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Abstract: In this paper, we develop a competitive supply chain network model with multi-

ple firms, each of which produces a differentiated product by brand and weights the emissions

that it generates through its supply chain network activities in an individual way. The supply

chain network activities of production, transport and distribution, and storage have asso-

ciated with them distinct capacities and the firms seek to determine their optimal product

flows and frequencies of operation so that their utilities are maximized where the utilities

consist of profits and weighted emissions. Multiple production, storage, and transport mode

options are allowed. The governing equilibrium concept is that of Cournot-Nash equilibrium.

We provide both path and link flow variational inequality formulations of the equilibrium

conditions and then propose an algorithm, which, at each iteration, yields closed form ex-

pressions for the underlying variables. Numerical examples illustrate the generality of the

model and the information provided to managerial decision-makers and policy-makers.

This paper adds to the growing literature on sustainable supply chains through the de-

velopment of a computable general competitive supply chain network game theory model,

which brings a greater realism to the evaluation of profit and emission trade-offs through the

incorporation of frequencies.

Keywords: game theory, supply chains, networks, Nash equilibrium, emissions, sustainabil-

ity, variational inequalities, activity frequencies, production, distribution, storage
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1. Introduction

Supply chains have revolutionized the manner in which goods are produced, stored, and

distributed around the globe and serve as critical infrastructure networks for economic ac-

tivities. Products may be manufactured on one continent, transported over thousands of

miles over land and/or sea to storage facilities on yet another continent, and then further

distributed to demanding customers.

Consumers have come to expect fresh produce in any season, new high tech products,

as soon as they become available, stylish fashions on a regular basis, as well as medicines

and pharmaceuticals, whenever needed. Each supply chain network activity, however, may

have associated with it some environmental cost – from production to transportation and

distribution to the storage of the products in terms of emissions generated, in addition to

the energy and natural resources, such as water, that are utilized. Hence, the quantification

of environmental impacts associated with supply chains, in their myriad network forms,

through the minimization of emissions, is essential to sustainability.

Today, there are over 7 billion people on our planet with more than half of the world’s

population residing in cities. In order to quantify the impacts of supply chains on the envi-

ronment it is imperative to view them holistically, in a system-wide manner. In addition, it is

critical to be able to assess how different production technologies, transport modes, storage

facilities, along with the frequency of the associated activities of production, transportation,

and storage affect the environmental emissions (notably greenhouse gasses (GHG), especially

carbon, which plays the major role today in climate change) (cf. Nagurney (1999a)). For

example, in urban areas alone, the transport of freight may account (cf. Arvidsson (2013))

for 20-30% of the total vehicle distance traveled and for 16-50% of the emissions from trans-

portation (see also Dablanc (2007)). In North America, freight transportation CO2 emissions

represented 7.8% of total US emissions in 2008 and 8% of total Canadian CO2 emissions in

2007. In the European Union 27, according to EUROSTAT (2012), transport emissions

(freight and other) comprised 19.7% of the GHG emissions for 2010.

It has been emphasized that collaboration on supply-chain carbon accounting and report-

ing should be developed for different modes of freight transport in order to help the freight

sector lower fuel use and GHG emissions, thus reducing costs across the supply chain and

improving competitiveness (see Commission for Environmental Cooperation (2011)). The

transportation sector in North America is second only to electricity generation in terms of

CO2 emissions generated.

Clearly, when it comes to transport and distribution in the context of supply chain net-
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works, the freight mode, the load on the freight mode as well as the frequency of operation

will affect the emissions generated (see, e.g., Aronsson and Huge-Brodin (2006), Cullinane

and Khanna (2008), VTI (2008), Arvidsson (2013)). The same can be said with respect to

production activities as well as storage. The Intergovernmental Panel on Climate Change

(IPCC) in its revised 1996 report has also emphasized the impact of industrial processes,

including manufacturing, on various GHG emissions, in industrial sectors ranging from ce-

ment production to the food industry. According to Hadhazy (2009), manufacturing and

industrial processes release GHGs, which the Environmental Protection Agency (EPA) esti-

mates are equivalent to approximately 350 million metric tons of carbon dioxide emissions –

5% of the total US greenhouse gas emissions. According to EUROSTAT (2012), industrial

processes, including manufacturing, accounted for 7.3% of the GHG emissions in 2010 in the

European Union 27.

Due to both theoretical relevance and practical significance, the topic of sustainable

supply chains, from modeling, analysis, to design, has garnered growing research activity.

Researchers (cf. Beamon (1999), Sarkis (2003), Corbett and Kleindorfer (2003), Nagurney

and Toyasaki (2005), Sheu, Chou, and Hu (2005), Kleindorfer, Singhal, and van Wassenhove

(2005), Nagurney, Liu, and Woolley (2007), Seuring and Muller (2008), Linton, Klassen,

and Jayaraman (2007), Nagurney and Woolley (2010), Boone, Jayaraman, and Ganeshan

(2012)) have noted that sustainable supply chains are essential for both operations and the

environment. In addition, Nagurney and Woolley (2010) emphasized that customers and

suppliers will punish polluters in the marketplace that violate environmental rules, with the

consequence that polluters may face lower profits, also called a “reputational penalty,” which

will reveal itself in a lower stock price for the company (Klein and Leffler (1981), Klassen and

McLaughlin (1996)). Roper Starch Worldwide (1997) noted that more than 75% of the public

would switch to a brand associated positively with the environment when price and quality

are equal; and nearly 60% of the public favors companies that support the environment.

Furthermore, sound environmental practices may reduce a firm’s risk (Feldman, Soyka, and

Ameer (1997)).

Certain firms, from the automobile manufacturer, Ford Motor Co. (Trudell (2013)), to the

Swedish clothing retailer and manufacturer, Hennes & Mauritz, commonly known as H&M,

are taking active efforts to reduce emissions. For example, Ford, the Dearborn, Michigan-

based company, is targeting a 30% reduction in carbon dioxide emissions per vehicle from its

factories by 2025 after a 37% cut from 2000 to 2010. H&M identified that 51% of its carbon

imprint in 2009 was due to transportation. In order to reduce the associated emissions, it

began more direct shipments that avoided intermediate warehouses, decreased the volumes
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shipped by ocean and air by 40% and increased the volume of products shipped by rail,

resulting in an over 700 ton decrease in the amount of carbon dioxide emitted (see also

Nagurney and Yu (2012)). In 2011, H&M achieved its target of a 5% year-on-year reduction

in its carbon emissions, according to the company’s 2011 corporate sustainability report (see

Environmental Leader (2012)). The company’s CO2-equivalent emissions per million SEK

($148, 500) of sales were 3.16 metric tons, down from 3.33 in 2010. H&M says the reduction

was achieved through reducing the transportation of goods via air by 32%, improving energy

efficiency in its stores, and offsetting using Gold Standard-verified carbon reduction projects.

