
University of Portland
Pilot Scholars

Engineering Faculty Publications and Presentations Shiley School of Engineering

2014

Using Practical Examples in Teaching Digital Logic
Design
Joseph P. Hoffbeck
University of Portland, hoffbeck@up.edu

Follow this and additional works at: http://pilotscholars.up.edu/egr_facpubs

Part of the Education Commons, and the Engineering Commons

This Conference Presentation is brought to you for free and open access by the Shiley School of Engineering at Pilot Scholars. It has been accepted for
inclusion in Engineering Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact
library@up.edu.

Citation: Pilot Scholars Version (Modified MLA Style)
Hoffbeck, Joseph P., "Using Practical Examples in Teaching Digital Logic Design" (2014). Engineering Faculty Publications and
Presentations. 21.
http://pilotscholars.up.edu/egr_facpubs/21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Portland

https://core.ac.uk/display/232742523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr_facpubs?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr_facpubs?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/egr_facpubs/21?utm_source=pilotscholars.up.edu%2Fegr_facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu


Paper ID #8459

Using Practical Examples in Teaching Digital Logic Design

Dr. Joseph P Hoffbeck, University of Portland

Joseph P. Hoffbeck is an Associate Professor of Electrical Engineering at the University of Portland in
Portland, Oregon. He has a Ph.D. from Purdue University, West Lafayette, Indiana. He previously worked
with digital cell phone systems at Lucent Technologies (formerly AT&T Bell Labs) in Whippany, New
Jersey. His technical interests include communication systems, digital signal processing, and remote
sensing.

c©American Society for Engineering Education, 2014



Using Practical Examples in Teaching Digital Logic Design 
 

Abstract 

 

Digital logic design is often taught from the bottom up starting with the simplest components 

(transistors and gates), proceeding through combinational and sequential logic circuits, and if 

there is time may finish up with the basic components of microprocessors.   With the bottom up 

approach, it may be a fairly long time before students see a complete system that performs a 

recognizable function.  Most of the standard example circuits, such as binary adders, decoders, 

multiplexers, etc., are parts used in a larger system.  While knowledge of the standard circuits is 

crucial for building more complex circuits, these standard circuits might not capture the students’ 

interest as much as a complete system.  Therefore, this paper describes three proposed example 

circuits that are simple enough to cover in the first logic design course, but yet are complete 

systems that perform useful functions.  The proposed circuits are a game show buzz-in system 

that determines which of two contestants rings in first, a standard 12-hour digital clock, and a car 

alarm that could honk a car horn if someone enters the car without resetting the alarm.  The 

proposed circuits can be used as examples or homework problems in addition to the standard 

circuits to increase students’ interest in the material and to show how useful the design 

techniques can be.  Surveys were given to the students after the proposed circuits and the 

standard circuits were covered to assess the level of student interest generated by the examples.  

The results of the surveys are presented in the paper along with detailed descriptions of the 

circuits. 

 

Background 

 

There have been many previous papers describing methods for teaching logic design using 

breadboards
1
, using software to aid in the design of digital circuits

2-5
, using FPGA or CPLD to 

implement designs
6-14

, and using remote implementation of digital circuits
15

.  Regardless of how 

the circuits are implemented, it is desirable that the circuits be interesting to the students. 

 

This paper presents three of the example circuits that are used in a three credit hour lecture 

course called Digital Logic Design.  This introductory, semester-long course consists of standard 

lectures along with in-class exercises where the students work in groups to analyze and design 

digital circuits.  There is no lab component of the course, so one of the goals of the examples is 

to tie the material to real world systems as much as possible.  The course has no prerequisites 

and is taken by sophomore electrical engineering and computer science majors.   

 

Unlike most traditional example circuits, each of the presented circuits is a complete system that 

solves a real world problem.  The circuits are designed to show how the material can be used in 

the real world, yet are simple enough to be included in the first logic design course.  The 

effectiveness of the circuits was measured using student surveys and was compared to the results 

of more traditional example circuits. 

