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Phase transitions in the two-dimensional superantiferromagnetic Ising model 
with next-nearest-neighbor interactions 

A. Saguia,* B. Boechat,t and J. Florencio+ 
Departamento de Ffsica, Universidade Federal F/uminense, Avenida Litoranea sin, Niter6i, 24210-340, Rio de Janeiro, Brazil 

0. F. de Alcantara Bonfim§ 
Department of Physics, University of Portland, Portland, Oregon 97203, USA 

(Received 26 October 2012; published 30 May 2013) 

We use Monte Carlo and transfer matrix methods in combination with extrapolation schemes to determine 
the phase diagram of the two-dimensional superantiferromagnetic (SAF) Ising model with next-nearest-neighbor 
(NNN) interactions in a magnetic field. The interactions between nearest-neighbor (NN) spins are ferromagnetic 
along x, and antiferromagnetic along Y. We find that for sufficiently low temperatures and fields, there exists a 
region limited by a critical line of second-order transitions separating a SAF phase from a magnetically induced 
paramagnetic phase. We did not find any region with either first-order transition or with reentrant behavior. The 
NNN couplings produce either an expansion or a contraction of the SAF phase. Expansion occurs when the 
interactions are antiferromagnetic, and contraction when they are ferromagnetic. There is a critical ratio Re = k 
between NNN and NN couplings, beyond which the SAF phase no longer exists. 

DOI: IO.I 103/PhysRevE.87.052140 PACS number(s): 75.10.Hk, 75.30.Kz, 05.10.Ln, 64.60.De 

I. INTRODUCTION 

One system that has drawn considerable interest recently 
is the s = 1 /2 superantiferromagnetic (SAF) Ising model on 
a square lattice in the presence of a magnetic field [1-4]. 
The model is described by the Ising interactions with a 
special kind of anisotropy, ferromagnetic lx along x and 
antiferromagnetic ly along y. In the absence of an external 
field, the ground state consists of alternating rows of up and 
down spins. Such ordering is known as the SAF order. Also, 
Onsager's exact solution for the two-dimensional (2D) Ising 
model applies here [5]. There is a critical temperature Tc, 
which separates the low-temperature phase with SAF order 
from the paramagnetic phase. In particular, for J., = ly = 

11, Tc/11 = 2/ln(l + ./2):::::: 2.269. At T = 0, an applied 
external magnetic field H destroys the SAF order at He = 211, 

where all the spins become aligned with the field [6]. 
The phase diagram of the model in the (H-T) plane has 

been studied using different approaches. One feature that has 
caused controversy concerns the reentrant behavior in the 
phase diagram found by some authors [1,7,8]. Such behavior 
is absent in other studies [2-4,6,9]. The most recent studies 
in the literature point to the dismissal of reentrant behavior. It 
seems, however, that more scrutiny is needed to clear up this 
controversy. 

The addition of next-nearest-neighbor (NNN) interactions 
may induce new phases with different orderings and multicriti­
cal points. Consider the case of a closely related system, the 2D 
Ising model with antiferromagnetic (AF) interactions. In that 
model, the phase diagram without NNN interactions consists 
of a second-order critical line separating the low-temperature 
AF phase from a paramagnetic phase. The inclusion of NNN 
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ferromagnetic interactions reinforces the checkerboard AF 
order and causes the system to show tricritical behavior. That 
is characterized by the presence of a tricritical point (H1, T1) 

in the phase diagram line where the transition changes from 
second to first order [10-12]. 

The purpose of this work is to investigate the influence of 
NNN couplings on the phase transitions of the 2D SAF Ising 
model in a uniform magnetic field. The Hamiltonian is 

'H = -1, "s~ .s~+i . + 1). "s~ .s' ·+i · L_, l,j I ,j L_, l,j l,j 

i,j i,j 

- 1z" (s~ .s~+i ·+i + s~+i .s~ ·+i) - H" s'., (1) L_, l,j I ,j I ,j l,j L_, l,j 

i,j i,j 

where S? can take the values ± 1. The parameters J., and ly are 
energy couplings between nearest-neighbor (NN) spins along 
x and y, respectively. ]z is the coupling between NNN spins, 
and H the magnetic field. 

In this paper we assume lx = ly = 11 > 0, whereas ]z can 
be either positive or negative. For simplicity, from here on we 
use the notation R = ]z/ 11, and set 11 = I as the energy unit. 
Figure 1 shows the energy couplings that appear in Eq. (I). 

To determine the phase diagram of the model, we use two 
different numerical methods, Monte Carlo (MC) [13-15] and 
transfer matrix (TM) [ 11, 16]. Both methods have been used in 
statistical physics problems, especially in Ising-type models. 
We are interested in the location of the phase boundaries and 
the nature of the transitions, whether they are of first or second 
order, as well as if reentrant is observed. Both methods are 
well suited to achieve those objectives. 