Procter & Gamble (P&G) realizes that sustainability drives efficiency and that this is

particularly the case in supply chain transport and logistics and notes that a company need

not sacrifice profits to achieve sustainability (see Waters (2013)). Since 2002, according to

Waters (2013), P&G has more than halved the impact it has on the environment through

energy usage, CO2 emissions, water usage, and waste disposal and has redesigned its network

through the location of its distribution centers in Europe as well as its use (and loadage) of

transport modes. Another illuminating example is that of ICA, a Swedish grocery chain. It

reduced emissions by centralizing its distribution network with the basic idea that, instead

of each supplier sending one small truck directly to each store, they are all routed to a

single central warehouse from which ICA then sends one large consolidated truck to the

store (cf. ICA (2008)). Thus, more tonne-kms but fewer vehicle-kms, which has resulted in

lower emissions, an estimated reduction of 20%. This demonstrates the importance of the

selection of the links in the network and also their frequencies as each store gets deliveries

from fewer but larger trucks (lower cost, lower emissions). The frequency in the number of

trucks in ICA is reduced, but (in most cases) not the frequency of delivery of each product

group as they share vehicles.

In this paper, we develop a competitive supply chain network model consisting of a finite

number of firms competing in an oligopolistic manner. Each firm produces a product, which

is associated with its brand, and seeks to maximize its utility, with a firm’s utility function

consisting of its profits minus its weighted emissions generated. We note that, in many

industries, from pharmaceuticals to high technology to fast fashion and even certain food

products, products may be distinguished by the producer or the brand (cf. Nagurney et

al. (2013)). Such products are, nevertheless, substitutes. In our competitive supply chain

network model, each firm may have, at its disposal, multiple production technologies, with

different associated emissions generated, multiple transportation modes for shipping the

product to storage facilities and for ultimate distribution to the demand markets, also with

different associated emissions, as well as multiple storage options, if feasible. In addition,
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each firm’s supply chain network activities have associated with them capacities (capacity

of the manufacturing facility for production, capacity of a transport mode (truck, ship,

airplane, etc.), capacity of the warehouse or distribution center). Moreover, the frequencies

of operation of each link activity, which provide information as to the number of shipments,

the number of manufacturing runs needed, the number of warehouse content replacements,

etc., are variables in our model.

Our new model builds upon a growing literature on the sustainability of supply chains

and extends those that have appeared in the literature in several ways as discussed below.

1. It considers elastic demand and multiple competing firms, along with profit maximiza-

tion, whereas Nagurney (2013) focused on a single firm, cost minimization, and the case of

fixed demands. The latter paper was also concerned with supply chain network design as

was the paper by Nagurney and Nagurney (2011), which also considered only a single supply

chain firm in the network and had no frequencies included.

Our new model, unlike the above-noted ones, handles total operational cost functions on

the links that are nonseparable, and that may depend not only on the particular link’s flow

but on the flows on the links in the particular firm’s supply chain network, as well as on

those on the other firms’ supply chain links, in order to capture competition for resources. In

addition, we include link cost functions associated with the frequency of operation. Moreover,

since the firms’ utility functions include profits, the demand price functions associated with

the firms’ brands at the demand markets are also nonseparable and can depend, in general,

not only on the demands for the specific firm’s product at that and the other demand

markets, but also on the other firms’ product demands at all the markets. This generality

provides flexibility in modeling and in capturing different competitive environments.

2. It extends the model of Nagurney and Yu (2012) to include link capacities and fre-

quencies as well as multiple production technology options and multiple storage technology

options, with associated emissions. Hence, in our new model, in order to better reflect real-

ity, firms have their own capacities associated with their supply chain network activities and

select the frequency of their link operations, from production through storage, transporta-

tion, and ultimate distribution, which, in turn, will affect emissions. The emission functions

now depend on both the link flow and on the frequency, which is a generalization of the

emission functions of Nagurney and Yu (2012). Hence, a firm can evaluate its impact on the

environment and on its profits by varying the weight that it imposes on its environmental

emissions. In addition, the weights can play the role of environmental taxes and, thus, our

model is also useful to policy-makers who may wish to assess the impact on emissions by
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imposing such taxes on firms.

3. Our new game theory model is broader in scope than several existing models since

it does not focus on a single industrial sector or application as does the work of Nagurney,

Masoumi, and Yu (2012) for blood supply chains and that of Nagurney and Nagurney (2012)

in medical nuclear ones, both of which used a generalized network framework to capture

product perishability. See also Yu and Nagurney (2013) for a game theory network model

for food supply chains. Moreover, the application-based models were concerned primarily

with waste minimization in sustainable supply chains, whereas, in this paper, we emphasize

the environmental emissions generated. Also, much of the previous healthcare applications

assumed cost minimization, whereas here we consider profit maximization for each firm, as

well as the minimization of emissions generated, with an appropriate weight for each firm.

4. Furthermore, the proposed algorithmic scheme, which yields closed form expressions

in flows and frequencies for each of the competing firms, can be interpreted as a discrete-

time adjustment process until the equilibrium state is achieved. It proceeds from iteration

(time period) to iteration and reveals the type of information needed, which consists of,

for a given firm, its flows and frequencies from the preceding period and the other firms’

flows and frequencies, which can be observed or estimated in practice. Since the model

is computable, a firm may evaluate different forms for its functions, explore the addition

or deletion of competitors as well as the addition and deletion of demand markets, modes

of transportation, production technologies, and changes in link capacities, etc., to name

just a few scenarios. The model, with the accompanying algorithm, also allows for various

sensitivity analysis exercises to be conduced as we demonstrate in the numerical example

section.

This paper is organized as follows. In Section 2, we present the competitive supply

chain network model with brand differentiation, and with supply chain activity frequencies.

We derive the governing equilibrium conditions for the noncooperative game theory model

and also present two equivalent variational inequality formulations. We also describe the

information provided from the solution of the game theory model, which is of value to

managerial decision-makers and to policy-makers. In Section 3, we provide a computational

procedure that yields closed form expressions, at each iteration, for the variables, that is,

the path flows, the link frequencies, and the Lagrange multipliers associated with the link

capacity constraints. In Section 4, we present our numerical examples. We summarize and

conclude in Section 5.
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2. The Sustainable Supply Chain Network Model Under Competition and Fre-

quencies

In the model, there are I firms, with a typical firm denoted by i, who are involved in the

production, transport/shipment, storage, and distribution of a product and who compete

noncooperatively in an oligopolistic manner. Each firm corresponds to an individual brand

representing the product that it produces. The products are, hence, substitutable but are

not homogeneous. The economic activities of each firm are represented but its supply chain

network, as depicted in Figure 1.

Each firm i; i = 1, . . . , I is considering ni
M manufacturing facilities/plants; ni

D distribution

centers, and serves the same nR demand markets. Let Li denote the set of directed links

representing the supply chain network economic activities associated with firm i; i = 1, . . . , I.

Let G = [N, L] denote the graph consisting of the set of nodes N and the set of links L in

Figure 1, where L ≡ ∪i=1,...,IL
i.

We emphasize that the network topology in Figure 1 is only representative, for definite-

ness. In fact, the model can handle any prospective supply chain network topology provided

that there is a top-tiered node to represent each firm and bottom-tiered nodes to represent

the demand markets with a sequence of directed links, corresponding to at least one path,

joining each top-tiered node with each bottom-tiered node. Hence, different supply chain

network topologies to that depicted in Figure 1 correspond to distinct supply chain network

problems.

