
University of Portland
Pilot Scholars

Engineering E-Portfolios and Projects Shiley School of Engineering

Spring 2019

TutorUP
Alexa Baldwin
baldwina18@up.edu

Danh Nguyen
nguyenda18@up.edu

Elias Paraiso
paraiso18@up.edu

Follow this and additional works at: https://pilotscholars.up.edu/egr_project

Part of the Computer Sciences Commons

This Open Access is brought to you for free and open access by the Shiley School of Engineering at Pilot Scholars. It has been accepted for inclusion in
Engineering E-Portfolios and Projects by an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.

Citation: Pilot Scholars Version (Modified MLA Style)
Baldwin, Alexa; Nguyen, Danh; and Paraiso, Elias, "TutorUP" (2019). Engineering E-Portfolios and Projects. 28.
https://pilotscholars.up.edu/egr_project/28

https://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fegr_project%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_project?utm_source=pilotscholars.up.edu%2Fegr_project%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr?utm_source=pilotscholars.up.edu%2Fegr_project%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_project?utm_source=pilotscholars.up.edu%2Fegr_project%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pilotscholars.up.edu%2Fegr_project%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_project/28?utm_source=pilotscholars.up.edu%2Fegr_project%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

Final Report • April 23, 2019

Team Members
Alexa Baldwin, Danh Nguyen, Elias Paraiso

Faculty Advisor

Tammy VanDeGrift, PhD

Industry Advisor
Casey Sigelmann, Precoa

Client

Tau Beta Pi Oregon Gamma Chapter

 2

Introduction

TutorUP is a peer tutoring network for University of Portland. The purpose of the network is to
make academic support more accessible for students who find themselves needing more assistance than
on-campus resources and professors can provide. The goal of TutorUP is to provide tutoring for a wider
breadth of subjects and to make it easier for students to find and connect with tutors. In order to use
TutorUP, the user must have access to a valid University of Portland email address. Once logged in, users
can either create a tutor profile or search for a tutor. Tutors create profiles that include majors and minors,
a brief bio, general availability and the courses he or she can tutor. Tutees can search for a tutor by major,
course, or name.

Throughout the implementation phase, the team achieved several substantial milestones. The first
milestone was installing the application locally and getting the architecture set up in a secure and reliable
fashion. This phase included implementing the Express API, integrating the React frontend with the
Express API, implementing user authentication with JSON Web Tokens using the Passport module and
integrating Redux for state management with React. The next milestone was building out the tutoring
profile and styling the application. We built the form components using the Material styling from
MaterialUI. This phase also included modifying styling to include custom colors and layouts. The final
phase of implementation was creating the administration layer and finalizing the search page. This layer
allows the application to have control over users and subjects. The search page allows users to search,
filter and sort through the existing tutor profiles.

The team faced several challenges in developing the application. Initially the team wanted to
create the application using the university’s systems. The goal was to have TutorUP behind UP’s
authentication and to have some course and student information pulled from Banner. However, security is
a top concern for Information Services, so they were hesitant to allow access to these resources. Another
challenge the team faced was what stack technologies we wanted to use. We initially created a MEAN
stack application with MySQL, Express, Angular and Node.js. This stack posed several problems as we
were unable to get the project running locally for all team members. We were also having difficulties
getting the application frontend and backend components integrated. As a result, our team switched to a
MERN stack with MongoDB, Express, React and Node. While this switch was helpful as it fixed the
aforementioned issues, it also created conflicts within the team and added a learning curve to the project
while we became comfortable with the React framework. The final major challenge our team faced was
feature evaluation. Initially we had envisioned features such as ratings and in-app messaging. However,
when we originally pitched these ideas, we failed to consider how difficult these would be to monitor for
harmful language.

Overall our team is proud of the application we created and the challenges we overcame to get
there. We were surprised with how efficient our meetings were this final semester and how easy it was to
learn React. We believe we have created a stable application that will perform well, and scale as needed.
While we struggled with teamwork and communication at the beginning, we found a way to appreciate
each other’s skills regarding the construction of our application.

The remainder of this document will discuss in more detail how our product works and the
technical outcomes of the project. Specifically, it will give an overview of the frontend and backend
organization and a description of the various use cases for the application.

