
University of Portland
Pilot Scholars

Engineering Faculty Publications and Presentations Shiley School of Engineering

10-2017

Implementation Projects in a Computing Theory
Course
Tammy VanDeGrift
University of Portland, vandegri@up.edu

Follow this and additional works at: https://pilotscholars.up.edu/egr_facpubs

Part of the Computer Engineering Commons, and the Higher Education Commons

This Journal Article is brought to you for free and open access by the Shiley School of Engineering at Pilot Scholars. It has been accepted for inclusion in
Engineering Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact
library@up.edu.

Citation: Pilot Scholars Version (Modified MLA Style)
VanDeGrift, Tammy, "Implementation Projects in a Computing Theory Course" (2017). Engineering Faculty Publications and
Presentations. 52.
https://pilotscholars.up.edu/egr_facpubs/52

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Portland

https://core.ac.uk/display/232743707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_facpubs?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_facpubs?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pilotscholars.up.edu/egr_facpubs/52?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

IMPLEMENTATION PROJECTS IN A COMPUTING THEORY COURSE

Tammy VanDeGrift
Computer Science, Shiley School of Engineering
University of Portland
Portland, OR 97203
503-943-7256
vandegri@up.edu

ABSTRACT

Most computer science programs expose students to theoretical aspects of
computing, such as discrete mathematics, algorithms, and theory of computation.
This paper presents the integration of an implementation project in a theory of
computation course, so that students get a chance to grapple with the details of a
transformation and/or abstract model in addition to preparing a project and
demonstration to help fellow students review topics from the course. Examples of
student projects include a deterministic finite automata simulator, determining if
the languages of two DFAs are equal, converting a grammar to a pushdown
automaton, and creating a regular expression engine. Seventeen of 25 respondents
agreed or strongly agreed that the project was a valuable learning experience; six
were neutral and one strongly disagreed. Student project topics were reviewed
against final exam questions for corresponding language classes. While there was no
statistically significant difference between groups on exam questions, the overall
averages on exam questions demonstrate student mastery of the material.

INTRODUCTION

Most computer science programs include theoretical aspects of computing,
with courses such as discrete mathematics, theory of computation, and algorithms.
In particular, theory of computation is the study of the capabilities and limitations of
computers [7, 8, 11]. Computer science students who study theory of computation
typically learn about formal computation using automata, such as deterministic
finite automata and pushdown automata, Turing machines, and how to classify
problems as decidable or undecidable. ABET-accredited programs include outcomes
related to theoretical aspects of computing: (a) An ability to apply knowledge of
computing and mathematics appropriate to the program’s student outcomes and to
the discipline and (j) An ability to apply mathematical foundations, algorithmic
principles, and computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the tradeoffs involved
in design choices. [1].

Traditional homework exercises in a theory of computation course include
proof-based problems, such as those provided in [7], [8], and [11]. For example, a
homework exercise may ask students to show that the language consisting of strings
that start and end with the same character is regular. Another exercise may ask
students to show that the intersection of a context-free language and regular
language is context-free. Yet another may ask students to prove that strings

consisting of strings in the form aNbNcN is decidable. These are important proof-
creation skills for students to develop.

This paper provides an overview and assessment of a theory of computation
course that includes a programming project in addition to traditional proof-based
exercises. The goals of the programming project are to: 1) apply prior experience in
programming to theoretical topics, 2) design, implement, and test a system (no
starter code), and 3) communicate the project to others.

The constructivism learning theory states that people are active creators of
knowledge – each person must grapple with ideas, explore, and integrate new ideas
within the context of their own frameworks [2, 3, 6, 13]. Instructors aid students to
be active learners by scaffolding student inquiry activities. By asking students to
implement a simulator or transformation as a course project, they must grapple
with the details and explore how to design, implement, and test their ideas.

Others have studied pedagogical techniques in theoretical computing
courses. For example, Coffey utilized programming projects to experimentally verify
runtimes in a data structures and algorithms course [4]. Walker has used oral
presentations and oral final exams to assess students in a Theory of Computation
course [14]. A popular way to demonstrate how strings are processed by automata
is to use tools, such as JFLAP and other simulators [5, 10]. Liu also uses software
project demonstrations for learning in addition to assessment [9].

CONTEXT

The Theory of Computation (TOC) course is required for the BSCS degree at a
private University on the west coast of the USA. Prior to taking TOC, students must
pass both discrete mathematics and data structures with a C- or better. TOC serves
as a prerequisite for Compiler Design, also a required course in the curriculum.
Typical section sizes for TOC are 30 – 35 students. Students are expected to learn
how to construct proofs about language classification (see Table 1 for list of topics).
For example, homework and exams ask students to prove a certain language is
regular (or context-free, or decidable) and to also construct a proof to show a
certain language is not regular (or not context-free, or not decidable). During the 15-
week semester, students complete nine written homework assignments, small
pieces of python code to demonstrate the construction of regular expressions, three
midterm exams, a final exam, an art project [12], and a programming project. This
paper focuses on the programming project.

