
University of Portland
Pilot Scholars

Engineering E-Portfolios and Projects Shiley School of Engineering

Spring 2019

LSST Classifier
David R. Carbonari
carbonar19@up.edu

Maggie Ryan
ryanmar19@up.edu

Branden N. Vennes
vennes19@up.edu

Mikayla K. Whiteaker
whiteake19@up.edu

Follow this and additional works at: https://pilotscholars.up.edu/egr_project

Part of the Computer Sciences Commons

This Open Access is brought to you for free and open access by the Shiley School of Engineering at Pilot Scholars. It has been accepted for inclusion in
Engineering E-Portfolios and Projects by an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.

Citation: Pilot Scholars Version (Modified MLA Style)
Carbonari, David R.; Ryan, Maggie; Vennes, Branden N.; and Whiteaker, Mikayla K., "LSST Classifier" (2019). Engineering E-
Portfolios and Projects. 25.
https://pilotscholars.up.edu/egr_project/25

https://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fegr_project%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_project?utm_source=pilotscholars.up.edu%2Fegr_project%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr?utm_source=pilotscholars.up.edu%2Fegr_project%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_project?utm_source=pilotscholars.up.edu%2Fegr_project%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pilotscholars.up.edu%2Fegr_project%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_project/25?utm_source=pilotscholars.up.edu%2Fegr_project%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

LSST Classifier Final Report
David Carbonari, Maggie Ryan, Branden Vennes, Mikayla Whiteaker
Advisors: Dr. Dvorak, Viet Phan, Dr. Katherine Kornei

Introduction 3

1

Project Description 3
Implementation Overview 4
Assessment 5

Assessment of Functional Requirements 5
LSST Pipeline Requirements 5
Other Image Sources Requirements 5
Amazon Web Services (AWS) Requirements 5
Web Application Requirements 6
Machine Learning Requirements 6

Finished Product 7
Angular Web App 7
AWS Resources 9
LSST Pipeline 10
Machine Learning 10

Document Outline 12

Technical Outcomes 12
Overview 12

Product Diagram 13
Components 14

LSST Pipeline 14
Data Pipeline 14
Data Calibration 14
Data Extraction 14
LSST Data Specifications 15
Star Photometry 15

User Interface 16
Welcome Page 16
Register / Login 16
Tutorial 16
Labeling Section 16

AWS Resources 17
Simple Storage Service 17
API Gateway 18
Lambda Functions 18
DynamoDB 18

Machine Learning 19
Training 19
Predicting 20

Process Outcomes 21
Assumptions 21

2

Data Formatting 21
Data Sets 21

Preliminary Sprint Schedule 22
Team Contributions 23

David Carbonari 23
Maggie Ryan 24
Branden Vennes 24
Mikayla Whiteaker 24

Conclusion 25

Appendices 26
Appendix A 26
Appendix B 26
Appendix C 26

Functional Requirements 26
LSST Pipeline Requirements 26
Other Image Sources Requirements 27
AWS Requirements 28
Web Application Requirements 28
Machine Learning Requirements 29

3

Introduction

Project Description
The Large Synoptic Survey Telescope (LSST) is currently under construction in Chile. Financial
support for the LSST comes from the National Science Foundation, the Department of Energy,
and private funding raised by the LSST Corporation.1 It is scheduled to begin full operations in
2023. Unlike most telescopes, which only focus on one portion of the sky with extreme detail,
the LSST will conduct a deep survey of a large portion of the sky. The 10-year survey of the sky
planned for the LSST will deliver 200 petabytes of images and data products. This data will be
used to achieve several science goals including searching for various indicators of near earth
asteroids, looking for items in the deep solar system, discovering the structure of the Milky Way,
and the study of dark matter and dark energy.2

While the telescope is still being constructed, the software architecture that will support
operations has already been developed. This project made use of the LSST Data Science
Pipeline, through which LSST data is accessed and manipulated. In addition, mock data has
already been made by the LSST team and released to test prototype analytical software.

This project used the LSST Data and software to build an Artificial Intelligence (AI) to classify
sources in LSST test images. The LSST Data science pipeline labels each light source in the
image as either a star or extend source (not a star). Our neural network AI was developed to
predict one of these two classifications. A web application (app) was also constructed with the
intention to use crowdsourcing to create additional training sets for the neural network in the
future. The app displays a LSST image and asks users to classify a marked source within that
image. No astronomy expertise will be required to use the app as every user will be trained to
classify data via an introductory tutorial. Using crowdsourcing and elements of gamification we
can engage a diverse group of users with the LSST science goals.

1 See Appendix A
2 Telescope, Large Synoptic Survey. "About LSST." LSST. Accessed September 27, 2018.
https://www.lsst.org/about.

4

Implementation Overview
The project has been implemented in four parts, using the LSST pipeline, AWS storage and
API, a Convolution Neural Network, and finally an Angular web app. The LSST pipeline
environment is used in conjunction with a Python programming language script, which makes
use of LSST libraries, to calibrate and upload LSST images and sources (light sources within
images) data to Amazon Web Services (AWS). LSST images are stored in AWS S3 Buckets
and the source data is stored in a DynamoDB table. In order to access this data from the web
app an AWS API was created. The Convolution Neural Network ingested LSST images and
learns to label the sources in the images. Finally, the Angular web app was built to display LSST
images and train users to label sources in the images.

