyl)ethenyl]-1,3-diethyl-3,7-dihydro-7-methyl-1H-purine-2,6-dione (KW-6002 

or istradefylline), and (E)-phosphoric acid mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7 -methyl-

2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl] (MSX-3), all of which improved 

turning behavior in animals treated with L-DOPA or DA receptor agonists (Fenu et al., 1997; 

Koga et al., 2000; Strömberg et al., 2000a; Pinna et al., 2016).  Furthermore, repeated treatment 

with A2A antagonists failed to exhibit any reduced efficacy of motor stimulation suggesting that, 

A2A antagonism ameliorates tolerance issues associated with L-DOPA treatments alone (Pinna et 

al., 2001). 

Antagonism of the A2A receptor has also been studied in the MPTP model of PD. It is 

important to note that rodent models are more resistant to this toxin and most successful 

reproduction of Parkinsonian syndrome with MPTP has been achieved in non-human primates 

(Bové et al., 2005).  Since translation to non-human primates is an essential step in proof-of-

concept for A2A receptor antagonism in human PD, studies have used monkeys treated with 
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MPTP to test the efficacy of targeting A2A receptors (Kanda et al., 2000).  The A2A antagonist 

KW-6002 significantly improved motor dysfunction induced by MPTP toxicity (Kanda et al., 

2000). 

Recently, a dual target therapy combining antagonists of the metabotropic glutamate 

receptor 5 (mGluR5) and the adenosine A2A receptor was tested in rats treated with 6-OHDA 

(Fuzzati-Armentero et al., 2015).  While a combination of the mGluR5 antagonist, 2-methyl-6-

(phenylethynyl) pyridine (MPEP), and the A2A antagonist, MSX-3, better protected DA cells in 

the SN from toxin-induced death, the MSX-3 alone also significantly reduced the toxin-induced 

cell death in the SN (Fuzzati-Armentero et al., 2015).  Behaviorally, MSX-3 administered alone 

was found to significantly potentiate L-DOPA-induced turning behavior.  Again, combination 

of MSX-3 with MPEP increased this effect and required lower concentrations than individual 

administration (Fuzzati-Armentero et al., 2015).  Another recent study combined an A2A 

antagonist with a serotonin 1A/1B receptor agonist (Pinna et al., 2016).  Pinna and colleagues 

found that in MPTP-treated monkeys the combination of both drugs reduced the dose of L-

DOPA necessary for therapeutic effects.  Additionally, administration of all three drugs 

significantly prevented dyskinetic-like behavior (Pinna et al., 2016).  Still, antagonists of the A2A 

receptor are the frontrunners in non-dopaminergic therapies for PD with the first adenosine A2A 

antagonist, istradefylline, being recently approved in Japan after successful phase-3 trials 

(Kondo and Mizuno, 2015). 

 

Purines and the Ketogenic Diet 

The ketogenic diet (KD) is a high fat, low carbohydrate eating regimen and is already 

well established as a successful alternative treatment for medically refractory epilepsy (Freeman 

and Vining, 1998; Hemingway et al., 2001).  The calorie restriction of the KD induces a state of 
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ketosis by breaking down fatty acids to ketone bodies in the liver (Paoli et al., 2013).  These 

ketone bodies replace glucose as the body’s main driver of energy production and have been 

shown to result in enhanced production of energy substrates (DeVivo et al., 1978).  More 

specifically, elevated fatty acid levels by a KD eventually reach a threshold which surpasses the 

capacity of the tricarboxylic acid (TCA) cycle and leads to enzymatic conversion of acetyl-CoAs 

into acetoacetate (ACA) and 𝛃-hydroxybutyrate (𝛃HB).  Both ACA and 𝛃HB are ketone bodies 

which travel through the blood, cross the blood-brain barrier, and enter the cells of the central 

nervous system.  These ketone bodies are then transported into mitochondria where they are 

converted into acetyl-CoA and subsequently into ATP via the Krebs cycle (Masino and Rho, 

2012).  As an energy substrate ketone bodies have been found to improve ATP production and 

protect against ROS-induced damage (Kashiwaya et al., 2000; Kim et al., 2007; Maalouf et al., 

2007; Veech, 2014). 

 The past decade has seen major strides in discovering the underlying processes which 

explain the KD’s efficacy in epilepsy.  Currently, the most compelling theory points to inhibitory 

action at adenosine A1 receptors (Masino et al., 2011).  As such, research has pressed on, 

investigating the purinergic system’s role in the anticonvulsant effects of the diet.  One 

hypothesis proposes that the KD may in fact be increasing ATP levels which may be rapidly 

broken down into adenosine in the extracellular space (Masino and Geiger, 2008).  By 

mimicking the low glucose environment of a KD, a study conducted by Kawamura et al. (2010) 

showed that reduction of extracellular glucose results in the release of ATP via pannexin-1 

hemichannels in hippocampal CA3 pyramidal neurons.  Dephosphorylation of this extracellular 

ATP yields adenosine, which acts on A1 receptors coupled to ATP-sensitive K+ channels to 

reduce neuronal excitability (Kawamura et al., 2010). 
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In addition to its application in epilepsy, the diet has also been proposed to have 

therapeutic benefits in other neurological conditions in which deficits in mitochondrial energy 

metabolism play a role (Baranano and Hartman, 2008; Stafstrom and Rho, 2012).  The 

profundity of the KD’s effects on mitochondrial energy metabolism was demonstrated by work 

using microarrays, which revealed an upregulation of 34 transcripts encoding energy metabolism 

enzymes (Bough et al., 2006).  Furthermore, increased mitochondrial profiles were observed in 

hippocampal slices of these KD-fed rats.  Stimulation of synaptic transmission in these slices 

exhibited high resistance to a low glucose environment, which suggests an increase in energy 

reserves (Bough et al., 2006). 

While glucose restriction and ketone body-driven energy metabolism enhances 

production of energy substrates, ketone bodies specifically have been reported to have 

neuroprotective properties.  ACA and 𝛃HB are both able to decrease the mitochondrial output of 

destructive ROS by increasing NADH oxidation in the mitochondrial respiratory chain (Maalouf 

et al., 2007).  The same study found that glutathione, an endogenous free radical, was also 

reduced.  This may be explained by a study which reported that elevated glutathione peroxidase 

activity was observed in the hippocampus of rats fed a KD (Ziegler et al., 2003).  Ketone bodies 

also reduce mitochondrial membrane permeability induced by oxidative stressors such as, H2O2 

and diamide (Kim et al., 2007).  The same study affirmed the ability of ketone bodies to decrease 

ROS levels and provides substantial evidence of their capacity to prevent mitochondrial 

permeability and oxidative damage in neurons. 

 

The Metabolic Theory: Potential Effects of a Ketogenic Diet on PD 

It is well documented that the DAergic neurodegeneration seen in PD is the result of 

mitochondrial dysfunction (Parker et al., 1989; Schapira et al., 1990; Hattori et al., 1991; Perier 
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et al., 2012).  This is supported by studies which report that DAergic neurons are highly sensitive 

to free radicals, which are natural byproducts of energy metabolism (Miyazaki and Asanuma, 

2008).  The KD has been shown to improve mitochondrial energy production and the ketone 

body 𝛃HB is a more efficient energy substrate in terms of ATP generation (DeVivo et al., 1978; 

Veech, 2014).  In light of the growing body of research highlighting the role of mitochondrial 

dysfunction in PD, as well as literature which reports KD-induced enhancements in 

mitochondrial energy production, the KD could present a possible therapeutic benefit for PD. 

The purpose of the current study is to evaluate the KD’s ability to attenuate the 

progressive cell death seen in PINK1-KO rats.  This model presents a unique opportunity to 

target progressive loss of DAergic neurons, test the therapeutic efficacy of KD-driven 

improvements in mitochondrial function, and measure the KD’s impact on Parkinsonian motor 

deficits.  Behavioral data on gait alterations of the animals was recorded using the DigiGait 

motorized treadmill system.  Staining for tyrosine hydroxylase (TH) will be conducted on nigral 

tissue to assess DAergic cell death.  A reverse-phase high performance liquid chromatography 

(HPLC) system will be used to quantify purine levels in 7 discrete brain regions.  Blood testing 

for glucose and 𝛃HB will be used to establish each animal’s level of ketosis.  It was 

hypothesized that the KD would enhance mitochondrial energy metabolism such that an 

attenuation in DAergic cell death would be observed in the KD-fed PINK1-KO rats.  It was 

expected that PINK1-KO rats on the normal diet (ND) would exhibit increased gait 

abnormalities compared to KD-fed PINK1-KO rats, and in control rats fed either diet. 



19	

MATERIALS AND METHODS 

Chemicals 

Adenosine, guanosine, inosine, xanthine, hypoxanthine, guanine, uric acid, sodium 

chloride, potassium phosphate monobasic, and sodium 1-pentane sulfonate were acquired from 

Sigma Aldrich (St. Louis, MO, USA).  Potassium phosphate monobasic, HPLC-grade 

acetonitrile, and 85% phosphoric acid were acquired from ThermoFisher Scientific (Waltham, 

MA, USA).   Potassium chloride, and sodium phosphate dibasic heptahydrate were acquired 

from J.T. Baker Analytical (Center Valley, PA, USA). 