In the present paper, we use both methods to determine the 
phase boundaries. Even though MC is very reliable to ascertain 
the nature of the phases [15, 17], we elect to use the TM method 
due mostly to its simplicity. Once the phase boundaries are 
found by the TM method, little further computational effort is 
needed to establish their nature [11,16]. We show results for 
the cases R = ±0.2, ±0.4, which, as we shall see, will provide 
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FIG. I. Energy couplings between neighboring spins of the SAF 
Ising model. 

the essential features of the phase diagram. We also consider 
the case R = 0, which is known [2], to check the reliability of 
our calculations. 

II. THE NUMERICAL METHODS AND RESULTS 

In our MC calculations, we use the single-flip Metropolis 
algorithm [18] in square lattices of L x L spins, 8 ~ L ~ 128, 
with periodic boundary conditions. We divide the lattice into 
two sublattices A and B, such that A (B) is the set of rows 
labeled with even (odd) indices. We use even values of L to 
avoid frustration effects at the edges of the y direction, along 
which there is AF ordering in the SAF phase. 

First, for a given set of the energy parameters and tem­
perature, we let the system equilibrate after 107 Monte Carlo 
steps (MCS). Then we collect the data for each additional 
configuration generated by a sweep through the lattice. The 
data are stored in 103 bins, each holding up to 104-105 sets 
of data points. This will ensure that the autocorrelation time 
does not exceed the bin size. The average values in each bin 
are used to determine the statistical averages and the standard 
errors. The corresponding error bars are always smaller than 
the symbols we use in all the graphs that follow. 

In addition to the internal energy, specific heat, mag­
netization, and susceptibility, we also calculate the SAF 
magnetization fourth-order cumulant, defined by 

UL= 1 - (M:)L . 

3(M;)~ 
(2) 

The quantities (M}) L and (M.':h are the second- and fourth­
order moments of the SAF magnetization, (Ms) = ! ((mA -
111 8 )). The quantities (mA) and (111 8 ) are the sublattice 
magnetizations, with (mp) = ( fj Li<p St) and p = A, B. One 
of the properties of the fourth-order cumulant, Eq. (2), is that 
as T -+ 0, UL -+ ~, regardless the value of L. At criticality, 
UL-+ U* in the thermodynamic limit [15,19-21]. 

The critical temperature is determined by the intersections 
of the UL curves for systems of different sizes. As an 
example, in Fig. 2 we plot the fourth-order cumulant versus 
temperature for the cases R = -0.2, He = 2.0, with system 
sizes L = 8, 16, ... , 128. The curves intersect nearly at the 
same point. In order to determine the critical temperature 
at the thermodynamic limit, in Fig. 3 we plot the crossing 
temperatures for two systems of linear sizes L and L = L + 2 
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FIG. 2. Fourth-order cumulant of SAF magnetization vs tem­
perature for several lattice sizes L, obtained from Monte Carlo 
simulations. The curves cross nearly at the same temperature. 

versus the ratio x = L/(L + 2), with the same parameters 
as in Fig. 2. Note that we use a finer scale for T, as 
compared to the one used in Fig. 2. The open squares are the 
crossing temperatures. The straight line is a numerical fit to 
those points, Tc = 2.276 - 0.119x. The extrapolated value at 
x = 1, the thermodynamic limit, gives the critical temperature 
Tc = 2.16 ± 0.01. In Fig. 4 we show the crossing temperatures 
versus x for R = -0.4, and the same parameters in Fig. 3. 
Here, the straight line Tc= 3.122 - 0.129x fits the data. In 
this case, after extrapolation we obtain the thermodynamic 
value Tc = 2.99 ± 0.01. As can be seen from these figures, 
the temperature crossings converge fairly rapidly to the 
thermodynamic value of Tc. That value can be inferred even 
when very small lattices are used. We employ this procedure 
to obtain the critical lines in the H -T space. Numerically, it 
becomes prohibitive timewise to analyze the region T < 0.2, 
since it becomes very difficult to obtain reliable statistics. 
Hence, in our MC simulations, we only treat cases T ;? 0.2. 