The greatest challenge faced was a lack of expertise in astronomy that had to be overcome. A
great deal of research had to be done throughout the project. We were surprised by the amount
of continued work that had to go into research in astronomy related topics. In order to
understand how to use the LSST pipeline the team had to learn basic astronomy and optics
jargon. To better understand how to use the LSST data, the team had to do extended research
on Flexible Image Transport System (FITS) file formatting and how telescope architecture
influences image data. Dr. Katherine Kornei advised the team and help fill in gaps in astronomy
expertise, specifically in concepts of photometry and telescope architecture.3 The team also
faced challenges in correctly formatting data for the neural network and successfully learning to
classify stars.

There were three big milestones that the team achieved over the course of the project. Firstly,
extracting correctly calibrated FITS files and source data from the pipeline. This was a critical
step in achieving the functional requirements of the project. The second, was training the neural
network on actual LSST data. While there were many challenges faced in getting the neural
network to learn to identify sources in LSST data, being able to training with it was a huge
achievement and a culmination of months of research. Finally, the third biggest milestone was
having LSST images displayed in our front-end web app.

3 Dr. Katherine Kornei is an astrophysicist who is the Program and Exhibit Developer at the Oregon
Museum of Science and Industry and works as the Space Science Content Expert for the NASA-funded
Space and Earth Informal Science Education project. Dr. Kornei met with the LSST Classifier team in a
consultant role.

5

Assessment

Assessment of Functional Requirements
An objective assessment of the success of the project can be measured by comparing the
outcomes to the functional requirements.4

LSST Pipeline Requirements
Install Science Pipelines: The LSST pipeline and supporting software was successfully
installed on the team’s lab computer.

Setup Pipeline Environment: The pipeline environment was successfully setup and remained
functional throughout development lifecycle.

Calibrate Data: The sampled data provided in the ci_hsc package was successfully calibrated,
coadded and forced photometry applied.5

Process Data: A Python script was written that successfully uploaded calibrated fits files to the
S3 bucket , and puts all the sources, their labels, and location, in each image into the
database.6

Other Image Sources Requirements
Collect Hubble Space Telescope Images: A Python script was created the successfully
scraped images of comets from the Hubble space telescope. However, we did not end up using
these images. We pivoted to classifying stars instead of comets, we realized classifying comets
would be infeasible after much research when it became apparent there is not a sufficient data
set of comet imagery. Thus we only ended up using the LSST data.

Amazon Web Services (AWS) Requirements
S3 Storage Bucket: An S3 Bucket was successfully created that holds all of the FITS files
needed for the project.

AWS Database: A DynamoDB table containing all our source data was successfully created.7

4 See Appendix C for a detailed outline of the original functional requirements
5 The ci_hsc package can be found here: https://github.com/lsst/ci_hsc. This github project provided by
LSST contains all of the sample data used, and scripts that provided support in calibration of that sample
data.
6 An Amazon S3 bucket is a public cloud storage resource available in Amazon Web Services' (AWS)
Simple Storage Service (S3), an object storage offering
7 Amazon DynamoDB is a fully managed proprietary NoSQL database service that supports key-value
and document data structures and is offered as part of the Amazon Web Services portfolio.

https://github.com/lsst/ci_hsc

6

Web-Facing API: The AWS Gateway API was successfully created with a lambda function to
get a random source and its associated information.

Pipeline Library: A library of functions were created using boto3 so that users (in the pipeline
environment and in the neural network), could upload and retrieve data from both dynamoDB
tables and S3 buckets.

Web Application Requirements
User sign-in: This was never fully implemented, as it was deemed as not integral to the project,
so in the interest of time it was permanently put in the backlog. While a functional login form
exists, it is not connected to a secure login database. This functionality would be necessary if in
the future the web app was used in a crowd sourcing capacity, in that is was recording user
data.

User Experience: The webpage is easy to navigate as it has few buttons and consists of one
scrolling webpage. However, it did not undergo user testing due to lack of time.

Responsive Buttons: All the buttons except for the login link are fully functional.

Embedded JS9: JS9 was successfully embedded into angular and displays a FITS file with a
source marked for users to label.8

JavaScript Server: A nodeJS express server that is built into angular apps successfully runs
on the Heroku platform. Thus, users can successfully access the angular app via the Heroku
address.9 10

Machine Learning Requirements
Datasets: There are 6 high resolution FITS files in the S3 bucket, that combined, have 13,934
labeled sources. We were able to successfully create a large dataset of LSST sample data,
80% of which is used for training and 20% of which is used for validation.

Neural Network: A Convolutional Neural Network was successfully constructed using Tensor
Flow. However, the neural network does not reliably classify stars in LSST images.

Map FITS File to Inputs: In order to prepare a FITS file for input, a 32x32 pixel swatch can
successfully be cut out from a FITS file with a labeled source at the center. This swatch is then
flattened out and formatted so that is can be successfully fed through the neural network.

8 JS9 is a JavaScript library that allows astronomical images to be displayed in the browser
9 Angular is a platform that makes it easy to build applications with the web. Angular combines declarative
templates, dependency injection, end to end tooling, and integrated best practices to solve development
challenges. Angular empowers developers to build applications that live on the web, mobile, or the
desktop.
10 Heroku is a cloud platform that lets companies build, deliver, monitor and scale apps

7

Finished Product

Angular Web App

Figure 1: Landing section of the site

Figure 2: The labeling section of the site with the image is displayed in js9 and a source marked with a green circle

LSST LABELER LABEL ABOUT LOCIN

LSST LABELER

Maggie Ryan • Branden Vennes • David Carbonari • Mikayla Whiteaker

LSST LABELER LABEL ABOUT LOCIN

Ill
Is the source in

the green circle

a star?