 3

Technical Outcomes

Being a user-driven web application, TutorUP is best described through the roles and actions of
its users. An overview of the users’ functions has to be given before going through the architecture and
structure. There are three defined types of the users for the application: tutees, tutors, and admins. Their
abilities are shown in Figure 1.

Figure 1: TutorUP User Types

The components related to the architecture of the app are noted in the diagram below (Figure 2).
The app is based on the MERN stack architecture – MongoDB, Express, React, and Node.js are the
elements. MongoDB is the database that persists data for the application. Express is a lightweight web
application and API framework for Node.js. Node.js is a JavaScript runtime environment built on Chrome
V8’s JavaScript engine that allows developers to run JavaScript code server-side instead of only in the
browser like a decade ago. The application is hosted in the cloud by Heroku. Additional information can
be found in the References + Glossary section of the report. As for the components of the product, they
can be split into two categories: components related to the REST API backend and components related to
the React frontend.

Figure 2: TutorUP Framework Interaction

 4

Part I. Application User Interface + Frontend Components

The following section demonstrates the application’s state of flow, with images giving context for
the descriptions of each page’s functionality. It follows the perspective of a new user registering, creating
a tutor profile, and gaining admin privileges.

The website is currently accessible with the URL: https://www.tutorpilots.com. The user is
greeted with a homepage that has a random background image. The new user can register in two ways: by
clicking the hamburger menu icon and selecting the ‘Register’ link or by simply clicking the ‘Click Here
to Get Started!’ button on the homepage.

Figure 3: Home Page (with random background images at each revisit)

The register and login components are the only public-facing pages for the application, hiding UP
students’ profile information and search functionality from non-UP users. To register, the new user needs
to provide their first name and last name, their UP username (UP email without ‘@up.edu’) and a
password that fits the login criteria (Figure 4.1). The user retypes their password in the ‘Confirm
Password’ field because they will not be able to change their password after registering. A dialog will pop
up alerting them to check their email and click the confirmation link to be able to log in (Figure 4.2).
Once the newly registered user clicks on the confirmation link in their email (Figure 5), they will be able
to sign in to the application. Their confirmed property is set to true after clicking the confirmation link.

 5

Figure 4.1: Registration Page

Figure 4.2: Email Confirmation Dialog

 6

Figure 5: Confirmation Email

Figure 6: Login Page

 7

After logging in, the new user is redirected to the dashboard (Figure 7.1). There are two options
they can choose: ‘Become a Tutor’ or ‘Find a Tutor’. Becoming a tutor requires them to fill out a tutor
profile and finding a tutor just allows them to search for tutors if they only want to be a tutee. The next
demonstration will be of the user creating a new tutor profile and searching for themselves.

Figure 7.1: User Dashboard Page (if user is not a tutor)

Figure 7.2: User Dashboard Page (if user is a tutor)

 8

Clicking the ‘Become a Tutor’ button will redirect the user to a form to create their tutor profile
(Figure 8). If the user is already a tutor, they have the option to edit their profile by clicking the ‘Edit
Profile’ button. The profile component contains the user’s UP email, the option of being a paid or
volunteer tutor, a short bio, and a statement of availability. Tutors also input their major(s) and minor(s)
and the classes they are able to tutor.

Figure 8: Profile Create/Edit Page

Once a profile is created, the user is redirected to the dashboard that now has new options (Figure
7.2). A tutor is able to disable their profile from this page by clicking the ‘Disable Profile’ button.
Disabling a profile will prevent it from being displayed on the search page. When the user clicks the
‘Disable Profile’ button, it is switched to a ‘Enable Profile’ button, and they will need to click it again to
bring their profile back to the search page. The tutor user can view their profile by clicking the ‘View
Profile’ button. This shows their profile the way other users will be able to view it through the search
page. The user can also delete his or her account from this dashboard if desired.

 9

Figure 9: View Individual Profile Page

A user can search for a tutor by clicking the ‘Find a Tutor’ option in the hamburger menu. Users
are able to search by name, major and course using the search bar. Possible filters and ordering options
include: filtering by subject, paid/unpaid tutors, and filtering by first name or major. Users are able to
shuffle tutors displayed and the data pulled by the API is pre-shuffled so that every tutor has an equal
chance to appear at the top of the results.