 

Animal Handling and Diet Administration 

All animal care, use, and surgical procedures were approved by the Institutional Animal 

Care, the Use Committee of Trinity College, and are in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.  A total of 24 PINK1 +/+ and -/- rats 

from SAGE Laboratories (St. Louis, MO, USA) were housed in pairs in plastic cages with 

stainless steel tops and were exposed to a standard 12hr light: 12hr dark cycle.  Temperature and 

humidity were kept constant electronically and food and water were provided ad libitum, KD 

was changed daily.  All animals received the control diet until 3 months of age at which point 

KD and control groups were established.  The KD used was the AIN-76A Modified diet which is 

8.6% protein, 75.1% fat, 3.2% carbohydrate and contains added mineral and vitamin mixes 

(BioServ, Flemington, NJ, USA).  Rats were given a 5-day acclimation period upon arrival 

before they were weighed for the first time.  Weight gain was continuously monitored every 2 

weeks. Once during each of the 3 months prior to sacrifice, blood levels of 𝛃HB and glucose 

were tested using ketone and glucose test strips and digital meters (Abbott Inc., Alameda, CA, 
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USA).  At 8 months old animals were deeply anesthetized using isoflurane (Henry Schein 

Animal Health, Dublin, OH, USA) before and during sacrifices. Animals were perfused using 1x 

phosphate buffered saline (PBS) solution (for details see appendix A).  The brain of each animal 

was rapidly harvested and stored in a solution of dry ice and ethanol until tissue was processed 

approximately 1 hour after sacrifice. 

 

DigiGait Behavioral Analysis 

Animals undergoing gait analysis were put on a motorized treadmill tilted at a 13° angle 

and walked downhill at a speed of 18 cm/s.  Video footage was recorded from beneath the 

treadmill and the area of advancing and retreating paws was analyzed using the DigiGait 

software.  These data were used to evaluate balance, coordination, and gait abnormalities. 

 

Tissue Processing 

Brains were sectioned on a Leica SM 2000 R Microtome stage controlled by a Physitemp 

BFS-3TC temperature regulator set to -20°C (Physitemp Instruments, Clifton, NJ).  Brain slices 

were taken coronally at 1.5mm thickness and bilateral tissue punches were taken from the 

following regions: motor cortex (MC), somatosensory cortex (SC), nucleus accumbens (NA), 

anterior caudate (AC), posterior caudate (PC), hippocampus (HC), and substantia nigra (SN) (Fig 

3).  See appendix B for detailed procedures and protocols. 
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Fig. 3 The above figure depicts the slices and punch site locations of the following brain regions: motor cortex 

(MC), somatosensory cortex (SC), nucleus accumbens (NA), anterior caudate (AC), posterior caudate (PC), 

hippocampus (HC), and substantia nigra (SN). 

 

Rat brain regions were identified using a rat stereotaxic atlas (Pellegrino et al., 1979).  

Tissue punches were transferred to labeled microcentrifuge tubes containing 400µL ethanol and 

sonicated using the Tekmar Sonic Disruptor.  Samples were centrifuged for 30 min at 12,400 

rpm using the Fisher Scientific Microcentrifuge 235c at 4°C.  Supernatants were transferred to 

separate microcentrifuge tubes and rotovapped at 45°C for 30 min.  The amount of protein in 

each tissue punch was evaluated using standard Modified Lowry Protein Assay protocol from the 

protein pellets left in the original centrifuge tubes. Neurotransmitter pellets were resuspended in 

1mL of DiH2O and 7µL of an 8µg/L DHBA solution was added as an internal standard.  Fully 

processed samples were stored at -80°C until analyzed by HPLC. 
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HPLC Analysis 

 Purines were quantified using a modified version of a previously described method 

(Burdett et al., 2013).  Two mobile phases were used for reverse-phase HPLC analysis.  Mobile 

phase A (MP-A) contained 0.52 mM sodium 1-pentane sulfonate, 0.20 M potassium phosphate 

monobasic and was pH adjusted to 3.5 using 85% phosphoric acid (Baker Analyzed; 

Phillipsburg, NJ, USA).  Mobile phase B (MP-B) contained identical concentrations as MP-A 

plus an addition of 10% acetonitrile (HPLC-Grade, Fisher Scientific, Pittsburgh, PA, USA). 

The gradient parameters were as follows: 0-6 min of 100% MP-A, 6-15.5 min ramp to 

45% A - 55% B (Fig 4).  This gradient was held until 20 min and was followed by a 15 min 

equilibration period during which the system was rinsed with 100% MP-A before the next 

injection was made (Fig 4). 

 

Fig. 4 The figure above is a graphical representation of the mobile phase (MP) gradient parameters used for reverse-

phase high performance liquid chromatography (HPLC) analysis of purine levels. Mobile phase A (MP-A) was a 

0.52 mM sodium 1-pentane sulfonate, 0.20 M potassium phosphate monobasic solution and was pH adjusted to 3.5 

using 85% phosphoric acid. Mobile phase B (MP-B) was created from MP-A but was 10% acetonitrile. 
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A Hitachi L 2130 HPLC pump was used at a flow rate of 0.7mL/min and separation was 

carried out at 22°C on a 150 x 3.00mm LUNA 5µm C18 analytical column (Phenomenex, 

Torrence, CA, USA).  A sample volume of 100µL was manually injected into the HPLC system.  

Dual electrochemical detection (ESA Coulochem III; E1 = -0.15V; E2 = +0.70V; Thermo 

Scientific, Sunnyvale, CA, USA) and UV detection (λ1 = 254nm; BioAnalytical Systems, West 

Lafayette, IN, USA) were used to quantify purine levels.  Chromatographic data was collected, 

stored, and analyzed using EZ Chrom chromatography software (Thermo Scientific). 

 

TH-Staining 

 The Vectastain® ABC Kit (Vector Labs, Burlingame, CA, USA), and anti-TH antibody 

(Santa Cruz Biotechnology, Dallas, TX, USA) were used for immunohistochemical staining (for 

details see appendix C). 

 

Protein Assays 

Protein assays were conducted using the standard Modified Lowry Protein assay method 

(for details see appendix C). 

 

Data Collection, Quantification, and Analysis 

Calibration standards were run prior to brain sample injections and a standard calibration 

curve was used to quantify purine levels in the brain regions of interest.  Data was compiled 

using Excel files and statistically analyzed using GraphPad Prism version 6.0 (GraphPad 

Software, Inc., San Diego, CA, USA).  Statistical significance between groups was determined 

by two-way ANOVA with post-hoc comparisons. 
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Experimental Groups 

A total of 24 Long-Evans Hooded rats, 12 wild-type (WT) and 12 PINK1-KO (KO), were 

included in the study.  Animals arrived in groups of 4, 2 WT and 2 KO, on a monthly basis and 

were assigned letters A-X for identification.  4 study groups of 6 animals each were established 

as follows: WT fed a normal diet (WT/ND), WT fed a ketogenic diet (WT/KD), KO fed a 

normal diet (KO/ND), and KO fed a ketogenic diet (KO/KD).  One animal from the KO/KD 

group died prematurely due to an unforeseen hypersensitivity to isoflurane anesthetic 

administered when trimming toenails prior to DigiGait behavioral testing.  The use of isoflurane 

for toenail trimming was discontinued immediately and no other animals were lost prematurely 

for any reason. 

Brains from one animal from each study group, 4 brains total, were sent to the University 

of Hartford in order to conduct TH-staining of the SN to assess DAergic cell death. 

A gravity-driven perfusion apparatus was used during surgical dissection of animals.  

Initially, an 8L container was filled with 1x PBS and placed on a shelf approximately 2 feet 

above animals during dissection.  Animals ‘C’ and ‘D’, from the KO/ND group, were not 

successfully perfused and cerebral blood could be observed following dissection.  Furthermore, 

lesions were observed in the following animals: D, F, H, I, L, and K.  Animals D, F, and H 

exhibited either asymmetrically enlarged or exploded ventricles which were attributed to the 

excessive flow rate of the gravity-driven perfusion apparatus.  Rats I-X did not show 

asymmetrically enlarged or exploded ventricles, likely due to the decrease in volume of 1x PBS 

in the perfusion container after perfusions were conducted for rats A-H.  Available images of the 

observed lesions can be found in appendix D.  Final calculations of purine levels in rats A-H in 

all brain regions were, in most cases, more that 250% higher than those in rats I-X.  This 
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disparity is likely due to perfusion-induced dispersion of purines away from their regions of 

origin and, as such, data from animals A-H were excluded from neurochemical analysis. At this 

point each study group consisted of 3 animals. 

Finally, two samples for neurochemical analysis by HPLC were inadvertently lost during 

the tissue sample preparation process.  The posterior caudate tissue from animal ‘R’ came loose 

in the microcentrifuge.  Tissue from the substantia nigra of rat ‘V’ was not collected after 

excessive slicing of brain tissue caused the region to be missed entirely. 
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RESULTS 

 

Chronic KD does not prevent weight gain 

A 5-month chronic KD did not prevent weight gain in either the WT or KO animals  (Fig 

5).  Unpaired t-tests showed no significant differences (for all comparisons p>0.05) in starting 

weight between any of the study groups (WT/ND: 334g ± 11.88, n = 6; WT/KD: 374g ± 25.19, n 

= 6, t = 1.57; KO/ND: 366g ± 9.39, n = 6, t = 3.32; KO/KD: 362g ± 11.75, n = 5, t = 2.36). 