Labeler Tutorial
Please follow this tutorial to learn how to classify stars -

8

Figure 3: Tutorial modal in the labeling section of the site

Figure 4: The “About” section of the web site.

LSST LABELER LABEL ABOUT LOCIN

Labeler Tutorial -

LSST LABELER LABEL ma LOCIN

To swrt helping us explore login above

and start class1fiying commets At first

ZO0NIVERSE

9

AWS Resources

Figure 5: A section of the final source table in DynamoDB

Figure 6: The final S3 storage bucket containing LSST FITS files

id0

102

103

104

105

106

107

108

109

110

I Q. "'YJ)CO. f)l'ctixD:1!1prc11 Bltc' Kl '>Cll!Ch.l"'rcss ESCtoe ::.-t1r.

11111 bfiillitii

D

U D pNCt,_u_i.tils

D D """'- ' -'·""
0 D fiak:f1_1_, llt!-:

n f'l p.1N11 I ;>_ti_,;

U D pNCt1_ 2_0.ti11

0 0 pt!lfCh_.!_l.fils

D D """'- ' -""'

. image_id . label

patch 1 l.fns EXT

patch_ 1 _ l.fits STAR

patch_l_l.fits STAR

patch_l_l.fns STAR

patch_ 1 _ l.fns STAR

patch 1 l.fns STAR

patch_ 1 _ l.fits STAR

patch_l_l.fits STAR

patch_l _l.fns STAR

patch 1 l.fns STAR

I ;i,sl 111:11.li.li,~J .,.

h.lar 1:.1, :i:Jl 9 •1 11,,1:10 l'l'.4 C.iM l -utOO

li.lar 13, 2:'.>19.11 -'8;10 PfA GMT-OC-00

1,,1M13, :..0194 49:15 Pt.4 GMT-0600

Mar 13, 2Jl94 L9:30 PfA CMT-0000

. X . y

5346.06142118153 4454.1177313772505

4668.374261158607 6945.155316744463

6333.306610916352 6974.642856325332

5760.091992283141 6980.740294189586

7049.428508244686 7016.257364148068

6425.939868116308 7087 .013417 45669

4831.37282067 4 714 7178.399563399432

5419.646312419141 7203.521212258764

6627.490620242521 7178.592641434823

7211.535075041458 7240.8212825178325

U S Wc~l (01eyor1) C

v_,.,!.1 1 1117

l3!J.;JMJ

199.3 M3

5111.,dtlr:I

Wl.OMJ

193.2 M3

10

LSST Pipeline

Figure 7: An example of the massive amount of data in the LSST pipeline. Above is a section of one FITS file with all
the stars marked in green circles.

Machine Learning

s □ Ds7.tcl • Fri 1J:S6• 0 ~. C) •

File Edit View Frame

File

ObteCt
value

Physical

Image

FrameO

-O.OS9

Zoom Scale COior Region WCS Anatys~ Help

0.97 2.2 ,.,

SAOlmage ds9 - - I"!!

□ help

print exit

, .. 8.1 11 16 22

Fl Score over Training Time

11

Figure 8: An example of the neural network running and training on LSST data, with an accompanying graph
depicting the F1 score, which indicates how well the neural network is classifying stars.

12

Document Outline
The remainder of this report is organized into three sections. First, the Technical Outcomes
section will provide a detailed account of the technical implementation of the project. This
section is broken down by the major components of the project, the LSST pipeline, AWS
resources, the Neural Network, and the User Interface (i.e. the web app).

The second section details the process outcomes, describing the success and shortcomings of
the project. This section goes over the project assumptions and how they changed over the
course of the project. It also includes, the primary sprint schedule, changes made to the sprints,
team member contributions and roles.

The final section is the conclusion. This will summarize the project and explain how our goals
were achieved. An evaluation of the project's’ outcomes and the team's process will be given.
The conclusion section also documents how the project could be improved if picked up by
another team that may be interested in testing the viability of the optimizing the AI.

Technical Outcomes

Overview
The LSST pipeline calibrates LSST data and uploads it to a combination of AWS resources,
including S3 buckets and DynamoDB tables. Then an AWS API allows the web app to access
this Data. The Neural Network accesses the data in the AWS resources via a Python library.

13

Product Diagram

SS

 AWS S3 Bucket

sour

S

Labeler

Labeler
C l ti

fSSJ

wor-l102n9T

14

Components

LSST Pipeline

Data Pipeline
The LSST Science Pipeline allows users to access and manipulate images of a full sky survey.
The pipeline was used to take raw imagery provided by the LSST team and create viewable
images. The pipeline was installed on a university lab computer.11

 Once the pipeline
environment was set up, the LSST Data Butler, which provides a generic mechanism for
persisting and retrieving data using mappers, was used to access and calibrate the sample
data.12

Data Calibration
Once data was retrieved and a Butler repository was set up, the images were calibrated. At this
point the data consisted of many individual calibrated exposures. These exposures were then
added to create deeper mosaic images. To do this, several scripts provided by the Pipeline
were used. First, a sky map was created which is a tiling of the celestial sphere, and is used as
a coordinate system for the final coadded image. These sky maps can either be of the whole
sky or a selected region. In addition, these sky maps use the World Coordinate System (WCS),
a coordinate system often used in astronomical FITS files. The images are then warped onto
the sky map. Following this, all the warped images are coadded, meaning that data from the
HSC-I and HSC-R bands are combined.13 Finally, forced photometry is then applied to these
coadded images which is used to accurately detect sources.14 All of this calibration is done in
the pipeline environment.15

