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Abstract:  This paper investigates the daily volatility spillovers between crude oil prices and a 

select group of agricultural staples.   Empirical findings confirm that the price series under study 
exhibit nonlinear dependencies which are inconsistent with chaotic pattern.  The Johansen-Juselius 
cointegration test rules out long-run equilibrium relationships between the crude oil prices and  the 
commodities under study.  The dynamic conditional correlations (DCC) suggest that the association 
between agricultural commodities and the crude oil varies over time.   The spectral and cross 
spectral analyses confirm that volatilities in crude oil prices are associated with volatilities in the 
agricultural products in the sample.  Bivariate EGARCH  model and the Granger causality tests 
confirm this relationship.  

Keywords:  Crude oil prices; Volatility; EGARCH model; Spectral analysis; Cross spectral 

JEL Classifications:  G00, G15, G14 

1. Introduction 

As economies continue to urbanize and industrialize, their demand for oil increases 
significantly.  For instance, Martenesn (2013) shows that between 2005 and 2011, China’s GDP  
grew roughly 75%, while its oil consumption grew 36%.  India for the same period showed a 
similar trend, its oil consumption grew at a rate of over 22%, as its GDP grew about 40% during 
that period.   Martensen (2009), shows that for one percent growth in global GDP,  oil consumption 
rises by twenty five basis points or roughly a four to one ratio. 
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mailto:joseph.macri@mq.edu.au


Review of Economics & Finance, Volume 9, Issue 3 

~ 43 ~ 
 

Temporary and medium term frictions in the crude oil markets result in price volatilities in the 
for crude oil and its derivatives.  While temporary periods of oversupply do happen, the long-run 
trends do not indicate oversupply in this market.  Sadorsky (2004) discusses the effects of 
unexpected events that change supply and demand for oil and add to the risk in oil futures prices, 
thus, increasing risk premiums, which negatively impact equity prices.   

A rich volume of research has been devoted to research on causality, cointegration,  the short-
and long-run relationships between crude oil price shocks,  macroeconomic variables, as well as 
equity markets (see Leblanc and Chinn, (2004), Jones et al. (2004), Labonte (2004), Greenspan 
(2005), and Klein et al. (2005) ). 

Our paper is motivated by the following considerations.  First, the volatility in oil prices during 
decades of 2000 and 2010 are expected to continue.   Crude oil price volatility appears to spread to 
all sources of energy due to substitutability of various energy resources in production activities and 
consumption in the economy.   

Second, the behavior of prices of various commodities may prove linear models including 
autoregressive vector methodologies, cointegration and vector error correction models, and Granger 
causality tests in a linear framework, are inappropriate tools of investigation in the presence of 
nolinearities in price and return series.  Time series that are nonlinear in mean may be susceptible to 
nonzero higher order moments such as variance, skewness, and kurtosis.  Various ARCH and 
GARCH models, analysis in the frequency domain, and nonlinear Granger causality tests may be 
better suited in these cases.   

In this research, we examine the relationship between the crude oil prices and several 
important agricultural staples.   Having determined that each price series in nonstationary, we test 
for the long-run equilibrium relationship between crude oil prices and each of the agricultural 
products.  Johansen-Juselius test of cointegration rejects the null hypothesis of cointegration 
between each price pair.  We proceed with deploying GARCH, bivariate VAR-EGARCH and 
spectral analysis to achieve our research objectives.   

Our findings in the time series and frequency domains suggest that the crude oil price volatility 
is associated with volatility in agricultural commodities.   Causality tests confirm these findings and 
lend robustness to these conculsions.   

The remainder of the paper is organized as follows.  Section 1 introduces the research.  Related 
literature is covered in section 2.  Section 3 discusses the data and methodology of the paper.  
Section 4 presents  the empirical findings.  Summary and conclusions are presented in Section 5. 

2.   Related Research 

A significant body of past research investigates the relationship between crude oil price or 
retuns volatility and equities (see Sadorsky (1999), Faff and Brailsford (1999), Narayan and 
Narayan (2010),  Zhu et al. (2011),  Basher et al. (2012), among others).  There are precious few 
papers addressing the same relationship for agricultural commodities.  In the following,  we briefly 
summarize those that examine commodities, currencies, and finally precious metals and 
methodologies that they employ.  