The links from the top-tiered nodes i; i = 1, . . . , I, representing the respective firm,

in Figure 1 are connected to the manufacturing nodes of the respective firm i, which are

denoted, respectively, by: M i
1, . . . ,M

i
ni

M
, and these links represent the manufacturing links.

The multiple links represent different manufacturing technologies and have associated with

them distinct emissions.

The links from the manufacturing nodes, in turn, are connected to the distribution cen-

ter nodes of each firm i; i = 1, . . . , I, which are denoted by Di
1,1, . . . , D

i
ni

D,1
. These links

correspond to the transportation/shipment links between the manufacturing plants and the

distribution centers where the product is stored. Observe that there are alternative shipment

links to denote different possible modes of transportation (which would also have associated

with them different levels of emissions). Different modes of transportation may include: rail,

air, truck, ship, as appropriate. A shipment link may also represent the option of intermodal

transport (see Floden (2007)). Both the manufacturing links and the shipment links have

distinct capacities associated with them. Capacities, in the case of a transport mode, rep-
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Figure 1: The Sustainable Supply Chain Network Topology

resent the volumes (flows) of the product that the mode can transport. In the case of a

manufacturing link, the capacity denotes the amount of flow (volume) of the product that

can be produced in a single manufacturing run.

The links joining nodes Di
1,1, . . . , D

i
ni

D,1
with nodes Di

1,2, . . . , D
i
ni

D,2
for i = 1, . . . , I corre-

spond to the storage links. The multiple storage links represent the available storage options

and have associated with them different capacities, representing the maximum volume of the

product (flow) that can be stored at the warehouse / distribution center.

Finally, there are possible shipment/distribution links joining the nodes Di
1,2, . . . , D

i
ni

D,2

for i = 1, . . . , I with the demand market nodes: R1, . . . , RnR
. Here, we also allow for multiple

modes of transportation, as depicted by multiple arcs in Figure 1. For the sake of generality,

we refer to the bottom-tiered nodes in Figure 1 as demand markets. Of course, they may

correspond to retailers.

In addition, we allow for the possibility that a firm may wish to have the product trans-

ported directly from a manufacturing plant to a demand market, and avail itself of one
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or more transportation shipment modes. Having such an option may also be attractive to

consumers and also, possibly, for the environment.

We assume that the firms, as decision-makers, are rational, which is a common assumption

in game theory models, as well as in economics. In addition, we assume that the firms

possess perfect information on their underlying functions, which is not unreasonable. In

the discussion of the algorithm in the next Section, we also provide an interpretation of the

computational scheme as a discrete-time adjustment process and the information needed.

Let dik denote the demand for firm i’s product; i = 1, . . . , I, at demand market Rk;

k = 1, . . . , nR. The demands are variables and are not fixed. Let xp denote the nonnegative

flow on path p joining (origin) node i; i = 1, . . . , I with a (destination) demand market node.

Then the following conservation of flow equations must hold:∑
p∈P i

k

xp = dik, i = 1, . . . , I; k = 1, . . . , nR, (1)

where P i
k denotes the set of all paths joining the origin node i; i = 1, . . . , I with destination

node Rk, and P ≡ ∪i=1,I ∪k=1,nR
P i

k, denotes the set of all paths in Figure 1. According to

(1), the demand for firm i’s product at demand point Rk is satisfied by the product flows

from firm i to that demand market. We group the demands dik; i = 1, . . . , I; k = 1, . . . , nR

into the I × nR-dimensional vector d, and the path flows xp; p ∈ P into the np-dimensional

vector x, where np is the number of all the paths in Figure 1.

We denote the demand price of firm i’s product at demand market Rk by ρik and we

assume, as given, the demand price functions:

ρik = ρik(d), i = 1, . . . , I; k = 1, . . . , nR, (2a)

that is, the price for firm i’s product at a particular demand market may depend upon not

only the demands for this product at the other demand markets, but also on the demands for

the other substitutable products at all the demand points. Hence, (2a) captures competition

on the demand side of the competitive supply chain network.

In view of (1), we can define the demand price functions ρ̂ik; i = 1, . . . , I; k = 1, . . . , nR,

in product flows, that is

ρ̂ik = ρ̂ik(x) = ρik(d). (2b)

We assume that the demand price functions are continuous, continuously differentiable, and

monotone decreasing.
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In addition, let fa denote the flow on link a. We must have the following conservation of

flow equations satisfied:

fa =
∑
p∈P

xpδap, ∀a ∈ L, (3)

where δap = 1 if link a is contained in path p and δap = 0, otherwise. In other words, the

flow on a link is equal to the sum of flows on paths that contain that link. Observe that,

since the firms share no links, we do not need to distinguish with superscripts the individual

firm path and link flows.

The path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P. (4)

Let γa denote the activity frequency of link a. With the existing link capacities, denoted

by ūa; a ∈ L, which are assumed to be positive, the following constraints must hold:

fa ≤ ūaγa, ∀a ∈ L, (5)

that is, the product flow on a link does not exceed that link’s capacity times the activity

frequency of that link. We group the link flows and the activity frequencies into the respective

nL-dimensional vectors f and γ. We assume that all vectors are column vectors.

The total operational cost on a link, be it a manufacturing/production link, a ship-

ment/distribution link, or a storage link is assumed, in general, to be a function of the

product flows on all the links, that is,

ĉa = ĉa(f), ∀a ∈ L. (6)

The above total cost expressions capture competition among the firms for resources used in

the manufacture, transport, and storage of their products. We assume that the total cost

on each link is convex and is continuously differentiable.

The total cost of operating link a at a frequency γa is assumed to be a function of the

activity frequency of that link, that is,

ĝa = ĝa(γa), ∀a ∈ L. (7)

These frequency operational cost functions are also assumed to be convex and continuously

differentiable.

In addition, all the firms are concerned with their environmental impacts along their

supply chains, but, possibly, to different degrees. As done in Nagurney (2013), we denote
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the emission-generation function associated with link a by êa, and assume that

êa = êa(fa, γa), ∀a ∈ L. (8)

These functions are also assumed to be convex and continuously differentiable. Here, for

definiteness, we assume that the emission functions correspond to GHG emissions as in

carbon emissions. However, the model and (8) are also relevant to other emissions, includ-

ing particulate matter (PM), which has a large negative impact on air quality and human

health (see World Health Organization (2006, 2013)). PM is generated in transport and in

manufacturing, among other human activities.

Let Xi denote the vector of path flows associated with firm i, that is, Xi ≡ {{xp}|p ∈
P i} ∈ R

nPi

+ , where P i ≡ ∪k=1,...,nR
P i

k, and let nP i denote the number of paths from firm

i to the demand markets. Γi is the vector of activity frequencies associated with firm i,

that is, Γi ≡ {{γa}|a ∈ Li} ∈ R
nLi

+ , where nLi denotes the number of links associated with

firm i. The strategy variables, then, associated with firm i are its product flows and its

activity frequencies, denoted by Yi, where Yi ≡ (Xi, Γi). Y is then the vector of all the firms’

strategies, that is, Y ≡ {{Yi}|i = 1, . . . , I}.