Figure 10: Tutor Search Page

 10

The new user can become an admin of the application if another admin grants him or her admin
privileges (the first admin for the application will have his or her admin privileges set manually in the
database). After being enabled as an admin, the new user will need to log out and log back in to see the
admin tools in the menu (Figure 11). The admin components are protected by routes requiring users with
the isAdmin property set to true. The links for an admin user are only visible to admins, and are not
accessible by regular student users. The isAdmin property is set false for all users by default during
registration.

Figure 11: User Has Access to Admin Links After Re-login (Admin only)

Admins have the ability to manage users and subject via the admin tools. When an admin clicks
the ‘Manage Subjects’ option the subject dashboard page is loaded (Figure 12.1). Clicking ‘Create/Edit
Subjects’ takes the admin to an editable view of the subjects where subjects can be created, edited or
removed (Figure 12.2). Clicking ‘View Subjects’ navigates the admin to a table view of all the existing
subjects (Figure 12.3). If the admin goes back to the hamburger menu and clicks ‘Manage Users’ a table
of the users loads, and the admin can change admin privileges and whether a profile is enabled or disabled
for each user. Admins can also delete user profiles on this page.

 11

Figure 12.1: Subject Dashboard Page (Admin only)

Figure 12.2: Add/Edit Subject Page (Admin only)

 12

Figure 12.3: Subject View Page (Admin only)

Part II. Application Backend + Frontend Details

The backend is organized into three significant components: models, routes, and validation.
Application data is modeled by a specified Mongoose Schema that is used for Object Data Modeling to
the MongoDB database. The schemas for our various objects are explained below.

Table 1A: User Schema
User Schema

Property Type Notes

firstname String User’s first name

lastname String User’s last name

email String User’s UP email

confirmed Boolean User has confirmed email address with link

password String User’s hashed password

isAdmin Boolean User has admin privileges

hasProfile Boolean User has created profile and can be
disabled/enabled

disabled Boolean User or admin has disabled their profile

 13

Table 1B: Profile Schema
Profile Schema

Property Type Notes

user User User the profile belongs to

handle String User’s username

major String Array User’s major(s)

minor String Array User’s minor(s) (optional)

bio String User’s bio

availability String User’s availability

courses Object Array Courses the user can tutor

type String Paid or Volunteer

disabled Boolean Toggle for disabling profile

date DateTime Date profile was created

Table 1C: Course Subject Schema
Subject Schema

Property Type Notes

id String Subject Abbreviation

name String Subject Name

isMajor String Whether or not subject is a major

isMinor String Whether or not subject is a minor

isCourse String Whether or not subject is a course

Table 1D: Tutoring Course Schema
Course Schema

Property Type Notes

id String Subject Abbreviation

number Number Course Number

name String Course Title

courseSubject String Subject Full Name

 14

The REST API for the application is based on routes that define separate pieces of functionality.
The routes are split based on the models used by them. The routes are described in Table 2.

Table 2: Application Routes

Route HTTP
Method Access Function

/api/users/register POST Public Registers a new user, the user’s
specified password is hashed with the
bCrypt module and stored in the
database. User is sent confirmation
email

/api/users/login POST Public Login user only if they have
confirmed their email, check
password with hashed password in
the database.

/api/users/current GET Private Return current user information:
email, firstname, lastname, email,
isAdmin.

/api/users/admin POST Private Update isAdmin property for user.
/api/profile/all GET Private/Admin Retrieve all enabled users’ profiles.
/api/profile/allUsers GET Private/Admin Retrieve all users’ profiles

(enabled + disabled)
/api/profile/handle/:handle GET Private Get profile by handle.
/api/profile/ GET Private Get current user’s profile.
/api/profile/ POST Private Create or edit profile.
/api/profile/disableProfile POST Private Disable a profile.
/api/profile/enableProfile POST Private Enable a profile.
/api/profile/ DELETE Private Delete current user’s profile and

account from the database.
/api/profile/id DELETE Private/Admin Delete any profile or user.
/api/courses/ GET Private Get all courses for current user.
/api/courses/ POST Private Create or edit a course.
/api/courses/ DELETE Private Delete a course from profile.
/api/subjects/ GET Private/Admin Get all subjects.
/api/subjects/ POST Private/Admin Create or edit a subject.
/api/subjects/ DELETE Private/Admin Delete a subject from the database.
/email/confirm/:id GET Public Retrieve id from URL to confirm user

by email.