Data Extraction
First, the coadded images are extracted from the pipeline and uploaded to AWS so that the
Convolution Neural Network and the web app can access them. As outlined above, images are
wrapped onto a sky map and then coadded to get the deep images that users will be viewing. A
sky map is composed of one or more tracts. Those tracts contain smaller regions called
patches. Both tracts and patches overlap their neighbors.16 Then breaking it down even further,
the tract is divided into a 3-by-3 grid of patches.17 The sample data consists of one tract and

11 See Appendix B
12 https://confluence.lsstcorp.org/display/LSWUG/Data+Butler
13 The Hyper Supreme Camera (HSC) has multiple bands given that different parts of the camera are
sensitive to different wavelengths of light (see https://www.naoj.org/Projects/HSC/forobservers.html)
14 For more on LSST photometry see the High Level Technical Specifications section
15 Done by following this tutorial https://pipelines.lsst.io/v/DM-11034/getting-started/coaddition.html
16 LSST Science Pipelines. "Getting Started Tutorial Part 4: Coadding Images" Getting Started Tutorial
Part 4: Coadding Images - LSST Science Pipelines V16.0 (current) Documentation. Accessed September
27, 2018. https://pipelines.lsst.io/getting-started/coaddition.html.
Copyright 2015-2018 Association of Universities for Research in Astronomy
17 LSST Science Pipelines. "Getting Started Tutorial Part 4: Coadding Images"

15

seven useable patches. These seven patches are written to FITS files and have been uploaded
to our AWS environment.

Next, using the aforementioned Butler, each source that is identified in the image is uploaded
into the AWS database.18 Each source is labeled as either a star or an extended source
(anything that is not a star); this label and the sources location in the image (in WCS
coordinates) are uploaded to the database. The top 36% brightest stars and extended sources
are pulled from the Butler table. The labels and locations of these sources will be used by the
neural network and the web app in order to identify and classify the sources.

LSST Data Specifications
The LSST data is in the FITS file format. This file format is commonly used in astronomy
because it “has special (optional) features for scientific data, for example it includes many
provisions for describing photometric and spatial calibration information, together with image
origin metadata.”19 To display this file format, the SAO Image DS9 application is used by
developers to display images locally.20 In order to display these FITS files in the web app, a
similar product called JS9 is embedded into the web page.21

Star Photometry
Photometry is the science of the measurement of light. Star photometry is the science of the
measurement of light from stars. Stars are bright symmetric light sources. Galaxies, on the other
hand, are asymmetrical and elliptical in imagery due to their spiral arms. Comets are
distinguishable from other celestial objects such as stars and galaxies – because they have
their own distinctive photometry. Galaxies and comets, however, are not uniform like stars. It is
this uniform symmetry that the neural network and users of the webapp will be looking for.

18 These qualities are defined in the following tutorial https://pipelines.lsst.io/getting-started/multiband-
analysis.html
19 https://en.wikipedia.org/wiki/FITS
20 http://ds9.si.edu/site/Home.html
21 https://js9.si.edu/

16

User Interface
The User Interface will be a single scrolling webpage developed in Angular. There will be five
main components of the webpage:

Welcome Page

When the user first opens the webpage, there is a simple welcoming message and display. The
display provides three main links to other parts of the webpage, labeling, about, and login. Each
link is located in the right hand corner of the upper menu bar. If the user does not choose to
utilize the buttons to navigate the page, they are able to manually scroll past the welcome page
down to the ‘Login’, ‘Labeling’ and ‘About’ sections of the webpage.

Register / Login
This functionality is not fully completed. The login modal is functional; when a user clicks the
login link, a modal window is displayed with text inputs that the user can fill out. A modal is a
window that appears over the main UI and disables the main UI behind it. Modals focus the
user’s attention on the new window. At this stage of implementation, no user information is
collected, stored, or validated during login.

Tutorial
The tutorial is a series of instructional modal windows, that users can access. After each tutorial
section, users can interact with the labeling section to test what they learned. Each modal
contains information about how to identify a certain characteristic that might be seen in an
image. The modals provide training instructions to the user to be able to identify stars along with
whether or not the described characteristic is an identifying feature of a star or if an image
contains no stars but other noise. Users can move forward and backwards using the Next and
Previous buttons on the bottom of each modal. However, in order to progress through the
tutorial and move to the next modal, the previous modal must be completed.

Labeling Section
The labeling section of the website lets users select yes and no classifications for each image
that appears on the left side of the screen. A green circle is displayed around the source in the
image. When the users classify an image using the Yes and No buttons located to the right of
the image, text is displayed on the screen telling them if the classification was correct.

17

AWS Resources

Figure 9: Diagram of the relationships between components in the team’s AWS cloud pipeline. The particular
functionalities of each component will be described in detail in the following paragraphs.

Simple Storage Service
The Amazon Simple Storage Service (S3) is a cloud storage service that allows the telescope
FITS files to be uploaded and downloaded from both our web app and our machine learning AI.
The S3 is kept separate from the API. The API acts as a communication layer which receives
requests and responds with image locations. Images are uploaded once from the data pipeline
and downloaded by the AI and web application. The images are uploaded to the S3 bucket via
the Amazon AWS library Boto3. Boto3 contains several functions for managing AWS including
S3, DynamoDB, and Lambda Functions. The S3 exists to be a central source to hold all of our
FITS image data.