Soytas et al. (2009) employ Toda–Yamamoto causality tests to investigate the information 
transition from world oil prices to interest rate, lira–US dollar exchange rate, and domestic spot 
gold and silver prices in Turkey.  Sari et al. (2010) deploy Autoregressive distributed lag model, 
VAR  and examine impulse responses to investigate co-movements and information transmission 
among the spot prices of four precious metals (gold, silver, platinum, and palladium), oil price, and 
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the US dollar/euro exchange rate.  They find evidence of a weak long-run equilibrium relationship 
but strong feedbacks in the short run.  The spot precious metal markets respond significantly (but 
temporarily) to a shock in any of the prices of the other metal prices and the exchange rate.  In 
conclusion, the results suggest that investors may diversify at least a portion of their portfolio risk 
away by investing in precious metals, oil, and the euro.  Policy implications are provided. 

The association of crude oil prices with  food prices, and potentially inflationary pressures it 
imparts on the economy, justifie research on this subject.  Our paper contributes to the literature by 
investigating the link between the crude oil return series (percentage change in price) and  
agricultural commodities in time series as well as the frequency domain.  It, therefore, complements 
the findings of other papers which are mostly related to  financial assets and in the time domain.  To 
the best of our knowledge, this is the first paper that attempts to examine the subject in the 
frequency domain.  A brief description of the methodology follows.   

3. Data and Methodology 

We study the daily agricultural commodities and crude oil prices for the period of  March 1st, 
2010, through July 6th, 2015, over thirteen hundred daily observations.  Crude oil price are 
represented by the US crude West Texas Intermediate Cushing.  Nearby futures contract prices of 
generic corn, soybean and wheat are from the Chicago Board of Trade.  All data are taken from 
Bloomberg data base.   Percentage changes in price levels (returns) are obtained by taking the ratio 

of natural logs of the prices as in Rt = (ln(Pt/Pt-1))100, where Pt represents the daily values. 

Each price series is tested for stationarity on commonly known statistics.  To test for 
nonlinearity and possible chaotic behavior, the Correlation Dimension of Grassberger and Procaccia 
(1983) and Takens (1984), and the BDS statistic of Brock, Dechert, and Scheinkman (1987)  are 
applied (see  Adrangi et al. (2001a), Adrangi et al. (2001b), and Adrangi et al. (2004)).   These tests 
are portmanteau tests of linearity vs. possible nonlinearities of undetermined origin, including low 
dimensional chaos.  While all price series demonstrate nonlinearities, these nonlinearities are not 
consistent with chaotic patterns.  

As shown in the literature (Box and Jenkins (1976), Chatfield (1989)), the behavior of most 
variables maybe examined both in time or frequency domains.   In this paper, we deploy both types 
of analyses using GARCH models in the time domain, and spectral /co-spectral analyses in the 
frequency domain.   Examining retunrs in the frequency domain complements the anyalysis in the 
time domain, especially considering that nonlinearities often complicate econometric modeling.   

The spectral analysis is based on expressing a stationary times series in terms sine and cosine 
waves of various frequencies.  To estimate the amplitude of the sinusoidal components of a time 
series, periodograms (sample spectral density function) are defined.   The sample spectrum is the 
Fourier cosine transformation of the estimation of the sample autocovariance function, and is 
written as follows: 

I (f)= 





1

1

0 }2cos2{2
N

F

F fF ,    0≤ f ≤1/2    (1)  

The sample power spectrum is analogous to the probability density function in the continuous 
domain or a histogram in discrete domain.  Converting variance and autocovariances to 
auotcorrelation coefficients , we obtain the following smooth estimate of the spectrum, I(f).   
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The variables  λF  are known as “lag window.”  In the estimation process, one increases “the 
bandwidth” of the estimate to derive smooth estimates of the spectrum.   We will estimate the 
individual spectrums for various time series utilizing three differently defined lag windows, i.e.,  
Bartlett, Tukey, and Parzen. 

The standardized spectrum may be written as  

)(ˆ
jP   






1

1

}2cos21{2
N

F

jFF F          (2) 

where θj= jπ/m and j = 0, 1, 2, …., m, and m is the window size, and ρF is the autocorrelation 

coefficient of order F.   