Programming Project. The project is assigned five weeks into the semester
after students have seen regular languages and context-free languages and will soon
be starting to learn about decidable languages. Table 1 shows the schedule of the
project as it relates to course topics. Table 2 in the results shows the projects that
students completed. The project assignment is as follows:

In order to practice what you have learned in CSXXX, you will complete a programming
project that implements one of the theorems, transformations, or algorithms that we have
seen in class. This project is worth 10% of the overall grade in the course. The demo of the
project is worth 5% of the overall grade in the course. The project can be completed
individually or in pairs. If done in pairs, the scope of the project should be appropriate for two
people.

Table 1: Course Schedule and Project Deliverables
Week Topics Project Information
1 State Machines; DFAs
2 NFAs; DFA <-> NFA
3 Regular expressions; Pumping Lemma (Reg)
4 Grammars; CFLs
5 PDAs; Grammar <-> PDA; Pumping Lemma (CFL) Project Assigned
6 Pumping Lemma; Turing Machines
7 Turing Machines; Algorithms; Decidability
8 Decidability; Halting Problem Project Proposal Due
9 Undecidability Project Approved
10 Undecidability; Rice’s Theorem
11 Post’s Correspondence; Complexity; P
12 NP, SAT, NP-completeness
13 NP-completeness
14 Demos; Review Project Due; Project Demos
15 Final exam

Students (or pairs) create a proposal about their project and submit it during
the eighth week of the semester. Because one goal is to have the project
demonstrations help other students review material for the final exam, the
instructor limits duplicate projects to three per semester (or two for smaller
sections). Student projects are approved first-come-first-served, so students who
submit early have a better chance of their project being approved. In the project
proposal, students must include name(s), a description of the theorem or
transformation, the expected input(s) to the program (such a files or command line
input), the expected output(s) of the program, the intended programming
language(s), block diagram of the design, data structures, test cases for the program
(can be hand-drawn), and (for pairs) responsibilities for each member of the pair.

The projects are due at the beginning of the last week of class. Students
submit the code, test files, and a project summary. The summary includes name(s),
documentation about how to compile/run the program, overall design of the project
(diagrams, data structures, how data is encoded), testing results (include examples
and limitations), and (for pairs) how each person contributed to overall project.

During the last week of the semester, each pair/individual is given five
minutes to demonstrate the project. Students are allowed to create videos if doing a
live demonstration would take too long or if computing systems cannot be brought
into the classroom (such as a desktop computer). The instructor organizes the
project topics to align with the order in which they were introduced during the
semester. The five-minute time limit is imposed to ensure that all projects can be
covered in the class sessions and to get students to focus on the essentials of the
project: what is the topic, how the transformation/algorithm works in general and
how it was designed/implemented, and a demo of the code execution. Student
demos are graded according to organization, delivery, project design and
implementation, and visual aids.

METHODS

The following questions were explored in this study:
 RQ1: How do students value the project in the context of learning?

 RQ2: What types of projects do students implement?
 RQ3: How does project topic relate to performance on related exam

questions?
In order to answer RQ1, students from fall 2016 were asked the following

questions at the end of the semester:
 The project was a valuable learning experience. (Strongly Agree, Agree,

Neutral, Disagree, Strongly Disagree)
 How did the project help you learn? (open-ended text)
Projects were collected and categorized by topic for the past three offerings

of the course to answer RQ2. Final exam grades were collected for questions about
regular languages, context-free languages, and decidable languages. Exam scores
from questions about regular languages were compared between students that
completed a project related to regular languages and those that did not. The same
process was used for context-free languages and decidable languages.

RESULTS

RQ1. 25 of 32 students from fall 2012 completed the survey in 2016. Figure 1
shows the results for the Likert-like question about the project, given as percentage
of student respondents.

Figure 1: Responses for “The project was a valuable learning experience.”

 Twenty-four students provided responses to the open-ended question about
how the project helped them learn. The responses were coded into emergent
themes. 17 responses fit the theme of helping them apply concept from the course
and 4 mentioned the real-life/real-world application of a theoretical concept. For
example, one student said, “I learned how the formal descriptions relate to the
diagram versions of DFAs/NFAs/PDAs/TMs.” Another said, “I guess it made me feel
like the stuff that we did is actually tangible. Like I can actually use them in real life
which is hard to believe giving the amount of abstract stuff that we did.” Other
students commented more broadly about project implementation skills – 2
commented on the difficulty of the project, 2 commented on the ease of the project,
and 2 commented on learning more about coding and software design. The last
category consists of more general learning outcomes – 1 stated that it helped with
creativity and 1 stated that it helped improve teamwork skills.

28

40

24

4

0

10

20

30

40

50

Project Helpful

Distribution % of Student Responses

Strongly Agree Agree Neutral

Disagree Strongly Disagree

■

■

■

■

-
■

 RQ2. Table 2 shows the project descriptions and number of students/pairs
who completed that project for each semester. Between Fall 2015 and Spring 2016,
the instructor added more examples of decidable languages involving DFAs to the
project handout. For the most part, there was good coverage of regular languages,
CFLs, and decidable languages for project topics. Three students (one individual and
one pair) did projects related to the course but not on topics explicitly covered. The
order in Table 2 mimics the order or project demos.