DynamoDB

,~ Universally Unique ldenitifier -> (-1 linl<s images to image

___ .------- ,JJJJJ -------.. mformat,on

< Data Request >

Lambda Functions

< Function Call>

API Gateway

< RESTful API Call

< Data Response >

< Function Return >

·­---

Simple Storage Service

18

API Gateway
The Amazon API Gateway is a cloud hosted API which receives ‘get’ API requests from the web
application and returns source data. It acts as a public proxy to wrap API functions written using
AWS Lambda Functions. Get requests are sent to the API Gateway at a public URL. The API
has one endpoint in use which returns a random source’s data. When the endpoint is hit the API
Gateway triggers the associated Lambda Function, which returns status code and the data
requested (Lambda functions are defined below).

Lambda Functions
Lambda Functions are cloud hosted functions that can perform any necessary computations
and data retrievals from the DynamoDB database and S3 cloud storage. Our Lambda Functions
are written in Python 3.6 and handle requests for sources sent by the Web App. Using the
Boto3 Python 3.6 library, the Lambda function can retrieve any entry in the DynamoDB and
return it in a formatted JSON object. The result of the Lambda Functions combined with the API
Gateway is that images are very quickly served to users who access our web app.

This project only requires one Lambda function named random_src. The random_src Lambda
function is written in Python and uses the Python library Boto3 to access the DynamoDB table.
The function responds with a JSON object containing the source’s x and y coordinates and its
label.

DynamoDB
Amazon DynamoDB is the cloud database used to store information about the sources within
the FITS images. Each source has the following database columns: id, image id, label, x
coordinate, and y coordinate. The ‘id’ value contains the source’s unique identification number.
This value is the only value that is guaranteed to be unique for every source. The ‘image id’
value is the identification number assigned to the FITS image. The FITS image id is assigned in
another table and references the URL location of the FITS image file in our S3. The ‘label’
column contains either ‘STAR’ or “EXT’ (extension/non-star). ‘STAR’ and ‘EXT’ are the two
source classifications. The x and y coordinate values are the source’s central x and y values in
the World Coordinate System. The FITS image file contains information on converting from
WCS to array indices. DynamoDB works nicely as an API database because it is structured in a
JSON format, which is the same format as the HTTP API requests.

19

Machine Learning
The team used machine learning to make automated predictions for newly discovered sources.
First, the machine learning model is trained on a large batch of images. Then, a validation set of
images are passed to the model for predicting whether a given image is a star or not. The set of
predictions are then analyzed to determine the overall accuracy of the model.

Figure 10: A diagram of the layers within the Convolution Neural Network. The convolution layers filter for shapes.
The pooling functions in the hidden layers shrink the size of the vectors as they pass from convolution layer to
convolution layer. This decreases the amount of computations that need to be performed at later layers. The final
output node makes a prediction.

Training
The machine learning AI is a tool for automating the source classification process. The team
chose to implement a binary classifier using a convolutional neural network. The model was
built using convolutional neural network tools supplied by the Tensorflow Python library. It is
built from three convolutional layers, which filter for lines and shapes, followed by a fully-
connected layer containing a single node that gives the star/extension prediction.

To build a new AI predictor using a specific training set, the Python scripts developed by the
team load the FITS image files from the AWS S3 storage using the DynamoDB database. The
FITS files downloaded from AWS are converted into large arrays (approximately 4200x4200 in
size). The source information in the DynamoDB is then used to parse the 4200x4200 arrays into
16x16 arrays containing the specific sources. Next, the set of all 16x16 arrays is passed to the
machine learning scripts, where the set of source arrays are split into small batches containing
an equal amount of star and extension/non-star sources.

The scripts developed by the team run each of the batches through the machine learning
optimization process. With each array that is sent through the ML (machine learning) model, the
model optimizer performs backpropagation. This modifies the weights of the final node in the
neural network slightly, in order to slowly minimize prediction error. The error is determined by
finding the Mean Squared Error between the predicted value (real number between 0 and 1)
and the actual label (integer value 1 or 0). Each batch of sources is sent through the neural

32 x 32
Array

Convolution

Pooling

16 X 16
Array

Neural Network Layers

Convolution

Pooling

8 x 8
Array

Convolution

Pooling

4X4
Array

1 Node

20

network dozens of times to increase the overall model’s prediction accuracy. Once all the
optimizations are completed, the model is saved to local storage.

Predicting
From local storage, the ML model is imported into memory by the Python script and used for
making predictions as to whether a source is a star or not. During the prediction process, the
model is restored into a Tensorflow session and a set of 16x16 source arrays are sent through
it. The value in the final node of the ML model determines whether the source is a star or not.
The result from the prediction process does not cause any backpropagation. This means that
predictions are made independent of each other.

Disappointingly, our machine learning model is incapable of detecting differences between the
stars and the extension source objects. After evaluating the data and the algorithm, the team
believes that there are not enough detectable differences between the star and extension
source arrays. No amount of training was able to produce reliable predictions. On average, the
model predicts images with 66% accuracy. The team has multiple iterations to the model
including scaling source array values to between 0 and 1, building mini-batches with an equal
number of star and extension sources, and increasing the number of filters within the
convolution layer to detect more patterns.

21

Process Outcomes
This section will give an overview of the successes and shortcoming of the project. The team
was successful in conducting research in order to build several products from the ground up.
The research resulted in the successful calibration and extraction of LSST data, a neural
network that can successful ingest and train on that data, and finally a webapp that successfully
displays FITS files which allows users to interact with data. We will examine how our
assumptions and initial sprint schedule changed. In addition the team members’ contributions
will be outline.