Examining co-spectral densities may shed further light on the association between two time 

series in the frequency domain.   However, cross-spectral density is often complex-valued and is not 

directly informative.  In our analysis we focus on the “phase lead” and “coherence squared.”  The 
phase lead measures the fraction of cycle that one series leads the other or lags behind in each 

frequency.   The coherence squared measures the fraction of the variance of a time series which is 

explained by the variance in other series, in each frequency.    

Koutmos (1999), Adrangi et al. (2015), among others, provide evidence that the volatility 
transmission among various assets and commodities may follow an asymmetric process.   To account 
for asymmetric shock response within and across markets, we estimate bivariate EGARCH models.   

The bivariate EGARCH model is given  as follows.   




 
2
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,1,0,
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()( 1, tjj z ))( 1,1,1,   tjjtjtj zzEz 
 

(i, j = 1,2)
  

(5) 

where  
tjjtjtjtjtj uuz ,,,, /)/2/(  
   

and  

tjtijitji ,,,,,  
        

 (i, j = 1,2)  (6) 

 

Rit is the percentage daily returns in market i and at time t;  σ
2

i,t, and σi,j,t are the conditional 
variance and covariances in market i, and between markets i and j, at time t, respectively; ρij, the 
conditional correlation coefficient between markets i and j; zi,t= εit/σ

2
i,t, is the standardized 

innovations of market i at time t.   

The coefficients of the model in equaitons (3)-(6) are estimated  by maximizing the likelihood 
function using a combination of the simplex method and Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) algorithm.   

To examine the possibility of dynamic correlation between crude oil and other commodity 
markets, we estimate and present the graphs of the dynamic conditional correlation (DCC) derived 

from the GARCH model given by  )()(/)()( tMtMtMt jjiiijij  , where M represents modified 

diagonal covariance matrix from the GARCH models.   
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4.  Empirical Findings 

4.1  Stationarity and chaos tests 

Examining crude oil and other commodity prices graphically, suggests that prices show mean 
and covariance nonstationarity.  On the contrary, returns of all commodities are clearly mean- 
stationary, however, may be covariance non-stationary.  The graphic evidence (not presented for the 
purpose of brevity) of nonstationarity calls for formal statistical tests and possibility of 
nonlinearities in the series.  We provide the statistical evidence of the behavior of these series in 
Table 1.   

Table 1 presents the summary statistics of prices and the diagnostics for the Rt series.  The 
returns series are found to be stationary employing the Augmented Dickey Fuller (ADF), Phillips-
Perron and KPPS statistics.  There are linear and nonlinear dependencies as indicated by the Q and 
Q² statistics, and Autoregressive Conditional Heteroskedasticity (ARCH) effects are suggested by 
the ARCH (6) chi-square statistic.  Our findings from Table 1 maybe summarized as follows: (i) 
there are clear indications that nonlinear dynamics are generating the daily prices, (ii) these 
nonlinearities may be due to ARCH effects, and (iii) whether these dynamics are chaotic in origin is 
the question that we turn to next.  The correlation dimension and BDS statistics are employed to see 
if the nonlinearities are consistent with chaos.   

The Correlation Dimension (SC
M

) estimates for asset returns filtered by AR(1) and GARC(1,1) 
models suggest that the series under consideration are not showing signs that are consistent with low 
dimensional chaos.   According to the BDS statistics the null of no nonlinearity in the [AR(1)] 
errors is rejected for all of the return series.  However, the BDS statistics for standardized residuals 
from the GARCH(1,1) models are mostly insignificant at the 1 and 5 percent significance levels.    
The BDS tests support the results of correlation dimension, but are not presented in the paper.  
These findings are not reported for the purpose of brevity.   

4.2  Spectral and Co-spectral analysis 

Examining the standardized spectral densities for the agricultural products presented in Figure 
1 with four panels, shows that the majority of the returns variations of corn are concentrated in 
medium frequencies.  This pattern of variation in returns may be a sign of seasonalities in the corn 
market.  For instance price variations would be higher during the harvest season which tends to be 
some time from October through Novemeber in the US and Europe, and October through 
November in China.  Similarly, the soybean and wheat prices demonstrate much more variations in 
the low and medium frequencies than the higher frequencies.  One may conclude that the 
agricultural commodities under study are prone to less volatility on the daily or monthly basis than 
on seasonal and cyclical trend bases.   

