
Trinity College
Trinity College Digital Repository

Senior Theses and Projects Student Works

Spring 2014

Construction Algorithms for Expander Graphs
Vlad S. Burca
Trinity College, vlad.burca@trincoll.edu

Follow this and additional works at: http://digitalrepository.trincoll.edu/theses

Recommended Citation
Burca, Vlad S., "Construction Algorithms for Expander Graphs". Senior Theses, Trinity College, Hartford, CT 2014.
Trinity College Digital Repository, http://digitalrepository.trincoll.edu/theses/393

http://digitalrepository.trincoll.edu?utm_source=digitalrepository.trincoll.edu%2Ftheses%2F393&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.trincoll.edu/theses?utm_source=digitalrepository.trincoll.edu%2Ftheses%2F393&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.trincoll.edu/students?utm_source=digitalrepository.trincoll.edu%2Ftheses%2F393&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.trincoll.edu/theses?utm_source=digitalrepository.trincoll.edu%2Ftheses%2F393&utm_medium=PDF&utm_campaign=PDFCoverPages

 Trinity College, Hartford, Connecticut

Construction Algorithms for Expander Graphs

VLAD Ș. BURCĂ ’14
Adviser: Takunari Miyazaki

Graphs are mathematical objects that are comprised of nodes and edges that connect them. In computer
science they are used to model concepts that exhibit network behaviors, such as social networks,
communication paths or computer networks. In practice, it is desired that these graphs retain two main
properties: sparseness and high connectivity. This is equivalent to having relatively short distances
between two nodes but with an overall small number of edges. These graphs are called expander graphs
and the main motivation behind studying them is the efficient network structure that they can produce
due to their properties. We are specifically interested in the study of k-regular expander graphs, which are
expander graphs whose nodes are each connected to exactly k other nodes. The goal of this project is to
compare explicit and random methods of generating expander graphs based on the quality of the graphs
they produce. This is done by analyzing the graphs’ spectral property, which is an algebraic method of
comparing expander graphs. The explicit methods we are considering are due to G. A. Margulis (for 5-
regular graphs) and D. Angluin (for 3-regular graphs) and they are algebraic ways of generating expander
graphs through a series of rules that connect initially disjoint nodes. The authors proved that these
explicit methods would construct expander graphs. Moreover, the random methods generate random
graphs that, experimentally, are proven to be just as good expanders as the ones constructed by these
explicit methods. This project’s approach to the random methods was influenced by a paper of K. Chang
where the author evaluated the quality of 3 and 7-regular expander graphs resulted from random methods
by using their spectral property. Therefore, our project implements these methods and provides a unified,
experimental comparison between 3 and 5-regular expander graphs generated through explicit and
random methods, by evaluating their spectral property. We conclude that even though the explicit
methods produce better expanders for graphs with a small number of nodes, they stop producing them as
we increase the number of nodes, while the random methods still generate reasonably good expander
graphs.

 INTRODUCTION 1.
The construction of expander graphs has been an interesting challenge to
mathematicians and theoretical computer scientists since the first proposal of explicit
construction by G. A. Margulis in 1973 [1]. These graphs, having the special property
of being sparse and highly connected, started attracting more attention once research
in the field proved their usefulness in various applied topics, including sorting
networks, computation of linear transformations, construction of good error-
correcting codes, and more importantly, construction of efficient computer networks
[2].

In order to apply expander graphs to these applications, efficient construction
methods had to be found. Following Margulis’ first explicit construction, D. Angluin
proposed a simplification of the algorithm [3]. The goal of Margulis’ method was to
provide an explicit method of constructing expanders. He was able to produce such a
method for creating a 5-regular expander and he generalized his results through a
theorem [3] whose statement is highly depended on a constant d, referenced by his
theorem. As noted by Angluin, the actual value of d was still unknown, so Angluin’s
goal was to come up with the simplest explicit construction that Margulis’ theorem
would still hold for. Thus, in his paper [3], he presents an algebraic method for
generating 3-regular expanders.