Assumptions

Data Formatting
We assumed that the LSST data would be in a FITS file format. This held true, however, as we
continued to research and use the FITS files some of our assumptions about them were found
to be incorrect. We had assumed that the coordinates for sources where based off of pixel
location within the image however the FITS files in the LSST pipeline had a World Coordinate
System (WCS) embedded in the FITS file and the source locations are defined in the WCS. The
WCS had to be imported in JS9 on the front end, and the coordinates had to be converted to
pixel locations for use in the neural network. In addition, we assumed that the pixel values would
be like any other grayscale image from 0-255. However, the pixel values in the FITS files from
the pipeline range from negative to positive floats in order to achieve a high-resolution image.
This had unforeseen impacts on our neural network.

Data Sets
In our original requirements, we set out to classify comets in LSST images. We assumed that
we would be able to build training and validation sets of images of comets. However, after
extensive research it became clear that there was not a straightforward way to obtain FITS files
with comets labeled - easily identifiable comets do not commonly occur in telescope imagery. In
addition, even though there are many images of comets in databases from NASA and other
observatories, the data format was not consistent, complicating the data set. Therefore, in the
interest of achieving our functional requirements we pivoted and decided to classify stars in
LSST FITS files only. Since all the stars had already been identified in the LSST data, it was
simpler to create a useable data set using only labeled data from the LSST pipeline.

22

Preliminary Sprint Schedule
This section outlines the implementation of features in each sprint. A copy of the team’s sprint
plan has been included. Each sprint from the plan is reviewed and comments have been added
designating important events.

Sprint 1 Goals:

● Requirements Document
● Kick-Off Presentation
● Unit Test Plan
● Complete initial system setups including processing pipeline, database, storage, artificial

intelligence, and web page

During the first sprint, we spent a lot of time defining and researching the scope of the project,
and what products we want to build. By the end of the first sprint we began to narrow down what
the scope of the project. We lost time researching the direction of the project and learning about
LSST images. a lot of time trying to research what the direction of the project would be.

Sprint 2 Goals:

● Send test data throughout entire pipeline from processing to artificial intelligence and
web user

● Begin setting up AI system to receive images
● Setup functional database endpoints that takes in an image input and sends image

outputs with label attachments
● Create initial active and hosted web page GUI

It was overly ambitious for the team to expect that we could have test data flow through the
entire pipeline in Sprint 2. We were not able to have test data flowing to every aspect of the
project until second semester. This was because the time to complete all aspects of the pipeline
took longer than we had anticipated. The team successfully created a hosted web page on
schedule. The team also created the database and AWS API on schedule.

Sprint 3 Goals:

● Refine web GUI with elegant buttons and controls
● Complete initial AI setup
● Engage users in testing and training dataset
● Finalize label list

In Sprint 3, the team made enhancements to the web app graphical user interface (GUI) by
adding in responsive buttons and sample images pulled in from the AWS.

The team did not finalize the label list until Sprint 5. This was because we had trouble finding
sample images that contained comets.

Sprint 4 Goals:

23

● Complete full database and storage systems with capabilities to expand if necessary
● Complete database REST API
● Complete default training model for AI using sample images

REST API features were moved to the backlog in this sprint while we focused on the AI and
getting usable data from the LSST pipeline into our database. The REST API was completed in
sprint 6 when we added the GetRandomImage API call.

The team had a very basic binary classifier set up by Sprint 4. However, it was incredibly
rudimentary and was not successful at predicting images. It was beneficial in helping the team
build the foundation for the more advanced AI that was developed in Sprint 5.

Sprint 5 Goals:

● Complete processing systems and begin final refinement
● Finalize web app workflows
● AI can sufficiently detect comets and non-comets

In Sprint 5 the team created the framework for the web app’s tutorial which included login input-
boxes. The machine learning model was developed during this sprint and was able to make
predictions on a test dataset (Fashion-MNIST) with 99% accuracy.22

Due to the lack of data with labeled comets, we switched our data set to search for and identify
stars We were not able to get actual LSST data passed into our machine learning model in time
for Sprint 5.

Sprint 6 Goals:

● Optimize all systems to increase Web App interface speed
● Manually test all systems and verify all unit tests

Sprint 7 Goals:

● Final Report
● Final Presentation

Team Contributions

David Carbonari
● Worked with Mikayla to build the framework for angular web application
● Built the tutorial
● Designed the labeling section with the exception of the embedding of JS9
● Contributed to all reports produced by the team

22 Fashion-MNIST is a dataset containing 70,000 24x24 images of clothing items. It was downloaded with
the python statement: ‘from keras.datasets import fashion_mnist‘.

