
University of Portland
Pilot Scholars

Engineering Faculty Publications and Presentations Shiley School of Engineering

2015

Real-Time Digital Signal Processing
Demonstration Platform
Joseph P. Hoffbeck
University of Portland, hoffbeck@up.edu

Follow this and additional works at: http://pilotscholars.up.edu/egr_facpubs

Part of the Engineering Commons

This Conference Presentation is brought to you for free and open access by the Shiley School of Engineering at Pilot Scholars. It has been accepted for
inclusion in Engineering Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact
library@up.edu.

Citation: Pilot Scholars Version (Modified MLA Style)
Hoffbeck, Joseph P., "Real-Time Digital Signal Processing Demonstration Platform" (2015). Engineering Faculty Publications and
Presentations. 32.
http://pilotscholars.up.edu/egr_facpubs/32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Portland

https://core.ac.uk/display/232742894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr_facpubs?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr_facpubs?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr_facpubs/32?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

Real-Time Digital Signal Processing Demonstration Platform

Abstract

In order to demonstrate various digital signal processing (DSP) algorithms to students or

potential students, a program was developed that runs in real-time on low cost, commercially

available hardware. The program includes several common DSP algorithms such as lowpass

filter, highpass filter, echo, reverb, quantization, aliasing, simple speech recognition, and fast

Fourier transform (FFT). The program allows the user to easily switch between algorithms, to

adjust the parameters of the algorithms, and to immediately hear the results. The demonstration

hardware consists of the TMS320C5515 eZdsp USB Stick, a powered microphone, an audio

source such as an MP3 player or cellphone, and speakers. Undergraduate electrical engineering

students were shown the demonstration and were surveyed to determine which algorithms they

found most interesting. The C language source code for the software is available from the author

for free, so this program can be modified by instructors who wish to make their own

demonstrations or used as a convenient starting point for student projects.

Introduction

The material in a DSP course is often highly theoretical and mathematical, and so it is useful to

connect the theory to real-world applications with laboratory experiments, simulations, or

demonstrations. Fortunately, there are many interesting applications of DSP that can help

captivate students and motivate them to learn the theoretical material. Perhaps the best way to

expose students to the applications of DSP is with a laboratory course, but at some institutions a

full laboratory course in DSP is not feasible due to time, space, and funding constraints.

Alternatives to laboratories include projects, simulations, and demonstrations. Although many

DSP algorithms can be demonstrated using offline (not real-time) processing, some

demonstrations are just more compelling if they operate in real-time. A real-time demonstration

with audio signals, for example, can be more interesting because the user can use his/her own

voice as the input and hear the results immediately.

Many authors have explored various ways to demonstrate DSP concepts and algorithms. Some

have used software such as MATLAB1, 2, 3, 4, 5, LabView4, 5, 6, 7, J-DSP8, or DirectX9 that runs on

a personal computer (PC). Some have incorporated commercially available DSP boards

including the TMS320C6713 DSK10, 11 (about $400), OMAPL138 Low Cost Development

Kit12, 13 (about $200), Logic PD Zoom OMAP-L138 Experimenters Kit (about $500), and

DSK551014 (about $400). Some have combined DSP boards with software such as

MATLAB/Simulink15, 16, winDSK17, 18, 19, 20, J-DSP21, and LabView22. Courses in DSP have also

been taught using FPGA boards23, 24 and microcontrollers25, 26.

This paper describes a real-time demonstration platform based on the TMS320C5515 eZdsp

USB Stick Development Tool. This DSP board, which is available for about $80, is less

expensive than any of the other DSP boards listed above, yet it has all the features necessary to

conveniently demonstrate DSP with audio signals, including a high quality audio interface, a

small graphical display, two buttons for user input, and five LEDs. Compared to the more

expensive boards, this board does have some disadvantages, including a slower processor with

no floating-point hardware and less on-board memory, but it is more than adequate for

demonstrating audio applications in real-time. Furthermore, the source code for the software is

available from the author for free, which may be helpful for others who wish to develop their

own demonstrations or for student projects.