At T = 0, however, the model is trivially solvable, so that 
we can determine the critical temperatures and fields and 
thus complete the phase diagrams to satisfaction. There are 

T 
c 

2.25..---~-~-~----..---~-~-~ 

a R=-0.2 

2.20 

a 
a 

2.15 

2.10~-~-~-~-~--~-~-~-~ 

0.80 0.85 0.90 
x 

0.95 1.00 

FIG. 3. Crossing temperatures for cumulants of systems of sizes 
Land L + 2, vs the ratio x = L/(L + 2). Open squares are obtained 
from MC simulations, with R = -0.2 and H = 2.0. The straight line 
is a numerical fit to the data points. 
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FIG. 4. Crossing temperatures for the cumulants of a system of 
size L, with another for size L + 2, against the ratio x. Open squares 
are from MC simulations with R = -0.4 and H = 2.0, and the 
straight line is the numerical fit. 

two possible phases which, depending on the applied field, 
can be the ground states of the system: the SAF state, with 
its alternating rows of up and down spins, and the induced 
ferromagnetic (F) state. At sufficient low fields H the SAF state 
prevails, whereas at very large H all the down spins are flipped 
in the direction the field, hence the F state. All other phases, 
such as the AFM checkerboard or more exotic orderings, will 
have higher energies than those of the SAF and F states, 
therefore they can be disregarded. The ground-state energies 
of the SAF and F states are readily calculated, with results 

EsAF = -2(1- R)L2
, Ep = -(2R + H)L2

. (3) 

By equating these energies, we determine 

He =2-4R, (4) 

which is the field strength necessary to align all the spins with 
the magnetic field without expenditure of energy. 

We now proceed to the determination of the phase diagram 
of the system by using the TM method [I 6]. In addition to the 
location of the critical temperatures and fields, the method 
provides a simple criterion to establish the nature of the 
transition, whether it is of second or first order. It relies on 
two correlation lengths, 

(5) 

where a = I denotes the first, and a = 2 the second correlation 
length. The quantities Eo,E1,E2 are the three largest transfer 
matrix eigenvalues, in descending order, for a strip of width L. 
The critical points are determined using two different lattice 
sizes (L, M), using 

C 1t;la)(H,T) = M- 11;<;;l(H,T). (6) 

We calculate the correlation lengths for infinite strips of widths 
L = 2,4, ... , and 16 lattice spacings, with periodic boundary 
conditions. The final results are extrapolated to L -* oo. 

In Fig. 5, we plot the correlation lengths 1;l1l, for two infinite 
strips of widths L = 6 and 8, with Tc = 0.25 and R = -0.4. 
The crossing of the two curves determines the critical field at 
He= 3.599 945. We use a similar plot with the second correla­
tion length t;l2l to unravel the nature of the transition. Figure 6 

2000 
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R= -0.4 
T= 0.25 

G-£1L=6 
G-£J L=8 

0'--~-_J_~ _ _L_~_J_-~_J____:;:____j 

3.59990 3.59992 3.59994 3.59996 3.59998 3.60000 
H 

FIG. 5. First correlation length vs magnetic field for infinite­
length strips of widths L = 6, 8 lattice spacings obtained from the 
transfer matrix method, for the case R = -0.4 and T = 0.25. The 
curves cross at H :::: 3 .599 945, indicating a phase transition from 
the SAF phase to an induced paramagnetic phase. 

shows the second correlation length for strips of widths L = 6 
and 8. The curves never cross, thus indicating that the transition 
is of second order. We have examined the phase diagram with 
this procedure throughout, and conclude that the transitions 
are always of second order for the entire range of parameters, 
and no reentrant behavior is ever observed. 

In order to obtain the thermodynamic values of the 
critical temperatures and fields, in Fig. 7 we plot the critical 
temperatures Tc against the ratio x = L / M, M = L + 2. 
We chose the same energy parameters as those that were 
presented in Figs. 3 and 4, to compare with the MC results. 
The open circles are the numerical results calculated from 
Eq. (4) for R = -0.2 and critical field He= 2.0. The solid 
line is a nonlinear fit using Tc = T 00 +a exp[-b /(1 - x)]. 
Here, T 00 = 2. I 703, a = 0.068 27, and b = 0.6952 are 
the numerically fitted parameters. The quantity T 00 is the 
extrapolated value for Tc in the limit of infinite-width strips. 
The relative error between Tc and T 00 for the largest width 
ratio used x = (L/ M) = (14/16) is about 0.01 %, and less 
than 0. 1 % for the smallest ratio, x = (8/10). We repeat the 
above procedure for R = -0.4 and He = 2.0, and the results 

300,--.--~---.---~~--,----~ 

200 

100 

R= -0.4 
T= 0.25 

CH:>L=6 
0--<1 L=8 

o~-~-~---'--~-J_-~ _ __[ _ __J 

3.5996 3.5998 3.6000 3.6002 
H 

FIG. 6. Second correlation length vs magnetic field for the same 
parameters as in Fig. 5, as obtained from the TM method. The absence 
of crossing indicates that the transition is of second order. 
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2.170 L-~-----'-----'---..l__-~__Jc__~ _ _L_-'--__J 