Along with these explicit ways of generating expander graphs, there were also
attempts of generating random expander graphs – starting with a random graph and
modifying it such that it will eventually have the special properties of an expander.
Given the complicated nature of the explicit methods for generating really good
expanders, K. Chang’s and C. Hammond’s goal was to test the conjecture according to

Author’s address: Computer Science Department, Trinity College, 300 Summit Street, Hartford, Connecti-
cut 06106-3100 (E-mail: vlad.burca.2014@trincoll.edu).

 V. Ș. Burcă

Trinity College, Hartford, Connecticut

2

which the simple random 3-regular bipartite graphs may be just as good expanders
as the results of the explicit methods. They approached this question using a series
of computational and numerical experiments and their results [4], [5] proved that it is
possible to achieve very good expanders, in terms of their expansion constant, by
using a randomized strategy when creating edges between nodes.

The goal of this project is to experimentally compare the expansion properties of
expanders by using results of the previously mentioned methods (Margulis’,
Angluin’s and the random methods). It does this by using the existing explicit and
random construction methods in order to generate expander graphs and then
numerically compare their quality. While Margulis’ and Angluin’s goal was to come
up with explicit construction algorithms, and Chang’s and Hammond’s was to test
whether or not random methods can produce good expanders too, our goal is to
combine these methods, compare them and experimentally conjecture which type of
methods (explicit or random) generates the best expanders over 3 and 5-regular
graphs with various number of nodes.

First, we are going to give an informal definition of Ramanujan graphs. These are k-
regular graphs that have a large spectral gap. The spectral gap is defined by the
difference of the absolute values of the 2 largest eigenvalues of the adjacency matrix
that defines the graph. Moreover, the Ramanujan graphs are considered to be the
best expander graphs in terms of the spectral property defined through the
eigenvalues.

In order to quantify how good a graph is in terms of being an expander, the theorem
of Friedman [6] was used. This states that random k-regular graphs on n vertices are
almost Ramanujan, that is, they satisfy

 𝜆 ≤ 2 𝑘 − 1 (1)

where λ is the second largest eigenvalue of the adjacency matrix that defines the
graph. This implies that Ramanujan graphs have a smallest possible λ, bounded by
the given inequality.

Even though the graphs generated by Margulis’ or Angluin’s methods are explicit, a
consistent way of evaluating their results compared to the random methods was
needed so we decided to use the same Lubotzky-Phillips-Sarnak inequality, (1). This
decision was made due to the fact that it is a straightforward, computationally easy
way of quantifying how close a graph is to being a Ramanujan graph. Moreover, since
the Ramanujan graphs are the expander graphs with the optimal expander
constants, it made sense to compare all graphs constructed through the expander
generating algorithms to the best expanders that can be achieved.

In order to accomplish this goal, implementations of all the expander generating
methods mentioned earlier, were wrote and tests were ran by generating expanders
through them and evaluating their eigenvalues, according to inequality (1). Most of
the project package is done in Python, using the NumPy library for various
numerical computations. The computation of eigenvalues (for relatively large
matrices) was achieved through a C implementation of the Power Method – a slightly
modified implementation of the algorithm presented in Chang’s thesis [4]. This was
due to the slowness of Python and NumPy in generating the eigenvalues for
relatively large matrices. Moreover, the representation of the generated graphs is
being done through adjacency list matrices (n x k, where n is the number of nodes
and k the number of edges). The NumPy method for generating eigenvalues was not

Construction Algorithms for Expander Graphs

Trinity College, Hartford, Connecticut

3

making use of this optimization and this was causing it to be even slower. Therefore,
we decided to use a faster language, C, and a method (Power Method) that would
fully take advantage of the way the graph was being stored, through adjacency list
matrices.
The package can run 4 different algorithms for generating expanders: Angluin’s,
Margulis’, method for random 3-regular bipartite graphs and method for random 5-
regular bipartite graphs. In practice, the implemented random generating method
can generate k-regular bipartite graphs, for any positive k. The reasoning behind
picking k = 3, 5 is that Angluin’s method produces 3-regular bipartite graphs and
Margulis’ does 5-regular bipartite graphs. Therefore, it was desired to pair these two
explicit constructions to equivalent random expanders. The package is implemented
entirely and can produce sets of data for all 4 methods. From the experimental
results, it can be seen that the random expanders tend to perform better for an
increasing value of n, while the explicit constructions tend to do the opposite,
performing worse. This could also be due to the fact that, unlike the random
methods, the explicit ones generate a higher number of multi-edges between pairs of
nodes in the constructed graph.