Hardware

Manipulating audio signals is an excellent way to illustrate DSP concepts. This approach allows

students to directly experience the effect of various algorithms and to hear the effect of using

different parameters values. As shown in Figure 1, the hardware required for the audio

demonstrations is fairly simple. The audio source can be any device that has line level or

headphone output, such as MP3 player, cellphone, or PC. The output of the DSP board can be

monitored with headphones or inexpensive computer speakers. The PC is used to download the

program and to provide power for the DSP board. However, if the program is written to the flash

memory on the DSP board, then the PC could be replaced with a USB power supply.

Audio Source
(MP3 player,
Cellphone,

PC, etc.)

TMS320C5515
eZdsp USB Stick

PC

Powered
Speaker

Figure 1: Hardware Block Diagram

The TMS320C5515 eZdsp USB Stick Development Tool, which is shown in Figure 2, was

chosen mainly for its low cost and high quality audio interface. It is based on the Texas

Instruments TMS320C5515 fixed-point digital signal processor that provides 240 MIPS, 320 KB

of RAM, and a hardware FFT accelerator. The line level audio input and headphone/line level

audio output are provided by the TLV320AIC3204 stereo audio codec. The codec's analog-to-

digital converters (ADC) have a signal-to-noise ratio (SNR) of 93 dB, the digital-to-analog

converters (DAC) have an SNR of 100 dB, and the maximum sampling rate is 192 kHz.

Other features of the development tool that make the demonstration much more convenient are

the two push button switches that can be used to change between various algorithms, the small

96x16 pixel display which can display two lines with up to 19 characters each as well as simple

graphics, and five LEDs that can be used to provide feedback to the user. The development tool

includes everything that is needed to write and debug C language (and assembly language)

programs including an embedded XDS100 emulator and Code Composer Studio

compiler/debugger. The development tool is physically small (2.65 by 3.35 inches), and it

connects to a PC through a USB port, which also supplies power to the device.

One useful feature that is missing from the development tool is a microphone input. However, a

battery-powered microphone can be used directly with the line level input, or a regular

microphone can be used in conjunction with a preamp.

Figure 2: TMS320C5515 eZdsp USB Stick Development Tool

Software

A program was written to demonstrate various common DSP algorithms in real-time by

processing audio signals. When it starts up, the program initializes the board, sets the sampling

rate on the codec to 48 kHz, and begins the first algorithm which is pass-through. Pass-through

is used to verify that the audio setup is working properly and to listen to the audio input signal.

While in pass-through mode, four of the LEDs on the board are used to display a simple volume

unit (VU) meter, where a higher input level (amplitude) leads to more of the LEDs being lit. It is

important to have a convenient way to set the input level because if the input level is too high the

signal will be clipped which causes unwanted distortion, and if the signal is too low, the

quantization noise from the ADC can be noticeable. The VU meter is displayed for all of the

algorithms except for speech recognition where the LEDs are used for other purposes.

The program monitors the push button switches, and if the right button is pressed the program

switches to the next algorithm and updates the display to show the name of the current algorithm.

If the left button is pressed, the program returns to the previous algorithm (and updates the

display). Some of the algorithms have user-controlled parameters which can be changed by

pressing both switches simultaneously, which rotates between each of the parameters for that

algorithm and the mode that allows the user to change the algorithm. The pass-through

algorithm, for example, allows the user to change the gain on the ADC's to accommodate level

differences between a microphone and other devices.

After pass-through, the next algorithm is a 6th order infinite impulse response (IIR) Butterworth

lowpass filter (LPF) with a cutoff frequency of about 1 kHz. An excellent way to demonstrate

this filter is to use music with some low frequency instruments and some high frequency

instruments, an example of which is "Take Five" by Dave Brubeck. Other signals that are useful

for the demonstration are white noise, chirp signal (frequency-swept sinusoid), and a series of

short tones with increasing frequency. A MATLAB program was used to generate these signals

and save them in sound files, which were then played by an MP3 player for the demonstration.

