
Motivation
Regular SVD

Fast Monte Carlo Approximation
Wrapping up

Fast Monte Carlo Algorithms for Computing a
Low-Rank Approximation to a Matrix

Vlad Ştefan Burcă
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Recommendation Systems

Widely used today - e-commerce websites, online radio or music
streaming services, or even online dating and matchmaking.

Data stored in big matrices; consider data of an music streaming
service / online radio.

2 big matrices: USERS ∈ ZN×M and SONGS ∈ {0, 1}M×F .
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USERS ∈ Z4×9 for 4 users and 9 songs.

Each user can rate a song on a range from 1 to 5.

Users only rate a small subset of the entire song database =⇒
sparse matrix.

USERS =


3 5 4 2

1 1 2 5
5 5 4 3 2

2 1 4 5



Vlad Ştefan Burcă Fast Monte Carlo Matrix Approximation Algorithms



Motivation
Regular SVD

Fast Monte Carlo Approximation
Wrapping up

Recommendation Systems
Small Example
Goal
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Predict the missing ratings =⇒ recommend the songs with
predicted high rating.

HOW? Using the songs matrix, SONGS ∈ {0, 1}M×F , for an
initial guess and Singular Value Decomposition.
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Why can’t we just use SVD? Computational limits - the
matrices are so big that they can not be stored integrally in the
fast memory of a PC (Random Access Memory, or RAM).

RAM is a scarce resource compared to regular disk storage

So maybe we can use the disk storage somehow... =⇒
Fast Monte Carlo Matrix Approximation Algorithms
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Consider A ∈ Rm×n with rank(A) = r ≤ p = min{m, n}.

Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 denote the positive singular values of
A, in decreasing order, and σr+1 = · · · = σn = 0.

Let U ∈ Rm×m and V ∈ Rn×n be the orthogonal matrices whose
columns are the right singular vectors vi ’s and, respectively, the left
singular vectors ui ’s.

U =
(
u1

... u2
... · · ·

... um

)
V =

(
v1

... v2
... · · ·

... vn

)
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Let Σ ∈ Rm×n denote the the matrix of the form

Σ =

D
... 0

. . . . . . . .

0
... 0

 ,where D ∈ Rr×r is of the form

D =

σ1 . . .

σr
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Theorem (Singular Value Decomposition Theorem)

Any m × n matrix can be factored into a singular value
decomposition (SVD),

A = UΣV ᵀ
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Theorem (Eckart-Young Theorem)

Let the SVD of A be given by the above equation. If

k < r = rank(A) and Ak =
k∑

i=1
uiσiv

ᵀ
i , then

min
rank(B)=k

‖A− B‖2 = ‖A− Ak‖2 = σk+1

min
rank(B)=k

‖A− B‖2F = ‖A− Ak‖2F =
r∑

i=k+1

σ2i
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What does this mean? That the Ak constructed from the k
largest singular triplets of A is the optimal rank − k approximation
to A with respect to both ‖ · ‖F and ‖ · ‖2.

Why do we care about this? We want to be as close as possible
to this optimal value when we use other approximating algorithms.

And we will be close enough (up to an additional error factor that
is dependent on the way we are constructing the approximating
matrix).
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Due to multiplication of big sized matrices, in computing the SVD,
the algorithm will perform a number of operations that is greater
than O(x).

That means that the running time of the algorithm increases faster
than the size of the problem - in our case, the size of the problem
is directly defined by the size of matrix A: m and n.
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Input: the matrix A ∈ Rm×n, integers c , k and a probability
distribution.

Goal: produce as output an approximation of the top k singular
values and the corresponding left singular vectors of A.
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Sample c columns of matrix A into C ∈ Rm×c according to the
probability distribution given at input.

Compute C ’s right singular vectors and the associated singular
values through the regular SVD method.