The users route handles registering and logging in new users and user model updates. When
registering a new user, the user’s specified password is hashed with the bCrypt module and stored in the
database. A confirmation email is sent to the user’s email address and the user is not able to log in until
they click the link confirming their UP email address. The disable route allows users to be disabled on the
application search page, the current user route gets the information related to the application user, and an
admin route updates the isAdmin property for a user.

The profiles route handles profile retrieval and profile creation and updating. There is a route to
get all users’ profiles (only enabled profiles), a route to get all enabled and disabled users’ profiles for

 15

admins, a route for getting individual profiles, a route for getting the current user’s profile, routes to
disable and enable profiles, a route for a user to delete their own profile, and a route for admins to delete a
user’s profile.

The courses route handles retrieval, updates, and deletions of courses; and the subjects route
handles retrieval, updates, and deletions of subjects. Only admins are able to create, edit and delete
subjects.

The frontend contains all the React code related to the client’s use of the application. Frontend
views are divided into static function and dynamic class components (Appendix C). Functional React
components are just pieces of the frontend that do not change based on any logic. Dynamic class
components do require changes and have either local state or connected state. The connected state means
the global state stored in Redux. Redux is a design pattern in which the global state can only be changed
by dispatching actions and reducers. Actions describe the trigger that causes a change in state. Reducers
return the modified state to be used in the application.

All frontend routes but the login and register pages are protected by JWT (JSON Web Token).
This token is set when the user logs in with the correct password. Every private route is protected by
JWT, and admin routes are protected by a variable checking for admin users in the database. For email
authentication, all users of the app are required to have a UP email to access tutor profile search and
profile creation. The SendGrid API is used to send email confirmation links to users’ emails when they
first register.

The team uses the Redux state management library for storing the global state essential for the
application. React components can have internal state passing state across components can get
complicated. Redux solves the problem by connecting a ‘global state’ to each component that needs
access to it. Global state for the application includes state of authentication, errors in the app, profile
operations, and subjects.

The team uses the cloud MongoDB database in MLab to store all application data. The data is
organized into three collections – users, profiles, and subjects. The application is able to perform
create/read/update/delete operations quickly on the database based on the user’s inputs and the backend
server-side functions. After recognizing the team’s success in developing and deploying to the cloud with
MLab, Heroku, and Git, UP IS recently contacted the team about migration the application to Amazon
Web Services and are currently having discussions on how to extend and maintain the application with
AWS.

Although the team was mostly able to stay faithful to the original design and functions, original
functional and non-functional requirements had to be adjusted. After realizing that moderating would
require significant overhead, the team chose to remove the functionality of commenting and giving star
ratings to tutors’ profiles. Similarly, the profile page design was changed so default avatars were given to
each user based on their initials, because moderating appropriate user avatars would require overhead.
Additionally, we had planned to implement a more sophisticated availability system. We were unable to
implement this feature due to time constraints.

 16

Process Outcomes

Initially, our team believed that the application would be best if integrated with the university’s
systems. We hoped to integrate UP’s authentication system and student information into our application
to facilitate the login process for students and to ensure that access would be limited to the UP-student
population. To our surprise, IS did not want to let us access either. They considered the requests to be too
risky, as their main priority is to ensure student safety and that their procedures comply with FERPA
standards. This was unexpectedly fortunate for us because it likely would have been far more difficult to
integrate our application with the university systems than it was to create our own registration and
authentication process. We also would have lost much of our freedom to choose the application
components and design if we had integrated with their systems. Since IS was not able to provide course
data to the team with the Student Banner API, we implemented the subject API that is managed by admin
users.

In the search for a client, as required by our capstone class, our team originally thought that the
on campus tutoring resource center, the Shepard Academic Recourse Center or SARC, would be a fitting
client for our product. We thought that the tutoring resource center would be supportive of an on-campus
web application to help connect students with peer tutors. However, during our meeting with the current
head of SARC, our team realized that he was not receptive to the idea and so we had to search for a new
client.

