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Abstract 

Theory and observations suggest that offspring abandonment in animals may occur when the costs to future reproductive 
output of current reproductive effort outweigh the fitness benefits of rearing the current brood. While hormonal cues (i.e. 
corticosterone) or energy reserves are believed to be involved, few studies have directly focused on the proximate cues 
influencing behaviours directly related to reproductive success. To address this information gap, we determined the 
incubation metabolic rates and corticosterone (CORT) levels of naturally fasting and freely incubating ancient murrelets 
(Synthliboramphus antiquus). Respiratory quotient (RQ) increased with date, suggesting that incubating ancient murrelets 
shifted from strictly lipid-based metabolism towards more protein-based metabolism as incubation progressed. Birds that 
hatched only one nestling had higher levels of circulating CORT than those which hatched two, suggesting that birds which 
laid only a single egg found incubation more stressful than those which laid two. However, CORT levels and incubation shift 
lengths were not correlated, suggesting that birds that undertook prolonged incubation shifts did so only when their 
energy stores were not jeopardized. 
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Introduction 
\ 

Iteroparous animals face a trade-off between conserving their 
own energy and delivering energy to their young [1]. In particular, 
annuals may abandon a current reproductive attempt when the 
associated cost is too high [1]. .Many studies have focused on the 
ultimate mechanisms that mediate these evolutionaiy tradeoffs 
[2,3], and some studies have examined the proxiinate cues 
underlying behaviours that determine reproductive success, such 
as abandonment (e.g., in long-lived seabirds: [4]). 

Under unfavorable weather conditions, partners of incubating 
seabirds may extend their foraging trips to maintain their own 
body reserves while the incubating bird is fasting on the eggs [4,5]. 
The incubating bird adjusts to prolonged fasting by mobilizing fat 
stores and sparing body proteins [6]. However, once a threshold is 
crossed, it is thought that protein metabolism also begins to 
contribute to energy production so that neither body proteins nor 
lipids are fully depleted; once mass reaches a lower threshold, the 
bird abandons [7]. A high metabolic rate-associated with large 
muscles and digestive tract-may increase a bird's ability to capture 
food at-sea or adjust to changes in food distribution, but lead to 
increased reserve depletion at the colony [8,9,10,11]. Thus, 
incubation metabolic rate (IlvIR) may play a strong role in 
regulating reproductive success, as birds with a higl:ier metabolic 
rate (due to differences in thermoregulation, thyroid hormone 
levels or body composition) may abandon sooner than those with a 
lower rate. 
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A recent review suggested that resting metabolic rate is often 
correlated with individual behavior, especially aggressiveness, 
across a wide range oftaxa [12]. Few studies, mainly of penguins 
and petrels, have examined the effect of metabolism on breeding 
behavior or success. 1,Iale burrow-nesting Leach's storm-petrels 
( Oceanodroma leucorhoa), with relatively low basal metabolic rates, 
hatched their eggs earlier in the season and had higher offspring 
wing growth rates than males with relatively high basal metabolic 
rates; there was no effect on lifetuue hatching success or female 
reproductive parameters [13]. In contrast, daily energy expendi
ture was not correlated with reproductive success (offspring feeding 
rates) in Briinnich's guillemots (Uria lomvia), although those authors 
did not examine resting metabolic rate [14]. Given the possibility 
of linkages between metabolism, at-sea foraging success and 
incubation shift length, we hypothesized that metabolic rate might 
be a good predictor of reproductive success in seabirds. 

Indirect calorimetiy is a common method to estiluate metabolic 
energy eJ.'Penditure in animals, based on oxygen consumption rate 

(T7 02) or carbon-dioxide production rate (V co2). The respiratoty 
quotient (RQ) of C02 produced to 0 2 consumed is an index that 
characterizes energy sources of activity in a given period; low RQ 
(i.e. ~o. 7) indicates reliance on lipid substrates, whereas high RQ 
(i.e. ~ 1.0) characterizes protein use. RQmay increase during long 
fasting periods, because the birds shift into phase III fasting, when 
protein catabolism increases [15, 16, 17]. However, available 
information for seabirds is lin1ited to penguu1s and albatrosses, 
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which have very long incubation shifts; species with shorter 
incubation shifts, like auks, have seldom been examined. 