Unpaired t-tests also showed no significant differences in final weight between any of the study 

groups (WT/ND: 518g ± 21.55, n = 6; WT/KD: 593g ± 48.20, n = 6, t = 1.55; KO/ND: 575g ± 

15.60, n = 6, t = 3.65; KO/KD: 536g ± 54.62, n = 5, t = 0.34).  Furthermore, after 5 months on 

the KD, both WT and KO animals were overtly indistinguishable from normal diet-fed animals. 
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Fig. 5 Chronic KD does not prevent weight gain in wild-type (WT) and knock-out (KO) animals fed a normal diet 

(ND) or ketogenic diet (KD). A) KO/KD animals (n = 5) B) KO/ND animals (n = 6) C) WT/KD animals (n = 6) D) 

or WT/ND animals (n = 6). 

 

KD alters 𝛃HB but not glucose levels 

Animal age at the time of blood tests did not have any affect on the results of either 𝛃HB 

or glucose testing (F = 0.51, DFn = 2, p>0.05 and F = 1.30, DFn = 2, p>0.05, respectively).  Data 

from all three months were then combined to compare the effect of the KD on blood 𝛃HB and 

glucose levels.   As seen in figure 6, animals fed the KD showed increased blood 𝛃HB levels 

when compared to animals fed a normal diet.  WT animals on the KD showed an increase of 

157% over WT animals on the normal diet (0.94 mmol/L ± 0.05, n = 15 vs. 0.60 mmol/L ± 0.04, 

n = 13, p<0.05).  PINK1-KO animals fed a KD showed an increase of 167% in blood 𝛃HB when 
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compared to KO animals on the normal diet (0.97 mmol/L ± 0.06, n = 12 vs. 0.58 mmol/L ± 

0.05, n = 13, p<0.01).  Blood glucose levels were not affected by the KD (Fig 7). 

 

 

Fig. 6 Blood beta-hydroxybutyrate (𝛃HB) levels in wild-type (WT) and knock-out (KO) animals fed a normal diet 

(ND) or ketogenic diet (KD). The WT/KD group had significantly higher 𝛃HB than WT/ND (* p<0.05).  KO/KD 

animals had significantly higher 𝛃HB than KO/ND groups (** p<0.01).  Data from months 6, 7, and 8 were 

combined and compared by study group (n = 12-15 data points per group). 
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Fig. 7 Blood glucose levels in wild-type (WT) and knock-out (KO) animals fed a normal diet (ND) or ketogenic diet 

(KD). No significant differences were seen between any of the experimental groups.  Data from months 6, 7, and 8 

were combined and compared by study group (n = 12-15 data points per group). 

 

KD increases stride length and decreases stride frequency 

At 3 months of age there was no statistically significant difference in stride length or 

stride frequency between any of the experimental groups (Fig 8a and 10a).  At 8 months, KO 

animals on the normal diet showed significantly shorter stride length than WT animals on the 

normal diet (8.33 cm ± 0.05, n = 6 vs. 10.55 cm ± 0.05, n = 2, p<0.05) and WTs on the KD 

(12.21 cm ± 0.40, n = 8, p<0.01; Fig 8b).  Interestingly, KD-fed wild type animals had longer 

stride length than normal diet-fed WTs (12.21 cm ± 0.40, n = 8 vs. 10.55 cm ± 0.05, n = 2, 

p<0.01) at 8 months.  Figure 9 shows that the stride length of the KO/ND animals gradually 

decreased over time, ultimately showing a 16.5% decrease from 3 month values, whereas all 

other groups remained equal to or greater than their respective 3 month values. 

No significant differences in stride frequency were seen between any of the groups at 3 

months (Fig 10a).  However, at 8 months KO animals fed a normal diet showed a significant 

increase in stride frequency (2.18 steps/s ± 0.17, n = 6) compared to WT animals fed a normal 
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diet (1.7 steps/s ± 0.0, n = 2, p<0.05) or KD (1.49 steps/s ± 0.05, n = 8, p<0.01; Fig 10b).  KD-

fed WT animals showed significantly lower stride frequency than normal diet-fed WTs (1.49 

steps/s ± 0.05, n = 2, p<0.01).  Overtime, stride frequency of the KO animals fed a normal diet 

increased by 18% over the 3 month value (Fig 11). 

 

	  

Fig. 8 Effects of the ketogenic diet (KD) on stride length in wild-type (WT) and knock-out (KO) animals fed a 

normal diet (ND) or KD. A) 3 months B) and 8 months. KO/ND animals showed a significant reduction in stride 

length at 8 months compared to WT animals on the ND (* p<0.05). WT/KD animals had significantly higher stride 

length than KO/ND animals at 8 months (** p<0.01). For all experimental groups n = 2-4. 

 

 

WT KO
0

5

10

15

St
rid

e L
en

gt
h 

(c
m

)

ND
KD

A

WT KO
0

5

10

15

St
rid

e L
en

gt
h 

(c
m

)

**B

*



31	

 

Fig. 9 Changes in stride length in wild-type (WT) and knock-out (KO) animals fed a normal diet (ND) or ketogenic 

diet (KD).  KO/ND animals showed a decrease in stride length at 8 months compared to 3 months. KO/KD animals 

showed a similar stride length at 3 and 8 months. For all experimental groups n = 2-4. 

 

	  

Fig. 10 Effects of the ketogenic diet (KD) on stride frequency in wild-type (WT) and knock-out (KO) animals fed a 

normal diet (ND) or KD. A) 3 months B) and 8 months.  KO/ND animals showed a significant increase in stride 

frequency at 8 months compared to WT animals fed a ND (* p<0.05). WT/KD animals had significantly lower stride 

frequency than the WT/ND group at 8 months (** p<0.01).  For all experimental groups n = 2-4. 
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Fig. 11 Changes in stride frequency between 3 and 8 months in wild-type (WT) and knock-out (KO) animals fed a 

normal diet (ND) or ketogenic diet (KD). Stride frequency of KO/ND animals increased at 8 months compared to 3 

months. KO/KD animals showed a similar stride frequency at 3 and 8 months. For all experimental groups n = 2-4. 

 

KD changes purine neurochemistry 

The KD selectively reduced adenosine and inosine levels in the brains of both WT and 

KO animals (Fig 12 and 13).  In the nucleus accumbens, adenosine was 57% lower in KD-fed 

animals compared to WT animals fed a normal diet (WT/KD: 0.94 µg/mg protein ± 0.20, n = 3; 

KO/KD: 0.94 µg/mg protein ± 0.17, n = 3 vs. WT/ND: 2.18 µg/mg protein ± 0.29, n = 3, p<0.05; 

Fig 12a).  In the posterior caudate adenosine was 60% lower in the KD-fed WTs and 57% lower 

in the KD-fed KOs compared to normal diet-fed WT animals (WT/KD: 0.99 µg/mg protein ± 

0.31, n = 3; KO/KD: 1.04 µg/mg protein ± 0.10, n = 3 vs. WT/ND: 2.45 µg/mg protein ± 0.42, n 

= 2, p<0.01 and p<0.05; Fig 12b). 

Inosine, a metabolite of adenosine, was non-significantly reduced in the nucleus 

accumbens of KD-fed WT animals and significantly reduced in the KD-fed KOs compared to the 

normal diet-fed WT animals (KO/KD: 0.42 µg/mg protein ± 0.02, n = 3 vs. WT/ND: 0.81 µg/mg 
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protein ± 0.04, n = 3, p<0.05; Fig 13a).  In the hippocampus, KD-fed WT and KD-fed KO 

animals had significantly lower inosine levels (42% and 43%, respectively) than those of KOs 

fed a normal diet (WT/KD: 0.60 µg/mg protein ± 0.10, n = 3; KO/KD: 0.59 µg/mg protein ± 

0.11, n = 3 vs. KO/ND: 1.03 µg/mg protein ± 0.23, n = 3, p<0.05; Fig 13b).  Finally, in the 

substantia nigra, KD-fed KOs showed significantly less inosine (36%) than normal diet-fed WT 

animals (KO/KD: 0.74 µg/mg protein ± 0.15, n = 3 vs. WT/ND: 1.16 µg/mg protein ± 0.15, n = 

3, p<0.05; Fig 13c). 

 

 

 

Fig. 12 Adenosine levels in in wild-type (WT) and knock-out (KO) animals fed a normal diet (ND) or ketogenic diet 

(KD) A) nucleus accumbens B) and the posterior caudate.  Both KD-fed groups showed significantly lower 

adenosine levels in the nucleus accumbens (A) compared to the WT/ND group (# p<0.05).  The WT/KD and 

KO/KD groups also showed significantly lower adenosine levels in the posterior caudate (B) compared to WT/ND 

animals (## p<0.01 and # p<0.05, respectively).  For all study groups n = 2-3. 
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Fig. 13 Inosine levels in wild-type (WT) and knock-out (KO) animals fed a normal diet (ND) or ketogenic diet 

(KD). A) nucleus accumbens B) hippocampus C) and the substantia nigra.  KO/KD animals showed significantly 

lower inosine levels than WT/ND animals in both the nucleus accumbens (A) and substantia nigra (C) (# p<0.05).  

KD-fed WT and KO animals showed significantly less inosine in the hippocampus (B) than KO/ND animals (# 

p<0.05). For all study groups n = 2-3. 

 

KD appears to protect nigral dopamine cells 

Immunohistochemical staining for TH-positive cells in the SN revealed that a KO animal 

fed a normal diet had noticeably fewer dopamine cells than a WT animal fed the KD (Fig 14).  