The spectral density for the crude oil, unlike those of agricultural commodities exhibits high 

frequency in variations of the crude oil prices, thus, much higher volatility in short-term or daily 

basis than the commodities under study.  Short-term high volatility of crude oil prices may be 

expected as energy prices tend to be volatile.  Many central banks compute a core inflation index 
which excludes both energy and food prices because they tend to be highly volatile.    

While crude oil retunrs show high variation at high frequency, retunrs of agricultural 
commodities vary over medium and higher frequencies, there may still be some components of both 
series in the frequency domain that are coherent, i.e., move in tandem.  To investigate this 
possibility, we analyze co-spectral density functions between the crude oil and each commodity.    
The cross-spectrum indicates how much linear information is transferred from one signal to the 
other (and vice-versa), i.e., the "burden" of the line transfer at each frequency.  We will focus on 
“Coherence,” and “phase” between two series or their representations in the frequency domain.   
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Table 1. Diagnostics and summary (Interval: 03/2010-07/2015; N=1345) 

Returns are given by Rt=100*ln(Pt/Pt-1), where Pt represents closing spot or nearby contract prices on day t. 

ADF represents the Augmented Dickey Fuller tests (Dickey and Fuller (1981)).  The LM-ARCH(6) statistic 

is the Engle (1982) test for ARCH (of order 6) in residuals of a random walk model and is ²-distributed 

with 6 degrees of freedom.  

Panel A:  Price levels 

Tests Crude oil CORN    SOYBEAN WHEAT 

ADF_trend -1.103 -1.571 -1.880 -2.427 

PP_trend -1.064 -1.545 -1.817 -2.425 

KPPs_trend 0.685 1.426 0.785 0.879 

Q(36) 38748.000
 a
 42435.000

a
 39462.000

a
 35572.000

 a
 

Q²(36) 37569.000 41499.000
 a
 38814.000

a 
35386.000

 a 

LM-ARCH (6) 57.769
 a
 18.190

 a
 17.732

 a 
73.882

 a
 

Panel B:  Percentage changes 

Tests Crude oil CORN    SOYBEAN WHEAT 

ADF_trend -37.755
a
 -35.738

a
 -36.263

a
 -35.842

a 

PP_trend -37.775
a
 -35.729

a
 -36.276

a
 -35.836

a
 

KPPS_trend 0.261
a
 0.266

a
 0.263

a
 0.115

a
 

Q(36) 32.393 75.951
a
 50.9b2

b
 53.884

b
 

Q²(36)  144.670
a
 7.742 126.270

a
 473.841

a
 

LM_ARCH (6)  57.212
 a
 2.081

 
 17.644

a
 73.979

a
 

Panel C:  Summary descriptive statistics for model variables.   All variables are in level.   

Statistics Crude oil CORN    SOYBEAN WHEAT 

Mean 88.711 547.187 1276.205 653.282 

Stand Dev 15.258 146.941 207.706 111.966 

Skewness -1.155 0.057 -0.163 0.217 

Kurtosis 3.798 1.529 2.106  2.493 

J-B 335.937
a 

122.374
a
 50.945

a
 24.996 

Panel D:  Bilateral Johansen-Juselius cointegration test, crude oil prices and commodities 

Tests 

r 

CORN SOYBEAN WHEAT 

λm λt λt λm λt λm 

H0: r = 0 33.76 22.77 8.33 8.23 13.76 9.17 

H0: r < 1 10.99 10.58 0.09 0.09 4.59 4.59 

Notes:  (1) Order of lags in VAR models is 1, determined by the AIC, SBC, likelihood ratio test (LR) 

and adjusted likelihood ratio test ALR.   

(2) Cointegration with unrestricted intercepts and no trends in the cointegrating VARs.  

(3) P-values from MacKinnon-Haug-Michelis (1999) for both λm and λt are consistently larger than 20%, 

establishing no statistical support for a long-run equilibrium relationship between crude oil price 

with the commodities under study.    