Following the LPF is a 100th order finite impulse response (FIR) highpass filter (HPF) with a

cutoff frequency of about 1 kHz. The HPF can best be demonstrated using the same input

signals as the LPF (see above).

The next algorithm generates echo, which demonstrates one of the simplest FIR filters as shown

in Figure 3. The program allows the user to change the delay. The best way to demonstrate echo

is to use the user's voice with a powered microphone or a regular microphone with a preamp.

x[n] y[n] = x[n] + Gx[n-n0]+

Delay

x[n-n0]
G

Figure 3: Block Diagram of Echo

The simple reverb algorithm shown in Figure 4 was also implemented. It too is best

demonstrated using a microphone. The program allows the user to hear the effect of changing

both the delay and the gain (G) to get various audio effects.

x[n] y[n] = x[n] + Gy[n-n0]+

Delay

y[n-n0]

G

Figure 4: Block Diagram of Reverb

When signals are converted from analog to digital, one of the operations is quantization which

causes noise to be added to the signal. In order to demonstrate the effect of quantization, the

next algorithm quantizes the input signal to a user-defined number of bits by setting the least

significant bits to zeros. The program allows the user to adjust the number of bits from 1 to 16.

One way to demonstrate quantization noise is to gradually reduce the number of bits from 16

down to one while listening to the output. It is surprising to most people that speech and music

are still understandable even when quantized to just 1 bit.

In addition to quantization, analog-to-digital conversion also requires sampling. After sampling,

any frequency components that are above one half of the sampling frequency (fs/2) are folded

down to a frequency below one half of the sampling frequency. This effect causes distortion

called aliasing. To demonstrate aliasing, the program downsamples the input signal to a

sampling rate of just 2 kHz, which causes frequency components above 1 kHz to be folded down

to a frequency below 1 kHz. The program then upsamples and filters the signal before sending

to the codec (see Figure 5). Using the chirp signal is an excellent way to demonstrate aliasing.

As the pitch of the input chirp signal increases, aliasing causes the output pitch to alternately

increase and decrease.

x[n] y[n]Downsample Upsample
fs = 48 kHz fs = 2 kHz fs = 48 kHz

LPF
fc = 1 kHz fs = 48 kHz

Figure 5: Block Diagram for Aliasing

A simple speaker-independent voice recognition algorithm that attempts to recognize the words

"Yes" and "No" was also implemented. The algorithm uses energy-based thresholds to

determine the start and end of a word and lights up the green LED to indicate that the input has a

high enough level to begin processing. When the end of the word occurs, the algorithm turns off

the green LED, and decides if the word was "Yes" or "No" based on the ratio of low frequency

power to high frequency power determined from the fast Fourier transform (FFT). If the

algorithm determines the word was "Yes", it turns on the blue LED and prints "Yes" to the

display. If the algorithm determines the word was "No", then it turns on the red LED and prints

"No" to the display. This algorithm is not as reliable as more sophisticated ones, but is it simple

to understand and implement and works reasonably well. The best way to demonstrate this

algorithm is to use the microphone to allow the user to say "Yes" and "No" and see if the

algorithm correctly identifies the word.

The last algorithm demonstrates the FFT by displaying a graph of the magnitude of the FFT on

the vertical axis versus frequency on the horizontal axis as shown in Figure 6. The graph updates

in real-time, so it shows the current short-time spectrum of the input signal. If the input signal is

the chirp signal, for example, the display will show a spike that slowly moves to the right as the

frequency of the chirp signal increases. If the input signal is music, the graph continuously

changes to reflect the current sounds, which is interesting to watch.