We then reached out to the university’s Athletics Department to query if they would be a fitting
client or not. Our point of contact in Athletics was immensely more friendly and willing, however their
needs did not align with our application’s design and intended functionality. Eventually we did find an
appropriate client when we decided to contact the on-campus club, Tau Beta Pi, and they expressed their
interest in being the client and maintainer of our application post completion.

Among these technical challenges that our team faced, we ran into our own personal challenges
as we continued through the process. In the first phases of this project, our team ran into personal issues
due to differing levels and expectations of communication and commitment to the project. At first, this
caused conflict within the team, however we were all able to stay calm, move forward, and resolve these
issues. We are incredibly lucky that we were able to resolve these problems relatively quickly and
painlessly because our team far more productive and functional when we worked together as a team.

Table 3 (below) shows our preliminary sprint schedule from our original design report (only
Sprints 1 through 5 were in this report). Although we did not end up following the schedule exactly as it
was written, we found that we did follow the general sprint timeline because we were able complete or
implement our intended milestones by the end of each sprint. As we proceeded through each sprint, we
often re-discussed many of the proposed features of the application, removing and modifying where we
saw fit. Sprint 6 and Sprint 7 were the only sprints that were planned right before they started.

Since we were unable to collaborate with IS, our plan to connect to UP’s databases by the end of
Sprint 4 was archived and replaced with the plan to research, purchase, and connect a reliable database to
our application for production. Similarly, our plan to familiarize IS developers with project was
completely archived since we were unable to use their systems. Sprint 4 is also when our team recreated
the project from scratch with the React framework. Although this was not a part of our initial project plan,

 17

this change solved several of the problems we were having, allowing us to complete the future milestones
in an easier fashion.

Table 3: Sprint Schedule
Sprint

Number
Sprint
Leader

End
Date Intended Milestone(s) Completed Milestones

1 Alexa 2/26/18 - Basic CRUD functionality for
application
- Connect application to local database
- Application Demo

- Basic CRUD functionality for
application
- Connect application to local
database
- Application Demo

2 Danh 3/26/18

- Final Project Plan Report
- User Interface Mock-Up
- Poster Completed
- Switch to Angular Front-End instead of
JavaScript template
- Avatar upload capability (with
Formidable module)
- Search Functionality

- Final Project Plan Report
- User Interface Mock-Up
- Poster Completed
- Switch to Angular Front-End
instead of JavaScript template

3 Elias 4/16/18

- Poster Presentation
- Finalize beta demonstration of
application
- Design Report Completed

- Poster Presentation
- Design Report Completed
- Finalize beta demonstration of
application

4 Alexa 1/1/19 -Set up authentication
-Hook up to UP databases
-Familiarize IS developers with project
(README documents, mini tutorials)

- Project Migration from MEAN
to MERN

5 Alexa 2/1/19

(Add app enhancements)
-REST API for IS to easily run CRUD
operations
-Instant messaging service
(using Twilio API)
-Visual ratings for tutors and tutees
(using Pusher API)

- Familiarization with React
- Basic Search Implementation
- Created Admin Routes
- Improved Design and Styling
- Added More Profile Attributes
- Disable/Enable Profiles
- Background Images

6 Danh 2/22/19 Planned at beginning of Sprint
- Beta Sessions
- Feedback Bug Fixes
- Email Authentication
- Admin Management APIs

- UP Email Authentication
- Admin Subject APIs
- Improved Search & Filter
- Added UP Subjects to Prod
- Created Admin User API
- Bug Fixes

7 Elias 3/29/18 Planned at beginning of Sprint
- User Testing and Deployment
- Final Report & Presentation

- Beta Sessions and Feedback
- Improved Security, required
login for viewing tutor profiles
- Final Report & Presentation
- Bug Fixes
- Planning and Preparation for
Deployment and Handoff

 18

For the features corresponding to Sprint 5, all the milestone enhancements were archived, due to
a complete change in framework, components, and design. We had initially hoped to implement an instant
messaging service to simplify the process for students contacting tutors and similarly intended to
implement a rating and review system so the users could endorse the “good tutors” and potentially report
the “bad tutors”. However, we decided not to continue forward with either of these features due to the fact
that both of these features would require moderators to ensure that these features were not abused by
potential malicious users. Sprint 5 instead involved a period of familiarization for half of the team with
the new framework. Once up to speed, we were able to lay out the structure for each of the page routes,
apply beautiful styling, and even implement most of the desired functionalities.

