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Construction Algorithms for Expander Graphs  

VLAD Ș. BURCĂ ’14 
Adviser: Takunari Miyazaki 
 

Graphs are mathematical objects that are comprised of nodes and edges that connect them. In computer 
science they are used to model concepts that exhibit network behaviors, such as social networks, 
communication paths or computer networks. In practice, it is desired that these graphs retain two main 
properties: sparseness and high connectivity. This is equivalent to having relatively short distances 
between two nodes but with an overall small number of edges. These graphs are called expander graphs 
and the main motivation behind studying them is the efficient network structure that they can produce 
due to their properties. We are specifically interested in the study of k-regular expander graphs, which are 
expander graphs whose nodes are each connected to exactly k other nodes. The goal of this project is to 
compare explicit and random methods of generating expander graphs based on the quality of the graphs 
they produce. This is done by analyzing the graphs’ spectral property, which is an algebraic method of 
comparing expander graphs. The explicit methods we are considering are due to G. A. Margulis (for 5-
regular graphs) and D. Angluin (for 3-regular graphs) and they are algebraic ways of generating expander 
graphs through a series of rules that connect initially disjoint nodes. The authors proved that these 
explicit methods would construct expander graphs. Moreover, the random methods generate random 
graphs that, experimentally, are proven to be just as good expanders as the ones constructed by these 
explicit methods. This project’s approach to the random methods was influenced by a paper of K. Chang 
where the author evaluated the quality of 3 and 7-regular expander graphs resulted from random methods 
by using their spectral property. Therefore, our project implements these methods and provides a unified, 
experimental comparison between 3 and 5-regular expander graphs generated through explicit and 
random methods, by evaluating their spectral property. We conclude that even though the explicit 
methods produce better expanders for graphs with a small number of nodes, they stop producing them as 
we increase the number of nodes, while the random methods still generate reasonably good expander 
graphs.  

 INTRODUCTION 1.
The construction of expander graphs has been an interesting challenge to 
mathematicians and theoretical computer scientists since the first proposal of explicit 
construction by G. A. Margulis in 1973 [1]. These graphs, having the special property 
of being sparse and highly connected, started attracting more attention once research 
in the field proved their usefulness in various applied topics, including sorting 
networks, computation of linear transformations, construction of good error-
correcting codes, and more importantly, construction of efficient computer networks 
[2]. 
 
In order to apply expander graphs to these applications, efficient construction 
methods had to be found. Following Margulis’ first explicit construction, D. Angluin 
proposed a simplification of the algorithm [3].  The goal of Margulis’ method was to 
provide an explicit method of constructing expanders. He was able to produce such a 
method for creating a 5-regular expander and he generalized his results through a 
theorem [3] whose statement is highly depended on a constant d, referenced by his 
theorem. As noted by Angluin, the actual value of d was still unknown, so Angluin’s 
goal was to come up with the simplest explicit construction that Margulis’ theorem 
would still hold for. Thus, in his paper [3], he presents an algebraic method for 
generating 3-regular expanders. 
 
Along with these explicit ways of generating expander graphs, there were also 
attempts of generating random expander graphs – starting with a random graph and 
modifying it such that it will eventually have the special properties of an expander. 
Given the complicated nature of the explicit methods for generating really good 
expanders, K. Chang’s and C. Hammond’s goal was to test the conjecture according to 

 

Author’s address: Computer Science Department, Trinity College, 300 Summit Street, Hartford, Connecti-
cut 06106-3100 (E-mail: vlad.burca.2014@trincoll.edu).  



     V. Ș. Burcă 

 
Trinity College, Hartford, Connecticut 

2 

which the simple random 3-regular bipartite graphs may be just as good expanders 
as the results of the explicit methods.  They approached this question using a series 
of computational and numerical experiments and their results [4], [5] proved that it is 
possible to achieve very good expanders, in terms of their expansion constant, by 
using a randomized strategy when creating edges between nodes. 
 