The profit of firm i; i = 1, . . . , I, is the difference between the firm’s revenue and its total

costs, and each firm i seeks to maximize its profit, that is,

Maximize

nR∑
k=1

ρ̂ik(x)
∑
p∈P i

k

xp −
∑
a∈Li

ĉa(f)−
∑
a∈Li

ĝa(γa). (9)

In addition, each firm seeks to minimize its entire environmental impact, in terms of

emissions generated, that is,

Minimize
∑
a∈Li

êa(fa, γa). (10)

We can now construct a weighted utility function associated with the two criteria faced

by each firm. The term ωi is assumed to be the price that firm i would be willing to

pay for each unit of emission on each of its links and it is nonnegative. This term, hence,

represents the environmental concern of firm i, with a higher ωi denoting a greater concern

for the environment. Consequently, the multicriteria decision-making problem faced by firm

i; i = 1, . . . , I, is:

Ui =

nR∑
k=1

ρ̂ik(x)
∑
p∈P i

k

xp −
∑
a∈Li

ĉa(f)−
∑
a∈Li

ĝa(γa)− ωi

∑
a∈Li

êa(fa, γa). (11)
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Note that, in the case of governmental regulations, the ωis would correspond to a tax on

emissions (carbon or related).

In view of (1)-(11), we may write:

Û = Û(Y ), (12)

where Û is the I-dimensional vector of all the firms’ utilities.

According to the oligopolistic market mechanism, the I firms select their product path

flows and their activity frequencies in a noncooperative manner, each one trying to maximize

its own utility.

Definition 1: Supply Chain Network Cournot-Nash Equilibrium

A path flow and link frequency pattern Y ∗ ∈ K =
∏I

i=1 Ki is said to constitute a supply

chain network Cournot-Nash equilibrium if for each firm i; i = 1, . . . , I:

Ûi(Y
∗
i , Ŷ ∗

i ) ≥ Ûi(Yi, Ŷ
∗
i ), ∀Yi ∈ Ki, (13)

where Ŷ ∗
i ≡ (Y ∗

1 , . . . , Y ∗
i−1, Y

∗
i+1, . . . , Y

∗
I ) and Ki ≡ {Yi|Yi ∈ R

nPi+nLi

+ }.

Note that, according to (13), an equilibrium is established if no firm can individually

improve its utility, by changing its production path flows and its activity frequencies, given

the decisions of the other firms.

The λa; a ∈ L are the Lagrange multipliers associated with constraint (5). We group the

Lagrange multipliers into the nL-dimensional vector λ.

The variational inequality formulations, in path flows and in link flows, respectively, of the

Cournot-Nash (Cournot (1838), Nash (1950, 1951), Gabay and Moulin (1980)) sustainable

supply chain network problem satisfying Definition 1 are given in the following theorem.

Theorem 1

Assume that for each firm i; i = 1, . . . , I, the utility function Ûi(Y ) is concave with respect to

the variables in Yi, and is continuously differentiable. Then Y ∗ ∈ K is a sustainable supply

chain network Cournot-Nash equilibrium according to Definition 1 if and only if it satisfies

the variational inequality:

−
I∑

i=1

〈∇Yi
Ûi(Y

∗), Yi − Y ∗
i 〉 ≥ 0, ∀Y ∈ K, (14)

where 〈·, ·〉 denotes the inner product in the corresponding Euclidean space and ∇Yi
Ûi(Y )

denotes the gradient of Ûi(Y ) with respect to Yi. The solution of variational inequality (14),

12



in turn, is equivalent to the solution of the variational inequality: determine (x∗, γ∗, λ∗) ∈ K1

satisfying:

I∑
i=1

nR∑
k=1

∑
p∈P i

k

∂Ĉp(x
∗)

∂xp

+ ωi
∂Êp(x

∗, γ∗)

∂xp

+
∑
a∈Li

λ∗aδap − ρ̂ik(x
∗)−

nR∑
l=1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

x∗q

× [xp − x∗p]

+
I∑

i=1

∑
a∈Li

[
∂ĝa(γ

∗
a)

∂γa

+ ωi
∂Êp(x

∗, γ∗)

∂γa

− ūaλ
∗
a

]
× [γa − γ∗a]

+
I∑

i=1

∑
a∈Li

[
ūaγ

∗
a −

∑
q∈P

x∗qδaq

]
× [λa − λ∗a] ≥ 0, ∀(x, γ, λ) ∈ K1, (15)

where K1 ≡ {(x, γ, λ)|x ∈ RnP
+ , γ ∈ RnL

+ , λ ∈ RnL
+ } and for each path p; p ∈ P i

k; i = 1, . . . , I;

k = 1, . . . , nR,

∂Ĉp(x)

∂xp

≡
∑
b∈Li

∑
a∈Li

∂ĉb(f)

∂fa

δap, (16a)

∂Êp(x, γ)

∂xp

≡
∑
a∈Li

∂êa(fa, γa)

∂fa

δap, (16b)

∂Êp(x, γ)

∂γa

≡ ∂êa(fa, γa)

∂γa

, (16c)

∂ρ̂il(x)

∂xp

≡ ∂ρil(d)

∂dik

. (16d)

In addition, (15) can be re-expressed in terms of link flows as: determine (f ∗, d∗, γ∗, λ∗) ∈
K2, such that:

I∑
i=1

∑
a∈Li

[∑
b∈Li

∂ĉb(f
∗)

∂fa

+ ωi
∂êa(f

∗
a , γ∗a)

∂fa

+ λ∗a

]
× [fa − f ∗a ]

+
I∑

i=1

nR∑
k=1

[
−ρik(d

∗)−
nR∑
l=1

∂ρil(d
∗)

∂dik

d∗il

]
× [dik − d∗ik]

+
I∑

i=1

∑
a∈Li

[
∂ĝa(γ

∗
a)

∂γa

+ ωi
∂êa(f

∗
a , γ∗a)

∂γa

− ūaλ
∗
a

]
× [γa − γ∗a]

+
I∑

i=1

∑
a∈Li

[ūaγ
∗
a − f ∗a ]× [λa − λ∗a] ≥ 0, ∀(f, d, γ, λ) ∈ K2, (17)

where K2 ≡ {(f, d, γ, λ)|∃x ≥ 0, and (1) and (3) hold, and γ ≥ 0, λ ≥ 0}.