As Sprint 6 and 7 were not planned until the end of Sprint 5, our completed milestones closely
matched what we intended. Both of these Sprints focused mostly on gaining user feedback, fixing various
bugs, improving features as requested from feedback, and completing our final report and presentation.
We learned a great deal from our beta sessions regarding how well the users liked the app, how likely
they would be to use the app, and what features they would like to be improved. As seen in Appendix B1
and B2, there were no users from the either of the beta sessions that said they would not use the app. In
fact, the majority of users said they would either be “very likely” or “extremely likely” to use the app as
either a tutor or tutee.

Our conversation with IS started up once again when we began discussing how we intend to host
the production version of the application and database. Our team has been considering whether to use our
allocated money to purchase a lasting production database and domain or whether to have IS host the
application for us, ensuring a lasting production version. Once Tutor UP is fully deployed in its
production form, it will be handed off to the university club, Tau Beta Pi. Tau Beta Pi’s webmasters Jenn
Loui and Jason Twigg will serve as the application admins and will have the ability to manage the
subjects and users. Since the admin will have control over which users can become the next admin, they
have the ability to handoff the responsibilities when surpassed by a new club president.

Testing

Before we had implemented the major features of the application, we had held a survey to gauge
interest in the UP community. The results from the survey suggested that most students on campus
thought that the app would be useful (Appendix A). These results helped reinforce our perception that a
UP students could use more assistance finding help on campus.

Once we had implemented the app’s main functionality, we held two separate user testing
sessions. Our main goal from these beta sessions was to record the users’ thoughts, to discover
undiscovered bugs, and to help advertise our product. From the first beta session, we were able to
discover a few critical bugs and obtain a lot of feedback. The overall feedback from testers was mostly
positive (Appendix B), however we did receive a number of suggestions from the test users.

One example of a suggestion that we implemented was the desire for a label showing the
password requirements, as users failed multiple times to create a password when they did not know the
criteria. In addition to usability improvements like this, there were also several bugs found during the
testing session. One major bug had to do with validation on the profile form. Users were able to submit
the form successfully with some of the required fields missing. Prior to testing, we hadn’t realized that the

 19

application HTML required tag worked differently on the dropdown items than the text fields, thus we
implemented a new solution to ensure all the profile fields were filled out before submission.

Project Contributions

Each team member contributed to the project in a variety of ways, in this section we will describe
the contributions of each team member.

Alexa acted as our team’s project leader, graphic designer, and main frontend web developer.
Since the project was originally proposed by Alexa, she was very active in the beginning of the project
with the product design and planning documentation. She handled styling and responsivity of the
application’s frontend. Alexa was also heavily involved with the frontend implementation of the admin
page and its respective APIs. Among these major contributions, Alexa assisted in various programming
tasks related to the tutor profiles fields and subject creation and validation.

Danh acted as our team’s main architect. Danh heavily researched the MERN app architecture
and fully recreated the application using MERN because he believed it to be superior to the MEAN
architecture we had before. This was immensely valuable for our team since the newly created application
in MERN was quick to install and run on each member's local machines, an accomplishment we had not
reached before with the MEAN application. Danh also acted as our team’s main back-end developer. He
set up the configurations for the app database and domain. Danh implemented the JWT password system
and the email authentication system, both of which are crucial for the security of our student users. Danh
also took charge of the application’s deployment pipeline by configuring the project GitHub integration
and Heroku production deployment.

Elias was charge in implementing many of the application features related to searching and
filtering. He created the search bar and filter dropdowns on the “Find a Tutor” page, modifying their
functionality to give the desired balance of quantity of results and similarity to the text being searched.
Elias also assisted Alexa with various frontend tasks involved with the application’s profile submission
validation and user tips. Similarly, Elias took charge of creating the application help/about page
containing the FAQs of the app and various tips to help the users understand how to optimally and
appropriately use the app.

Conclusion

In conclusion, our team successfully created a stable responsive web application to help connect
students with peer tutors at University of Portland. Our team believes we were able to accomplish the
main objective of our project.