The goal of this project is to experimentally compare the expansion properties of 
expanders by using results of the previously mentioned methods (Margulis’, 
Angluin’s and the random methods).  It does this by using the existing explicit and 
random construction methods in order to generate expander graphs and then 
numerically compare their quality. While Margulis’ and Angluin’s goal was to come 
up with explicit construction algorithms, and Chang’s and Hammond’s was to test 
whether or not random methods can produce good expanders too, our goal is to 
combine these methods, compare them and experimentally conjecture which type of 
methods (explicit or random) generates the best expanders over 3 and 5-regular 
graphs with various number of nodes. 
 
First, we are going to give an informal definition of Ramanujan graphs. These are k-
regular graphs that have a large spectral gap. The spectral gap is defined by the 
difference of the absolute values of the 2 largest eigenvalues of the adjacency matrix 
that defines the graph. Moreover, the Ramanujan graphs are considered to be the 
best expander graphs in terms of the spectral property defined through the 
eigenvalues.  
 
In order to quantify how good a graph is in terms of being an expander, the theorem 
of Friedman [6] was used. This states that random k-regular graphs on n vertices are 
almost Ramanujan, that is, they satisfy  
 
 𝜆 ≤ 2 𝑘 − 1 (1) 
 
where λ is the second largest eigenvalue of the adjacency matrix that defines the 
graph. This implies that Ramanujan graphs have a smallest possible λ, bounded by 
the given inequality. 
 
Even though the graphs generated by Margulis’ or Angluin’s methods are explicit, a 
consistent way of evaluating their results compared to the random methods was 
needed so we decided to use the same Lubotzky-Phillips-Sarnak inequality, (1). This 
decision was made due to the fact that it is a straightforward, computationally easy 
way of quantifying how close a graph is to being a Ramanujan graph. Moreover, since 
the Ramanujan graphs are the expander graphs with the optimal expander 
constants, it made sense to compare all graphs constructed through the expander 
generating algorithms to the best expanders that can be achieved. 
 
In order to accomplish this goal, implementations of all the expander generating 
methods mentioned earlier, were wrote and tests were ran by generating expanders 
through them and evaluating their eigenvalues, according to inequality (1). Most of 
the project package is done in Python, using the NumPy library for various 
numerical computations. The computation of eigenvalues (for relatively large 
matrices) was achieved through a C implementation of the Power Method – a slightly 
modified implementation of the algorithm presented in Chang’s thesis [4]. This was 
due to the slowness of Python and NumPy in generating the eigenvalues for 
relatively large matrices. Moreover, the representation of the generated graphs is 
being done through adjacency list matrices (n x k, where n is the number of nodes 
and k the number of edges). The NumPy method for generating eigenvalues was not 
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making use of this optimization and this was causing it to be even slower. Therefore, 
we decided to use a faster language, C, and a method (Power Method) that would 
fully take advantage of the way the graph was being stored, through adjacency list 
matrices.  
The package can run 4 different algorithms for generating expanders: Angluin’s, 
Margulis’, method for random 3-regular bipartite graphs and method for random 5-
regular bipartite graphs. In practice, the implemented random generating method 
can generate k-regular bipartite graphs, for any positive k. The reasoning behind 
picking k = 3, 5 is that Angluin’s method produces 3-regular bipartite graphs and 
Margulis’ does 5-regular bipartite graphs. Therefore, it was desired to pair these two 
explicit constructions to equivalent random expanders. The package is implemented 
entirely and can produce sets of data for all 4 methods. From the experimental 
results, it can be seen that the random expanders tend to perform better for an 
increasing value of n, while the explicit constructions tend to do the opposite, 
performing worse. This could also be due to the fact that, unlike the random 
methods, the explicit ones generate a higher number of multi-edges between pairs of 
nodes in the constructed graph. 

 PROJECT DESCRIPTION 2.
The project’s main objective is to be able to construct expander graphs for any given 
input, n (number of nodes). In order to achieve this, we decided to select a couple of 
already researched algorithms that produce expander graphs. Since, through the 
literature reading that was done, it was found that there are two types of algorithms 
that could generate graphs with these special properties – explicit methods and 
random methods – we decided to implement both and test their performances. At this 
point in the project we realized that, since Angluin’s method produces a 3-regular 
bipartite expander, it could be tested against a 3-regular bipartite random expander; 
we would proceed with a similar approach for Margulis’ method and a 5-regular 
bipartite random expander. In the rest of this section, we will briefly describe how 
each of the algorithms works. 
 