The KD appeared to prevent this nigral TH-positive cell loss in KO animals. 
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Fig. 14 Tyrosine hydroxylase (TH)-positive cells in the substantia nigra of a wild-type (WT) and knock-out (KO) 

animal fed a normal diet (ND) or ketogenic diet (KD). A KO animal fed the ND had observably less TH-positive 

cells in the substantia nigra than either KD-fed animals. For all groups n = 1. 
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DISCUSSION 

 

Chronic KD does not prevent weight gain 

The present study found that rats fed the KD for 5 months gained weight similarly to rats 

fed a normal diet. Several interesting differences between the weights of KD- and ND-fed 

animals were observed.  Weight gain plots of KD-fed animals were more spread out than those 

of ND-fed animals.  At the end of the 5-month diet, the final weights of KO/KD and WT/KD 

animals had standard deviations of 122g and 118g compared to 38g and 52g in KO/ND and 

WT/ND, respectively.  Taken together, these data suggest that there may be greater weight-gain 

variability in KD-fed animals than in ND-fed animals. 

A large number of studies on the effects of prolonged KD in animal models have 

examined KD regimens persisting for up to 11 weeks (DeVivo et al., 1978; Al-Mudallal et al., 

1995, 1996; Hori et al., 1997; Cheng et al., 2009; Ruskin et al., 2013; Church et al., 2014).  

Administration of a KD for 20 days in Sprague-Dawley rats did not result in as much variance as 

we observed following a 5-month KD (DeVivo et al., 1978). Greater weight gain in KD-fed 

animals compared to control-fed animals has been reported after a slightly longer (5 week) KD 

regimen, although this difference was not statistically significant (Hori et al., 1997).  Interesting 

results from a 5-6 week KD study, which used slightly higher protein content (10.4%) than the 

present study, described that animals were restricted to 10g of the diet per day in order to avoid 

excessive weight gain (Al-Mudallal et al., 1996).  In comparison, our KD was only 8.6% protein 

and while the KD patties provided to our animals were observably equivalent in size they were 

not weighed.  During daily replacement of KD patties, complete consumption of the previous 

day’s patty was never observed. 
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KD alters 𝛃HB but not glucose levels 

Since animals on the KD were not provided any external sources of carbohydrates, 

tolerated the diet, and gained weight it was deduced that they were converting fatty acids to 

ketone bodies to serve as their primary energy substrate.  𝛃HB and glucose blood levels were 

measured as an indicator of the conversion to ketosis.  KD-fed KO animals had significantly 

higher blood 𝛃HB levels than their ND-fed counterparts.  Interestingly, no significant differences 

in blood glucose levels were seen between either genotype or diet group. Other research reports 

elevated blood and cerebral 𝛃HB levels in KD-fed versus control-fed animals with no change in 

blood or cerebral glucose levels (Al-Mudallal et al., 1995).  Under normal conditions, rat blood 

𝛃HB levels have been reported to be between 0.20 – 0.30 mmol/L and glucose levels are 

between 4.00 - 12.17 mmol/L (Leino et al., 2001; Veech, 2004; Paoli et al., 2011).  At 8 months 

of age, normal diet-fed WT animals had mean 𝛃HB and glucose levels of 0.60 and 4.86 mmol/L, 

respectively.  KO animals fed the normal diet showed similar 𝛃HB levels (0.58 mmol/L) but 

slightly higher blood glucose levels (6.07 mmol/L) at 8 months.  While 𝛃HB levels in our normal 

diet fed animals appear to be slightly higher than previous reports, blood glucose levels were 

well within the range reported by previous studies.  After a 35-day KD, Leino et al. (2001) 

reported that rat plasma 𝛃HB and glucose levels were 1.0 and 11.5 mmol/L, respectively.  In 

comparison, our KD-fed WT and KO animals had 𝛃HB levels of 0.94 and 0.97 mmol/L and 

glucose levels of 6.46 and 6.08 mmol/L, respectively.  While 𝛃HB levels reported in the current 

study are nearly identical to previous reports, glucose levels in KD-fed animals are much lower.  

This could be a result of a shift in energy substrate from glucose to ketone bodies but, since 

blood data was only collected during the final three months and no initial level prior to KD 

administration was established no firm conclusion could be drawn regarding a change in energy 
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substrate.  Still, the fact that no significant differences in blood glucose levels were observed 

between KD- and ND-fed groups suggests that perhaps a 5-month KD provides animals with 

ample time to compensate for the KD-induced glucose shortage.  Indeed, it has been reported 

that glucose levels in KD-fed animals do not significantly differ from pre-diet levels after a 1-

month KD regimen (Leino et al., 2001). 

The neuroprotective properties of 𝛃HB are well established in Parkinsonian models.  In 

an MPTP mouse model of PD, infusion of 𝛃HB protected against both the degeneration of 

DAergic neurons and the motor deficits associated with the MPTP toxin (Tieu et al., 2003).  

𝛃HB has also been found to reduce the production of free radicals that induce lipid peroxidation 

of cell membrane and cause cell death (Maalouf et al., 2007). 

Reports suggest that between 50% and 80% of Parkinson’s patients have an atypical 

glucose tolerance (Lipman et al., 1974; Sandyk, 1993).  This impaired glucose intolerance is a 

hyperglycemic state which often precedes diabetes.  Furthermore, many of these glucose 

intolerant patients with PD fulfill criteria for diabetes (Lipman et al., 1974).  Glucose 

consumption leads to insulin secretion and catecholamines have been suggested as modulators of 

this process (Buse et al., 1970).  This glucose intolerance is made worse by L-DOPA therapies 

and it has been proposed that diabetes in Parkinson’s disease may increase the severity if motor 

dysfunction (Sandyk, 1993).  Individuals with glucose intolerance can exhibit fasting glucose 

levels that can be slightly elevated which may explain the slightly higher levels levels observed 

in our KD-fed animals compared to those fed the normal diet (American Diabetes Association, 

2005). 
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KD increases stride length and decreases stride frequency 

In humans, PD progression is associated with a decrease in stride length and shuffling 

gait (Morris et al., 1994).  While patients are often able to compensate for these changes when 

walking at a pace of their selection, gait hypokinesia becomes apparent when walking speed is 

kept constant (Morris et al., 1994).  Our data on PINK1-KO-induced gait changes align with 

these findings in humans as stride length in KO/ND animals was over 20% shorter than WT/ND 

animals at 8 months.  In contrast, KO/KD animals were observed to have a mean stride length 

that was only 6% shorter than WT/ND animals.  Interestingly, WT animals fed the KD exhibited 

a 16% increase in stride length between 3 and 8 months.  Research examining the effects of the 

KD on the R6/2 1J mouse model of Huntington’s disease, which found evidence of KD-induced 

improvements in locomotor coordination in male mice (Ruskin et al., 2011). Our results indicate 

that KD-fed KO animals had similar stride length at both 3 and 8 months while KO animals fed 

the normal diet exhibited a steady decrease in stride length representing a loss of 16.5% over the 

course of the experiment. 

In parallel with a decrease in stride length, KO/ND animals showed a significant increase 

in stride frequency at 8 months of age compared to WT/ND animals at the same time point.  This 

change in KO/ND animals amounted to a 15% increase over time, whereas KO/KD animals 

exhibited nearly identical stride frequency at both 3 and 8 months.  WT/KD animals exhibited a 

15% reduction in stride frequency between 3 and 8 months of age.  As one might expect, the 

relationship between stride length and stride frequency is approximately inversely proportional.  

Taken together these results suggest a KD-induced attenuation of PINK1-KO-induced motor 

deficits. 
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Hind limb dragging has been reported in 30% of PINK1-KO rats (Dave et al., 2014). 

Three of the 12 KO animals in the current study were observed to exhibit hind limb dragging, a 

25% prevalence rate. All three of these animals were fed the ND which may suggest that the KD 

prevented the development of this impairment. The DigiGait video footage captured hind limb 

dragging from below these animals while they walked and allowed for interesting observations 

to be made. In all three hind limb draggers an equinovarus-like folding of the toes under the pad 

of the dragged paw was observed.  The current study is the first to report this feature of the hind 

limb dragging in PINK1-KO animals. Our initial results suggest that the KD prevented the 

development of Parkinson’s-like gait changes in PINK1-KO animals. 

 

KD changes purine neurochemistry 

The KD is well known for its anti-epileptic effects (Hori et al., 1997; Dahlin et al., 2005, 

2012; Baranano and Hartman, 2008; Masino et al., 2012).  It has been suggested that a KD-

induced increase in extracellular adenosine acts on A1 receptors which reduce neuronal 

excitability (Masino and Geiger, 2008; Masino et al., 2011, 2012).  Furthermore, adenosine is 

well-known for its modulatory influence over dopaminergic transmission in the basal ganglia via 

A2A receptors (Hettinger et al., 2001; Rebola et al., 2005; Morelli et al., 2010, 2012).  

Antagonism of A2A receptors on nigrostriatal DAergic neurons leads to an augmentation of 

inhibitory GABAergic activity, enhanced regulation of thalamocortical-facilitated motor 

function, and makes smooth motor movements possible (Ochi et al., 2000; Hauser RA and 

Schwarzschild MA, 2005).  In light of the modulatory role of adenosinergic A2A receptors on 

DAergic transmission and smooth motor movement, research has focused on targeting A2A 

receptors for potential therapeutic applications in PD (Pinna et al., 1996, 2001, 2016; Fenu et al., 
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1997; Koga et al., 2000; Strömberg et al., 2000b).  This extensive support of A2A receptor 

antagonism in PD contributed to the recent approval of istradefylline, an A2A antagonist, as an 

additional therapy for PD (Kondo and Mizuno, 2015). 