Compute the left singular vectors of C and construct matrix
Hk ∈ Rm×k - the approximation of the left singular vectors
associated to the top k singular values of A.
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Algorithm 1 LinearTimeSVD Algorithm

Require: A ∈ Rm×n, c , k ∈ Z+ such that 1 ≤ k ≤ c ≤ n, {pi}ni=1

such that pi ≥ 0 and
∑n

i=1 pi = 1
Ensure: Hk ∈ Rm×k and σt(C ), t = 1, . . . , k .

1: procedure LinearTimeSVD(A, k, c , {pi}ni=1)
2: for t = 1 to c do
3: Pick it ∈ 1, . . . , n with Pr[it = α] = pα, α = 1, . . . , n
4: Set C (t) = A(it)/

√
cpit

5: end for
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Algorithm 2 LinearTimeSVD Algorithm

6: Compute CᵀC and its SVD. Thus CᵀC =∑c
t=1 σ

2
t (C )y ty tT

7: Compute ht = Cy t/σt(C ) for t = 1, . . . , k

8: Construct Hk , where H
(t)
k = h(t)

9: return Hk and σt(C ), t = 1, . . . , k
10: end procedure

Vlad Ştefan Burcă Fast Monte Carlo Matrix Approximation Algorithms



Motivation
Regular SVD

Fast Monte Carlo Approximation
Wrapping up

Algorithm
Complexity
Error bounds

Sampling c columns. O(c)

Constructing CᵀC . O(mc2)

Computing SVD of CᵀC . O(c3)

Overall time complexity. O(mc2 + c3)

Linear in terms of the sizes of A. c is the sampling count, defined
by the user at input.
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Regular SVD approximation of A: Ak

Fast Monte Carlo approximation of A: Dk = HkH
ᵀ
kA

The error of Dk is dependent on the error of the best
approximation, Ak , along with an additional error term of the form
‖AAᵀ − CCᵀ‖F .
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Theorem (Frobenius error of Dk)

Suppose A ∈ Rm×n and let Hk be constructed from the
LinearTimeSVD algorithm. Then

‖A− HkH
ᵀ
kA‖

2
F ≤ ‖A− Ak‖2F + 2

√
k‖AAᵀ − CCᵀ‖F

Theorem (Spectral error of Dk)

Suppose A ∈ Rm×n and let Hk be constructed from the
LinearTimeSVD algorithm. Then

‖A− HkH
ᵀ
kA‖

2
2 ≤ ‖A− Ak‖22 + 2‖AAᵀ − CCᵀ‖2
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Theorem (Sampling advantage of the LinearTimeSVD)

Suppose A ∈ Rm×n; let Hk be constructed from the
LinearTimeSVD algorithm by sampling c columns of A with
probabilities {pi}ni=1 such that pi ≥ β

∣∣A(i)
∣∣2/‖A‖2F for some

0 < β ≤ 1, and let η = 1 +
√

(8/β)log(1/δ). Let ε > 0.
If c ≥ 4k/βε2, then

E
[
‖A− HkH

ᵀ
kA‖

2
F

]
≤ ‖A− Ak‖2F + ε‖A‖2F ,

and if c ≥ 4kη2/βε2, then with probability at least 1− δ,

‖A− HkH
ᵀ
kA‖

2
F ≤ ‖A− Ak‖2F + ε‖A‖2F ,
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pi ≥ β
∣∣A(i)

∣∣2/‖A‖2F
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We now have an algorithm that does not have a running time
super linear in terms of the sizes of A and that has a reasonable
error bound.

But it works on full matrices - we have sparse matrices for
recommendation systems.

Preprocessing has to be done that assigns some initial weights to
the missing values, based on the similarities between songs.

With those weights filling in the empty ratings, we can apply the
linear time SVD algorithm.
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Vlad Ştefan Burcă Fast Monte Carlo Matrix Approximation Algorithms


	Motivation
	Recommendation Systems
	Small Example
	Goal

	Regular SVD
	Definition
	Complexity

	Fast Monte Carlo Approximation
	Algorithm
	Complexity
	Error bounds

	Wrapping up