 Definition 2.1
Throughout the project, k-regular bipartite expander graphs were used. Bipartite 
graphs are graphs with nodes that can be divided into two disjoint sets such that no 
edge is incident to any two nodes in the same set. Additionally, the graph G is called 
k-regular if each node has exactly k edges incident to it. 
 
An expander graph is a highly connected and sparse graph. It is an undirected graph, 
G = (V, E) characterized by an expander constant, with V = the set of nodes and E = 
the set of edges.  There are several ways of defining this constant, through edge 
expansion, vertex expansion or spectral expansion. In the research I did for this 
project I focused on k-regular graphs and I only used the spectral property. This is 
measured by the spectral gap, which is defined in the following way: 
 
 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑔𝑎𝑝 𝐺 = 𝑘 −   𝜆!  
 
where λ2 represents the second largest eigenvalue of the adjacency matrix used to 
define the k-regular G. 
 
Since the project evaluates expander graphs in terms of how close they are to 
Ramanujan graphs, a definition what this kind of graph means is necessary. A 
Ramanujan graph is a graph with the largest spectral gap possible. Moreover, a more 
practical definition of a Ramanujan graph, and the definition that will be used for 
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the rest of the project description, is that a graph is Ramanujan if the inequality (1) 
is satisfied. 
Given the previous definition of expander graphs, note that all the methods (both 
explicit and random) presented in this project construct graphs that satisfy the 
spectral expansion property of expanders. 
Before proceeding with the descriptions, some comments have to be made on the 
notations that will be used from now on, through the paper (this notation will be 
consistent to the variables and constants that are used in the actual project code 
package). Therefore: 

 
Table I. Variable notations 

n Refers to the modulo of the group ℤ! 
k Degree of the k-regular graphs 

size = n2 Number of elements in matrix A or B 
H Adjacency list matrix of expander graph 

size_H = 2 * size = 2 * n2 The dimension of H 

 Methods 2.2

2.2.1 Margulis’ Method 
As previously stated in the Introduction, Margulis’ goals were to give an explicit, 
algebraic construction for expander graphs. His results were concluded into a more 
general theorem about concentrators. Concentrators are expander graphs that are 
defined by Margulis as: 
 
Definition 1 [3].  Let H consist of an ordered pair (A, B) of sets of nodes, together with 
some edges between the nodes of A and the nodes of B. Let c and α be positive, with c 
> 1 and α < 1. Then H is called a (c, α)-concentrator if and only if for every nonempty 
proper subset X of A with |X| < α|A|, the set Y = {𝑏 ∈ 𝐵: b is adjacent to some 𝑎 ∈ 𝑋} 
satisfies |Y| > c|X|. 
 
Informally, concentrators are graphs that hold desirable connectivity properties 
similar to the ones of the expander graphs. Following this definition, Margulis states 
that the graphs constructed through his method, Hm, where each of the elements of 
Hm are modulo m, follow the theorem: 
 
Theorem 1 [3].  There exist a positive constant d such that for any integer m > 1 and 
any α such that 0 < α < 1, Hm is a (1 + d(1 – α), α)-concentrator. 
 
Being the first explicit construction [1] of an expander graph, it is also the simplest 
one, involving just several rules of connecting nodes between two sets of disjoint 
nodes. At the beginning of the algorithm, none of the nodes are connected. The 
elements of the two disjoint sets, A and B, are tuples of the following form   x, y ∈   ℤ!. 
Therefore, the number of elements in A (or B) is equal to n2 (size). The rules for 
connecting the nodes from A to nodes in B are the following: 

• Take a node x, y ∈ A and connect it to the following nodes: 
o x, y ∈   B 
o x + 1, y ∈   B 
o x, y + 1 ∈   B 

o x + y, y ∈   B 
o −y, x ∈   B

 
A note has to be made regarding the operations seen within the tuple-nodes. Since the two elements of the 
tuple always have to be from  ℤ!, the operations have to be done modulo n. 
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(Fig. 1) Illustration of Margulis’ method 

 
Here is the pseudocode for this method: 