Figure 6: Close-up of Display for FFT

The demonstration program was based on a publically available example program that initializes

the board and the codec, and sets up an efficient double buffering scheme using the direct

memory access (DMA) controller27. The functions that write to the display were based on

publically available examples28, but were re-written so that the program can write to the display

without violating the real-time schedule for processing the audio signal. As a precaution, the

fifth LED on the board is used to warn the user if the program ever misses the real-time

schedule, which would cause distortion in the output signal. The C language program that

implements the demonstration is available for free by sending email to hoffbeck@up.edu.

Use of the Demonstration Platform

The demonstration platform was designed to be used in the author's MATLAB-based DSP

lecture course where there is no laboratory component. Although the students in this course

write MATLAB programs to process recorded and generated audio signals, they do not see the

algorithms run in real-time. So the demonstration allows them to experience the real-time

version of the algorithms and see them run on hardware that is typical for commercial products.

The demonstration program could also be used to try to increase interest in the field of DSP. To

this end, the demonstration was shown to a small number of undergraduate students at the

author's university who had not yet taken the DSP course. The students were then surveyed to

determine which algorithms they found most interesting. The survey had the students rate each

algorithm on a scale of 1 to 5, where 1 was "Not at all Interesting" and 5 was "Very Interesting".

The average score for each algorithm is shown in Figure 7 for the nine students who returned the

survey.

Figure 7: Results of Survey

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

There was a four-way tie for the top average student rating with echo, reverb, quantization, and

FFT all receiving an average score of 4.7 (out of 5). Aliasing and Yes/No were next with 4.6,

followed by passthrough/VU with 4.1, and LPF and HPF trailing behind at 3.6.

The survey also had a space for written comments, and three of the five students who wrote

comments said that the demonstrations were interesting or cool. One student commented that

he/she had seen LPF and HPF in classes before and so rated those lower, and one wrote that

he/she thought that DSP would be a great class. The survey suggests that the students found the

demonstrations to be interesting, but since the sample size was small, any conclusions would be

preliminary.

Conclusion

A method for demonstrating DSP algorithms and concepts was described. The program runs in

real-time on inexpensive, commercially available hardware. Since the software is freely

available from the author, the demonstration can be modified or additional algorithms can be

added. The demonstration was shown to some undergraduate electrical engineering students,

and they found the demonstrations to be interesting.

References

1. Pamela Bhatti, Jessica Falcone, and James McClellan, "The Coding of Sound by a Cochlear Prosthesis: An

Introductory Signal Processing Lab", 2010 ASEE Annual Conference & Exposition.

2. Joseph P. Hoffbeck, "Enhance your DSP Course with these Interesting Projects", 2012 ASEE Annual

Conference & Exposition.

3. Joseph P. Hoffbeck, "Using Real RF Signals Such as FM Radio to Teach Concepts in Communication

Systems", 2008 ASEE Annual Conference & Exposition.

4. Wayne Padgett, "Fixed-Point DSP Implementation: Advanced Signal Processing Topics and Conceptual

Learning", 2007 ASEE Annual Conference & Exposition.

5. Mark Yoder and Bruce Black, "A Study of Graphical vs. Textual Programming for Teaching DSP", 2006

ASEE Annual Conference & Exposition.

6. Murat Tanyel, "Putting Bells & Whistles on DSP Toolkit of LabView", 2011 ASEE Annual Conference &

Exposition.

7. Jean Jiang and Li Tan, "Teaching Speech and Audio Processing Implementations using LabView Program

and DAQ Boards", 2013 ASEE Annual Conference & Exposition.

8. Venkatraman Atti and Andreas Spanias, "The Java-DSP (J-DSP) Project-From the Prototype to the Full

Implementation and Dissemination", 2005 ASEE Annual Conference & Exposition.

9. Peter Goodmann, "Using Microsoft DirectX in a DSP Laboratory", 2005 ASEE Annual Conference &

Exposition.