In the current study, a 5-month KD appeared to have a depressive effect on purine levels 

in both KO and WT animals.  In the nucleus accumbens adenosine levels fell by 57% in both 

WT and KO animals fed a KD compared to WT animals fed a normal diet. In comparison 

KO/ND animals exhibited only a 30% decrease in adenosine in the nucleus accumbens compared 

to WT/ND animals.  Additionally, adenosine was lower in the posterior caudate of KD-fed WT 

and KO animals by 60% and 58%, respectively, compared to WT/ND animals; a 26% decrease 

was observed in KO/ND animals.  A similar trend was seen with inosine, a downstream 

metabolite of adenosine.  In the nucleus accumbens KD-fed WT and KO animals had 46% and 

48% less inosine, respectively, than WT/ND animals while KO/ND animals showed only a 30% 

decrease.  In the hippocampus KO/ND animals showed a 19% increase in inosine compared to 

WT/ND animals while KD-fed WT and KO animals were observed to have decreases of 28% 

and 29%, respectively. The substantia nigra also showed a depression of inosine levels by 36% 

in both KD-fed groups and 15% in KO animals fed a normal diet.  One potential explanation for 

these decreases could be that, due to the prolonged length of the diet, compensatory mechanisms 

become hyperactive and reduce purine levels. 

Precise quantification of purines in the brain is very difficult because even the slightest 

ischemic event can lead to rapid degradation of ATP and subsequent increase in adenosine levels 

(Delaney and Geiger, 1996).  In order to obtain precise cerebral purine levels it is important to 

inactivate the enzymes involved in the purine metabolic pathway.  One such method uses high-

energy focused microwave systems which not only kill experimental animals but simultaneously 
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denature proteins and halt enzyme function (Delaney and Geiger, 1996).  This microwave 

method has been compared to more traditional decapitation methods and found significant 

differences in adenosine content in regions evaluated in the present study (Delaney and Geiger, 

1996).  Using 10kW microwave irradiation adenosine levels in the cortex, striatum, and 

hippocampus were between 50 and 75 times lower than those of animals sacrificed using 

decapitation.  In comparison, adenosine levels in the cortex of animals sacrificed by decapitation 

were 0.022 µg/mg protein versus 3.46 µg/mg protein (combined motor and somatosensory cortex 

values) detected in our study.  Our adenosine levels may be higher due to the perfusion 

procedure conducted on all animals prior to decapitation.  Clearance of blood in the brain creates 

the kind of ischemic environment which leads to massive increases in adenosine up to 100-fold 

(Chu et al., 2013). 

 

KD appears to protect nigral dopamine cells 

Immunohistochemical staining for DA cells in the SN showed that a KD-fed KO animal 

had nearly 150% more DA neurons than a KO animal fed a normal diet.  Previous studies have 

also reported the KD’s protection of nigral DAergic neurons in toxin-induced models of PD 

(Cheng et al., 2009; Yang and Cheng, 2010).  Studies evaluating the PINK1-KO confirm that 

KO animals do, in fact, exhibit nigral DA cell depletion (Dave et al., 2014; Villeneuve et al., 

2014).  Due to our small sample size, only one animal from each study group was stained for 

TH-positive cells and, as such, the present findings require additional animals to determine the 

statistical power of the observed effects.  Still, cell counts from representative images of three of 

the four study groups (WT/ND group not shown due to technical difficulties in staining 
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procedure) suggest that the KD is able to prevent DAergic cell death in the PINK1-KO model of 

PD. 

 

Methodological Considerations 

As discussed previously (see methods), unforeseen errors in the perfusion of 8 animals 

led to removal of 3 rats from each group for purine quantification by HPLC.  Additionally, the 

method of sacrifice likely resulted in inflated adenosine levels.  In the event of a follow-up study 

the following recommendations are proposed: 

• That a pressure-driven, rather than gravity-driven perfusion apparatus be used to perfuse 

cerebral vasculature 

• Animals from each study group be sacrificed using microwave irradiation, rather than 

perfusion and decapitation, for quantification of purines by HPLC 

• That a greater number of animals be included in the study 

 

Conclusions 

This study reports that a 5-month KD exhibits therapeutic potential to ameliorate gait 

changes and DAergic cell death induced by the PINK1-KO.  Furthermore, neurochemical 

analysis suggests that a prolonged KD may have a depressive effect on purines in discreet 

regions of the striatum, basal ganglia, and the hippocampus.  The findings of the current thesis 

provide initial evidence of the beneficial effects of the KD in the PINK1-KO model of PD and 

are deserving of a follow-up study with a larger sample size to reaffirm these promising results. 
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APPENDIX – A. Solution Preparation 

 

3x PBS (1L): 

24.0g NaCl 

8.01g Na2HPO4 •7H2O 

0.6g KCl 

0.74g KH2PO4 

The above solutes were dissolved in 1L of DiH2O and pH adjusted to 7.45 using 10M NaOH.  

The solution was then vacuum filtered. 

Note: 1x PBS used for animal perfusion was created by diluting 300mL of 3x PBS to 

900mL using DiH2O. 

 

Stock Purine Megamix (PurM): 

10µg of the following chemicals were dissolved in 100mL of DiH2O: Adenosine, guanosine, 

inosine, xanthine, hypoxanthine, guanine, and uric acid. 

 

Stock DHBA Internal Standard Solution (DISS): 

Two concentration levels of DISS were used for different groups of animals over the course of 

the study (see appendix C for details). 

8µg/mL DISS was created by diluting 4µg of DHBA to 500mL using DiH2O. 

16µg/mL DISS was created by diluting 8µg of DHBA to 500mL using DiH2O. 
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Preparation of Mobile Phase (MP) Solutions: 

MP-A (1L) 

0.1g sodium 1-pentane sulfonate 

27.2g potassium phosphate monobasic 

The quantities of the two solutes above were dissolved in 1L with DiH2O, pH adjusted to 

3.5 using 85% phosphoric acid, vacuum filtered for HPLC, then degassed for 45 min. 

MP-B (250mL) 

25mL of HPLC-grade acetonitrile was diluted to 250mL using MP-A and degassed for 

15-20min. 
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APPENDIX – B. Pre-surgical Data Collection and Surgical Procedure 

 

DigiGait Behavioral Testing: 

Rats were placed on the DigiGait automated treadmill at a decline of 13 degrees and a 

treadmill speed of 18cm/s.  Rats from each study group were selected for behavioral testing 

based on their initial willingness to walk.  Representatives from each study group were 

established and tested once every month starting at 3 months old.  During testing, rats that 

were reluctant to walk were placed in a ‘redo’ category and tested again at the end of the 

session. 

 

Blood Testing for 𝛃HB and Glucose: 

 Blood tests were conducted three times, once during each of the last three months before 

sacrifice, by the tail prick method. Ketone and glucose levels were measured using 𝛃HB and 

glucose test strips and digital meters. 

 

Surgical Procedure: 

Scrubs, lab coats, facemasks, protective eyewear, and gloves were worn at all times during 

surgeries.  Approximately 4-5mL of isoflurane liquid anesthetic was added to an isolation 

chamber located in a fume hood.  Animals were placed in the chamber until signs of 

consciousness were no longer observed.  To ensure that the animal was deeply anesthetized a 

sharp foot pinch was administered.  A nose cap containing a cotton ball and approximately 

1mL of isoflurane was used intermittently during surgery to ensure that animals remained 

fully anesthetized.  An incision below the ribcage was made so that the heart was exposed.  A 
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sharp 18-guage needle was placed in the left ventricle of the heart and valve of the gravity-

driven 1x PBS perfusion apparatus was opened.  A small incision in the right atrium was 

made to allow efflux of blood.  Perfusions were allowed to continue until fixation tremors 

were observed.  At this point, the sharp-tipped needle was replaced with a dull-tipped needle 

which was reinserted into the left ventricle (Note: rats A-D were not perfused with the dull-

tipped needle, nor was the sharp-tipped needle position adjusted during perfusion).  To 

ensure a complete perfusion of the cerebral vasculature the dull-tipped needle was positioned 

in the ascending aorta.  The perfusion was continued until all of the following signs were 

observed: fluid exiting the incision in the right atrium was clear (no blood), heart and liver 

were observed to show significantly reduced blood content (less red, more pale/pink in 

color), and fixation tremors ceased.  Animals were then decapitated and brains were rapidly 

dissected and placed in a solution of ethanol and dry ice. 
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APPENDIX – C. Post-surgical Tissue Processing and Data Collection Procedures 

 

Brain Slicing, Tissue Punching, and Brain Sample Preparation: 

1. Microtome was cooled to -20 C using Physitemp regulator.  The blade was cooled with 

dry ice 

2. Brains were mounted using freezing medium and oriented with frontal regions facing 

upward. 

3. Five 1.5mm slices were taken in order to take tissue punches from the following regions: 

Slice 1: Motor cortex 

Slice 2: Nucleus accumbens, somatosensory cortex, and anterior caudate 

Slice 3: Posterior caudate 

Slice 4: Hippocampus 

Slice 5: Substantia nigra 

4. Bilateral punches were taken from the regions described above, placed in blue 1.5mL 

centrifuge tubes containing 400uL HPLC-grade ethanol, and sonicated using the Tekmar 

pestle sonicator until tissue was thoroughly broken up. 