 PROJECT DESCRIPTION 2.
The project’s main objective is to be able to construct expander graphs for any given
input, n (number of nodes). In order to achieve this, we decided to select a couple of
already researched algorithms that produce expander graphs. Since, through the
literature reading that was done, it was found that there are two types of algorithms
that could generate graphs with these special properties – explicit methods and
random methods – we decided to implement both and test their performances. At this
point in the project we realized that, since Angluin’s method produces a 3-regular
bipartite expander, it could be tested against a 3-regular bipartite random expander;
we would proceed with a similar approach for Margulis’ method and a 5-regular
bipartite random expander. In the rest of this section, we will briefly describe how
each of the algorithms works.

 Definition 2.1
Throughout the project, k-regular bipartite expander graphs were used. Bipartite
graphs are graphs with nodes that can be divided into two disjoint sets such that no
edge is incident to any two nodes in the same set. Additionally, the graph G is called
k-regular if each node has exactly k edges incident to it.

An expander graph is a highly connected and sparse graph. It is an undirected graph,
G = (V, E) characterized by an expander constant, with V = the set of nodes and E =
the set of edges. There are several ways of defining this constant, through edge
expansion, vertex expansion or spectral expansion. In the research I did for this
project I focused on k-regular graphs and I only used the spectral property. This is
measured by the spectral gap, which is defined in the following way:

 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑔𝑎𝑝 𝐺 = 𝑘 − 𝜆!

where λ2 represents the second largest eigenvalue of the adjacency matrix used to
define the k-regular G.

Since the project evaluates expander graphs in terms of how close they are to
Ramanujan graphs, a definition what this kind of graph means is necessary. A
Ramanujan graph is a graph with the largest spectral gap possible. Moreover, a more
practical definition of a Ramanujan graph, and the definition that will be used for

 V. Ș. Burcă

Trinity College, Hartford, Connecticut

4

the rest of the project description, is that a graph is Ramanujan if the inequality (1)
is satisfied.
Given the previous definition of expander graphs, note that all the methods (both
explicit and random) presented in this project construct graphs that satisfy the
spectral expansion property of expanders.
Before proceeding with the descriptions, some comments have to be made on the
notations that will be used from now on, through the paper (this notation will be
consistent to the variables and constants that are used in the actual project code
package). Therefore:

Table I. Variable notations

n Refers to the modulo of the group ℤ!
k Degree of the k-regular graphs

size = n2 Number of elements in matrix A or B
H Adjacency list matrix of expander graph

size_H = 2 * size = 2 * n2 The dimension of H

 Methods 2.2

2.2.1 Margulis’ Method
As previously stated in the Introduction, Margulis’ goals were to give an explicit,
algebraic construction for expander graphs. His results were concluded into a more
general theorem about concentrators. Concentrators are expander graphs that are
defined by Margulis as:

Definition 1 [3]. Let H consist of an ordered pair (A, B) of sets of nodes, together with
some edges between the nodes of A and the nodes of B. Let c and α be positive, with c
> 1 and α < 1. Then H is called a (c, α)-concentrator if and only if for every nonempty
proper subset X of A with |X| < α|A|, the set Y = {𝑏 ∈ 𝐵: b is adjacent to some 𝑎 ∈ 𝑋}
satisfies |Y| > c|X|.

Informally, concentrators are graphs that hold desirable connectivity properties
similar to the ones of the expander graphs. Following this definition, Margulis states
that the graphs constructed through his method, Hm, where each of the elements of
Hm are modulo m, follow the theorem:

Theorem 1 [3]. There exist a positive constant d such that for any integer m > 1 and
any α such that 0 < α < 1, Hm is a (1 + d(1 – α), α)-concentrator.

Being the first explicit construction [1] of an expander graph, it is also the simplest
one, involving just several rules of connecting nodes between two sets of disjoint
nodes. At the beginning of the algorithm, none of the nodes are connected. The
elements of the two disjoint sets, A and B, are tuples of the following form x, y ∈ ℤ!.
Therefore, the number of elements in A (or B) is equal to n2 (size). The rules for
connecting the nodes from A to nodes in B are the following:

• Take a node x, y ∈ A and connect it to the following nodes:
o x, y ∈ B
o x + 1, y ∈ B
o x, y + 1 ∈ B

o x + y, y ∈ B
o −y, x ∈ B

A note has to be made regarding the operations seen within the tuple-nodes. Since the two elements of the
tuple always have to be from ℤ!, the operations have to be done modulo n.