ALGORITHM 1. Margulis’ method of generating expander graphs 
 INPUT:	
  The size of the permutation set (corresponding to the value n from the description) 
 OUTPUT: The adjacency list of an expander graph 

1	
   generate	
  matrices	
  A	
  and	
  B	
  as	
  a	
  permutation	
  of	
  the	
  {0	
  …	
  size-­‐1}	
  elements;	
  resize	
  the	
  
permutation	
  to	
  size	
  x	
  size	
  

2	
   initialize	
  empty	
  matrix	
  H	
  of	
  size	
  size_H	
  x	
  k	
  

3	
   for	
  each	
  index	
  i	
  in	
  matrix	
  A	
  

4	
   	
   get	
  the	
  corresponding	
  tuple	
  (x0,	
  y0)	
  of	
  the	
  index	
  i	
  

5	
   	
   construct	
  each	
  of	
  the	
  five	
  tuples	
  that	
  (x0,	
  y0)	
  can	
  connect	
  to	
  

6	
   	
   get	
  the	
  corresponding	
  index	
  j	
  of	
  the	
  newly	
  constructed	
  (x,	
  y)	
  tuple	
  

7	
   	
   save	
  the	
  indices	
  in	
  the	
  adjacency	
  list	
  matrix:	
  H[i][k]	
  =	
  j;	
  H[j][k]	
  =	
  i	
  

8	
   return	
  H	
  

(Code 1) Pseudocode for Margulis’ method of generating expander graphs 
 
Even though the algorithm seems simple, there are some small implementation 
details that have to be taken into account to improve performance. They involve 
transitioning from the index of the tuple representation of a node to the actual tuple 
(x, y), and vice-versa.  
 
We will first address the first direction: going from the index i of a tuple to the actual 
tuple (x, y). The indexing of the elements from ℤ!  ×  ℤ! is being done as illustrated in 
(Fig. 1). Therefore, the following rule of recovering the tuple (x, y) from index I can be 
obtained: 
 
 𝑥 = 𝑖/𝑛                𝑦 =   𝑖  %  𝑛 

 
(2) 

Moreover, in order to recover the index i from the tuple (x, y): 
 
 𝑖 = 𝑥 ∗ 𝑛 + 𝑦  %  𝑛 

 
(3) 

Using equations (2) and (3), the operations from lines {4} and {6} of (Code 1) can be 
optimally achieved. Before using this approach, an array (which in Python is 
represented as a list) was used to store the entire collection of ℤ!  ×  ℤ! and then 
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access it based on the needed index. Also, such Python list has a method that would 
return the index of a given element, so that was very helpful. The problem with it is 
that, being a list, the operations were very slow on such a data structure with a 
relatively big number of elements stored in it. This is why this approach was 
reconsidered and it resulted in the improved one, described above. 

2.2.2 Angluin’s Method 
Angluin’s goal was to improve Margulis’ method by finding the simplest construction 
for which Theorem 1 would still hold. She managed to do this by formulating an 
explicit method for 3-regular expander graphs, similar to Margulis’ method for 5-
regular graphs. She proved [3] that Theorem 1 holds with her resulted 3-regular 
expander graphs in place of Margulis’ Hm. 
 
This method is inspired by Margulis’ algorithm, but, as stated in the author’s paper 
[3], it provides an even simpler explicit construction of expander graphs. The initial 
setup with the two disjoint sets is identical to the one of the previously presented 
method, so I am not going to re-state it over here. Instead, I will present the way of 
constructing the edges for Angluin’s method: 
• Take a node   x, y ∈   A and connect it to the following nodes: 

o x, y ∈   B 
o x + y, y ∈   B 
o (y + 1,−x) ∈   B 

 
A note has to be made regarding the operations seen within the tuple-nodes. Since the two elements of the 
tuple always have to be from  ℤ!, the operations have to be done modulo n. 

 
The pseudocode for Angluin’s method is identical to the one presented in (Code 1). 
Moreover, the implementation optimizations mentioned earlier through equations (2) 
and (3) apply here as well, since the algorithm involves the same transformations 
from index to tuple and vice-versa. 
 