(4) Crude, is  daily spot prices for West Texas Cushing crude oil, CORN, SOYBEAN, and WHEAT are 

daily prices of nearby generic commodities futures contracts  at the CBOT.  All data are taken from 

Bloomberg data base.    

(5) Q(36) and Q²(36) are the Ljung Box statistics for prices and their squared values.   

(6)  
a
, 

b
, and 

c
 , represent statistical significance at 0.01, 0.05, and  0.10, respectively. 
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Figure 1.  Standardized spectral densities 

Notes:  CRO, CN, SB, WT stand for West Texas Intermediate Cushin crude oil spot prices, and 
corn, soybean, and wehat nearby furtures prices.   The prefix PC, indicates percentage 
change in each price, i.e., daily reutns on these commodities.   

 
Coherence is a measure of the degree of relationship, as a function of frequency, between two 

time series.  It describes the correlation (or predictable relationship) between waves at different 
frequencies or moments in time.  Alternatively, the coherence indicates how much linear 
information of one signal is explained by the other signal.  The coherence of a linear system of 
relationship reveals the fraction in the volatility of movements in variable y that is due to the 
variable x at a frequency.  It may be used to estimate the causality between the two signals.    

If the coherence (Cxy)  is between zero and one,  it could be an indication of the presence of 
random distrubances, which are common in markets.  Alternatively, it could be showing that the 
assumed function relating x(t) and y(t) is not linear.  Another possibility may be that y(t) is 
dependent on x(t) as well as other inputs.  If the coherence is equal to zero, it is an indication that 
x(t) and y(t) are perfectly unrelated.  For instance, the coherence may be viewed as the relationship 
between the ground water and tidal movements of the ocean water levels.  It has been shown that 
the well water levels follow the rising ocean tide.    

Figure 2 in three panels presents the phase lead and coherence beween the crude oil price and 
each commodity price series.  Based on the lead phase curve, crude oil returns lead wheat in a high 
percentage of cycles.  For instance in the 0-0.2 frequency, up to roughly fifty percent of the cycle, 
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crude oil prices lead the wheat price.  In almost all frequencies and for all three commodities this 
observation seems to hold true consistently.   In some frequencies and for some of the agricultural 
commodities,  the fraction of cycle is even higher than fifty percent.   

(a) Crude oil and Corn 

 
 

(b) Crude oil and Soybean 

 
 

(c) Crude oil and Wheat 

 
Figure 2.  Cross-spectral phase lead and coherence graphs 

 

Turning to the graph of coherence, one concludes that at all frequencies (low to high) a high 
percentage of variation in the returns of the three commodities appear to be explained by the 
variance in the crude oil eturns.  These observations strongly support the hypothesis that the crude 
oil price changes lead the price variations in the markets for the agricultural commodities in this 
sample.  The findings of the phase lead and coherence squared also suggest that information arrival 
occurs in crude oil markets first, and crude oil markets inform the commodities market.  It is 
important to note that returns variations in the  high frequency may represent short-term price 
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volatilities, while those variations in medium frequencies may correspond with the medium-term 
cyclical variations.  Low frequency changes in returns  resemble long term trend in time series 
presentation of the price variables.   In this context, the coherence between the commodity and 
crude oil returns point at a correlation or even a causality between the crude oil and the returns of 
the agricultural commodities in this sample at all frequencies, or short-term, medium-term, and in 
the long-term in the time domain.   

Given that mathematically spectral analysis is equivalent to the results of the covariance in the 
time domain, and the spectral density function serves the same purpose as histograms in the time 
domain, we use the information gleaned from the spectral and the cross spectral investigation and 
estimate bivariate-EGARCH models.  These models ascertain the information arrival and return 
volatility spillovers in an asymmetric fashion that the coherence and phase graphs suggest.  
Furthermore, to complete the analysis, we deploy the nonlinear Granger causality tests to establish 
the possible causal relationship rigorously.   