24

Maggie Ryan
● Contributed to all documents produced by the team
● Worked with Mikayla to install LSST pipeline and Linux on lab computer
● Researched methods for incorporating AWS database images in angular application
● Worked with Branden to develop a method for converting WCS coordinates to pixel

coordinates for neural network
● Worked with Branden to retrieve images from the database, divide images into training

and validation sets and developed a convolution neural network machine learning
algorithm

Branden Vennes
● Contributed to all documents produced by the team
● Worked with Maggie and Mikayla on creating the AWS pipeline including the S3 storage,

Lambda functions, and API gateway
● Worked with Maggie on writing a Python library for connecting to AWS resources from

the LSST Pipeline
● Worked with Maggie on developing the neural network

Mikayla Whiteaker
● Contributed to all documents produced by the team
● Worked with David to build the framework for angular web application
● Embedded JS9 in the angular app
● Worked with Maggie to install and set up the lab computer and the LSST pipeline
● Worked with Branden to build out DynamoDB tables, S3 buckets and Lambda functions

25

Conclusion
In summary, all but one of the functional requirements of this project have been met. The team
has built a functional Angular web application which lets users interact with LSST data. The web
application is supported by AWS cloud architecture. The source data is calibrated, formatted
and extracted from the LSST pipeline and stored in AWS. Finally, the Convolution Neural
Network can train itself using numerous batches of images and make predictions on whether a
particular object is a star or not. The team worked well together during the development process
and was able to meet the original goal of increasing engagement within the LSST community..

The team successfully built a web app through which users can interact with the source data.
This app uses AWS cloud architecture to manage information and images passed between the
pipeline, web application, and neural network. The neural network is fully integrated into the
team’s data pipeline and can train and make predictions on the data inputs from LSST.

Given more time to work on the project there are two main goals that we would have, first
improve the neural network to more successfully classify sources, and we would expand the
web application to a crowdsourcing tool where users can not only sign on and learn about how
to classify data but also classify new images that are unknown sources. For the neural network
we would explore more into how to make the differences between different types of sources
more prominent. This would require more exploration into the other layers of the FITS files and
a better way to preprocess the data. The next steps for the web application would be to add a
crowdsourcing component to it. That means that users will have to log in and complete the
tutorial and labeling with feedback that is already built, and move onto another labeling section
where they would be seeing unlabeled sources. This will expand the web application from being
an educational community outreach application to an application where people will be able to
get involved and directly assist in the labeling of various space objects. This would also require
an improvement to the database such that the user inputs on the unlabeled images would be
able to be stored.

26

Appendices

Appendix A
Financial support for LSST comes from the National Science Foundation (NSF) through
Cooperative Agreement No. 1258333, the Department of Energy (DOE) Office of Science under
Contract No. DE-AC02-76SF00515, and private funding raised by the LSST Corporation. The
NSF-funded LSST Project Office for construction was established as an operating center under
management of the Association of Universities for Research in Astronomy (AURA). The DOE-
funded effort to build the LSST camera is managed by the SLAC National Accelerator
Laboratory (SLAC). The National Science Foundation (NSF) is an independent federal agency
created by Congress in 1950 to promote the progress of science. NSF supports basic research
and people to create knowledge that transforms the future.

Appendix B
To install the LSST Science Pipeline follow the instructions outlined in the following website,
https://pipelines.lsst.io/install/newinstall.html. Be sure to check that your system fulfills the
prerequisites.

To set up the LSST Science Pipelines follow the instructions outline in the following website,
https://pipelines.lsst.io/install/setup.html. This setup is required every time you wish to create a
new pipeline environment, i.e. anytime a new shell is opened this setup must be done to
initialize the pipeline environment prior to running bash and python scripts that interact with the
pipeline.

Data is cloned using git, thus Git LFS must be installed and configured, follow the instructions
outlined in the following website, https://pipelines.lsst.io/install/git-lfs.html. Once a sample data
repository is cloned into the pipeline environment the package must be setup, added to the
EUPS stack, and a Butler repository created. For an example of this process see the following
tutorial,

Appendix C
The following is a detailed explanation of the functional requirements, taken directly from the
requirements document, which are used in the assessment of the outcomes of the project.

Functional Requirements

LSST Pipeline Requirements
Install Science Pipelines: A developer needs a bash script to install the pipeline so that the
pipeline software can be used to access, calibrate, and manipulate data. (2 hours)

https://pipelines.lsst.io/install/newinstall.html
https://pipelines.lsst.io/install/setup.html
https://pipelines.lsst.io/install/git-lfs.html

27

● Install prerequisites: The team’s lab machine is running Ubuntu 14 so this will require not
only the basic prerequisites listed but also the addition ones listed at
https://pipelines.lsst.io/install/prereqs/debian.html.

● To install and test the Science Pipelines the bash script must run all steps outlined here,
https://pipelines.lsst.io/install/newinstall.html.

Setup Pipeline Environment: A developer needs a bash script to set up the pipeline
environment so that they can use the pipeline software, again to access, calibrate, and
manipulate data. (1 hour)

● This bash script will be run each time the developer wants to use the installed pipeline.
The script must run all steps outlined here https://pipelines.lsst.io/install/setup.html. The
script must be run from within the directory in which the pipeline has been installed.

Calibrate Data: A developer needs a bash script that given data in a Git FLS repository, will
create a Butler repository, calibrates all exposures, creates a sky map, coadds all exposures
onto the sky map, and applies forced photometry to the coadded images. (5 hours)

● Given a link to a data repository the script will execute all the steps outlined, here
https://pipelines.lsst.io/getting-started/data-setup.html# to set up the package and create
a butler repository.

● The script will then calibrate all the data in the new butler repository by executing the
steps outlined here, https://pipelines.lsst.io/getting-started/processccd.html.

● The script will then create the sky map and coadd all the images by executing the sets
outlined here, https://pipelines.lsst.io/getting-started/coaddition.html.

● Finally forced photometry will be applied by executing a variation of the steps outline in
this tutorial, https://pipelines.lsst.io/getting-started/photometry.html.