Baseline levels of corticosterone (CORT) were negatively 
correlated with reproductive success and body condition in 
black-legged kittiwakes (Rissa tridactyla; [18, 19]), as well as with 
food availability in common guillemots (Uria aalge; [20]). CORT 
levels correlate at an individual level with rates of abandonment in 
passerines ([21,22]; see also [23]). \Ve therefore predicted that 
CORT levels should increase with incubation shift length qow 
food supply requiring longer periods at sea) and should decrease 
with reproductive success (higher nest desertion rates being 
associated with lower food supply) [24,25,26]. 1fany of the 
processes involved in IlvIR, such as thermogenesis and basal 
metabolic rate, arc controlled to a large degree by the thyroid 
hormones. Because CORT is involved in energy mobilisation, and 
can be a proximate cue or "rcfeeding signal" that triggers nest 
desertion when animals have depicted energy stores (e.g. [27,28]), 
we also predicted that Th1IR may be positively correlated with 
reproductive success due to decrea-scd energy metabolism and 
associated thermogenesis in birds prior to nest desertion. 
Specifically, CORT can exert a negative feedback on T3 to 
regulate energy homeostasis (e.g. [30]). 

\Ve examined the relationships between IlvIR, metabolic 
substrate, CORT, fasting duration and reproductive success. 
Using wild birds nesting in artificial nest boxes, we were able to 
measure the rates of oxygen consumption and carbon dioxide 
production of freely incubating small auks (ancient murrelets, 
Synthliboramphus antiquus) in the field without causing them any 
disturbance. \ 1\Te further tested whether longer fasting endurance 
was correlated with an increased respiratory quotient (RQ) 
through greater protein catabolism [29]. We believe that this is 
the first study to examine metabolic rate, incubation shift length 
and corticostcrone levels in free-living birds. 

Materials and Methods 

Ethics Statement 
Appropriate animal care permits were obtained (Environment 

Canada National \Vildlife Research Centre Animal Care Permits: 
0800AG02 [2008], 10AG02 [2010]). 

Study Site and Animals 
Ancient murrelets are small ( ~220 g) auks that share incubation 

equally between pair members [30]. The normal clutch size is two 
eggs, but a minority of birds lay only one egg [31]. Because 
incubation shifts are longer (2-3 days) than those of other auks, 
and because murrelets, unlike most seabirds, do not rear young at 
their nest [31], incubation is probably the most demanding phase 
of breeding in this species [6,8,32]. We measured plasma CORT 
levels of 38 ancient murrelets during April-June 2008 at Reef 
Island, Haida Gwaii, BC, Canada (52.52° N, 131.31°v\~. In April
May 2010 we returned to Reeflsland to measure the incubation 
metabolic rate of ancient murrelets (Th1R, N= 18 birds). The 
ambient temperature (Ta) during our study was relatively constant 
because the boxes were buried in the ground and in deep shade, 
ranging between 4-9°C. Because ancient murrelets are very 
susceptible to nest desertion if disturbed [31], all activities that 
required handling birds outside the burrow occurred at the end of 
incubation. Consequently, only pairs which completed incubation 
were included in the analysis. 

To measure fasting duration at the time of measurements (i.e. 
time since arrival at the nest box), one of each pair of study birds 
was equipped with a miniature radio transmitter (Pip Ag376: 1.3 g, 
LOTEK, St. John's, NF, USA) and a metal band (if not already 
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banded) witl1out removing the bird from tlie nest box. Before 
measuring Th1IR, we left the radio-equipped birds undisturbed for 
at least three days. 

Incubation Metabolic Rate 
\

1\Tc used open-flow respirometry to measure metabolic rates of 
naturally incubating birds in a respiromet1y chambers, which 
comprised modified artificial wooden nest boxes (external dimen
sions: 40 cm X 40 cm X 13 cm; [33]) buried in the ground. All the 
birds were sampled in artificial nest boxes. A sampling tube was 
inserted along one side of the main chamber of each nest box with 
air flowing through the chamber during the entire measurement 
(Fig. 1) and a FOXBOX II® (FoxBox, Sable Systems Internation
al, Las Vegas, NV, USA) pulled air from the sampling tube 
through the gas analyser's sampling stream. All connections 
between the various components of the respirometly system were 
made with gas impermeable Bev-A-Line tubing and connectors. 
Prior to our recording, the equipment was tested with captive 
animals in the laboratmy (i.e. Japanese quail Cotumix japonica). 
\Vit11 tl1is arrangement, the sampling tubes constituted part of the 
normal structure of ilie nest box, allowing us to take samples 
witl10ut disturbing tl1e birds. 

During each trial gas composition was recorded at 2-10 s 
intervals for 15 to 45 min after equilibrium had been achieved 
using Daemon software (Sable Systems International). \ 1\Te 
recorded ilie baseline gas levels (scrubbed of water, and, for the 
m.ygen analyzer, of carbon dioxide) without a bird for 10 min 
before and after each trial, using a randomly selected empty nest 
box sin1ilarly placed in the ground. Prior to recording, we ran the 
machine until readings reached a plateau. Data were excluded 
from this analysis when no plateau was reached within 45 min. 