 

 

 

 



Game Show Circuit 
 

Many game shows use a circuit to determine which of the contestants ring in first.  This circuit 

makes a good example for a sequential logic circuit because it performs a recognizable function 

with which students are familiar, yet it is quite simple.  A circuit can be designed to determine 

which of two contestants rings in first.  It has two inputs S1 and S0 which are connected to the 

contestants' buttons.  The circuit has two outputs Z1 and Z0 which are connected to LED's to 

indicate which contestant rang in first.   There is also a reset button that is used by the game 

show host to asynchronously reset the flip-flops to the initial state before each question.  If 

contestant 0 rings in first, the circuit turns on LED 0.  Once LED 0 is on, the circuit leaves it on 

regardless of the inputs until the circuit is asynchronously reset by the game show host.  If 

contestant 1 rings in first, the circuit turns on LED 1 and leaves it on until the circuit is reset.  If 

there is a tie, both LED's are turned on.     

 

The circuit requires four states: reset, contestant 0 wins, contestant 1 wins, and tie.  One way to 

map the states is to use state 00 for reset, state 01 for contestant 0 wins, state 10 for contestant 1 

wins, and state 11 for a tie.  With this mapping, the outputs are equal to the current state, which 

simplifies the output equations.   

 

In the state table shown in Table 1, q1q0 is the current state, q1*q0* is the next state, and Z1Z0 is 

the current output.  There are four columns of values for the next state q1*q0*.  The first column 

contains the values of the next state when S1S0 = 00, the second column contains the next state 

when S1S0 = 01, and so on.   

 

Table 1: State Table for Game Show Circuit 

q1q0 q1*q0* 

S1S0 = 

00 01 10 11 

Z1Z0 

00 00 01 10 11 00 

01 01 01 01 01 01 

10 10 10 10 10 10 

11 11 11 11 11 11 

 

It can be seen from Table 1, after the circuit is reset to state 00, it will stay in state 00 and both 

LED's will be off as long as neither contestant presses a button (that is as long as S1S0 = 00).  If 

contestant 0 is the first to press the button (S1S0 = 01), the circuit goes to state 01, and the circuit 

stays in state 01 regardless of the inputs until the game show host resets the circuit using the 

asynchronous reset.  While the circuit is in state 01, the output Z0 is 1 and the output Z1 is 0, and 

so LED 0 is on and LED 1 is off to show that contestant 0 rang in first.  Likewise if contestant 1 

presses the button first (S1S0 = 10), the circuit goes to state 10 and turns LED 1 on and turns 

LED 0 off, and the circuit stays in state 10 regardless of the inputs until an asynchronous reset.  

If both inputs are pressed at the same time, the circuit goes to state 11 and both LEDs are turned 

on to indicate a tie.   

 

 

 



Using K-maps, the excitation and output equations for D flip-flops can be found to be as follows: 

 

D0 = q0 + S0q1' 

D1 = q1 + S1q0' 

Z0 = q0 

Z1 = q1 

 

In the circuit diagram shown below in Figure 1, Vcc is 9 Volts, and a 555 timer is used to 

generate the clock signal with a frequency of about 100 kHz.  The values of R2, R3, and C can 

be changed to generate other clock frequencies (see the 555 datasheet for details).  It is unlikely 

that a tie will occur if the clock frequency is very high.   

 

A breadboard with the circuit was passed around during the lecture so that students could see the 

circuit in operation (see Figure 2).   

 

D-FF
D

R

S
q

q’

D-FF
D

R

S
q

q’

q0'

q0'

q0

q1'

1k

Vcc

q1'
q0'

1k

Vcc

S0

S1

1k

Vcc

Reset

100 Ohms
 

LED 0

100 Ohms
 

LED 1

q1'

q1

CD4013BE 

CD4013BE

1

2

3

4

5

6
7

9

8 10

11

12

13

14 1

2
3

4

5

6

7

8

9

10

11
12

13

14
Vcc

Vcc

CD4011BE 

LM555
Timer

4

7

2

6R3=1k

R2=1k

8

Vcc

C=0.5nF 1

C1 = 0.01µF

5

3

  
Figure 1: Schematic of Game Show Circuit 

  

 



 
Figure 2: Breadboard with Game Show Circuit 

 

 

12-Hour Clock 

 

The 12-hour clock is a standard commercial product.  It performs a useful function, yet it is 

simple enough that it can be used as either an example in lecture, or can be designed by the 

students as a series of homework problems or in project.  In the author's course, part of the clock 

is presented as an example in lecture, and the students design the rest of the clock in a group 

project and homework problems.   