0.75 0.80 0.85 0.90 0.95 1.00 
x 

FIG. 7. Critical temperature as a function of the ratio x, between 
the widths L and L + 2 of infinite strips. The open circles are from 
the TM results for R = -0.4 and He = 2.0, whereas the solid line is 
a numerical fit. 

are displayed in Fig. 8. Again, the open circles are obtained 
from Eq. (4). The solid curve is given by the nonlinear 
fit Tc = 3.008 87 + 0.075 71exp[-1.03606/(1 - x)]. The 
extrapolated value for Tc at x = 1 gives the critical temperature 
of infinite-width strips T00 = 3.008 87. The relative error 
between Tc and T 00 for the largest widths ratio x = (10/12), is 
less than 0.005% and about 0.1 % for the smallest ratio of strip 
widths, x = (4/6). The other points of the phase diagrams 
can be calculated in a similar fashion. Moreover, even for the 
smallest ratio, the estimated value for Tc is already close to 
the extrapolated value of the infinite lattice. One should also 
note the close numerical agreement between T 00 found by the 
TM method here with the critical temperatures obtained from 
the MC simulations of Figs. 3 and 4. As will be shown in the 
following, there is very good agreement between the results 
of TM and MC in all the phase diagrams. 

The results from MC and TM methods are shown in Figs. 9 
and I 0, which depict the critical lines for R = 0, ± 0.2, ± 0.4. 
The error bars are much smaller than the symbols in the figures 
and are not shown in the graphs. The critical lines obtained by 
the two methods show very good quantitative agreement with 

3.012 

3.011 

T 
c 

3.010 

3.009 

R= -0.4 
H =2.0 

c 

3.008 '----'------'--~~_J___,____J__~___L_~-L--'--_L~__J 
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

x 

FIG. 8. Critical temperature vs x for R = -0.4 and He = 2.0. 
The open circles are the TM results, and the solid line is a numerical fit. 
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3.0 
·······Ill ········a 

T2.0 

1.0 

0.0 '-----'-----'--~--&----'------Ei---1---'-!4-___J 
0.0 1.0 2.0 3.0 4.0 

H 

FIG. 9. Critical lines of the model for R = 0, -0.2, and -0.4. 
Dotted lines connect the data points for R = -0.2, solid lines for 
R = -0.4, and dashed lines for R = 0. Squares and circles were 
obtained from MC and triangles from TM, except for the points at 
T = 0, which were obtained from Eq. (4). 

each other, and also they reproduce the known result [2] for 
R = 0. Data for R = 0 are shown in the graphs to aid in the 
visualization of the effects ofF (R > 0) and AF (R < 0) NNN 
couplings on the system. 

Consider first the critical lines for R = -0.2 and -0.4, 
in Fig. 9. The main effect of the NNN AF interactions is 
the expansion of the SAF region in the phase diagram. Such 
interactions strengthen the SAF order. Thus it takes larger 
fields and/or temperatures to break this order. 

This is to be contrasted with the case of a simple Ising 
model with NN AF interactions. There, ferromagnetic NNN 
interactions reinforce the AF checkerboard order and produce 
first-order transitions. In our case, reinforcement of the SAF 
order by NNN AF interactions does not produce first-order 
transitions. 

The critical lines for R = 0.2 and 0.4 are shown in Fig. 10. 
There is a shrinkage of the region occupied by the SAF phase as 
R increases. That is a result of the NNN interactions competing 

2.5 ,----.--------,------~-,---.---.--,.---~ 

2.0 

1.5 

T 

1.0 

0.5 

0.0 '----~--e---'-------'-------'----8-'---__j_-~~_____,:fl---J 
0.0 0.5 1.0 

H 
1.5 2.0 

FIG. 10. Critical lines for R = 0, 0.2, and 0.4. The NNN cou­
plings are now ferromagnetic and compete with the AF interactions, 
making it easier to suppress the SAF phase. The symbols have the 
same meaning as those in Fig. 9. 
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with the local AF couplings, thus weakening the SAF phase. 
Hence, smaller fields and temperatures are able to destroy the 
order. The SAF phase region disappears altogether as R ---+ ~' 
which follows from setting He = 0 in Eq. (4). 

III. CONCLUSION 

To summarize, we studied the phase transitions of the SAF 
Ising model in a uniform external magnetic field with NNN 
couplings on a square lattice. We used two numerical methods, 
Monte Carlo (MC) and transfer matrix (TM), to obtain the 
critical lines in the (H -T) plane. We find that all transitions 
are of second order and no evidence for reentrant behavior was 
observed. Our main results are shown in Figs. 9 and 10. The 
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