Table 2. Bivariate asymmetric VAR- EGARCH model with volatility spillovers 

Crude oil price and commodities 

Mean Equation Crude   Corn Crude   Soybean Crude    Wheat 

Intercept α10, α20 
-0.0049 

(0.0511) 

0.0243 

(0.0574) 

-0.043 

(0.032) 

-0.009 

(0.011) 

-0.031 

(0.025) 

-0.014 

(0.017) 

Own Lagged Return  α11 α21 
0.0310

 

(0.1036)
 

0.2789
 a
 

(0.1089) 

-0.161
 a
 

(0.032) 

-0.008 

(0.011) 

-0.028 

(0.025) 

-0.008 

(0.017) 

Cross Lagged α12, α22 
0.1321

 a
 

(0.0603) 

-0.0437
 

(0.0652)
 

-0.063
 

(0.032)
 

-0.023 

(0.011) 

0.019 

(0.025) 

0.019 

(0.017) 

 

Variance Equation Crude   Corn Crude   Soybean Crude    Wheat 

Intercept β10, β20 
0.0513

 c 

(0.0309)
 

0.1899
 b
 

(0.0805) 

0.038 

(0.021) 

0.002
 a
 

(0.0009) 

0.028 

(0.013) 

0.025
 a
 

(0.009) 

Lagged z β11, β21 
0.0002

 

(0.0003)
 

-0.0001 

(0.0004) 

0.152
 a
 

(0.032) 

-0.046 

(0.011) 

0.120
 a
 

(0.025) 

0.021 

(0.017) 

Lagged z β12, β22 
0.0854

 

(0.0756)
 

0.2501
 a
 

(0.0813) 

0.009 

(0.032) 

0.017 

(0.011) 

0.011 

(0.025) 

0.218
 a
 

(0.017) 

Lagged Conditional 

Variance  γ1 γ2 

0.9526
 a
 

(0.0247) 

0.8577
a 

(0.0577)
 

0.964
 a
 

(0.017) 

0.987
 a
 

(0.004) 

0.974
 a
 

(0.032) 

0.912
 a
 

(0.034) 

Lagged stand. Shock δ1 δ2 
-0.7293

 a 

(1.2108)
 

-0.5711
b
 

(0.2633) 

-0.447
 a
 

(0.055) 

-0.199
 a
 

(0.096) 

-0.646
 a
 

(0.188) 

-0.269
 a
 

(0.113) 

Leverage Effect 

|-1+δj|/(1+ δj) 
6.3882 3.6630 2.616 1.497 3.620 1.736 

Correlation 
0.1471

a 

(0.0569) 

0.285
a 

(0.027) 

0.263
a 

(0.027) 

 

Diagnostics  on Standardized residuals 

Tests Crude   Corn Crude   Soybean Crude    Wheat 

Q(12), εt/σ 12.9307 21.0235 3.235 10.588 3.479 4.505 

Q
2
(12), εt/σ 8.4767 8.3158 8.722 10.630 10.183 7.699 

E(εt/σ) 0.0117 -0.0248 0.016 0.009 0.007 0.004 

E(εt/σ)
2
 0.9748 0.9972 0.995 1.010 0.995 0.997 

System Log Likelihood -1024.7080 -3159.8907 -3158.306 
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Notes: Q and 2Q are the Ljung-Box statistics of standardized  model residuals.   

 
a
, 

b
, and 

c
 , represent significance at 0.01, 0.05, and 0.10, respectively. 

4.3   Bivariate EGARCH Model 

Based on the findings reported in previous tables and graphs for returns, we propose and estimate 

VAR models in a bivariate GARCH context.  VARs are appropriate for our modeling because Zellner 

and Palm  (1974) and  Zellner (1979) show that a VAR may be viewed as Taylor series approximation 

for nonlinear models and represents a flexible approximation to any wide range of simultaneous 

structural models.  The statistics in Table 1 support the claim that GARCH models may explain the 

dynamic relationships between crude oil and agicultural commodities (see Engle (1982), Hsieh (1989)).   

Table 2 reports the estimation results of the VAR-EGARCH model of equations (3)-(6) for 

bivariate crude oil price and other commodities under study.  For all bivariate models δ1 and δ2 < 0 

along with positive β12 and β21, verify that volatility transmission across markets is asymmetric.   

Statistically significant δj < 0 confirms the presence of asymmetric volatility effects in each market, 

whereby negative shocks in each market lead to higher volatility than positive innovations.   