 
 

(Fig. 2) Illustration of Angluin’s method 
 

2.2.3 Random Method 
The random method, inspired by Chang’s work and results in his thesis [4], generates 
k-regular bipartite graphs without building edges using specific rules, as the 
previously two methods did. Instead, it does so by splitting the initial set of size_H 
nodes into {0	
  …	
  size_H/2	
  -­‐	
  1} and {size_H/2	
  …	
  size_H	
  –	
  1}. Afterwards, it 
randomly permutes the second set of nodes and, finally, it creates the edges between 
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the nodes in the first set and the nodes in the second set in order, correspondingly, as 
illustrated below (for ease of notation, let m	
  =	
  size_H/2): 

                   
 

(Fig. 3) Illustration of the Random method 

 
The indices inside the nodes are the ones after permutation, while the ones on the 
outside, are the original ones, after splitting (𝑙, 𝑝, 𝑞, 𝑟 ∈{(𝑠𝑖𝑧𝑒_𝐻)/2…  𝑠𝑖𝑧𝑒_𝐻}). 
This permute-and-create edges process is repeated k times, generating a k-regular 
bipartite random graph. It is bipartite because the edges from within each of the 2 
halves are not connected to each other – they are only connected to nodes from the 
other half.  
 
Here is the pseudocode for this method: 

ALGORITHM 2. Random method of generating expander graphs  
	
   INPUT:	
  Size of desired matrix H.	
  
	
   OUTPUT:	
  The adjacency list of an expander graph.	
  

1	
   initialize	
  empty	
  matrix	
  H	
  of	
  size	
  size_H	
  x	
  k	
  

2	
   generate	
  list	
  of	
  size_H	
  elements	
  and	
  split	
  it	
  into	
  half	
  

3	
   for	
  edge	
  in	
  k	
  

4	
   	
   randomly	
  permute	
  the	
  second	
  half	
  of	
  the	
  split	
  

5	
   	
   for	
  each	
  node	
  i	
  in	
  the	
  first	
  half	
  of	
  the	
  split	
  

	
   	
   	
   H[i][k]	
  =	
  element_i_of_the_permuted_half	
  

	
   	
   	
   H[element_i_of_the_permuted_half][k]	
  =	
  i	
  

8	
   return	
  H	
  

(Code 2) Pseudocode for the Random method of generating expander graphs 
 
Since the graphs are randomly generated, a sampling factor was used (given as an 
input) in order to generate multiple such graphs and then take the average of their 
eigenvalues. In this way, the result is more reliable to what would happen in general, 
with randomly generated expanders. 

 Deliverables 2.3
Once the graphs are generated through one of these methods, in order to compare 
their quality as expander graphs, inequality (1) was used. This provided a consistent 
way of evaluating which method produces better expanders as the number of nodes 
increases. Further discussion on how these methods are structured within the 
package will be provided in the next section. 
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The deliverables of the project consist of a Python & C package (that will be further 
illustrated in the next section) that can generate expander graphs through any of the 
4 methods mentioned earlier. Moreover, the package summarizes the quality of each 
of the generated expanders by computing the eigenvalue of each of them and 
comparing it through the inequality mentioned at (1). 
 
The package also contains a 5th method, explicit as well, due to M. Ajtai [7], that is not 
fully implemented. His approach is more complicated than the ones presented so far 
and we will talk more about it at the end of this paper. 

 IMPLEMENTATION 3.
The expander graph-generating package was implemented with the 4 methods 
mentioned before, along with an evaluating method (through eigenvalues) for the 
constructed graphs. As mentioned above, this section will give a detailed explanation 
of the overall implementation design of the package.  
The package is composed of several modules that will be explained in more detail: 

1. Iteration wrapper 
2. Algorithm wrapper 
3. Algorithms 
4. Eigenvalue Calculator 

 
The flow of data through the package is illustrated in (Fig. 4), below. 

(Fig. 4) Program execution flow of the expander package 
 
Here is a step-by-step description of the illustrated flow, pointing out the main 
features of each of the modules. 
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Configuration File – Provides parameters input (n, number of samples to be 
generated for the random graphs, etc.), debugging options (printing generator 
matrices with indices, printing the adjacency matrix of the expander, etc.) along with 
the option of choosing which algorithms should the package run (Angluin’s method, 
Margulis’ method, Random 3-regular, Random 5-regular). Moreover, it has a flag for 
cleaning up all the auxiliary or debugging files generated from previous runs. 
 