 

Digital clocks are usually set up to start at 12:00, and they count 12:01, 12:02, 12:03, 12:04, 

12:05, 12:06, 12:07, 12:08, 12:09, 12:10, and eventually the clock gets to 12:58, 12:59, 1:00, and 

so on.  The one's place of the minutes (the right-most digit) counts 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 

then repeats, and a circuit that counts in this way is called a mod-10 counter.  The ten's place of 

the minutes (second digit from the right) counts 0, 1, 2, 3, 4, 5, and then repeats, which is called 

a mod-6 counter.  The hour counter counts 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and repeats.  One 

way to design the clock is to break it up into smaller parts as shown in Figure 3 below.   

 



Mod-10 
Counter

CLR

q0

q1

q2

q3

Z

Mod-6 
Counter

CLR

EN

q0

q1

q2

Z

12 Hour 
Counter

CLR

EN

A0

A1

A2

A3

B0

Minutes 
One’s Place

BCD-to-
Seven 

Segment 
Decoderw

x

y

z
a
b
c
d
e
f
g

Minutes 
Ten’s Place

BCD-to-
Seven 

Segment 
Decoderw

x

y

z
a
b
c
d
e
f
g

Hours 
One’s Place

BCD-to-
Seven 

Segment 
Decoderw

x

y

z
a
b
c
d
e
f
g

Hours 
Ten’s Place

BCD-to-
Seven 

Segment 
Decoderw

x

y

z
a
b
c
d
e
f
g

CLK

CLR_L

 
Figure 3: Block Diagram of 12-Hour Clock 



 

The output from each counter is a binary coded decimal (BCD) number that represents one of the 

digits in the time, and BCD-to-Seven segment decoders are used to drive the seven segment 

displays.   

 

This circuit is a clocked synchronous circuit where all of the flip-flops have the same clock 

signal.  If the clock signal is set up to have one pulse per minute, the mod-10 counter will 

increment every minute and needs to have an output Z that indicates when it is at the maximum 

count (1001).  Since the mod-6 counter only increments every 10 minutes, it needs to have an 

enable input which is connected to the maximum count indicator from the mod-10 counter.  

Furthermore, the mod-6 counter needs to have a maximum count indicator Z that is 1 when the 

mod-6 counter is at the maximum count (0101) and it is enabled.  The hour counter needs to 

have an enable input which is connected to the maximum count indicator from the mod-6 

counter. 

 

The state table for the mod-10 counter is shown in Table 2.  Don't care conditions (x's) were 

placed in the unused states to help simplify the excitation equations.   

 

Table 2: State Table for Mod-10 Counter 

q3q2q1q0 q3*q2*q1*q0* Z 

0000 0001 0 

0001 0010 0 

0010 0011 0 

0011 0100 0 

0100 0101 0 

0101 0110 0 

0110 0111 0 

0111 1000 0 

1000 1001 0 

1001 0000 1 

1010 xxxx x 

1011 xxxx x 

1100 xxxx x 

1101 xxxx x 

1110 xxxx x 

1111 xxxx x 

 

The excitation equations for D flip-flops and the output equation for the mod-10 counter were 

found using K-maps and are shown below. 

 

D0 = q0' 

D1 = q3'q1'q0 + q1q0' 

D2 = q2'q1q0 + q2q0' + q2q1' 

D3 = q3q0' + q2q1q0 

Z = q3q0 

 



The state table for the mod-6 counter is shown in Table 3, and the excitation and output 

equations for the mod-6 counter are shown below. 

 

D0 = q0'E + q0E' = q0  E 

D1 = q2'q1'q0E + q1E' + q1q0' 

D2 = q2E' + q2q0' + q1q0E 

Z = q2q0E 

 

Table 3: State Table for Mod-6 Counter 

q2q1q0 q2*q1*q0* 

E=0    E=1 

Z 

E=0    E=1 

000 000     001 0       0 

001 001     010 0       0 

010 010     011 0       0 

011 011     100 0       0 

100 100     101 0       0 

101 101     000 0       1 

110 xxx     xxx x       x 

111 xxx     xxx x       x 

 

The hour counter has 12 states, and so it requires four flip-flops.  Since the hour counter has four 

flip-flops and one input, the excitation equations are functions of five variables.  In order to 

avoid requiring five-variable K-maps, the enable function was implemented separately by 

designing a flip-flop with an enable input as shown in Figure 4.  When EN = 0, the multiplexer 

selects the current state q and applies it to the input of the flip-flop so that the next state will be 

the same as the current state (q* = q).  When EN = 1, the multiplexer selects the input D and 

applies it to the input of the flip-flop so that the circuit behaves like a standard flip-flop.  