The size effect (the degree of asymmetry) as measured by |-1+δj|/(1+ δj), are in the range of 

2.616 to 6.3882 in the crude oil market,  indicating that asymmetric shock effects in crude oil 

markets are significantly higher than other commodity markets, except corn.  The agricultural 

commodites are far less sensitive to positive (innovations) and negative news.   The unconditional 
volatility in all cases are finite as indicated by γ1 and γ2 < 1.  

The conditional correlation coefficients between the crude oil prices and the agricultural 

commodities, given by equation (8) is the lowest at 0.1471 for corn and the highest for wheat at 

0.2616.  This coefficient is hovering around 0.20 for all markets except corn.   In all cases, the time 

varying correlation coefficients are statistically significant but also significantly lower than 

unconditional correlation coefficients.  This finding is consistent with our econometric expectations 
and those of other researchers (see Koutmos (1996), say) who show that accounting for the 

conditional heteroscedasticity could result in more accurate and usually lower pairwise correlation 

coefficients among asset returns.  However, these correlation coefficients are expected to change 

over time as indicted before.  The dynamic conditional correlations (DCC) are plotted in Figure 3 

by three panels.  DCC values are influenced by the time varying heteroscedastricity in the 

underlying price series.  In every case, DCCs between crude and other asset prices demonstrates 

wide fluctuations over time.   This shows that the relationships between these prices are time-
varying and possibly asymmetric with respect to positive and negative news in the crude oil market.  

We perceive these observation as further support for the underlying nonlinearities stemming from 

volatility and need for GARCH type modeling.    

Overall, statistical findings reported in Table 2 confirm that an EGARCH model, which 

accommodates the asymmetric shock transmission, is the appropriate model for our purposes.  To 

compute the asymmetric effects of shock transmission, we compute (-1+ δj)*(βij ) and (1+ δj)*(βij ) 
for negative and positive shocks, respectively.   In all cases, negative shocks to the crude oil prices of 

the past period, have a much larger percentage impact on the conditional volatility in crude and 

agricultural commodity markets, in comparison to positive shock of similar magnitude.  The corn 

market exhibits the largest reaction in conditional volatility to positive and negative shocks to the crude 

oil prices with magnitudes of 0.0749 and 0.2766, respectively.   Wheat and soybean markets are less 

sensitive to both types of shocks in the crude oil market.  To summarize, the volatility reaction in all 

markets to own past negative innovations and crude oil price market negative innovations is much 
larger for all commodities.  The average percentage impact on conditional volatility of all markets to 
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negative shocks in the previous crude oil prices is roughly three times as large as the positive shocks.    

Our findings in this regard corroborate the conclusions by Koutmos (1996).   

 

 

 

Figure 3.  Dynamic Conditional Correlations between crude oil returns and commodity returns 

4.4  Volatility spillover and non-linear Granger causality 

The empirical findings thus far have shown that there is dynamic correlation between crude 

prices and other commodity markets.  Furthermore, we have shown volatility spillover from crude 

oil markets into markets of these commodities.  It may be useful to examine the dynamic 

relationship between crude oil markets and other markets that may be evidence of causality.  We 

deploy a nonlinear extension of the standard Granger causality tests which test for a causal 

relationship between two variables in a linear and autoregressive framework (Granger (1969), and 

Geweke (1984) ).  

The nonlinear version of the test requires a  smooth transition regression (STAR) such:  
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where δj= (δj1, …, δjq)’ , j=1, 2, νt= (xt-1,…., xt-q)’ and  G(·) is a transition function.   The following 

approximation to equation (7) is the basis for the test,  

 ,)()(
1

1
3

1

1

'

1

'

2201

'

110 t

q

i

tijtt

q

j

ij

q

i

tdttt uxxxvkyFwwy  





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(8)

 

where k’= (k1,…,.kq), and non causality is supported by ki=0, φij=0 and ψi = 0; i = 1,…,q; j = 1,…, q.   
Under H0, the resulting test statistic has an asymptotic F-distribution with (q*(q+1)/2) +2q degrees 
of freedom. 