Prelin1inaiy investigation showed that the washout constant was 
5 min and flow rate was approximately double that needed to 
capture all outflowing air. v\Te used magnesium perchlorate to diy 
outside air with a flow rate of~ 1.2 L/min, which was pumped 
through the chamber using the pump and flow meter built into the 
FoxBox II® respirometer. The effiuent air passed through the 
FoxBox carbon dioxide analyser. Carbon dioxide was then 
removed from the air using soda lime and ilie effiuent was passed 
through the FoxBox oxygen analyser. Both the oxygen and carbon 
dioxide analysers were calibrated at ilie start and end of each field 
season using pure nitrogen and 30% oxygen-70% nitrogen stock 
gas. The gas analysers were calibrated before each measurement 
using soda lin1e (C02 scrubber). \Ve corrected for analyser drift 
linearly during data analysis. 

\Ve measured both V c02 and V C02· Because of substantial drift 
in the oxygen analyser associated with variation in ambient 
temperature and pressure in a field environment, we relied on 

V co2 for comparisons across time. Nonetl1eless, the measurement 
of V c02 was highly correlated wiili the measurement of V co2 

(t= 0.92, 11 = 58). l'\1c measured V co2 eve1y four hours (04:00, 
08:00, 12:00, 16:00, 20:00 a!ld 24:00 Pacific Daylight Time: 
approximately 1.5 hours ahead of solar time at our field site) to 
examine die! variation in metabolic rates. v\Te did not measure 
continuously for the 48 h period to allow birds to exchange 
incubation duties without disturbance. Change overs normally 
took place between 24:00 and 04:00. Total energy consumption of 
the emb1yo is only a small percentage (0.3-3%) of the energy 
expenditure of tl1e parents during incubation [34,35] and ilius we 
assumed that egg metaboli~m made a negligible conti·ibution to 
overall metabolism. 

v\Te used the automated drift correction function in ExpeData 
(Sable Systems) to account for analyser drift in our 0 2 and C02 
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(A) 

Entrance 

FOXBOX 

Data to computer 

- - - - - / 
(B) FOXBOX 

Pump Flow 
Water 

Control 
Scrubber 

Bird 
Chamber - - - - - -

Figure 1. Schematic representation of a nest-box modified into a metabolic chamber (A) and airflow from a bird chamber to 
FOXBOX (B). Air pulled from a nest chamber into FOXBOX (A). Concentrations of C02 and 0 2 inside a nest box were measured through FOXBOX (B). 
doi:10.1371/journal.pone.0084280.gOOl 

signals and then calculated f7co2 and Vco2 (mL min-1
) for each 

individual using that software [36]. Studies that calculate energy 
expenditure based on C02 production, such as doubly-labeled 
water methods, must assume a value for RQ (usually between 
0.71-D.75 for resting birds: [37]), and reported energy expendi
tures are inversely related to those values. RQ can change 
significantly over the course of incubation, suggesting the 
possibility that changes in diet over the season can be misconstrued 
as changes in energy expenditure over the course of tl1e season. In 
this study, we calculated RQ index as: 
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Plasma CORT Analysis 
To determine baseline CORT levels of adult ancient murrelets 

during breeding, we collected brachia! blood samples from 
incubating murrelets at the end of incubation (lviay-June 2008). 
For each individual we preserved a drop of blood on filter paper to 
determine sex using PCR [5]. All blood samples were obtained 
witliin two minutes of capture. They were collected in heparinised 
cryovials and centrifuged immediately after collection. Centrifuged 
samples were kept frozen until prepared in the laboratory. CORT 
levels were measured using a specific and sensitive 1251 double 
antibody radioimmunoassay (1vIP Biomedical kit 07-120103). The 
samples were measured in duplicate in a single assay (intra-assay 
variability= 5.4%; mininmm detection level= 0.05 ng mL - 1

). 

Baseline corticosterone (i.e. samples collected within less than 
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3 min of capture [38]) should reflect the energetic state of a given 
individual, unaffected by the stress of capture [39]. 