 

D q

q’

2-to-1
MultiplexerD0

D1

S0

Y q

q’
D

CLK

EN

 
Figure 4: D Flip-Flop with Enable 

 

Therefore the hour counter was designed without an enable input so that the excitation equations 

are functions of only four variables, but it was constructed using flip-flops with enable.  As 

shown in Table 4, the state counts from 0000 to 1011, and the output functions generate BCD 

numbers for the one's place (B3B2B1B0) and for the ten's place (A0).  Note that only one bit is 

needed for the ten's place because its value is either 0 or 1.   

 

 



Table 4: State Table for Hour Counter (No Enable) 

q3q2q1q0 q3*q2*q1*q0* A0  B3B2B1B0 Display 

0000 0001 1 0010 12 

0001 0010 0 0001 01 

0010 0011 0 0010 02 

0011 0100 0 0011 03 

0100 0101 0 0100 04 

0101 0110 0 0101 05 

0110 0111 0 0110 06 

0111 1000 0 0111 07 

1000 1001 0 1000 08 

1001 1010 0 1001 09 

1010 1011 1 0000 10 

1011 0000 1 0001 11 

1100 xxxx x xxxx  

1101 xxxx x xxxx  

1110 xxxx x xxxx  

1111 xxxx x xxxx  

 

The excitation and output equations are shown below. 

 

D0 = q0' 

D1 = q1  q0 

D2 = q3'q2'q1q0 + q2q0' + q2q1' 

D3 = q2q1q0 + q3q1' + q3q0' 

A0 = q3'q2'q1'q0' + q3q1 

B0 = q0 

B1 = q3'q2'q0' + q3'q1 

B2 = q2 

B3 = q3 q1' 

 

The clock signal, which needs to have one pulse every minute, can be generated by dividing the 

signal from a crystal oscillator down to the required frequency.  The time can be set by having a 

button that allows the user to temporarily select a clock that has a higher frequency so that the 

clock counts quicker than normal. 

 

In order to demonstrate the circuit, the 12-hour clock was implemented using a custom integrated 

circuit fabricated through the MOSIS program
16

 and four BCD-to-seven segment decoders.  A 

breadboard with the circuit was circulated around the class (Figure 5).  

 



 
Figure 5: Breadboard with 12-Hour Clock 

 

 

 

Car Alarm 

 

A fairly simple circuit can be designed that could operate a car alarm.  The circuit has one input 

Y which would be connected to the car's door switch to determine if the car door is open or shut.  

When the door is shut Y = 0, and when the door is open Y = 1.  The circuit has one output Z 

which is used to operate a relay that honks the horn by shorting the wires that go to the horn 

switch in the steering wheel.  When Z = 1, the relay is activated and the horn honks.  The circuit 

would be asynchronously reset by the accessories power line that is high when the ignition is 

turned on or is in accessory-only mode, both of which require the key to the car.   

 

The state table is shown in Table 5 below.  While the ignition is on, the flip-flops are forced into 

state 000 by the asynchronous reset.  Then, when the ignition is turned off, the circuit stays in 

state 000 while door is closed (Y = 0) to wait for the driver to get out of the car.  When the driver 

opens the door (Y = 1), the circuit goes to state 001.   The circuit stays in state 001 while the 

door is open (Y = 1), and when the driver closes the door (Y = 0) the circuit proceeds to state 

010.  At this point, the alarm is "armed" in the sense that it is waiting for the door to open and to 

honk the horn.  As long as the door is closed (Y=0), the circuit stays in state 010, but when the 

door is opened (Y = 1), the circuit moves to state 011.  Once in state 011, the circuit does not 

honk the horn yet because usually it is the driver returning to the car.  If the clock is set to have 



one pulse for every 20 seconds, there will be at least a 20 second delay before the circuit moves 

to state 100 and honks the horn.  The driver would use this time to insert the key into the ignition 

and to turn the ignition on, which asynchronously resets the circuit and prevents the horn from 

honking.  If the ignition is not turned on within 20 seconds, the circuit proceeds to state 100 

regardless of whether the door is open or not, and the horn is honked (Z = 1).  The circuit will 

stay in state 100 and honk the horn until it is reset by the ignition or the battery dies.    