Construction Algorithms for Expander Graphs

Trinity College, Hartford, Connecticut

5

(Fig. 1) Illustration of Margulis’ method

Here is the pseudocode for this method:

ALGORITHM 1. Margulis’ method of generating expander graphs
 INPUT:	 The size of the permutation set (corresponding to the value n from the description)
 OUTPUT: The adjacency list of an expander graph

1	 generate	 matrices	 A	 and	 B	 as	 a	 permutation	 of	 the	 {0	 …	 size-‐1}	 elements;	 resize	 the	
permutation	 to	 size	 x	 size	

2	 initialize	 empty	 matrix	 H	 of	 size	 size_H	 x	 k	

3	 for	 each	 index	 i	 in	 matrix	 A	

4	 	 get	 the	 corresponding	 tuple	 (x0,	 y0)	 of	 the	 index	 i	

5	 	 construct	 each	 of	 the	 five	 tuples	 that	 (x0,	 y0)	 can	 connect	 to	

6	 	 get	 the	 corresponding	 index	 j	 of	 the	 newly	 constructed	 (x,	 y)	 tuple	

7	 	 save	 the	 indices	 in	 the	 adjacency	 list	 matrix:	 H[i][k]	 =	 j;	 H[j][k]	 =	 i	

8	 return	 H	

(Code 1) Pseudocode for Margulis’ method of generating expander graphs

Even though the algorithm seems simple, there are some small implementation
details that have to be taken into account to improve performance. They involve
transitioning from the index of the tuple representation of a node to the actual tuple
(x, y), and vice-versa.

We will first address the first direction: going from the index i of a tuple to the actual
tuple (x, y). The indexing of the elements from ℤ! × ℤ! is being done as illustrated in
(Fig. 1). Therefore, the following rule of recovering the tuple (x, y) from index I can be
obtained:

 𝑥 = 𝑖/𝑛 𝑦 = 𝑖 % 𝑛

(2)

Moreover, in order to recover the index i from the tuple (x, y):

 𝑖 = 𝑥 ∗ 𝑛 + 𝑦 % 𝑛

(3)

Using equations (2) and (3), the operations from lines {4} and {6} of (Code 1) can be
optimally achieved. Before using this approach, an array (which in Python is
represented as a list) was used to store the entire collection of ℤ! × ℤ! and then

V. Ș. Burcă

Trinity College, Hartford, Connecticut

6

access it based on the needed index. Also, such Python list has a method that would
return the index of a given element, so that was very helpful. The problem with it is
that, being a list, the operations were very slow on such a data structure with a
relatively big number of elements stored in it. This is why this approach was
reconsidered and it resulted in the improved one, described above.

2.2.2 Angluin’s Method
Angluin’s goal was to improve Margulis’ method by finding the simplest construction
for which Theorem 1 would still hold. She managed to do this by formulating an
explicit method for 3-regular expander graphs, similar to Margulis’ method for 5-
regular graphs. She proved [3] that Theorem 1 holds with her resulted 3-regular
expander graphs in place of Margulis’ Hm.

This method is inspired by Margulis’ algorithm, but, as stated in the author’s paper
[3], it provides an even simpler explicit construction of expander graphs. The initial
setup with the two disjoint sets is identical to the one of the previously presented
method, so I am not going to re-state it over here. Instead, I will present the way of
constructing the edges for Angluin’s method:
• Take a node x, y ∈ A and connect it to the following nodes:

o x, y ∈ B
o x + y, y ∈ B
o (y + 1,−x) ∈ B

A note has to be made regarding the operations seen within the tuple-nodes. Since the two elements of the
tuple always have to be from ℤ!, the operations have to be done modulo n.

The pseudocode for Angluin’s method is identical to the one presented in (Code 1).
Moreover, the implementation optimizations mentioned earlier through equations (2)
and (3) apply here as well, since the algorithm involves the same transformations
from index to tuple and vice-versa.