Proof: (14) follows directly from Gabay and Moulin (1980); see also Dafermos and Nagurney

(1987).
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In order to obtain variational inequality (15), we note that, for a given firm i, under the

imposed assumptions, (14) holds if and only if (see, e.g., Bertsekas and Tsitsiklis (1989)) the

following holds:

nR∑
k=1

∑
p∈P i

k

[
−∂Ûi

∂xp

+
∑
a∈Li

λ∗aδap

]
× [xp − x∗p] +

∑
a∈Li

[
−∂Ûi

∂γa

− ūaλ
∗
a

]
× [γa − γ∗a]

+
∑
a∈Li

[
ūaγ

∗
a −

∑
q∈P

x∗qδaq

]
× [λa − λ∗a] ≥ 0, ∀(x, γ, λ) ∈ K1

i , (18)

where K1
i ≡ {(x, γ, λ)|x ∈ Xi, γ ∈ Γi, λ ∈ Λi, }, and Λi ≡ {{λa}|a ∈ Li} ∈ R

nLi

+ . For each

path p; p ∈ P i
k,

∂Ûi

∂xp

=
∂

[∑nR

l=1 ρ̂il(x)
∑

q∈P i
l
xq −

∑
b∈Li ĉb(f)−

∑
b∈Li ĝb(γb)− ωi

∑
b∈Li êb(fb, γb)

]
∂xp

=

nR∑
l=1

∂
[
ρ̂il(x)

∑
q∈P i

l
xq

]
∂xp

−
∂

[∑
b∈Li ĉb(f)

]
∂xp

−
∂

[∑
b∈Li ĝb(γb)

]
∂xp

− ωi

∂
[∑

b∈Li êb(fb, γb)
]

∂xp

= ρ̂ik(x) +

nR∑
l=1

∂ρil(d)

∂dik

∂dik

∂xp

∑
q∈P i

l

xq −
∑
a∈Li

∂
[∑

b∈Li ĉb(f)
]

∂fa

∂fa

∂xp

− ωi

∑
a∈Li

∂
[∑

b∈Li êb(fb, γb)
]

∂fa

∂fa

∂xp

= ρ̂ik(x) +

nR∑
l=1

∂ρil(d)

∂dik

∑
q∈P i

l

xq −
∑
a∈Li

∑
b∈Li

∂ĉb(f)

∂fa

δap − ωi

∑
a∈Li

∂êa(fa, γa)

∂fa

δap (19)

and for each link a; a ∈ Li,

∂Ûi

∂γa

=
∂

[∑nR

l=1 ρ̂il(x)
∑

q∈P i
l
xq −

∑
b∈Li ĉb(f)−

∑
b∈Li ĝb(γb)− ωi

∑
b∈Li êb(fb, γb)

]
∂γa

=

nR∑
l=1

∂
[
ρ̂il(x)

∑
q∈P i

l
xq

]
∂γa

−
∂

[∑
b∈Li ĉb(f)

]
∂γa

−
∂

[∑
b∈Li ĝb(γb)

]
∂γa

− ωi

∂
[∑

b∈Li êb(fb, γb)
]

∂γa

= −∂ĝa(γa)

∂γa

− ωi
∂êa(fa, γa)

∂γa

. (20)

By making use of the definitions in (16a)-(16d), variational inequality (15) is immediate.

In addition, the equivalence between variational inequalities (15) and (17) can be proved

with (1) and (3). �

Variational inequalities (15) and (17) can be put into standard form (see Nagurney

(1999b)): determine X∗ ∈ K such that:

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (21)
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where 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space. Indeed, if we define

the column vectors: X ≡ (x, γ, λ) and F ≡ (F1(X), F2(X), F3(X)), where

F1(X) =
[∂Ĉp(x)

∂xp

+ ωi
∂Êp(x, γ)

∂xp

+
∑
a∈Li

λaδap − ρ̂ik(x)−
nR∑
l=1

∂ρ̂il(x)

∂xp

∑
q∈P i

l

xq;

p ∈ P i
k; i = 1, . . . , I; k = 1, . . . , nR

]
, (22a)

F2(X) =
[∂ĝa(γa)

∂γa

+ ωi
∂Êp(x, γ)

∂γa

− ūaλa; a ∈ Li; i = 1, . . . , I
]
, (22b)

F3(X) =
[
ūaγa −

∑
q∈P

xqδaq; a ∈ Li; i = 1, . . . , I
]
, (22c)

and K ≡ K1 then (15) can be re-expressed as (21). If we define the column vectors: X ≡
(f, d, γ, λ) and F (X) ≡ (F1(X), F2(X), F3(X), F4(X)), where

F1(X) =
[∑

b∈Li

∂ĉb(f)

∂fa

+ ωi
∂êa(fa, γa)

∂fa

+ λa; a ∈ Li; i = 1, . . . , I
]
, (23a)

F2(X) =
[
−ρik(d)−

nR∑
l=1

∂ρil(d)

∂dik

dil; i = 1, . . . , I; k = 1, . . . , nR

]
, (23b)

F3(X) =
[∂ĝa(γa)

∂γa

+ ωi
∂êa(fa, γa)

∂γa

− ūaλa; a ∈ Li; i = 1, . . . , I
]
, (23c)

F4(X) =
[
ūaγa − fa; a ∈ Li; i = 1, . . . , I

]
, (23d)

and K ≡ K2 then (17) can be re-expressed as (21).

2.1 Information for Managerial Decision-Makers and Policy-Makers

Before we present the algorithm to compute the equilibrium product flow, frequency, and

Lagrange multiplier pattern, followed by numerical examples, it is worthwhile to identify the

value of the model in terms of information provided to both managerial decision-makers as

well as to policy-makers.

Through the equilibrium link flows (see also Figure 1), managers of the firms’ respective

supply chains have, at their disposal, the amounts of the product that they should produce

using each available technology at each of their manufacturing plants, the amounts that

should be shipped by each available mode to each of their distribution centers and/or directly

from the manufacturing plants to the demand markets, and the volumes of the shipments

via different modes to the demand markets so that their individual utilities, which consist

of their profits and weighted emissions, are maximized. A given firm can also assess the

potential impacts of changes in its data and various cost and emission functional forms, as
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well as those of the demand price functions, on its utility, and evaluate the impacts of the

addition or deletion of demand markets, different manufacturing and storage technologies,

modes of transport, etc. They can also assess the impacts of competitors leaving the markets

as well as the addition of competitors. In addition, a firm can evaluate the impact on profits

and of its emissions by varying its ωi factor. This may provide venues for marketing its

concerns about the environment and sustainability.

Policy-makers, in turn, may have, at their disposal, the ability to tax firms’ environmental

emissions and since the ωis can also correspond to a tax, they can evaluate the impacts on

emission reduction through the assessment of levied ωis on firms under their jurisdiction.

Firms, in turn, can determine the emissions throughout their supply chains and can see the

redistribution of flows across manufacturing plants, distribution centers, modes of transport,

etc., under different values of the ωis.

3. The Algorithm

In this Section, we recall the Euler method, which is induced by the general iterative

scheme of Dupuis and Nagurney (1993). Its realization for the solution of the sustainable

supply chain network oligopoly model with frequencies governed by the variational inequality

(15) yields subproblems that can be solved explicitly and in closed form.

Specifically, recall that, at iteration τ+1 of the Euler method (see also Nagurney and

Zhang (1996)), one computes:

Xτ+1 = PK(Xτ − aτF (Xτ )), (24)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem: determine X∗ ∈ K such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (25)

where recall that 〈·, ·〉 is the inner product in n-dimensional Euclidean space, X ∈ Rn, and

F (X) is an n-dimensional function from K to Rn, with F (X) being continuous.

As shown in Dupuis and Nagurney (1993); see also Nagurney and Zhang (1996), for

convergence of the general iterative scheme, which induces the Euler method, among other

methods, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞.

Specific conditions for convergence of this scheme can be found for a variety of network-based

problems, similar to those constructed here, in Nagurney and Zhang (1996) and the references

therein. Applications to the solution of network oligopolies can be found in Nagurney, Dupuis

and Zhang (1994), Nagurney (2010), Nagurney and Yu (2012), and Nagurney and Li (2013).
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Explicit Formulae for the Euler Method Applied to the Sustainable Supply Chain

Network Variational Inequality (15)

The elegance of this procedure for the computation of solutions to the sustainable supply

chain network problem modeled in Section 2 can be seen in the following explicit formulae.