Iteration Wrapper [Python] – This initial wrapper is the one that starts the entire 
package. It receives input from the Configuration File [1] and then it runs the 
Algorithm Wrapper [2] for different values of n. The Iteration Wrapper changes the 
value of n in the Configuration File and runs the Algorithm Wrapper. This process 
happens for all the hard-coded values of n. 
 
Algorithm Wrapper [Python] – This wrapper is composed of 2 different Python 
scripts. The first one reads the earlier modified Configuration File [3] and saves all 
the parameters and the algorithms that have to be run. It then generates the 
generator matrices A and B (the ones used for Angluin’s or Margulis’ methods) and 
checks which algorithm should it call next – if it is one of the explicit methods or one 
of the random methods. The second script of this wrapper splits it further on, and 
decides exactly which of the four different algorithms to pick. If multiple algorithms 
were checked in the configuration file, the wrapper will run each of them, one by one. 
 
Debugging Files [optional] – If the flags for debugging information are switched on in 
the Configuration File, the Algorithm Wrapper will write [5] the specified 
information in these files. 
 
Algorithms [Python] – Once the Algorithm Wrapper decides on which algorithm to 
call, the corresponding method is being triggered [4]. Depending on the algorithm 
details, as described in the previous section, this module will generate the adjacency 
list matrix of an expander graph. It will then write it to an Auxiliary File [5] and call 
the Eigenvalue Calculator [6] module in order to evaluate the quality of the 
generated expander. 
 
Auxiliary Files – Provide communication between the Algorithms module and the 
Eigenvalue Calculator module. One of the files saves the adjacency matrix of the 
earlier generated expander, while the other saves parameters specific to the 
generated expander. 
 
Eigenvalue Calculator [C] – This module has one of the hardest jobs – this is also 
the reason why it was implemented in C, rather than Python (a more detailed 
explanation on this will be provided later on in this section). The Eigenvalue 
Calculator reads the matrix information from the Auxiliary Files [7] and then applies 
the Power Method algorithm to generate the second largest eigenvalue of the given 
expander. It then writes it to another auxiliary file, Temporary Result File [8]. 
 
While the Eigenvalue Calculator is running, the Algorithms module is asleep, waiting 
for the eigenvalue to be calculated. It constantly sends signals to the Eigenvalue 
Calculator process until it makes sure that the process completed. It then opens the 
Temporary Result File [9], saves the computed eigenvalue and prints it in the Result 
Files [10] 
 
Result Files – These files hold information for each of the 4 possible types of 
generated expanders. For each of these types, they hold information on the number of 
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nodes and the expansion value of the generated graph. The expansion value is 
defined, from inequality (1) as:  
 
 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛  𝑣𝑎𝑙𝑢𝑒 =   2 𝑘 − 1 − 𝜆 

 
(4) 

Informally, this tells “how far away is a graph from being Ramanujan”. In order for a 
given graph to be Ramanujan, the result of the difference in (4) has to be maximized. 
 
Example of output result, for Angluin’s method: 

 
1	
   angluin:	
  

2	
   	
   8:	
  0.4855051247461901	
  

3	
   	
   18:	
  0.00437712474619012	
  

4	
   	
   32:	
  -­‐0.021004875253809896	
  

(Code 3) Example of Result File output 

 Challenges 3.1
As mentioned earlier, there were a couple of challenges that had to be overcome 
while implementing this package. The first challenge was more related to the code 
structure – as it can be seen, the code is very modulated; this structure gave me a 
very easy way of debugging various parts of it and allowed me to work in parallel on 
different modules.  
 
The small implementation challenges and optimizations with each of the 
constructing methods have been discussed in the previous section. 
 
The main challenge of this project was computing the eigenvalues of the constructed 
graphs. The generated graphs have very big dimensions, up to 2,000,000 x 5. My 
initial approach was to use a specific numerical Python library. The implementation 
of the eigenvalue method was very slow for the needs of the project. Therefore, we 
decided to implement the Power Method algorithm that Chang uses as well in his 
thesis [4]. The implementation was still in Python and, although there was some 
visible improvement, it was not fast enough for big matrices. Thus, we decided to 
implement it again, in C this time. The implementation was able to compute the 
second largest eigenvalue for the largest matrix (2,000,000 x 5) in a matter of seconds 
and this is why we ended up using a cross language implementation of the package. 