(Fig. 2) Illustration of Angluin’s method

2.2.3 Random Method
The random method, inspired by Chang’s work and results in his thesis [4], generates
k-regular bipartite graphs without building edges using specific rules, as the
previously two methods did. Instead, it does so by splitting the initial set of size_H
nodes into {0	 …	 size_H/2	 -‐	 1} and {size_H/2	 …	 size_H	 –	 1}. Afterwards, it
randomly permutes the second set of nodes and, finally, it creates the edges between

Construction Algorithms for Expander Graphs

Trinity College, Hartford, Connecticut

7

the nodes in the first set and the nodes in the second set in order, correspondingly, as
illustrated below (for ease of notation, let m	 =	 size_H/2):

(Fig. 3) Illustration of the Random method

The indices inside the nodes are the ones after permutation, while the ones on the
outside, are the original ones, after splitting (𝑙, 𝑝, 𝑞, 𝑟 ∈{(𝑠𝑖𝑧𝑒_𝐻)/2… 𝑠𝑖𝑧𝑒_𝐻}).
This permute-and-create edges process is repeated k times, generating a k-regular
bipartite random graph. It is bipartite because the edges from within each of the 2
halves are not connected to each other – they are only connected to nodes from the
other half.

Here is the pseudocode for this method:

ALGORITHM 2. Random method of generating expander graphs
	 INPUT:	 Size of desired matrix H.	
	 OUTPUT:	 The adjacency list of an expander graph.	

1	 initialize	 empty	 matrix	 H	 of	 size	 size_H	 x	 k	

2	 generate	 list	 of	 size_H	 elements	 and	 split	 it	 into	 half	

3	 for	 edge	 in	 k	

4	 	 randomly	 permute	 the	 second	 half	 of	 the	 split	

5	 	 for	 each	 node	 i	 in	 the	 first	 half	 of	 the	 split	

	 	 	 H[i][k]	 =	 element_i_of_the_permuted_half	

	 	 	 H[element_i_of_the_permuted_half][k]	 =	 i	

8	 return	 H	

(Code 2) Pseudocode for the Random method of generating expander graphs

Since the graphs are randomly generated, a sampling factor was used (given as an
input) in order to generate multiple such graphs and then take the average of their
eigenvalues. In this way, the result is more reliable to what would happen in general,
with randomly generated expanders.

 Deliverables 2.3
Once the graphs are generated through one of these methods, in order to compare
their quality as expander graphs, inequality (1) was used. This provided a consistent
way of evaluating which method produces better expanders as the number of nodes
increases. Further discussion on how these methods are structured within the
package will be provided in the next section.

V. Ș. Burcă

Trinity College, Hartford, Connecticut

8

The deliverables of the project consist of a Python & C package (that will be further
illustrated in the next section) that can generate expander graphs through any of the
4 methods mentioned earlier. Moreover, the package summarizes the quality of each
of the generated expanders by computing the eigenvalue of each of them and
comparing it through the inequality mentioned at (1).

The package also contains a 5th method, explicit as well, due to M. Ajtai [7], that is not
fully implemented. His approach is more complicated than the ones presented so far
and we will talk more about it at the end of this paper.

 IMPLEMENTATION 3.
The expander graph-generating package was implemented with the 4 methods
mentioned before, along with an evaluating method (through eigenvalues) for the
constructed graphs. As mentioned above, this section will give a detailed explanation
of the overall implementation design of the package.
The package is composed of several modules that will be explained in more detail:

1. Iteration wrapper
2. Algorithm wrapper
3. Algorithms
4. Eigenvalue Calculator

The flow of data through the package is illustrated in (Fig. 4), below.

(Fig. 4) Program execution flow of the expander package

Here is a step-by-step description of the illustrated flow, pointing out the main
features of each of the modules.

Construction Algorithms for Expander Graphs

Trinity College, Hartford, Connecticut

9

Configuration File – Provides parameters input (n, number of samples to be
generated for the random graphs, etc.), debugging options (printing generator
matrices with indices, printing the adjacency matrix of the expander, etc.) along with
the option of choosing which algorithms should the package run (Angluin’s method,
Margulis’ method, Random 3-regular, Random 5-regular). Moreover, it has a flag for
cleaning up all the auxiliary or debugging files generated from previous runs.