Table 2: Project topics and number of student/pairs completing the project
Project Fall 2015 Spring 2016 Fall 2016
DFA Simulator 2 1 1
DFA Animator 1 2 1
NFA Simulator 1
NFA Animator 2
Union of Regular Languages 1 3 2
A* is Regular 2 1 2
Concatenation of Regular Languages 1 2 2
Intersection of Regular Languages 1
NFA -> DFA Conversion 1 1 2
DFA -> Regex Conversion 1 2
Regex -> NFA Conversion 2 3
Regular Expression Engine 1 1 1
PDA Simulator 2 1 1
CFG -> Chomsky Conversion 2 3 2
CFG -> PDA Conversion 3 1
PDA -> CFG Conversion 1 2
Deterministic TM Simulator 1 2 2
L(DFA) is infinite is Decidable 2
L(DFA) is empty is Decidable 1 2
L(DFA1) = L(DFA2) is Decidable 1 2
Password Generator 1
Graph Visualizer 1

 RQ3. Over the three semesters, 99 students completed projects and the final
exam. Each student was categorized into one of four groups related to the project
type they completed: Regular (R), Context-Free (C), Decidable (D), Other (O). Exam
scores for questions related to each language class were compared between groups.
Table 3 shows the results. None of the p-values are statistically significant for a one-
way ANOVA; student project completion did not influence final exam performance
on questions related to that language class. Students saw all project demos the last
week of class, so perhaps all students benefited from this review of regular
languages, CFLs, and decidable languages. It is also the case that topics associated
with the projects were presented in the first seven weeks of the semester, so there
was plenty of time for students to practice and review this material.

Table 3: Data Comparing Final Exam Scores Between Groups (R, C, D)
 Average Score Max Score Std Dev p-value

R (N=57) 24.33 28 2.77 .7135

Non-R (N=42) 24.12 28 2.98

C (N=24) 24.06 28 3.93 .8597

Non-C (N=75) 24.22 28 3.74

D (N=15) 17.40 20 2.58 .3171

Non-D (N=84) 16.36 20 3.86

CONCLUSIONS

This study shows that it is possible to combine theory and practice through
the use of programming projects. Not only did students get to implement a specific
transformation/simulation, they presented what they did as part of a week-long
review session in the course. All but one student was neutral or positive about the
effectiveness of the projects in terms of helping them learn. Students’ perceived
benefits include applying concepts from the course, general programming practice
with design and implementation, application of creativity, and learning teamwork
skills. Even though there were no statistically significant differences on final exam
questions, the overall scores on the final exam questions demonstrate learning of
theoretical material. The average exam scores on the project-related material
ranged from 82.5 to 86.5%. In summary, students valued the project in terms of
their learning, the projects provided value to the entire class for review, and the
students demonstrated mastery of the material.

REFERENCES
[1] ABET, www.abet.org, last accessed May 25, 2017.
[2] Bransford, J., Brown A.L., Cocking, R.R. How People Learn: Brain, Mind, Experience, and

School, National Academies Press, 2000.
[3] Bruner, J.S., The act of discovery, Harvard Educational Review, 31 (1), 21-32, 1961.
[4] Coffey, J.W., Integrating Theoretical and Empirical Computer Science in a Data Structures

Course, Proceedings of the ACM SIGCSE Symposium, 2013.
[5] Chuda, D., Rodina, D., Automata Simulator, In Proceedings of the International Conference

on Computer Systems and Technologies, 2010.
[6] East, J.P., On Models of and for Teaching: Toward Theory-Based Computing Education,

Proceedings of ACM International Computing Education Research Workshop, 2006.
[7] Hopcroft, J. E., Motwani, R., Ullman, J. D., Introduction to Automata Theory, Languages,

and Computation, third edition, Pearson, 2006.
[8] Lewis, H. R., Papadimitriou, C. H., Elements of the Theory of Computation, second edition,

Prentice-Hall, 1997.
[9] Liu, C., Software Project Demonstrations as not only an Assessment Tool but also a

Learning Tool, In Proceedings of the ACM SIGCSE Symposium, 2006.
[10] Rodger, S., JFLAP, www.jflap.org, last accessed May 25, 2017.
[11] Sipser, M., Introduction to the Theory of Computation, third edition, Cengage Learning,

2012.
[12] VanDeGrift, T., Art in Theory of Computation, Journal of Computing Sciences in Colleges,

32 (1), 2016.
[13] Vygotsky, L.S., Mind in Society: The development of higher psychological processes,

Harvard University Press, 1978.
[14] Walker, H.M., Some Strategies When Teaching Theory Courses, ACM Inroads, 5 (3),

September, 2014.

	University of Portland
	Pilot Scholars
	10-2017

	Implementation Projects in a Computing Theory Course
	Tammy VanDeGrift
	Citation: Pilot Scholars Version (Modified MLA Style)

	Implementation Projects in a Computing Theory Course