 Results 3.2
The package was ran for values of size_H that are close to the values that Chang 
used to test his random methods for 3-regular and 7-regular bipartite graphs. The 
Result Files are attached in Appendix A. Moreover, Table 1 presents a summary of 
these results for easier analysis. It can be seen, as Chang concluded as well in his 
thesis, that the graphs generated through the Random Method converge to being 
Ramanujan as their size increases, as tested against the inequality in (1). On the 
other hand, the best expanders constructed are achieved at relatively low graph 
sizes, due to Explicit Methods. Once the size of the expander grows, the expander 
quality of the graphs produced by either of the methods is getting worse, but the 
Random Methods are still able to produce expander graphs – i.e. the value of 
inequality (4) is still positive most of the times. 
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RESULTS 

 Expansion value 
Number of nodes Angluin 3-regular Random 3-regular Margulis 5-regular Random 5-regular 

  
8 0.485505 -0.171572 1.267949 1.267949 

18 0.004377 0.300356 0.511528 -0.147700 
32 -0.021004 0.051901 0.030111 0.238354 

162 -0.089250 -0.017769 -0.667582 0.004192 
1250 -0.121959 0.007560 -0.880319 -0.006768 
1800 -0.124888 0.000638 -0.894546 0.006628 

(Table 1) Summary of results 
 
Moreover, similar to Chang’s results, it can be seen that the expansion value of the 
graphs generated through random methods gets very close to 0. His results also state 
that even with a large number of nodes the random methods are still generating 
Ramanujan graphs with a more than 79% chance (for graphs with 1000 nodes) [4]. 
Similarly, on our summary table, we can see that indeed, the expansion value for the 
graphs generated through random methods, having 1000 nodes, is still positive, 
meaning that the graphs are still in the Ramanujan spectrum. This observation does 
not stand for the explicit methods though, since the expansion value starts to grow 
negatively from a low number of nodes (aprox. 50 in Margulis’ case). 

 FUTURE WORK 4.
As mentioned earlier, the package included in this project contains an additional 
explicit method of generating expander graphs, due to M. Ajtai, that is not fully 
implemented yet. Briefly, we will present the main ideas behind this method as well 
as its current implementation status. 

 Ajtai’s Method 4.1
This explicit construction method generates 3-regular expanders using a different 
approach than the previously described methods.  It starts with a random graph and 
it modifies it by switching edges between pairs of nodes. Thus, it chooses edges (x, y), 
(u, v) in the graph, deletes them and adds the edges (x, v), (y, u) back to the graph [7]. 
The goal of the algorithm is to minimize the number of cycles of a given length, 
𝑠 =    𝑐  𝑙𝑜𝑔 𝑛, where n is the number of nodes in the initial graph and c is a fixed 
absolute constant. The choice of the edges that are switched is also done based on the 
strategy of minimizing the number of cycles. Moreover, when the algorithm reaches a 
local minimum in the number of cycles of length s, the graph is an expander. Ajtai’s 
paper that describes this algorithm states that the number of cycles of length s is a 
good measure of the expanding properties [7]. 
 
We designed the implementation of this method through 3 main steps: 

1. Create H, a random 3-regular graph on n vertices. 
2. Create method that swaps edges (x, y), (u, v) with (x, v), (y, u). 
3. Using the condition previously stated in the description of the algorithm, 

perform swaps on edges of graph H until the stopping condition occurs (the 
decrease in the number of cycles of length s is not significant anymore). 

 
Currently, only steps 1 and 2 are implemented, with step 3 being the main goal of 
future work that can be done on this project. Moreover, we are considering future 
work that involves running the tests for even bigger values of size_H and logging the 
number of multi-edges and the maximum number of multi-edges per pair of nodes 
that is achieved through each of the methods. Ideally, one would want an expander 
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that would have a relatively low number of multi-edges - so exploring construction 
methods that achieve that also represents a topic of interest for this project. 