Process Data: A developer needs a python script that gets all measured sources in the
coadded images. For each source identified put the source and its location in the database. (15
hours)

● This python must be run in the set up pipeline environment and the script will assume
the data has been calibrated by the Calibration script

● This script will make use of the Butler to retrieve metadata about sources and their
location in the image and LSST libraries to manipulate the image.23

● Finally the AWS library (see AWS Requirements) functionality will be used to put the
images in the database with the associated data.

Other Image Sources Requirements
Collect Hubble Space Telescope Images: A developer needs a Python script to scrape the
Hubble site for images of comets and stars and then put those images in the database. (4
hours)

23 For more on the LSST libraries see Appendix C

https://pipelines.lsst.io/install/prereqs/debian.html
https://pipelines.lsst.io/install/newinstall.html
https://pipelines.lsst.io/install/setup.html
https://pipelines.lsst.io/getting-started/data-setup.html
https://pipelines.lsst.io/getting-started/processccd.html
https://pipelines.lsst.io/getting-started/coaddition.html
https://pipelines.lsst.io/getting-started/photometry.html

28

AWS Requirements
S3 Storage Bucket: Any type of user needs blob storage to store all data so that it may be
retrieved at any point. (6 hours)

AWS Database: Users need a database to relate all image data to the appropriate label and
other metadata. (8 hours)

Web-Facing API: A web programmer needs to be able to retrieve images and their data from
the database and storage system. (6 hours)

● Retrieve tutorial data
● Retrieve random image for labeling from the training data
● Modify labels and metadata associated with images that are being labeled

Pipeline Library: A pipeline programmer needs to be able to put images and associated data
into the database. (12 hours)

● Put images in the blob under a unique ID and the store the resulting link in the database
with associated data.

○ The Amazon S3 used for blob storage returns a link to the image when an image
is put in the blob.

○ Associated data that will be represented in the database includes, but is not
limited to, a validation flag, source, label, label certainty.

Web Application Requirements
User sign-in: A web user needs to be able to sign in so that the data they produce can be used
in the training of the AI. A developer needs users to sign in to prevent untrained uses from
contributing to the training of the AI.

● Usernames and passwords will need to be stored and retrieved to enable login
functionality.

● Data indicating whether the user has successfully completed the tutorial will also need to
be stored.

User Experience: A web user needs an clear, user centered home page to catch their interest
and entice me to interact with the labeler. (10 Hours)

Responsive Buttons: A web user needs buttons to be responsive and save my image
classifications. (6 Hours)

Embedded JS9: A web developer needs to use JS9 in order to display FITS image files in the
Angular web app. (10 Hours)

JavaScript Server: A user needs to be able to access the web application, the JavaScript
server will serve the angular application and be hosted on Heroku.

29

● The Angular application is first compiled into JavaScript by the Angular compiler. This
compiled JavaScript code is then served by a NodeJS server. This is a very simple script
that creates and Express App (a NodeJS web application framework)25 that contains the
index HTML file, that was created by the angular compiler and links all the JavaScript
together. This express app then just simply listens on the specified port. Thus the
Angular app is served. This JavaScript will be hosted on Heroku.26

Machine Learning Requirements
Datasets: A machine learning programmer needs a dataset of over 1000 images that can be
used to train and test a model. (15 Hours)

● This data set must have correct label associated with the image whether from the source
or by labeling from the web app, so that the error of the AI can be computed

● This data set must also be divided into a training set and a validation set for supervised
learning.

● An image may be rotated or mirrored to increase the size of the data set.

Neural Network: The learning agent will be a neural network. The network will have a FITS file
image as input (see next section). The network will have one or more hidden layers. The
network will have at least one output indicating whether the input image is a comet or not.

Map FITS File to Inputs: The FITS files the make of the data sets must be mapped to inputs
for the network. Each input will represent a pixel’s intensity. The intensity will be the normalized
grayscale value of the intensity thus each input is between 0 and 1.

Network Output: The network’s output must be between 0 and 1, one being the image is a
comet, 0 being the image is not a comet.

	University of Portland
	Pilot Scholars
	Spring 2019

	LSST Classifier
	David R. Carbonari
	Maggie Ryan
	Branden N. Vennes
	Mikayla K. Whiteaker
	Citation: Pilot Scholars Version (Modified MLA Style)

	Introduction
	Project Description
	Implementation Overview
	Assessment
	Assessment of Functional Requirements
	LSST Pipeline Requirements
	Other Image Sources Requirements
	Amazon Web Services (AWS) Requirements
	Web Application Requirements
	Machine Learning Requirements

	Finished Product
	Angular Web App
	AWS Resources
	LSST Pipeline
	Machine Learning

	Document Outline

	Technical Outcomes
	Overview
	Product Diagram

	Components
	LSST Pipeline
	Data Pipeline
	Data Calibration
	Data Extraction
	LSST Data Specifications
	Star Photometry

	User Interface
	Welcome Page
	Register / Login
	Tutorial
	Labeling Section

	AWS Resources
	Simple Storage Service
	API Gateway
	Lambda Functions
	DynamoDB

	Machine Learning
	Training
	Predicting

	Process Outcomes
	Assumptions
	Data Formatting
	Data Sets

	Preliminary Sprint Schedule
	Team Contributions
	David Carbonari
	Maggie Ryan
	Branden Vennes
	Mikayla Whiteaker

	Conclusion
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Functional Requirements
	LSST Pipeline Requirements
	Other Image Sources Requirements
	AWS Requirements
	Web Application Requirements
	Machine Learning Requirements