 

Don't cares (x's) were placed in the unused states to help simplify the excitation and output 

equations. 

 

Table 5: State Table for Car Alarm Circuit 

q2q1q0 q2*q1*q0* 

Y = 0   Y = 1 

Z 

000 000     001 0 

001 010     001 0 

010 010     011 0 

011 100     100 0 

100 100     100 1 

101 xxx     xxx x 

110 xxx     xxx x 

111 xxx     xxx x 

 

The excitation and output equations were found using K-maps as follows. 

 

D0 = q1'q0Y + q2'q0'Y 

D1 = q1'q0Y' + q1q0' 

D2 = q1q0 + q2 

Z = q2 

 

In order to be practical, this circuit would also need to latch the input so that the circuit will 

notice if someone opens the door, jumps inside, and closes the door in less than 20 seconds.   (It 

would also be desirable to redesign the circuit so that it turns the horn on and off repeatedly 

instead of just turning the horn on constantly, and to automatically reset the circuit after the horn 

is honked for say five minutes, but these features require many more states and a more 

complicated circuit.)   

 

Assessment 

 

In an attempt to measure how interesting and effective the students find these examples, a survey 

was given after each example was completed.  The survey asked "Did you find the example 

circuit interesting?" and "Was the example circuit helpful?".  The students scored each question 

on a five point scale where 1 was not at all interesting/helpful, and 5 was very interesting/helpful.  

The survey also asked for optional comments about each example circuit.  The survey was also 

given after two conventional examples: 4-bit binary adder and 3-to-8 binary decoder.  For each 

question, the average student rating and the number of responses (N) are shown below in Table 

6. 



 

Table 6: Average Scores from Student Survey  

Example N Interesting Helpful 

Binary Adder 33 4.2 4.5 

Binary Decoder 31 3.9 4.1 

Game Show Circuit 27 4.3 4.2 

Digital Clock 29 4.5 4.4 

Car Alarm 30 4.4 4.1 

 

Comments from each example circuit are summarized below. 

 

Binary Adder: 

 More like this! 

 The example was made much more interesting when you gave examples of devices it's 

used in. (What actually makes this class awesome to me is solving practical problems 

with solutions that are used (or seem to be)). 

 It was very interesting to see how these things work in an easily laid out format. 

 I find this stuff very interesting 

 

Binary Decoder: 

 I'm still lost on some parts of the decoder 

 Hierarchical design is difficult to grasp with decoders 

 It was cool 

 Understanding how to put the circuits together for decoders, etc. is more challenging than 

the beginning course content; takes more time to grasp 

 Interested in alternative ways circuit could be made.  Also if there are benefits to the 

different methods. 

 

Game Show Circuit: 

 Cool real-life application 

 I always wondered how it worked. 

 Not much function, but a good example problem 

 Fun to problem to solve.  Interesting thought and…cool! 

 

Digital Clock: 

 Cool example 

 It was very cool 

 Good! 

 Some of the underlying work would be nice to see 

 It would have been helpful to see some k-maps done 

 

 

 

 

 



Car Alarm: 

 Entertaining, practical example 

 It was really cool to see a relevant example used in real life 

 Very cool 

 I thought this was my favorite example. 

 I didn't realize you could do this with sequential logic.  Good example. 

 

The students rated the game show circuit, digital clock, and car alarm as slightly more interesting 

than the conventional examples binary adder and binary decoder.  However, those circuits may 

not be directly comparable to the binary adder and binary decoder because the game show 

circuit, digital clock, and car alarm are all sequential logic circuits whereas the binary adder and 

binary decoder are combinational logic circuits.    

 

The binary adder and the digital clock were rated as being slightly more helpful than the others.   

This result may have occurred because the students designed a binary adder and parts of the 

digital clock as homework assignments and in a group project, so these two examples were 

directly related to problems that the students were required to solve.  However, the students also 

designed a large binary decoder in the homework, but that example was not rated as high in 

helpfulness.  This result might be explained by the fact that at the time of the survey, the students 

were struggling with understanding the decoder, as is made clear in the comments. 

 

Overall, the students rated the game show circuit, digital clock, and car alarm as being highly 

interesting and helpful.  These circuits were rated as slightly more interesting than the more 

conventional circuits, but they were not necessarily rated as being more helpful to them.  