In particular, (24) for the sustainable supply chain network model governed by variational

inequality problem (15) yields the following closed form expression, at iteration τ +1, for all

the product path flows xp; p ∈ P i
k; i = 1, . . . , I; k = 1, . . . , nR:

xτ+1
p = max

{
0, xτ

p+aτ

(
ρ̂ik(x

τ )+

nR∑
l=1

∂ρ̂il(x
τ )

∂xp

∑
q∈P i

l

xτ
q−

∂Ĉp(x
τ )

∂xp

−ωi
∂Êp(x

τ , γτ )

∂xp

−
∑
a∈Li

λτ
aδap

)}
,

(26a)

and the following closed form expression for all the activity frequencies γa; a ∈ Li; i =

1, . . . , I:

γτ+1
a = max

{
0, γτ

a + aτ

(
ūaλ

τ
a −

∂ĝa(γ
τ
a)

∂γa

− ωi
∂Êp(x

τ , γτ )

∂γa

)}
, (26b)

with the Lagrange multipliers being computed for a ∈ Li; i = 1, . . . , I according to:

λτ+1
a = max

{
0, λτ

a + aτ

(∑
q∈P

xτ
qδaq − ūaγ

τ
a

)}
. (26c)

As mentioned in the Introduction, this computational procedure can be interpreted as a

discrete-time adjustment process where the iteration corresponds to a time period. According

to (26a), if the marginal utility of a firm with respect to its product path flow minus the

Lagrange multipliers on the path is positive, then it should increase its path flow at a

given iteration; if it is sufficiently negative, so that according to (26a) the subsequent path

flow would be negative, the max operator guarantees that the next iteration’s path flow

is zero, so as not to violate the nonnegativity constraint on the path flows. Note that,

according to (26a), a firm needs to have information on the preceding iteration’s path flows

and frequencies.

A similar interpretation holds for the updates on the frequencies according to (26b)

with (26c) guaranteeing, in turn, that the Lagrange multipliers are always nonnegative and

decrease if the capacity times the frequency exceeds the link flow, at a given iteration.

In the next Section, we solve sustainable supply chain network problems using the above

algorithmic scheme.
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4. Numerical Examples

In this Section, we consider two firms, Firm 1 and Firm 2, each of which is involved in

the production, storage, and distribution of a single product, which is differentiated by its

brand. Each firm has, at its disposal, two manufacturing plants, two distribution centers,

and serves a single demand market. Hence, the topology is as depicted in Figure 2. M1
1 and

M2
1 are domestic manufacturing plants located in the United States, whereas M1

2 and M2
2

are off-shore manufacturing plants with lower operational costs. The distribution centers

and the demand market are in the United States.
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Figure 2: The Supply Chain Network Topology for Example 1

For the computation of solutions to the numerical examples, we implemented the Euler

method, as discussed in Section 3, using Matlab. The convergence tolerance was ε = 10−6,

and the sequence aτ = .1(1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
. . .). We considered the algorithm to have converged

(cf. (26a)-(26c)) when the absolute value of the difference between successive path flows, link

frequencies, and Lagrange multipliers differed by no more than the above ε. We initialized

the algorithm by setting each path flow at 10.00, each activity frequency at 1.00, and each

Lagrange multiplier at 0.00.

Example 1

In Example 1, Firm 1 cares about the emissions that it generates much more than Firm 2
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Table 1: Link Capacities, Total Cost and Total Emission Functions for Example 1

Link a ūa ĉa(f) ĝa(γa) êa(fa, γa)
1 100 5f 2

1 + 5f1 γ2
1 + 2γ1 .05f 2

1 + .5f1 + .5γ2
1 + γ1

2 100 .5f 2
2 + 4f2 .5γ2

2 + γ2 .08f 2
2 + .8f2 + .8γ2

2 + 1.5γ2

3 100 5f 2
3 + 4f3 γ2

3 + 1.5γ3 .1f 2
3 + .5f3 + γ2

3 + 1.5γ3

4 100 .5f 2
4 + 2f4 .5γ2

4 + .8γ4 .15f 2
4 + .8f4 + 2γ2

4 + 2γ4

5 20 .5f 2
5 + 2f5 γ2

5 + γ5 .08f 2
5 + .5f5 + γ2

5 + γ5

6 20 .5f 2
6 + 3f6 γ2

6 + γ6 .08f 2
6 + .8f6 + γ2

6 + γ6

7 50 f 2
7 + 10f7 1.5γ2

7 + .5γ7 .05f 2
7 + .8f7 + 1.5γ2

7 + γ7

8 50 f 2
8 + 8f8 1.5γ2

8 + .5γ8 .05f 2
8 + .5f8 + 1.5γ2

8 + γ8

9 20 .5f 2
9 + 1.5f9 γ2

9 + .8γ9 .1f 2
9 + .5f9 + γ2

9 + 1.5γ9

10 20 .5f 2
10 + 2f10 γ2

10 + .8γ10 .1f 2
10 + .8f10 + γ2

10 + 1.5γ10

11 50 .8f 2
11 + 10f11 1.5γ2

11 + .3γ11 .08f 2
11 + .8f11 + 1.75γ2

11 + γ11

12 50 .8f 2
12 + 8f12 1.5γ2

12 + .3γ12 .08f 2
12 + .5f12 + 1.75γ2

12 + γ12

13 100 .5f 2
13 + 1.5f13 γ2

13 + .5γ13 .01f 2
13 + .1f13 + .1γ2

13 + .1γ13

14 100 .5f 2
14 + 1.5f14 γ2

14 + .5γ14 .01f 2
14 + .1f14 + .1γ2

14 + .1γ14

15 100 .5f 2
15 + f15 .8γ2

15 + γ15 .05f 2
15 + .1f15 + .1γ2

15 + .2γ15

16 100 .5f 2
16 + f16 .8γ2

16 + γ16 .05f 2
16 + .1f16 + .1γ2

16 + .2γ16

17 20 f 2
17 + f17 γ2

17 + γ17 .1f 2
17 + f17 + 2γ2

17 + 1.5γ17

18 20 f 2
18 + 1.5f18 γ2

18 + γ18 .1f 2
18 + 1.5f18 + 2γ2

18 + 1.5γ18

19 20 .8f 2
19 + f19 γ2

19 + .8γ19 .2f 2
19 + f19 + 3γ2

19 + 2γ19

20 20 .8f 2
20 + 1.5f20 γ2

20 + .8γ20 .2f 2
20 + 1.5f20 + 3γ2

20 + 2γ20

does, which is indicated by the respective values of ω1 and ω2, where ω1 = 5 and ω2 = 1. In

addition, Firm 1 utilizes more advanced technologies in its supply chain activities in order

to lower the emissions that it generates, but at relatively higher costs.

Links 5, 6, 9, 10, and 17-20 correspond to the domestic shipment by small trucks, each

with a capacity of 20, while links 7, 8, 11, and 12 represent international shipment by sea,

followed by domestic rail, with a capacity of 50. Hence, the latter links correspond to

intermodal transport. The link capacities, the total cost and the total emission functions for

all the links are given in Table 1.