Statistical Analysis 
All analyses were performed in R 2.15.2 [40]. We tested for 

normality in the distribution of all variables and loge-transformed 
those that were not normally distributed. For model fitting, we 
used response variables: residual of RQ on Ta and CORT level 
respectively in two separate models. Fasting duration (short vs. 
long for RQ) and reproductive success (1 or 2 chicks for CORT) as 
explanatory variables. As all the pairs included laid two eggs and 
completed incubation, reproductive success was determined solely 
by hatching success. Data were collected repeatedly from each 
individual for IlVIR. To account for pseudoreplication, individual 
identity was included as a random effect in the model. For model 
fitting, we used generalized linear mi.xed models with the !mer 
function in the R lme4 package. 

To examine the relationship between the RQindex and fasting 
duration, measurements were divided into those made before 
(<2 d fasting at the time of measurements) and after (2:2 d fasting 
at the time of measurements) the modal fasting duration (Fig. 2) 
[5]; the same break point was also found using piecewise 
regression analysis. Clutch size of each pair was determined at 
the end of incubation and the status was confirmed after chicks 
departed to sea. Reproductive success was measured as number of 
chicks that successfully departed from the colony. Unless otherwise 
indicated, means ± SE are presented. CORT levels were 
compared between pairs with two chicks surviving to depart from 
the colony and pairs with only one chick departing. 

6' 
c 
<1J 
:i 
O" 
~ 

0 
C\J 

LO 

LL 0 

LO 

0 

0.5 1.0 1.5 2.0 

Fasting duration (days) 

Incubation Costs in Murrelets 

Results 

Ancient murrelets weighed 215±2 g at the end of the 
incubation period in 2010. Mean fasting duration at the date of 
weighing was 1.46±0.12 days (N= 18 birds, N=58 measure
ments). 111etabolic rates of incubating ancient murrelets were 
1.57±0.07 mLC02 g-1 h- 1 (=17.32Jg- 1 h- 1,whichtranslates 

to 25.8 kJ L j,r c02 -I, assuming a conversion coefficient of 25.8 kJ 

L j,r c02; Fig. 3). There was no significant effect of body mass on 
incubation metabolic rates (t57 = 1.95, P= 0.06), although body 
mass variation was relatively low (coefficient of variation= 3.4%). 
j,r c02 values were independent of mean fasting duration 
(t57 = 0.82, P= 0.42) and of reproductive success (t57 = -1.07, 
P= 0.29). There was no diffetence in mean RQ between daytime 
and nighttime (t43 = 0.04, P= 0.96). RQ increased with Ta 
(R2 =0.31, 157 =5.22, P<0.0001) and calendar date (R2 =0.31, 
t57 = 5.16, P<0.0001). RQ was higher for shift lengths 2:2 days 
than for shorter shifts (t57 = -11.21, P<0.0001; Table 1), and the 
difference was still significant after accounting for Ta (residual of 
RQ on Ta: 157 = -2.30, P= 0.02). 

In 2008, ancient murrelets weighed 200±2 g (N= 38 birds) and 
mean plasma CORT level was 13.8±1.4 ng mL- 1 (range=2 to 
49 ng mL - I). There was no difference between males and females 
(males= 14.0±2.4 ng mL- 1

, females= 13.7±1.5 ng/mL, 
t31 =0.11, P=0.91). All pairs in this study incubated two eggs, 
but 6 out of 38 pairs had only one chick because one egg failed to 
hatch. The birds with two chicks had significantly lower levels of 
CORT (12.6±1.0 ng mL1, vs. 23.2±6.6 ng mL1

, t36 =5.40, 
P<0.0001; Table l; Fig. 4). CORT levels were independent of 
mean fasting duration (t18 = -0.35, P=0.72) and of hatching date 
(t36 = 0.11, p:=; 0.90). 

2.5 3.0 

Figure 2. Frequency of fasting duration at the time of measurements of incubation metabolic rate in ancient murrlets at Reef Island 
in 2010. 
doi:10.1371/journal.pone.0084280.g002 
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Figure 3. Relationship between Ln { i' 02 : oxygen consumption rate) and Ln { i7 c02: carbon dioxide production rate) in incubating 
ancient murrlets at Reef Island in 2010 {N= 18 birds, N= 58 measurements). 
doi:l 0.1371/journal.pone.0084280.g003 

Discussion 

We found birds that produced one chick exhibited higher 
CORT levels at the end of incubation than those birds that 
produced two chicks. The difference in CORT levels suggests that 
birds hatching only one chick had more difficulty in completing 
incubation than those that reared two chicks, presumably because 
they found it more difficult to secure the necessmy nutrition. Thus, 
variation in CORT appeared to be associated with variation in 
reproductive success. As reproductive success was determined 
during incubation (via egg viability or hatching success) and 
CORT was measured at the end of incubation, a key assumption 
is that individual variation in CORT levels at the end of 

Table 1. The relationships between RQ and the length of 
fasting endurance, and CORT levels and reproductive success 
in ancient murrelets. 