Iteration Wrapper [Python] – This initial wrapper is the one that starts the entire
package. It receives input from the Configuration File [1] and then it runs the
Algorithm Wrapper [2] for different values of n. The Iteration Wrapper changes the
value of n in the Configuration File and runs the Algorithm Wrapper. This process
happens for all the hard-coded values of n.

Algorithm Wrapper [Python] – This wrapper is composed of 2 different Python
scripts. The first one reads the earlier modified Configuration File [3] and saves all
the parameters and the algorithms that have to be run. It then generates the
generator matrices A and B (the ones used for Angluin’s or Margulis’ methods) and
checks which algorithm should it call next – if it is one of the explicit methods or one
of the random methods. The second script of this wrapper splits it further on, and
decides exactly which of the four different algorithms to pick. If multiple algorithms
were checked in the configuration file, the wrapper will run each of them, one by one.

Debugging Files [optional] – If the flags for debugging information are switched on in
the Configuration File, the Algorithm Wrapper will write [5] the specified
information in these files.

Algorithms [Python] – Once the Algorithm Wrapper decides on which algorithm to
call, the corresponding method is being triggered [4]. Depending on the algorithm
details, as described in the previous section, this module will generate the adjacency
list matrix of an expander graph. It will then write it to an Auxiliary File [5] and call
the Eigenvalue Calculator [6] module in order to evaluate the quality of the
generated expander.

Auxiliary Files – Provide communication between the Algorithms module and the
Eigenvalue Calculator module. One of the files saves the adjacency matrix of the
earlier generated expander, while the other saves parameters specific to the
generated expander.

Eigenvalue Calculator [C] – This module has one of the hardest jobs – this is also
the reason why it was implemented in C, rather than Python (a more detailed
explanation on this will be provided later on in this section). The Eigenvalue
Calculator reads the matrix information from the Auxiliary Files [7] and then applies
the Power Method algorithm to generate the second largest eigenvalue of the given
expander. It then writes it to another auxiliary file, Temporary Result File [8].

While the Eigenvalue Calculator is running, the Algorithms module is asleep, waiting
for the eigenvalue to be calculated. It constantly sends signals to the Eigenvalue
Calculator process until it makes sure that the process completed. It then opens the
Temporary Result File [9], saves the computed eigenvalue and prints it in the Result
Files [10]

Result Files – These files hold information for each of the 4 possible types of
generated expanders. For each of these types, they hold information on the number of

V. Ș. Burcă

Trinity College, Hartford, Connecticut

10

nodes and the expansion value of the generated graph. The expansion value is
defined, from inequality (1) as:

 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 = 2 𝑘 − 1 − 𝜆

(4)

Informally, this tells “how far away is a graph from being Ramanujan”. In order for a
given graph to be Ramanujan, the result of the difference in (4) has to be maximized.

Example of output result, for Angluin’s method:

1	 angluin:	

2	 	 8:	 0.4855051247461901	

3	 	 18:	 0.00437712474619012	

4	 	 32:	 -‐0.021004875253809896	

(Code 3) Example of Result File output

 Challenges 3.1
As mentioned earlier, there were a couple of challenges that had to be overcome
while implementing this package. The first challenge was more related to the code
structure – as it can be seen, the code is very modulated; this structure gave me a
very easy way of debugging various parts of it and allowed me to work in parallel on
different modules.

The small implementation challenges and optimizations with each of the
constructing methods have been discussed in the previous section.

The main challenge of this project was computing the eigenvalues of the constructed
graphs. The generated graphs have very big dimensions, up to 2,000,000 x 5. My
initial approach was to use a specific numerical Python library. The implementation
of the eigenvalue method was very slow for the needs of the project. Therefore, we
decided to implement the Power Method algorithm that Chang uses as well in his
thesis [4]. The implementation was still in Python and, although there was some
visible improvement, it was not fast enough for big matrices. Thus, we decided to
implement it again, in C this time. The implementation was able to compute the
second largest eigenvalue for the largest matrix (2,000,000 x 5) in a matter of seconds
and this is why we ended up using a cross language implementation of the package.