The demand price functions for the two products at demand market R1 are:

ρ11(d) = −d11 − .2d21 + 400, ρ21(d) = −2d21 − .5d11 + 400.

The computed equilibrium link flows, activity frequencies, and Lagrange multipliers are

reported in Table 2. For completeness, below, we also provide the computed equilibrium

path flows. There are four paths for each firm labeled as follows (please refer to Figure 2):
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for Firm 1:

p1 = (1, 5, 13, 17), p2 = (1, 6, 14, 18), p3 = (2, 7, 13, 17), p4 = (2, 8, 14, 18);

and for Firm 2:

p5 = (3, 9, 15, 19), p6 = (3, 10, 16, 20), p7 = (4, 11, 15, 19), p8 = (4, 12, 16, 20).

The computed equilibrium path flow pattern is:

for Firm 1:

x∗p1
= 6.97, x∗p2

= 5.26, x∗p3
= 21.17, x∗p4

= 22.31;

for Firm 2:

x∗p5
= 4.84, x∗p6

= 3.71, x∗p7
= 19.42, x∗p8

= 20.41.

Table 2: Computed Equilibrium Link Flows, Activity Frequencies, and Lagrange Multipliers
for Example 1

Link a f ∗a γ∗a λ∗a
1 12.23 .1223 .0786
2 43.48 .4348 .1241
3 8.55 .0855 .0334
4 39.83 .3983 .0479
5 6.97 .3486 .5091
6 5.26 .2630 .4578
7 21.17 .4233 .2624
8 22.31 .4462 .2706
9 4.84 .2418 .1634
10 3.71 .1855 .1521
11 19.42 .3884 .0765
12 20.41 .4082 .0791
13 28.14 .2814 .0184
14 27.57 .2757 .0183
15 24.26 .2427 .0165
16 24.12 .2413 .0164
17 28.14 1.4069 1.9726
18 27.57 1.3784 1.9413
19 24.26 1.2130 .6252
20 24.12 1.2060 .6224

The computed demand for Firm 1’s product is 55.71 and the price is 334.62, while the

demand for Firm 2’s product is 48.38 and the price is 275.39. Given Firm 1’s effort to reduce
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its generated emissions, the consumers reveal their preferences for the product of Firm 1.

Therefore, consumers are willing to pay more for Firm 1’s product. Consequently, the profit

of Firm 1 is 12, 818.14 with its total emissions being 549.68, while the profit of Firm 2 is

9, 387.54 with its total emissions being 754.66. The utilities (cf. (11)) for Firm 1 and for

Firm 2 are: 10, 069.74 and 8, 632.88, respectively. Hence, Firm 1 emits less pollution and

has both a higher profit and a higher utility than Firm 2. The total emissions generated by

both firms in their supply chains is: 1, 304.34.

The equilibrium link flow, frequency, and Lagrange multiplier information reported in

Table 2 provides valuable information for the managerial decision-makers responsible for

the supply chain of Firm 1 and Firm 2. For example, Firm 1 now knows that its off-shore

manufacturing plant should produce at a level f ∗2 = 43.48 and at a level of f ∗1 = 12.23 at

its domestic plant. Firm 2, on the other hand, knows that it should produce at a level of

f ∗4 = 39.83 at its off-shore plant and at a level of f ∗3 = 8.55 at its domestic plant. The values

of the other equilibrium link flows let the respective firm identify how much to ship from each

of its manufacturing plants to each of its distribution centers, and, finally, to the demand

market. In addition, we note that the frequencies of all the distribution links (links 17-20)

are greater than 1. In other words, due to the high volume of products to be distributed, the

number of shipments from each distribution center to the demand market is greater than 1.

For example, on link 17 (cf. Table 2), Firm 1, according to γ∗17, would ship one full truck of

its product to demand market R1 and another one that would be just over 40% filled.

We investigate Firm 1 exploring other distribution options, so as to further reduce the

emissions of its distribution activities, in Examples 2 and 3 below.

We also conducted sensitivity analysis by setting ω1 and ω2 equal to zero. In other

words, Firm 1 and Firm 2 decide their product flows and activity frequencies without the

consideration of their generated emissions. Equivalently, since, as mentioned earlier the ωis

can also play the role of environmental taxes imposed by the governmental regulatory body

or policy-maker, having the flexibility to vary the ωis is also useful from a policy perspective.

The computed demand for Firm 1’s product is 72.31 and the price is 317.42, while the

demand for Firm 2’s product is 51.36 and the price is 261.12. The profit of Firm 1 is

13, 551.23 with its total emissions being 903.90, while the profit of Firm 2 is 9, 023.13 with

its total emissions being 857.36. Due to consumers’ preference, the profit of Firm 1 is still

significantly higher than that of Firm 2. It is interesting to note that the profit of Firm

2 is lower without the consideration of the emissions! This analysis further supports that

sacrificing of profit may not be necessary for accomplishment in sustainability.
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However, we also note that with ω1 = ω2 = 0, the total emissions are now: 1, 761.26, a

substantial increase from 1, 304.34 in which the weights (or taxes) were positive.

Example 2

In Example 2, Firm 1 is considering the utilization of large trucks for the distribution from

its distribution center D1
2,2 to the demand market. As shown in Figure 3, there is a new link

21 joining node D1
2,2 with node R1. The capacity of link 21 is 30, which is significantly larger

than that of the other distribution links. The total cost and the total emission functions of

link 21 are:

ĉ21(f) = f 2
21 + 1.5f21,

ĝ21(γ21) = γ2
21 + 1.5γ21,

ê21(f21, γ21) = .1f 2
21 + 1.5f21 + 2γ2

21 + 2γ21.

The remaining data are identical to those in Example 1 with weights ω1 = 5 and ω2 = 1.
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Figure 3: The Supply Chain Network Topology for Examples 2 and 3

Due to the added link 21, there are two new paths for Firm 1 labeled as follows:

p9 = (1, 6, 14, 21), p10 = (2, 8, 14, 21).

The computed equilibrium path flow pattern is now:
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for Firm 1:

x∗p1
= 4.45, x∗p2

= 4.28, x∗p3
= 20.63, x∗p4

= 13.00, x∗p9
= 4.37, x∗p10

= 13.09;

for Firm 2:

x∗p5
= 4.81, x∗p6

= 3.69, x∗p7
= 19.31, x∗p8

= 20.29.

The computed equilibrium link flows, activity frequencies, and Lagrange multipliers are

reported in Table 3.

The computed demand for Firm 1’s product is 59.83 and the price is 330.55, while the

demand for Firm 2’s product is 48.10 and the price is 273.89. The profit of Firm 1 is

13, 643.14 with its total emissions being 566.85, while the profit of Firm 2 is 9, 280.21 with

its total emissions being 746.74. The utilities for Firm 1 and for Firm 2 are: 10, 808.91 and

8, 533.48, respectively.

The total emissions for both supply chains are: 1, 313.59.