Throughout this project our team faced both interpersonal and technical challenges. Our team
persevered through various communication difficulties to create a product that we are all proud of. Our
team is most satisfied with the styling, responsivity, stability and security of our application. One of our
top achievements was developing a way to work around our inability to connect to the university’s login
infrastructure by adding an email confirmation layer to the application.

 20

While our team is proud of the application we developed, there are several things we would do to
improve the design and process. The main thing our team would change is the amount of time we spent
planning. Had we spent more time looking into what frameworks to use and how we wanted to set up data
objects within the application, we would have saved ourselves a lot of time. Additionally, our team
wished we had a more realistic scope in mind when we began our project. Had we foreseen some of the
issues with integration and implementation mentioned above, we would have eliminated more features at
the beginning.

If our team had more time to develop this product, we would like to add a better scheduling and
availability tracking system. This was a feature we had initially planned on implementing, but quickly
realized it was not plausible given the higher priority features that we needed to implement. Despite this,
we are very proud of the TutorUP application that we developed, and we look forward to handing the
admin privileges over to Tau Beta Pi.

Acknowledgements

We would like to acknowledge and thank everyone that assisted our team throughout the capstone
process.

Dr. Tammy VanDeGrift
Faculty Advisor • Capstone Professor

Casey Sigelmann
Industry Advisor

Ryan Jefferis

Capstone Professor

Tau Beat Pi Oregon Gamma Chapter
Client

Beta Testers

Information Services

Background Photo Models

Curtis Le • Ellie Jacobs • Jenn Loui
Nick Accuardi • Nischal Mali • Surabhi Jogleka

 21

References + Glossary

Angular TypeScript based open-source web application framework from Google.
Original framework chosen for TutorUP.
https://angular.io/

Express Open-source web application framework for NodeJS under MIT license.
https://expressjs.com/

JWT.IO JSON web token manager that allows for encryption and decryption of user
passwords.
https://jwt.io/

Material Icons Google’s open-source icon library.
https://material.io/tools/icons/

Material UI React components that use Google’s Material design standards.
https://material-ui.com/

MongoDB Cross-platform document-oriented database program.
https://www.mongodb.com/

Mongoose MongoDB object modeling tool for NodeJS.
https://mongoosejs.com/

NodeJS Open-source JavaScript runtime environment.
https://nodejs.org/en/

Passport Authentication middleware for NodeJS.
http://www.passportjs.org/

React JavaScript library for building user interfaces. Maintained by Facebook.
Replacement frontend library chosen for TutorUP.
https://reactjs.org/

TutorUP Design
Document

Original design document created by our team during the Spring 2018 semester.

TutorUP Poster Poster summarizing the work completed in the first semester of this project
(Spring 2018).

UP Brand Book University of Portland’s marketing standards. Used in our project for color
palettes.
https://www.up.edu/marketing/files/up-brand-book-2016.pdf

 22

Appendix

Appendix A: Initial Survey Results

Before beginning the implementation of TutorUP, we surveyed 30 students across various years
and majors to gauge how TutorUP would be perceived on campus. The results are summarized below.

Appendix B: Beta Testing Results

These results are based off a survey that users took after testing TutorUP. There were 21
individuals that participated in beta testing. We asked users to rate ease of use and the overall look of the
app on a five-star scale. The average ease of use rating was 4.4 and the average overall look rating was
4.5. We also asked users to rate how likely they would be to use the app as both a tutor and a tutee. Those
results are summarized in the graphs below.

Appendix B1: Likelihood to use app as a tutee

 23

Appendix B2: Likelihood to use app as a tutor

Appendix C: Code Samples

Appendix C1.1: React Class Component

 24

Appendix C1.2: React Class Component Example from Codebase

Appendix C2.1: React Functional Component

 25

Appendix C2.2: React Functional Component Example from Codebase

Appendix C3: JWT Authentication Strategy

	University of Portland
	Pilot Scholars
	Spring 2019

	TutorUP
	Alexa Baldwin
	Danh Nguyen
	Elias Paraiso
	Citation: Pilot Scholars Version (Modified MLA Style)

	Microsoft Word - Final Report TutorUP.docx