5. Samples were then spun down at 2400rpm for 30 min in a microcentrifuge stored in -4 C. 

6. After 30 min, the supernatant was carefully removed and transferred to yellow 1.5mL 

microcentrifuge tubes.  (Note: blue microcentrifuge tubes were stored in a -80 C freezer 

for protein assays). 

7. The ethanol in the supernatant was evaporated in the rotovap at 45 C for 30 min. 
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For Rats A-H: 

8. The neurotransmitter pellet remaining in the yellow tubes were resuspended in 1mL of a 

0.1µg/mL solution of DHBA in DiH2O. 

For Rats I-L: 

8. 7µL of an 8µg/mL DHBA solution was added to 500µL of DiH2O and neurotransmitter 

pellet. 

For Rats M-X: 

8. 7µL of a 16.6µg/mL DHBA solution was added to 500µL of DiH2O and neurotransmitter 

pellet. 

9. All brain samples were stored in a -80 C freezer until analyzed by HPLC. 

 

HPLC Analysis: 

A 100µL sample loop attached to a manual injector was used for sample injections.  Prior to 

running calibration standards or brain samples, an injection of DiH2O was run with the dual 

MP gradient protocol to establish an acceptable baseline.  In a random ordered, each of the 

five calibration standards was injected and a calibration curve was generated for each of the 7 

purine analytes (Note: detection of guanine and uric acid was not consistent and, as such, 

analysis of these two compounds could not be included in the study).  Calibration standards 

were prepared as follows: 
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Preparation of Purine Calibration Standards: 

Standard 
Concentration 

Volume of DISS Volume of PurM Volume of DiH2O 

0.01µg 25µL 2 µL 1973 µL 
0.05µg 25µL 10 µL 1965 µL 
0.1µg 25µL 20 µL 1955 µL 
0.5µg 25µL 100 µL 1875 µL 
1.0µg 25µL 200 µL 1775 µL 

 

Once a full set of calibration standards had been run and calibration curves generated, brain 

samples were run.  On days following the injection of all five calibration standards the typical 

injection order was as follows: 

DiH2O 

Calibration Std 

3-4 Brain Samples 

Calibration Std 

3-4 Brain Samples 

Calibration Std 

Between each injection, the injection syringe and sample loop were rinsed first with a 50/50 

Methanol/DiH2O solution, then with 100% DiH2O. 

 

Protein Assays: 

Standards: 

1) Created 1N Folin Reagent by diluting 2N Folin & Ciocalteau Reagent by half using 

DiH2O 

2) Protein standards were created in 2mL microcentrifuge tubes as follows: 
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Std # µL DiH2O µL Albumin 
Protein 

Protein (mg) 

0 500 0 0 
1 480 20 0.04 
2 470 30 0.06 
3 460 40 0.08 
4 450 50 0.10 
5 430 70 0.14 

3) 500µL of Modified Lowry Protein Assay Reagent (MLPAR) was added to each standard, 

mixed, and allowed to react for 10 min. 

4) After 10 min 100µL of 1N Folin reagent was added to each standard, mixed, and allowed 

to react for 30 min. 

5) Absorbance of each standard was measured at 750nm 

For Brain Samples: 

1) 500µL of DiH2O was added to each protein sample, then sonicated to mix 

2) 500µL of MLPAR was added to each sample, mixed, and allowed to react for 10 min. 

3) After 10 min 100µL 1N Folin reagent was added to each sample, mixed, and allowed to 

react for 30 min. 

4) Absorbance at 750nm was measured for each sample. 

 

TH-Staining Procedure: 

Four rats (one from each study group) were perfused using 4% paraformaldehyde and 

post-fixed in 4% paraformaldehyde until they could be sliced. Full brains were placed in a 

sucrose gradient solution 30% sucrose and PBS for 24 hours, then transferred to 20% sucrose for 

24 hours, and finally to a 10% solution for 24 hours. Brains were then frozen in a slurry of dry 

ice and 2-methyl butane for 4-8 min. Stored at -80 C for 24 hours. Defrosted in a -20 C freezer 

prior to slicing. Slices 20 microns thick of the substantia nigra were taken using a Cryocut 1800 
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set to 22 C and placed on Superfrost (ThermoFisher brand) slides. Slides were stored at -20 C 

until staining procedure was carried out. Slices were then fixed with acetone pre-cooled to -20 C. 

Once acetone had evaporated sections were washed twice in 1x PBS for 5 minutes. Slides were 

then incubated in 0.3% H2O2 in a 5% solution of goat serum in 1x PBS for 10 min to quench 

peroxidase enzyme activity. After 10 min, slides were rinsed with DiH2O for 3 min. Slides were 

then washed again using 1x PBS for 5 min. Slides were then incubated for 30 min with diluted 

normal blocking serum 1x PBS and goat serum. After 30 min, excess serum was blotted from 

slides. Slides were then incubated overnight in 1:500 ratio of anti-TH to 1x PBS and goat serum 

solution of primary anti-TH antibody diluted using 1x PBS and 5% serum. Slides were then 

placed in a makeshift humidity chamber with a wet paper towel to keep slides moist. Parafin 

covers were then placed on each slide and left for overnight (ideally left for 10 hours). The 

following day paraffin covers were removed slides were washed 3 times for 10 min with 1x PBS. 

Sections were then incubated for 30 min with 1:200 solution of biotinylated secondary antibody 

diluted using PBS serum. After 30 min slides were washed with 1x PBS for 5 min, then 

incubated for 30 min with Vectastain ABC reagent. After 30 min slides were washed in 1x PBS 

for 5 min, then 100µL of 3,3’-diaminobenzidine (DAB) substrate working solution was applied 

for 2-10 min (until color of staining was revealed). Once color of stains appeared, slides were 

placed in 1x PBS to stop the reaction. 1x PBS was then blotted from slides and 100µL of 

glycerol was carefully applied to the coverslips before placing the coverslips on the slides. 
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APPENDIX – D. Supplementary Data 

 

Table 1. Summary of purine neurochemistry by brain region1 in ketogenic diet (KD)- and normal 

diet (ND)-fed PINK1-KO (KO) and wild-type (WT) animals2 

 MC SC NA AC PC HC SN 
Adenosine        

WT/ND 2.17 
±0.59 

1.29 
±0.11 

2.18 
±0.29 

1.35 
±0.38 

2.45 
±0.42 

1.45 
±0.13 

0.80 
±0.06 

WT/KD 0.78 
±0.28 

0.89 
±0.45 

0.67 
±0.36 

0.90 
±0.44 

0.78 
±0.45 

0.85 
±0.43 

0.41 
±0.37 

KO/ND 2.21 
±0.99 

1.38 
±0.47 

1.43 ± 
0.28 

1.47 
±0.17 

1.58 
±0.25 

1.31 
±0.32 

2.88 
±1.36 

KO/KD 1.20 
±0.15 

1.06 
±0.11 

0.94 
±0.17 

1.29 
±0.03 

1.04 
±0.10 

1.02 
±0.04 

0.50 
±0.05 

Guanosine        
WT/ND 0.07 

±0.02 
0.13 

±0.04 
0.11 

±0.03 
0.07 

±0.02 
0.12 

±0.05 
0.07 

±0.03 
0.05 

±0.01 
WT/KD 0.31 

±0.22 
0.21 

±0.14 
0.17 

±0.10 
0.18 

±0.08 
0.19 

±0.10 
0.28 

±0.12 
0.35 

±0.22 
KO/ND 1.10 

±0.73 
1.05 

±0.49 
1.10 

±0.48 
1.04 

±0.49 
1.17 

±0.59 
1.29 

±0.71 
0.50 

±0.29 
KO/KD 0.08 

±0.02 
0.08 

±0.03 
0.06 

±0.02 
0.09 

±0.03 
0.04 

±0.02 
0.08 

±0.04 
0.07 

±0.00 
Inosine        
WT/ND 0.66 

±0.08 
0.60 

±0.03 
0.81 

±0.04 
0.63 

±0.10 
0.59 

±0.15 
0.83 

±0.21 
1.16 

±0.15 
WT/KD 0.38 

±0.08 
0.38 

±0.16 
0.35 

±0.12 
0.30 

±0.13 
0.34 

±0.13 
0.47 

±0.20 
0.47 

±0.44 
KO/ND 0.23 

±0.13 
0.28 

±0.23 
0.31 

±0.26 
0.13 

±0.11 
0.26 

±0.15 
0.54 

±0.47 
0.46 

±0.36 
KO/KD 0.36 

±0.06 
0.42 

±0.07 
0.42 

±0.02 
0.39 

±0.04 
0.34 

±0.06 
0.59 

±0.11 
0.74 

±0.15 
Xanthine        
WT/ND 0.09 

±0.02 
0.08 

±0.03 
0.11 

±0.01 
0.11 

±0.02 
0.12 

±0.01 
0.08 

±0.01 
0.07 

±0.01 
WT/KD 1.11 

±1.04 
0.43 

±0.37 
0.77 

±0.67 
0.43 

±0.35 
0.51 

±0.42 
0.63 

±0.53 
0.68 

±0.60 
KO/ND 0.46 

±0.17 
0.35 

±0.12 
0.34 

±0.11 
0.34 

±0.12 
0.32 

±0.14 
0.56 

±0.26 
0.61 

±0.29 
KO/KD 0.16 

±0.07 
0.10 

±0.05 
0.08 

±0.03 
0.08 

±0.02 
0.06 

±0.01 
0.07 

±0.02 
0.05 

±0.01 
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Hypoxanthine        
WT/ND 2.39 

±0.45 
1.97 

±0.58 
2.06 

±0.33 
1.89 

±0.21 
2.16 

±0.25 
1.64 

±0.24 
2.28 

±0.44 
WT/KD 2.01 

±0.60 
1.38 

±0.14 
1.35 

±0.10 
1.27 

±0.12 
1.36 

±0.09 
1.60 

±0.12 
1.41 

±0.14 
KO/ND 0.86 

±0.77 
0.73 

±0.66 
0.74 

±0.66 
0.72 

±0.67 
0.81 

±0.69 
0.53 

±0.45 
0.65 

±0.58 
KO/KD 1.52 

±0.07 
1.52 

±0.16 
1.30 

±0.06 
1.31 

±0.18 
1.27 

±0.04 
1.56 

±0.19 
1.49 

±0.09 
1 MC – motor cortex; SC – somatosensory cortex; NA – nucleus accumbens; AC – anterior 

caudate; PC – posterior caudate; HC – hippocampus; SN – substantia nigra 

2 Values given in µg/mg protein ± SEM 

Images of Various Lesions and Ventricular Abnormalities 
 

 
Image 1 Rat D incomplete perfusion of cerebral vasculature and third ventricle asymmetry in posterior caudate (PC) 
slice. 
 