Example 3

Example 3 has the same data as Example 2 except that now link 21 represents the option of

rail-truck intermodal transport with an even larger capacity of 50. The total cost and total

emission functions are now:

ĉ21(f) = f 2
21 + f21,

ĝ21(γ21) = 1.5γ2
21 + 1.5γ21,

ê21(f21, γ21) = .01f 2
21 + .5f21 + .5γ2

21 + .5γ21.

The computed equilibrium link flows, activity frequencies, and Lagrange multipliers are

also reported in Table 3. The computed equilibrium path flow pattern is:

for Firm 1:

x∗p1
= 3.64, x∗p2

= 3.60, x∗p3
= 20.46, x∗p4

= 10.38, x∗p9
= 6.15, x∗p10

= 16.93;

for Firm 2:

x∗p5
= 4.81, x∗p6

= 3.68, x∗p7
= 19.27, x∗p8

= 20.25.

The computed demand for Firm 1’s product is 61.15 and the price is 329.25, while the

demand for Firm 2’s product is 48.01 and the price is 273.41. The profit of Firm 1 is 13, 707.86

with its total emissions being 518.91, while the profit of Firm 2 is 9, 245.87 with its total
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Table 3: Computed Equilibrium Link Flows, Activity Frequencies, and Lagrange Multipliers
for Examples 2 and 3

Example 2 Example 3
Link a f ∗a γ∗a λ∗a f ∗a γ∗a λ∗a

1 13.10 .1310 .0792 13.38 .1338 .0794
2 46.73 .4673 .1271 47.77 .4777 .1280
3 8.50 .0850 .0334 8.49 .0849 .0334
4 39.60 .3960 .0478 39.52 .3952 .0478
5 4.45 .2224 .4334 3.64 .1819 .4091
6 8.65 .4326 .5596 9.74 .4871 .5923
7 20.63 .4126 .2586 20.46 .4092 .2573
8 26.09 .5219 .2979 27.31 .5462 .3066
9 4.81 .2407 .1631 4.81 .2403 .1631
10 3.69 .1844 .1519 3.68 .1840 .1518
11 19.31 .3861 .0762 19.27 .3854 .0761
12 20.29 .4058 .0788 20.25 .4051 .0787
13 25.08 .2508 .0175 24.10 .2410 .0172
14 34.75 .3475 .0204 37.05 .3705 .0211
15 24.12 .2411 .0163 24.07 .2408 .0164
16 23.98 .2397 .0162 23.93 .2394 .0164
17 25.08 1.2540 1.8044 24.10 1.2049 1.7504
18 17.28 .8640 1.3754 13.97 .6987 1.1936
19 24.12 1.2060 .6224 24.07 1.2037 .6215
20 23.98 1.1990 .6196 23.93 1.1967 .6187
21 17.47 .5823 .8103 23.08 .4616 .1539
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emissions being 744.20. The total emissions for both firms’ supply chains are: 1, 263.11. The

utilities for Firm 1 and for Firm 2 are: 11, 113.33 and 8, 501.67, respectively.

Comparing the results for Examples 1, 2, and 3, we observe that Firm 1 is able to provide

more products at even lower prices with the multiple modes for distribution. Consequently,

the profit of Firm 1 increases in both Examples 2 and 3, while the demand and the profit of

Firm 2 decline slightly in those two examples. Due to the lower emission nature of intermodal

transport, the rail-truck intermodal option (as discussed in Example 3) is more appealing

than the utilization of large trucks (as discussed in Example 2) for distribution. In Example

2, the large truck transportation (link 21) accounts for about 50% of the distribution from

the distribution center D1
2,2 to the demand market, while in Example 3, the intermodal

transport accounts for more than 60% of the distribution from the same distribution center

to the demand market. Furthermore, the emissions generated by Firm 1 in Example 3 are

lower than in Example 2.

In Example 3, we then asked the following question: At which value of ω1, which repre-

sents Firm 1’s environmental concern, would the equilibrium solution be such that the link

flow f ∗18 = 0.00? Hence, the distribution from the distribution center D1
2,2 to the demand

market R1 would solely rely on the rail-truck intermodal transport. We varied the value of

ω1 , which was originally equal to 5, until we observed, computationally, that the equilibrium

solution was such that the link flow f ∗18 = 0.00, which means that there is no product flow

on link 18. We found that when ω1 is equal to 43 (or greater) then f ∗18 = 0.00, and also

then γ∗18 is equal to 0.00, which is reasonable, since there is no product flow on link 18, and,

hence, the activity frequency of that link, γ∗18, is also zero.

Also, for completeness, we also report the demands and the incurred prices, profits,

emissions, and utilities for the two firms with ω1 = 43 and ω2 = 1. For Firm 1, the

equilibrium demand is 22.38 and the price at the demand market of its product is 367.49.

The profit of Firm 1 is 6, 855.37, the number of emissions that it generates is 85.02, and

its utility is 3, 199.65. The equilibrium demand for Firm 2’s product at the demand market

is 50.64 at the incurred price of 287.53. The profit of Firm 2 is 10,278.00. The number of

emissions that it generates in its supply chain is 820.22 and its utility is 9, 457.78. The total

total emissions generated by both firms’ supply chains is, hence, 905.24.

Note that ω1 = 43 could also be an environmental tax, under the imposition of which,

the emissions, relative to those in the preceding example, have gone from 1, 263.11 to 905.24.

This example demonstrates how a policy-maker can effect positive environmental change

through such a policy instrument.
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5. Summary and Conclusions

In this paper, we developed a new sustainable supply chain network model which captures

competition among firms involved in the production, transport, storage, and distribution of

products that are differentiated by brand. Examples of such products range from fast fashion

to high technology products. Each firm weights the emissions generated in its supply chain

network activities in an individual way and seeks to maximize its utility with the utility

function of each firm consisting of its profits and its weighted emissions. We allow for

multiple options for production, transport, storage, and distribution, so that the impact on

the environment can be made and different options appropriately evaluated. In addition,

we associate with each supply chain network link a capacity and each firm determines both

its optimal product path flows and the frequency of operation of the supply chain activities.

The emission functions associated with a link depend both on the flow on the link as well as

on the frequency of the link. This provides flexibility in modeling the various supply chain

activities in terms of the environmental impact. We emphasize that, although the focus

here is on carbon emissions, the framework is sufficiently general to handle other types of

emissions, including particulate matter, which have a big negative impact on air quality and

human health globally.

The governing concept is that of Nash equilibrium. We derive alternative variational

inequality formulations, in path flows and in link flows, of the equilibrium conditions and

propose a computational procedure, which tracks the evolution of the path flows, frequencies,

as well as the Lagrange multipliers associated with the capacity constraints. In our numerical

examples we investigate the impact on profits, emissions, and utilities of the addition of

different transport modes for distribution. We find that a firm can win in terms of profits as

well as lower emissions. Also, we demonstrate the impact on emissions and profits if firms

weight their environmental emissions more or not at all.

Possible extensions of our model can include the incorporation of risk associated with

supply chain network activities, and the sharing of distribution and storage facilities, as well

as transport modes. In addition, one could incorporate the full network topology associ-

ated with the transport and distribution links to include also route choice behavior. The

exploration of asymmetric and/or imperfect information would also be interesting.

We leave such issues, along with empirical analyses, for future research.
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