 Results 3.2
The package was ran for values of size_H that are close to the values that Chang
used to test his random methods for 3-regular and 7-regular bipartite graphs. The
Result Files are attached in Appendix A. Moreover, Table 1 presents a summary of
these results for easier analysis. It can be seen, as Chang concluded as well in his
thesis, that the graphs generated through the Random Method converge to being
Ramanujan as their size increases, as tested against the inequality in (1). On the
other hand, the best expanders constructed are achieved at relatively low graph
sizes, due to Explicit Methods. Once the size of the expander grows, the expander
quality of the graphs produced by either of the methods is getting worse, but the
Random Methods are still able to produce expander graphs – i.e. the value of
inequality (4) is still positive most of the times.

Construction Algorithms for Expander Graphs

Trinity College, Hartford, Connecticut

11

RESULTS

 Expansion value
Number of nodes Angluin 3-regular Random 3-regular Margulis 5-regular Random 5-regular

8 0.485505 -0.171572 1.267949 1.267949

18 0.004377 0.300356 0.511528 -0.147700
32 -0.021004 0.051901 0.030111 0.238354

162 -0.089250 -0.017769 -0.667582 0.004192
1250 -0.121959 0.007560 -0.880319 -0.006768
1800 -0.124888 0.000638 -0.894546 0.006628

(Table 1) Summary of results

Moreover, similar to Chang’s results, it can be seen that the expansion value of the
graphs generated through random methods gets very close to 0. His results also state
that even with a large number of nodes the random methods are still generating
Ramanujan graphs with a more than 79% chance (for graphs with 1000 nodes) [4].
Similarly, on our summary table, we can see that indeed, the expansion value for the
graphs generated through random methods, having 1000 nodes, is still positive,
meaning that the graphs are still in the Ramanujan spectrum. This observation does
not stand for the explicit methods though, since the expansion value starts to grow
negatively from a low number of nodes (aprox. 50 in Margulis’ case).

 FUTURE WORK 4.
As mentioned earlier, the package included in this project contains an additional
explicit method of generating expander graphs, due to M. Ajtai, that is not fully
implemented yet. Briefly, we will present the main ideas behind this method as well
as its current implementation status.

 Ajtai’s Method 4.1
This explicit construction method generates 3-regular expanders using a different
approach than the previously described methods. It starts with a random graph and
it modifies it by switching edges between pairs of nodes. Thus, it chooses edges (x, y),
(u, v) in the graph, deletes them and adds the edges (x, v), (y, u) back to the graph [7].
The goal of the algorithm is to minimize the number of cycles of a given length,
𝑠 = 𝑐 𝑙𝑜𝑔 𝑛, where n is the number of nodes in the initial graph and c is a fixed
absolute constant. The choice of the edges that are switched is also done based on the
strategy of minimizing the number of cycles. Moreover, when the algorithm reaches a
local minimum in the number of cycles of length s, the graph is an expander. Ajtai’s
paper that describes this algorithm states that the number of cycles of length s is a
good measure of the expanding properties [7].

We designed the implementation of this method through 3 main steps:

1. Create H, a random 3-regular graph on n vertices.
2. Create method that swaps edges (x, y), (u, v) with (x, v), (y, u).
3. Using the condition previously stated in the description of the algorithm,

perform swaps on edges of graph H until the stopping condition occurs (the
decrease in the number of cycles of length s is not significant anymore).

Currently, only steps 1 and 2 are implemented, with step 3 being the main goal of
future work that can be done on this project. Moreover, we are considering future
work that involves running the tests for even bigger values of size_H and logging the
number of multi-edges and the maximum number of multi-edges per pair of nodes
that is achieved through each of the methods. Ideally, one would want an expander

V. Ș. Burcă

Trinity College, Hartford, Connecticut

12

that would have a relatively low number of multi-edges - so exploring construction
methods that achieve that also represents a topic of interest for this project.

 CONCLUSIONS 5.
The goal of this project was to experimentally compare the expander graphs
generated by explicit and random methods by analyzing their spectral property. By
implementing a package that would generate expanders through the methods
mentioned in this paper (due to Margulis, Angluin and random methods), we were
able to conclude that, as the number of vertices increases, the random methods tend
to produce graphs that are within the bounds of being Ramanujan (by using
inequality (1)), while the graphs constructed through explicit methods are failing the
Ramanujan test.