  

Conclusion 

 

Three example circuits were described for a digital logic design course.  Although the examples 

were relatively simple, they were complete systems that solve real-world problems.  A survey 

found that the students seemed to find the complete system examples slightly more interesting 

than the more conventional circuits, but not necessarily more helpful.   

 

 

 

References 

 
1. Show them NAND gates and they will come, Barrett, S.F.; Hamann, J.; Coon, D.; Crips, P.M.; Pierre, J., 

Computers in Education Journal, v 17, n 2, p 26-36, April/June 2007. 

 

2. A Builder and Simulator Program with Interactive Virtual Environments for the Discovery and Design of 

Logic Digital Circuits, Miguel-de-Priego, Arturo, 2013 Frontiers in Education Conference (FIE2013), 

Oklahoma City, Oklahoma, October 23-26, 2013. 

 

3. Visiboole: Transforming digital logic education, Devore, John J.; Soldan, David L., ASEE Annual 

Conference and Exposition, ASEE2012, June 10, 2012 - June 13, 2012. 

 



4. Teaching digital logic design using the GOAL (Guided On-demand Adaptive Learning) system, Williams, 

Ronald D.; Dugan, Joanne Bechta, ASEE Annual Conference and Exposition, June 26, 2011 - June 29, 

2011. 

 

5. Toward an interactive environment for embedded systems design, Obeidat, Fadi; Alkhasawneh, Ruba; 

Tucker, Jerry; Klenke, Robert, ASEE Annual Conference and Exposition, June 20, 2010 - June 23, 2010. 

 

6. The CPLD Provides a Third Option in the Introductory Circuits Course, Hill, Jonathan; Yu, Ying, ASEE 

Annual Conference and Exposition, Conference Proceedings, June 10 - 13, 2012. 

 

7. Developing Undergraduate FPGA Curriculum using Altium Software and Hardware, Mayer, Erik A., 

Computers in Education Journal, v 23, n 1, p 35-42, January-March 2013. 

 

8. FPGArcade: Motivating the study of digital hardware, Neebel, Danial J.; Burek, Nicholas J.; Griebel, 

Thomas, ASEE Annual Conference and Exposition, June 10 - 13, 2012. 

 

9. ARM/FPGA/I2C sensor network development and teaching platform, Mondragon, Antonio Francisco; 

Purohit, Prafull, ASEE Annual Conference and Exposition, June 26 - 29, 2011. 

 

10. Interdisciplinary laboratory projects integrating LabVIEW with VHDL models implemented in FPGA 

hardware, Hayne, Ronald; McKinney, Mark, ASEE Annual Conference and Exposition, June 20 - 23, 2010. 

 

11. A LabVIEW FPGA toolkit to teach digital logic design, Perales, Troy; Morgan, Joseph; Porter, Jay, ASEE 

Annual Conference and Exposition, June 14  - 17, 2009. 

 

12. Collaborative project-based learning to enhance freshman design experience in digital engineering, Dong, 

Jianyu; Warter-Perez, Nancy, ASEE Annual Conference and Exposition, June 14 - 17, 2009. 

 

13. Extensive use of advanced FPGA technology in digital design education, Radu, Mihaela; Cole, Clint; 

Dabacan, Mircea Alexandru; Sexton, Shannon, ASEE Annual Conference and Exposition, June 22 - 24, 

2008. 

 

14. Introducing field-programmable gate arrays into sophomore digital circuits course, Sin, Ming Loo; 

Planting, Arlen; Murdock, Matt, ASEE Annual Conference and Exposition, June 18 - 21, 2006. 

 

15. Boole-WebLab-Deusto: Integration of a Remote Lab in a Tool for Digital Circuits Design, Garcia-Zubia, 

Javier; Rodriguez-Gil, Luis; Orduña, Pablo; Angulo, Ignacio; Dziabenko, Olga, 2013 Frontiers in 

Education Conference, October 23 - 26, 2013. 

 

16. The MOSIS Service, www.mosis.com, accessed December 22, 2013. 
 

http://www.mosis.com/

	University of Portland
	Pilot Scholars
	2014

	Using Practical Examples in Teaching Digital Logic Design
	Joseph P. Hoffbeck
	Citation: Pilot Scholars Version (Modified MLA Style)


	Using Practical Examples in Teaching Digital Logic Design