Short duration 

Long duration 

Residual of 
RQ on Ta 

-0.02±0.01 

(n = 40 measurements) 

0,04±0.02 

(n= 18 measurements) 

doi:l 0.1371/journal.pone.0084280.tOOl 
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1 chick 

2 chick 

CORT level 

23.25±6.60 

(N=6 birds) 

12.69±1.04 

(N = 32 birds) 

5 

incubation is representative of individual variation in CORT 
levels earlier in incubation. 

There is a strong body of literature showing that higher CORT 
levels usually coincide with lower foraging success in seabirds 
[41,42,43,44,45]. In our case, as CORT mobilizes glucose in the 
blood stream and is negatively correlated with food availability in 
seabirds at the colony [18, 19,46] and individual [27] level, we 
suggest that the relationship between CORT level and reproduc
tive success may indicate that birds hatching only one chick found 
it difficult to maintain adequate nutrition during incubation 
[4,28,30]. Furthermore, CORT may negatively interact with 
prolactin, a hormone that facilitates parental behavior [47,48]. We 
propose that birds with low foraging success may have had higher 
levels of CORT and lower levels of prolactin, resulting in 
decreased reproductive success [ 49,50]. Given the linkages 
between foraging success, incubation shift length and reproductive 
success in murrelets [5], we suggest that reduced foraging success 
in murrelets reduces investment in current reproductive success, 
partially mediated by CORT. 

Our values for CORT were almost two orders of magnitude 
higher than a published value for the congeneric fiynthliboramphus 
f!)'}loleucus (0.2 ng mL - l, [51 ]). However, they were similar to other 
measurements in auks (both guillemot species Uria spp. : 1.5-
7 .6 ng mL - 1

, rhinoceros auklets Cerorhinca 111011ocerata: 10 ng mL -I, 
least auklets Aet!zia pusilla: 6 ng mL - I [52,53]), which suggests that 
the measurement for S. !!)'}loleucus is the outlier value. 

RQ index provides an indication of the principal substrates 
being utilized [54]. In our study the initial RQ index indicated 
that, as expected, fat was the main energy resource during fasting 
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Figure 4. Baseline CORT levels {ng ml - 1
) of 38 ancient murrelets by number of chicks that departed to sea. All samples were taken at 

the end of incubation period at Reef Island in 2008, 
doi:10.1371/journal.pone.0084280.g004 

for murrelets [55,56]. RQincreased with date, perhaps indicating 
a change in energy sources from capital ~ess protein) to income 
(more protein) breeding [8]. 1-fass loss in ancient murrelets during 
incubation occurs linearly from clutch completion to hatching 
[31]. Also, incubation shift lengths of ancient murrelets tend to 
become shorter as incubation proceeds [5,30]. These factors 
suggest that the long incubation shifts of ancient murrelets rely on 
initial body reserves, and when energy production shifts towards 
reliance on concurrent foods, murrelets need to reduce shift 
lengths. Thus, variation of shift length within this species may 
depend on initial body reserves. 

After accounting for temperature, the RQ value was higher for 
birds that had been fasting longer. As discussed above, if fasting 
endurance is prolonged, metabolism may switch from prin1arily 
lipids, towards more protein [15,16,17,57], as reflected in an 
increased RQ [58]. However, previous studies were based on 
penguins and albatrosses, which fast for much longer than 
murrelets during incubation. Also, murrelets are much smaller 
than penguins and albatrosses and therefore lipid reserves are 
more limited, although most body composition variation in auks is 
due to variation in lipids [59,60,61]. Possibly, RQindex increases 
during the longest fasts in murrelets because the birds shift into 
phase III fasting, when protein catabolism increases [15,16,17]. 
Alternatively, the phases may be less distinct in murrelets than in 
penguins and some catabolism may occur prior to the commence
ment of true phase III fasting. 

To conclude, we suggest that incubating ancient murrelets shift 
from a lipid-only metabolism towards a partly protein-based 
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metabolism as their incubation shifts exceeded two days. The 
increase in RQ witl1 date implies a switch from reliance on capital 
(fat) to income (increasingly protein as the season progressed). 
High levels of plasma CORT were associated with birds that 
hatched only one nestling, indicating tliat elevated levels of CORT 
may have mediated reduced reproductive success. Due to the lack 
of correlation between CORT and incubation shift length, we 
suggest that those birds that undertook prolonged shifts did so only 
when they did not jeopardize their energy reserves. 
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