Construction Algorithms for Expander Graphs

Trinity College, Hartford, Connecticut

13

REFERENCES
[1] Margulis, G. Explicit constructions of concentrations. Problemy Peredachi Informatsii, 9 (4). 71-80.
(English translation in: Problems of Information Transmission, Plenum. New York, 1975).

[2] Shlomo, H., Linial, N. and Wigderson, A. Expander graphs and their applications. Bulletin of the
American Mathematical Society, 43.4. 439-561.

[3] Angluin, D. A note on construction of Margulis. Information Processing Letters, 8 (1). 17-19.

[4] Chang, K. An experimental approach to studying Ramanujan graphs. Math Junior Seminar Thesis
(2001).

[5] Hammond, C. Efficient algorithms for random expander graphs.

[6] Lubotzky, A., Phillips, R. and Sarnak, P. Ramanujan graphs. Combinatorica 8 (1988). 261-277.

[7] Ajtai, M. Recursive construction for 3-regular expanders. Combinatorica 14 (1994). 379-416.

APPENDIX A (Result files)
	

angluin:	
	 	 8:	 0.4855051247461901	
	 	 18:	 0.00437712474619012	
	 	 32:	 -‐0.021004875253809896	
	 	 50:	 -‐0.043587875253809916	
	 	 72:	 -‐0.06139087525380971	
	 	 98:	 -‐0.07292787525380984	
	 	 128:	 -‐0.08253287525380992	
	 	 162:	 -‐0.0892508752538097	
	 	 200:	 -‐0.09472487525380968	
	 	 450:	 -‐0.11013087525380971	
	 	 800:	 -‐0.11751387525380963	
	 	 1250:	 -‐0.1219598752538098	

	 	 	 	 	 1800:	 -‐0.12488887525380976	
	
	

random3:	
	 	 8:	 -‐0.1715728752538097	
	 	 18:	 0.3003561247461901	
	 	 32:	 0.05190112474619024	
	 	 50:	 0.04480512474619047	
	 	 72:	 -‐0.07115387525380967	
	 	 98:	 0.05197312474619009	
	 	 128:	 0.010014124746190234	
	 	 162:	 -‐0.017769875253809797	
	 	 200:	 0.011234532746191572	
	 	 450:	 0.00547112474619027	
	 	 800:	 0.006104124746190376	
	 	 1250:	 0.0075601247461905	

	 	 	 	 	 	 	 1800:	 0.000638124746190182	

margulis:	
	 	 8:	 1.2679490000000002	
	 	 18:	 0.5115280000000002	
	 	 32:	 0.03011100000000022	
	 	 50:	 -‐0.2548469999999998	
	 	 72:	 -‐0.4262220000000001	
	 	 98:	 -‐0.5370369999999998	
	 	 128:	 -‐0.6130129999999996	
	 	 162:	 -‐0.6675820000000003	
	 	 200:	 -‐0.7082660000000001	
	 	 450:	 -‐0.8138629999999996	
	 	 800:	 -‐0.8572610000000003	
	 	 1250:	 -‐0.8803190000000001	

	 	 	 	 	 1800:	 -‐0.8945460000000001	
	

random5:	
	 	 8:	 1.2679490000000002	
	 	 18:	 -‐0.14770099999999964	
	 	 32:	 0.23835499999999987	
	 	 50:	 0.2881	
	 	 72:	 0.1078030000000001	
	 	 98:	 -‐0.014101000000000141	
	 	 128:	 0.057017000000000095	
	 	 162:	 0.004192999999999891	
	 	 200:	 0.043402918000000845	
	 	 450:	 0.04419400000000007	
	 	 800:	 0.012801000000000062	
	 	 1250:	 -‐0.006768000000000107	

	 	 	 	 	 1800:	 0.006628000000000078	
	

APPENDIX B (Source code)

The code can be found entirely at: https://github.com/vburca/Senior-Project
	
	
	
	
Submitted on May 9, 2014

	Trinity College
	Trinity College Digital Repository
	Spring 2014

	Construction Algorithms for Expander Graphs
	Vlad S. Burca
	Recommended Citation