 
Image 2 Rat D incomplete perfusion of cerebral vasculature and lateral lesion of caudate observed in hippocampal 
(HC) slice. 
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Image 3 Rat F lesion and perfusion-induced ventricular asymmetry. 
 

 
Image 4 Rat H perfusion-induced asymmetrical third ventricle in posterior caudate (PC) slice. 
 

 
Image 5 Rat H perfusion-induced exploded left third ventricle in hippocampal (HC) slice. 
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Image 6 Rat L lesion first observed in motor cortex (MC) slice. 
 

 
Image 7 Rat L lesion continued into posterior caudate (PC) slice. 
 

 
Image 8 Rat L lesion started to close up after posterior caudate (PC) slice. 
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Image 9 Rat K lesion in right dorsal accumbal tissue. 
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APPENDIX – E. Manuscript from related undergraduate work 
 
The following is a manuscript submitted for publication. It represents my undergraduate work 
which used the same HPLC method for quantifying purines as the current thesis to examine how 
the KD affects this neurochemical system. 
 
The ketogenic diet does not alter tissue purine levels in mouse brain 

Jacob G. Rubin,§ and William H. Church*, Ŧ 

 

§ Neuroscience Program, Trinity College, 300 Summit Street, Hartford, CT, 06106, USA 

Ŧ Department of Chemistry and Neuroscience Program, Faculty of Chemistry and Neuroscience, Trinity College, 

300 Summit Street, Hartford, CT, 06106, USA 

 

Highlights 

• 3-week ketogenic diet did not alter tissue purine levels in wild-type mice 

• Control-fed mice showed negative correlation between dopamine activity and adenosine 

levels in the cortex 

• Ketogenic-fed mice did not exhibit negative correlation between dopamine activity and 

adenosine levels in the cortex 

 

Abstract 

Adenosine has been implicated in the therapeutic effect of the ketogenic diet.  It is also known to 

modulate dopaminergic activity.  We previously showed that the ketogenic diet increased 

cortical dopamine activity.  This study evaluated whether the ketogenic diet produced changes in 

brain adenosine levels and purine activity.  Samples from the previous study were analyzed for 

purines using a high performance liquid chromatography method for the quantification of 
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adenosine, hypoxanthine, xanthine, and inosine.  No alteration in tissue levels of purinergic 

compounds was found in the ketogenic diet treatment group when compared to the control diet 

group. A negative correlation between dopaminergic activity and adenosine tissue levels was 

found in the cortex of the control diet group but was absent in samples from the ketogenic diet 

group.  These findings support previous literature regarding interaction between the 

dopaminergic and purinergic neuronal systems and suggest a possible ketogenic diet-induced 

change in the purinergic modulation of cortical dopaminergic activity in mice. 

 

Keywords: Adenosine; Ketogenic Diet; Dopamine; Purines; Epilepsy 

 

1. Introduction 

Epilepsy is a neurological disorder associated with episodic seizures, sensory disturbances, 

loss of consciousness, and unusual behavior.  The ketogenic diet (KD) has successfully been 

used to treat medically refractory epilepsy, especially in children (Sirven et al., 1999; 

Hemingway et al., 2001).  The diet consists of a high fat, low protein, and low carbohydrate 

regimen that produces a change in metabolism such that blood glucose levels decrease and ß-

hydroxybutyrate levels increase (Hartman et al., 2007).  Currently the mechanisms through 

which the KD ameliorates epileptic seizures is poorly understood. 

Studies examining the neurochemical changes associated with the KD have been limited to 

date. The KD has previously been reported to affect glutamatergic systems (Yudkoff et al., 2004; 

Dahlin et al., 2005), adenosine (Masino et al., 2011; Ruskin and Masino, 2012) and 

catecholamine transmitters, including dopamine (DA) (Szot et al., 2001; Weinshenker, 2008; 

Dahlin et al., 2012).  Increased levels of the tryptophan metabolite kynurenic acid in the striatum 



70	

and hippocampus, but not the cortex, have also been observed in rats fed a KD (Żarnowski et al., 

2011).  Previous work in our lab found that mice fed a chronic (three-week) KD had increased 

DAergic activity in the motor and somatosensory cortices (Church et al., 2014). 

The KD has been found to improve mitochondrial function and thus energy metabolism 

(Stafstrom and Rho, 2012).  It has been suggested that metabolic changes induced by the KD 

impact purine neurochemistry.  Kawamura et al. (Kawamura et al., 2010) showed that reducing 

extracellular glucose causes the neuronal release of ATP.  Zhang et al. (Zhang et al., 1995) found 

that stimulation of P2Y receptors, by ATP, resulted in increased extracellular DA in the rat 

striatum. Adenosine, the breakdown product of extracellular ATP, also has the ability to 

modulate DAergic activity (Krügel et al., 2003; Fuxe et al., 2007). Alteration of adenosine levels 

has been suggested to be associated with the anti-seizure effects of the KD (Masino and Geiger, 

2008; Greene, 2011).  Taken together, these findings suggest a potential change in the interaction 

between adenosine and DAergic activity under the metabolic state induced by the KD. 

The purpose of the present work was to determine if the KD (1) altered adenosine levels in 

brain tissue and (2) altered the activity of the purinergic system.  We analyzed samples from six 

brain regions in mice fed a KD for three weeks for adenosine and its metabolites.  While no 

change in tissue levels of purines was found, we observed that a negative correlation between 

cortical DA activity and adenosine levels in control diet mice was absent in KD mice. 

 

2. Materials & Methods 

2.1. General overview, and animals 

The brain samples were obtained from the study by Church et al. (Church et al., 2014). 

The current study evaluated the neurochemical concentrations of adenosine (Ado), inosine (Ino), 
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xanthine (Xanth), and hypoxanthine (Hypo). Purine content was measured in the motor cortex 

(MC), somatosensory cortex (SC), nucleus accumbens (NA), anterior and posterior caudate-

putamen (ACP and PCP), and the midbrain (MB) using high performance liquid chromatography 

(HPLC) with UV and electrochemical detection (Burdett et al., 2013).  All animal care, use, and 

surgical procedures were approved by the Institutional Animal Care, the Use Committee of 

Trinity College, and are in accordance with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals. 

2.2. Chemicals 

Two mobile phases were used for HPLC analysis.  Mobile phase A (MP-A) contained 

0.52 mM sodium 1-pentane sulfonate, 0.20 M potassium phosphate monobasic and was pH 

adjusted to 3.5 using 85% phosphoric acid (Baker Analyzed; Phillipsburg, NJ, USA).  Mobile 

phase B (MP-B) contained identical concentrations as MP-A plus an addition of 10% acetonitrile 

(HPLC-Grade, Fisher Scientific, Pittsburgh, PA, USA). All purine chemicals used as standards 

were acquired from Sigma Aldrich (St. Louis, MO, USA). 

2.3. HPLC Parameters 

The neuroactive compounds were separated using a dual-gradient reverse-phase HPLC 

system with electrochemical (EC) and UV detection.  The mobile phases were run at a flow rate 

of 0.5mL/min. Separation was carried out at 22°C on a 150 x 2.00mm LUNA 5µm C18 

analytical column (Phenomenex, Torrence, CA, USA) using a dual mobile phase gradient to 

achieve proper separation of the analytes.  The gradient was 100% MP-A for 6 minutes 

increasing to 55% MP-B at 14 minutes.   The 45% MP-A and 55% MP-B gradient was 

maintained from 14 – 18 minutes then returned to 100% MP-A.  Total separation time was 20 

minutes and the system was allowed to equilibrate for 15 min between each sample injection.  
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The sample injection volume was 100µL.  Dual electrochemical detection (ESA Coulochem III; 

E1 = -150mV; E2 = +500mV; Thermo Scientific, Sunnyvale, CA, USA) and UV detection (λ1 = 

254nm; BioAnalytical Systems, West Lafayette, IN, USA) were used to quantify the purines.  

Chromatographic data was collected, stored, and analyzed using EZ Chrom chromatography 

software (Thermo Scientific). 

2.4. Statistical Analysis 

 Differences in the levels of purines in the brain tissue were evaluated using two-way 

ANOVA with post hoc comparisons (Bonferroni; n = 6-7 brains per diet group; GraphPad Prism 

6.0, GraphPad Software, Inc., San Diego, CA, USA). 