 CONCLUSIONS 5.
The goal of this project was to experimentally compare the expander graphs 
generated by explicit and random methods by analyzing their spectral property. By 
implementing a package that would generate expanders through the methods 
mentioned in this paper (due to Margulis, Angluin and random methods), we were 
able to conclude that, as the number of vertices increases, the random methods tend 
to produce graphs that are within the bounds of being Ramanujan (by using 
inequality (1) ), while the graphs constructed through explicit methods are failing the 
Ramanujan test. 
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APPENDIX A (Result files) 
	
  

angluin:	
  
	
  	
  8:	
  0.4855051247461901	
  
	
  	
  18:	
  0.00437712474619012	
  
	
  	
  32:	
  -­‐0.021004875253809896	
  
	
  	
  50:	
  -­‐0.043587875253809916	
  
	
  	
  72:	
  -­‐0.06139087525380971	
  
	
  	
  98:	
  -­‐0.07292787525380984	
  
	
  	
  128:	
  -­‐0.08253287525380992	
  
	
  	
  162:	
  -­‐0.0892508752538097	
  
	
  	
  200:	
  -­‐0.09472487525380968	
  
	
  	
  450:	
  -­‐0.11013087525380971	
  
	
  	
  800:	
  -­‐0.11751387525380963	
  
	
  	
  1250:	
  -­‐0.1219598752538098	
  

	
  	
  	
   	
  	
  1800:	
  -­‐0.12488887525380976	
  
	
  
	
  

random3:	
  
	
  	
  8:	
  -­‐0.1715728752538097	
  
	
  	
  18:	
  0.3003561247461901	
  
	
  	
  32:	
  0.05190112474619024	
  
	
  	
  50:	
  0.04480512474619047	
  
	
  	
  72:	
  -­‐0.07115387525380967	
  
	
  	
  98:	
  0.05197312474619009	
  
	
  	
  128:	
  0.010014124746190234	
  
	
  	
  162:	
  -­‐0.017769875253809797	
  
	
  	
  200:	
  0.011234532746191572	
  
	
  	
  450:	
  0.00547112474619027	
  
	
  	
  800:	
  0.006104124746190376	
  
	
  	
  1250:	
  0.0075601247461905	
  

	
  	
  	
  	
  	
   	
  	
  1800:	
  0.000638124746190182	
  

margulis:	
  
	
  	
  8:	
  1.2679490000000002	
  
	
  	
  18:	
  0.5115280000000002	
  
	
  	
  32:	
  0.03011100000000022	
  
	
  	
  50:	
  -­‐0.2548469999999998	
  
	
  	
  72:	
  -­‐0.4262220000000001	
  
	
  	
  98:	
  -­‐0.5370369999999998	
  
	
  	
  128:	
  -­‐0.6130129999999996	
  
	
  	
  162:	
  -­‐0.6675820000000003	
  
	
  	
  200:	
  -­‐0.7082660000000001	
  
	
  	
  450:	
  -­‐0.8138629999999996	
  
	
  	
  800:	
  -­‐0.8572610000000003	
  
	
  	
  1250:	
  -­‐0.8803190000000001	
  

	
  	
  	
   	
  	
  1800:	
  -­‐0.8945460000000001	
  
	
  

random5:	
  
	
  	
  8:	
  1.2679490000000002	
  
	
  	
  18:	
  -­‐0.14770099999999964	
  
	
  	
  32:	
  0.23835499999999987	
  
	
  	
  50:	
  0.2881	
  
	
  	
  72:	
  0.1078030000000001	
  
	
  	
  98:	
  -­‐0.014101000000000141	
  
	
  	
  128:	
  0.057017000000000095	
  
	
  	
  162:	
  0.004192999999999891	
  
	
  	
  200:	
  0.043402918000000845	
  
	
  	
  450:	
  0.04419400000000007	
  
	
  	
  800:	
  0.012801000000000062	
  
	
  	
  1250:	
  -­‐0.006768000000000107	
  

	
  	
  	
   	
  	
  1800:	
  0.006628000000000078	
  
	
  

APPENDIX B (Source code) 
 
The code can be found entirely at: https://github.com/vburca/Senior-Project 
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