10. Bruce Dunne, "DSP-Based Low Cost Digital Communications Laboratory", 2006 ASEE Annual

Conference & Exposition.

11. Zhibin Tan, William H. Blanton, and Qianru Zhang, "Real-time EEG Signal Processing Based on TI’s

TMS320C6713 DSK", 2013 ASEE Annual Conference & Exposition.

12. Felipe L. Carvalho and Ravi T. Shankar, "Biomedical Signal Processing: Designing an Engineering

Laboratory Course Using Low-Cost Hardware and Software", 2014 ASEE Annual Conference &

Exposition.

13. Cameron Wright, Thad Welch, and Michael Morrow, "RT-DSP Using 'See Through'", 2014 ASEE Annual

Conference & Exposition.

14. Buket Barkana, "A Graduate Level Course: Audio Processing Laboratory", 2010 ASEE Annual Conference

& Exposition.

15. Tim Lin, Saeed Monemi, and Zekeriya Aliyazicioglu, "Interactive Learning Discrete Time Signals and

Systems with MATLAB and TI DSK6713 DSP Kit", 2007 ASEE Annual Conference & Exposition.

16. Lisa Huettel, "Integration of a DSP Hardware Based Laboratory into an Introductory Signals and Systems

Course", 2006 ASEE Annual Conference & Exposition.

17. Michael G. Morrow, Cameron H. G. Wright, and Thad B. Welch, "Old Tricks for a New Dog: An

Innovative Software Tool for Teaching Real-Time DSP on a New Hardware Platform", 2011 ASEE Annual

Conference & Exposition.

18. Michael G. Morrow, Cameron H. G. Wright, and Thad B. Welch, "An Inexpensive Approach for Teaching

Adaptive Filters using Real-Time DSP on a New Hardware Platform", 2013 ASEE Annual Conference &

Exposition.

19. Gerald Vineyard, Thad Welch, Cameron Wright, and Michael Morrow, "A Hardware Approach to

Teaching FSK", 2007 ASEE Annual Conference & Exposition.

20. Cameron Wright, Thad Welch, Mark Allie, and Michael Morrow, "Using Real-Time DSP to Enhance

Student Retention and Engineering Outreach Efforts", 2008 ASEE Annual Conference & Exposition.

21. Ashwinn Natarajan, Andreas Spanias, Chih-Wei Huang, and Rony Ferzli, "Interfacing J-DSP with a TI

DSK for use in a Signal Processing Class", 2006 ASEE Annual Conference & Exposition.

22. Douglas Williams and Arif Uluagac, "Building Hardware-Based Low-Cost Experimental DSP Learning

Modules", 2008 ASEE Annual Conference & Exposition.

23. Tyson Hall and David Anderson, "Teaching Hardware Design of Fixed Point Digital Signal Processing

Systems", 2007 ASEE Annual Conference & Exposition.

24. James Kang and Alan Felzer, "A Digital Signal Processing Laboratory Course Using Field Programmable

Gate Array Boards", 2005 ASEE Annual Conference & Exposition.

25. Dick Blandford, "DSP on Generic Machines", 2006 ASEE Annual Conference & Exposition.

26. Li Tan and Jean Jiang, "Teaching Digital Filter Implementations Using the 68HC12 Microcontroller", 2011

ASEE Annual Conference & Exposition.

27. https://code.google.com/p/c5505-ezdsp/

28. http://support.spectrumdigital.com/boards/usbstk5515/reva/

https://code.google.com/p/c5505-ezdsp/
http://support.spectrumdigital.com/boards/usbstk5515/reva/

	University of Portland
	Pilot Scholars
	2015

	Real-Time Digital Signal Processing Demonstration Platform
	Joseph P. Hoffbeck
	Citation: Pilot Scholars Version (Modified MLA Style)

	tmp.1485653407.pdf.TWk4E