3. Results & Discussion 

Table 1. Purine tissue content from selected brain regions of mice fed either a normal chow (Control) or 

a ketogenic diet (KD) for three weeks.a 

Brain 

Region 

Hypoxanthine Xanthine Inosine Adenosine 

Control KD Control KD Control KD Control KD 

MC 

132.9 ± 

40.7 79.6 ± 7.7 2.5 ± 0.4 3.4 ± 1.1 29.9 ± 10.3 24.7 ± 5.4 71.8 ± 25.5 50.4 ± 6.6 

SC 

102.8 ± 

23.3 90.1 ± 6.5 1.7 ± 0.3 3.6 ± 1.0 19.5 ± 6.4 26.7 ± 4.7 54.4 ± 19.8 49.2 ± 7.2 

NA 

78.3 ± 

18.9 61.1 ± 13.1 8.5 ± 4.9 4.0 ± 2.3 29.2 ± 9.9 30.2 ± 7.1 40.2 ± 12.3 42.9 ±11.6 

ACP 

155.1 ± 

88.8 48.8 ± 9.5 6.5 ± 2.9 1.7 ± 0.7 48.4 ± 19.5 15.8 ± 2.6 71.2 ± 32.4 34.6 ± 7.3 

PCP 

42.2 ± 

18.9 51.6 ± 7.4 6.2 ± 2.4 2.6 ± 1.3 16.7 ± 5.2 20.9 ± 3.5 40.8 ± 13.0 31.1 ± 3.2 

MB 

111.9 ± 

37.4 44.8 ± 15.4 4.2 ± 2.4 1.8 ± 0.5 42.0 ± 9.7 34.5 ± 13.1 23.1 ± 7.2 13.9 ± 4.0 

a Data are reported as ug/mg protein ± S.E.M. for n = 6 and 7 KD and control, respectively 



73	

 

3.1. A ketogenic diet does not alter tissue purine levels in mice 

A three-week KD regimen did not alter endogenous purine levels in any of the brain 

regions analyzed (Table 1).  Figure 1 shows that a KD had no effect on adenosine activity in the 

regions analyzed.  The mechanism by which the KD ameliorates seizures in animals and humans 

is not known.  Numerous neurochemical systems have been implicated with recent studies 

focusing on energy metabolism and adenosine(Greene, 2011; Ruskin and Masino, 2012).  

Previously it has been reported that transgenic mice with spontaneous hippocampal seizures 

experienced decreased seizure frequency following a KD.  After being fed a three-week KD 

these transgenic mice were reported to have low endogenous adenosine levels due to an 

overexpression of adenosine kinase (Fedele et al., 2005). After being fed a three-week KD, 

seizure frequency decreased by almost 90% but could be restored by injecting exogenous 

glucose or adenosine A1 receptor antagonists (Masino et al., 2011).  The current findings indicate 

that the KD did not alter endogenous purine levels in wild-type (WT) mice (Table 1).  Although 

not statistically significant, KD-fed mice were observed to have lower adenosine levels than 

control-fed mice across almost all the brain regions analyzed.  This finding is consistent with a 

recent paper which reported that non-disease-state mice fed a KD show lower levels of adenosine 

in the hippocampus than controls (Lusardi et al., 2015).  However, this may not be reflective of 

diet-induced changes in neuronal purinergic activity.  One measure frequently used to evaluate 

neuronal activity is to compare the levels of metabolites to the parent compound (Heffner et al., 

1980; Kato et al., 1984; Church et al., 1986; Desole et al., 1996).  We subsequently evaluated 

adenosine activity (Fig 1) and saw no alteration as a result of the KD.  These findings do not 

support an enhanced augmentation of adenosine as a possible anti-seizure mechanism for the 
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KD.  However, the methods used in this study measure both intra- and extracellular purine 

levels.  It is possible that the KD alters mechanisms exclusively impacting extracellular levels of 

adenosine that would not be observable under the present experimental conditions.  Additionally, 

the contribution of purines from residual blood found in post-mortem brain tissue could be a 

confounding factor.  This is currently under investigation. 

 

Figure 1. Effect of the KD on adenosine activity. Adenosine activity was defined as the sum of adenosine 

metabolite levels (hypoxanthine, xanthine, and inosine) divided by adenosine levels.  No significant differences in 

the ratio of adenosine metabolites to adenosine were detected; (p>0.05), Control n = 7, KD n = 6. 

 

3.2. The KD alters the relationship between purinergic and dopaminergic systems 

Since adenosine has a main role in the CNS as a modulator of DA activity, we were 

interested to see if the KD altered the relationship between DA activity and adenosine levels.  

Previous research from this lab has shown that the KD increases DA activity exclusively in the 

motor and somatosensory cortices (Church et al., 2014).  Figure 2 reports the correlation between 

DAergic activity and adenosine in brain samples of both cortical regions.  A negative correlation 

was observed in animals fed the control diet (r=-0.88, p<0.05, n=6).  This negative correlation 

MC SC NA
ACP

PCP MB
0

5

10

15

20

25

Brain Region

H
yp

o+
In

o+
Xa

nt
h/

A
do

Control

KD



75	

was not observed in animals fed the KD (r=+0.44, p=n.s., n=10).  Midbrain samples from control 

and KD animals showed similar results (CD: r=-0.81, p=0.09; KD: r=+0.41, p=n.s.).  No other 

brain regions showed this type of relationship.  Interactions between adenosine and the DAergic 

system are well documented (Ferre et al., 1991; Ferré et al., 1991; Pinna et al., 1996; Ginés et al., 

2000; Salim et al., 2000; Short et al., 2006).  Krügel et al. (Krügel et al., 2003) reported that 

perfusion of adenosine into the nucleus accumbens significantly reduced extracellular DA 

concentration and suggests that stimulation of A1 receptors facilitates this decrease.  Both the 

DAergic and adenosinergic systems have been implicated in the modulation of seizures (Fedele 

et al., 2006; Bozzi and Borrelli, 2013).  The negative correlation between adenosine and DA 

activity is consistent with an inhibitory modulation by adenosine.  Inhibitory A1 receptors (A1R) 

are heavily expressed in the cortex (Rivkees et al., 1995).  While it is not clear if the present 

findings represent a loss of inhibitory modulation, a putative mechanism could be as follows: (a) 

the KD produced increased release of ATP with resultant increased extracellular adenosine 

levels; (b) this increase in extracellular adenosine could alter the modulatory effect on DA cells 

from one of A1R-dependent inhibition to one of excitation by presynaptic A2A receptors; (c) 

increased A2A receptor stimulation would result in increased DAergic activity (Okada et al., 

1996; Quarta et al., 2004); (d) the increased DAergic activity may then act on cortical 

glutamatergic neurons impacting seizure activity.  De Sarro et al. (De Sarro et al., 1999) reported 

seizure suppression in an animal model of reflex epilepsy by A2A agonists.  Furthermore, the 

results of a recently published study indicate that selective antagonism of A1Rs and A2ARs 

reverses the anticonvulsant effect of caprylic acid in mice (Socała et al., 2015). 
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Figure 2. The correlation between cortical tissue adenosine levels and DA activitya as measured by the sum of DA 

metabolites (DOPAC and HVA) divided by DA levels.  Correlation coefficients (r) were -0.88 (p<0.05, n=6) and 

+0.44 (p=n.s., n=10) for control and KD, respectively.  Values from motor and somatosensory cortices were 

combined for each diet group. a DA activity values taken from ref. 3 

 

To our knowledge, the current paper is the first to evaluate the effect of a chronic KD on 

tissue levels of purines in multiple brain regions of experimental animals.  Figure 3 is a graphical 

representation of adenosine tissue content in the brain structures analyzed.  Interestingly, 

adenosine levels varied in a descending manner in both diet groups from anterior to posterior 

ranging from 61.1 µg/mg protein in the motor cortex to 18.5 µg/mg protein in the midbrain.  A 

recent paper measuring cerebral adenosine levels in five strains of mice using HPLC reported 

wide variability across five inbred mouse strains (Pani et al., 2014).  For example, in the cerebral 

cortex the strain with the highest adenosine levels was 415% greater than the strain with the 

lowest adenosine levels.  The present paper reports cortical adenosine levels at 71.8µg/mg 

protein compared to 0.013µg/mg wet weight reported by Pani and his colleagues.  One possible 

explanation for could be that the samples used in the current study had previously been used in 

0 20 40 60 80
0

2

4

6

8

Adenosine (ug/mg protein)

D
O

PA
C

+H
VA

/D
A

Control

KD



77	

another and may have been thawed and frozen multiple times allowing for possible breakdown 

of upstream adenosine metabolites. 

 

Figure 3. Adenosine levels in various structures of mouse brain were evaluated in eight week-old mice fed either a 

ketogenic diet or control diet for three weeks. No significant differences in adenosine levels were detected; (p>0.05). 

Brain structures: MC = motor cortex, SC = somatosensory cortex, NA = nucleus accumbens, ACP = anterior 

caudate putamen, PCP = posterior caudate putamen, MB = midbrain. 

   

4. Conclusion 

While the current results suggest that the KD does not chronically alter the endogenous 

levels of adenosine in brain tissue, they provide valuable insight as to the potential interactions 

between the DAergic and purinergic systems and their role in the anti-epileptic effects of the KD.  

Further study aims to determine whether extracellular purine levels specifically are affected by 

the KD in order to more directly elucidate the role of adenosine in the diet’s efficacy. 
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