Table 3 summarizes the results of the nonlinear Granger Causality tests for lags q = 5,…., 10 
lags (see Skalin Teraè Svirta, 1999).  The reported P-values for the F statistic in Table 3  test the 
joint null hypotheses of no causality, i.e., that ki=0, φij=0, and ψi=0.  For all commodities and for all 
lag orders, the P-values are equal to zero or in some case around ten percent, showing that the H0 is 
mostly rejected and there is evidence of causality from the crude oil prices to all commodities in the 
sample.  These findings support the findings of the spectral analysis and confirm that crude oil 
prices lead the price movements in agricultural commodities.  The feedback is almost noexistent 
except in one case at the ten percent level.    

Table 3. Nonlinear Granger causality test:  P-values of the F-statistic for H0 of no nonlinear 
Granger Causality 

 
 

 

Notes:   In the top panel many F-statistics are 

signif icant at the usual levels with P-values 

less than 0.10.   The bootom panel suggests 

that there is no feedback from agricultural 

commodities to crude oil prices. 

Degrees of freedom are 25, 32, 42, 52, 63, 

and 75 for lags q=5 through 10, respectively.   

 

 

 

5.  Summary and 
Conclusions   

This research analyzes the price volatility association between crude oil prices and three major 
agricultural commodities.   Our initial tests show that all prices series are nonstatinary, and their 

returns exhibit nonlinearities and nonlinear dependencies that are inconsistent with low dimensional 

chaotic structure. 

The graph of coherence leads us to conclude that a high percentage of variation in the prices of 
the three commodities appear to be explained by the variations of the crude oil prices in all 

frequencies (low to high).  These observations strongly support the hypothesis that the crude oil 

price changes lead the price variations in the markets for the agricultura l commodities in this sample 

Lags 
Causing Variable Caused Variables 

Crude Oil Price Corn Soybean Wheat  

5  0.1204 0.0319 0.1038 

6  0.3004 0.0496 0.2864 

7  0.0595 0.0723 0.0284 

8  0.0527 0.0796 0.0076 

9  0.1045 0.0878 0.0023 

10  0.0543 0.0895 0.0000 

 

Lags 
Caused Variable Causing Variables 

Crude Oil Price Corn Soybean Wheat  

5  0.4133 0.9667 0.3081 

6  0.4181 0.8067 0.4704 

7  0.2661 0.7394 0.4394 

8  0.0729 0.6535 0.4017 

9  0.1521 0.7794 0.6600 

10  0.3514 0.7139 0.7146 
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and may confirm correlation or causality between the crude oil prices and the prices of the 

agricultural commodities in the short-term, medium-term, and in the long-term in the time domain. 

Given that mathematically spectral analysis is equivalent to the results of the covariance in the 

time domain, and the spectral density function serves the same purpose as histograms in the time 
domain, we use the information gleaned from the spectral and the cross spectral investigation and 

estimate bivariate-EGARCH models.   The results from estimated VAR-EGARCH  models show 

that shock transmissions are asymmetric such that positive and negative shocks of the same size have 
unequal effects on the volatility of the other markets.  We find that return volatility spillovers are much 

more pronounced following negative news in each market.  This finding suggests that the negative 

news in crude oil markets may lead to elevated uncertainty in the other markets under study.  Finding 

empirical evidence that indicate dynamic market interactions and information ransmission, we deploy 
the nonlinear version of the Granger causality test based on smooth transition regression (STAR).   

The empirical findings show that crude oil prices Granger cause the agriculatural products studied here, 

but there is no feedback. The nonlinear causality test results are robust for most lag structures 
considered.   

The main findings of the study are as follows.  First, the US agricultural commodity market price 

volatility is associated with crude oil price volatility.  The negative news in crude oil market imparts 

significant degree of price volatility in agricultural commodities future markets.  This could potentially 
lead to higher world food prices.  Granger causality tests emphasize the importance of the crude oil 

markets in the basic staples markets and food prices.   The policy ramification of these findings is that 

the US and major world economies should adopt long-term strategies and reserves to reduce market 
risks stemming from volatility in crude oil markets.  Our results indicate that these strategies may 

bolster stability in other markets, including staples.  These findings corroborate the findings of other 

research in the financial markets, among others.  
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