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The Rank of Recurrence Matrices 

Christopher Lee and Valerie Peterson 

Christopher Lee (leec@up.edu), a Wyoming native, 
earned his Ph.D. from the University of Illinois in 2009; he 
is currently a Visiting Assistant Professor at the University 
of Portland. His primary field of research lies in differential 
topology and geometry, but he has interests in a variety of 
disciplines, including linear algebra and the mathematics of 
physics. When not teaching or learning math, Chris enjoys 
playing hockey, dabbling in cooking, and resisting the 
tendency for gravity to anchor heavy things to the ground. 

Valerie Peterson (petersov@up.edu) received degrees in 
mathematics from Santa Clara University (B.S.) and the 
University of Illinois at Urbana-Champaign (Ph.D.) before 
joining the faculty at the University of Portland in 2009. 
When she is not working with her students or thinking about 
cube complexes, Riemann surfaces, or curious matrices, 
she enjoys exploring Portland's excellent food (cart) scene 
as well as its many cycling, hiking, and snowshoeing trails. 

When teaching a course in linear algebra, instructors may ask students to produce 
examples that illustrate their understanding of particular definitions or concepts and 
test their ability to apply them. For example, to elicit knowledge of the rank of a matrix 
(i.e., the number of pivots in the matrix once reduced to echelon form, or, equivalently, 
the size of the largest collection of linearly independent columns of the matlix), both 
authors have themselves asked students to give an example of a 3 x 3 matrix with full 
rank, meaning that it has as many pivots as possible (here, three) . Savvy students often 
produce the identity matrix, its three pivots clearly displayed, but the following answer 
has also appeared many times in our various courses: 

Of course, a quick check by row reduction reveals that A does not have full rank, rather 
it has rank 2: In reduced row echelon form, 

[

1 0 
A "' 0 1 

0 0 

-1] 
2 ' 
0 

where '""' denotes row equivalence. This is not obvious at first glance-there are no 
zero entries in A and certainly no row is a multiple of another-but it turns out that 
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eve1y m x n matrix (with m, n :'.'.: 2) filled with consecutive terms of any arithmetic 
sequence has rank 2. (If you have not already, verify that the third row of A above is 
twice the second row minus the first.) This curiosity is the starting point for our inves­
tigation, which then broadens to consider the ranks of matrices filled with geometric 
sequences and more generally defined recursive sequences. Though most examples in­
volve integers for simplicity, all of the following results hold for arbitrary real-valued 
entries. 

Matrices of arithmetic and geometric sequences 

The defining characteristic of the matrix A above is that its entries are consecutive 
elements in an arithmetic sequence. 

Definition. An arithmetic sequence {ak} is defined by a seed (or initial value) ai, 
a common difference x, and the equation ak = ak-I + x fork :'.'.: 2. We assume that 
x f:: 0 and, by re-indexing if necessary, we also assume that a1 f:: 0. An arithmetic 
matrix is a matrix whose entries (read row-by-row) form an arithmetic sequence. 

Proposition 1. Every m x n arithmetic matrix A tvith m, n :=:: 2 has rank 2. 

Proof Note that A may be written as 

A= 

a 
a+ nx 

a +2nx 

a+x 
a+ (n + l)x 
a+ (2n + l)x 

a+ (m - l)nx a + ((m - l)n + l)x 

a+ (n - l)x 
a+ (2n - l)x 
a+ (3n - l)x 

a+ (mn - l)x 

where a is the seed and x is the difference between successive terms of the sequence. 
Simply expressing the entries of A in this way makes the dependencies between rows 
much more apparent! We see that 2(Row 2) - (Row 1) =Row 3, and that every row 
beyond the third can be expressed as a linear combination of the first two rows: 

(i - l)(Row 2) - (i - 2)(Row 1) =Row i 

for 3 :":: i :":: m. Thus, by applying them - 2 appropriate row operations, we cancel 
out Row 3 through Row m. Carrying out one last row operation, replacing Row 2 by 
_a~ix (Row 1) +(Row 2), we have 

a a+x a+ (n - l)x 
a +nx a+ (n + l)x a+ (2n - l)x 

A"' 0 0 0 

0 0 0 

a a+x a+ (n - l)x 

0 -nx2 -(n-l)x2 

a a 
0 0 0 

0 0 0 

and, since x f:: 0, we see that A is row equivalent to a rank 2 matrix. • 
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This is not a new result-it has likely been observed by many before us, was men­
tioned (without proof) in [3], was the starting point for a related question in [8] in­
volving Vandermonde determinants, and has been rediscovered by every one of our 
students who mistakenly suggested an arithmetic matrix had full rank on one of our 
exams !-yet it provides an intuitive starting place for further investigation. A natural 
next question is, perhaps, "What happens if we replace an arithmetic sequence with a 
geometric sequence?" For those adept at mental row reduction, it will be unsurprising 
that these geometric matrices are all rank 1, but we include the result for completeness. 

Definition. A geometric sequence takes the form ak = apk-1, where a and p are 
nonzero and k ~ 1. This can also be written recursively as ak = pak-l fork ~ 2 with 
initial value a1 = a and common ratio p. A geometric matrix is a matrix whose entries 
(read row-by-row) form a geometric sequence. 

Proposition 2. Eve1y m x n geometric matrix G has rank 1. 

Proof Note that G takes the form 

r 
a 

ap" 

ap<11;-I)11 ap<111-I)11+1 

ap"-1] ap2n-l 

. ' 

ap";n-1 

and that rows 2 through m are multiples of the first row, specifically, Row i = 
p(i-l)m (Row 1) for 2 :::: i :::: m. Therefore, G is row equivalent to a matrix with exactly 
one nonzero row, which must be a pivot row. Thus, rank( G) = 1. II 

Matrices of linear recurrence relations 

The arithmetic and geometric examples we have just examined are two cases of se­
quences defined by recurrence relations. We tum now to a broader examination of 
sequences defined by recurrence relations of arbitrary order. 

Definition. A homogeneous linear recurrence sequence is a sequence {ak} defined by 
a relation of the form ak = y1ak-I + y2ak-2 + · · · + y,ak_,., where each y; E IR with 
y,. =J. 0 and the initial values (or seeds) a1, ... , a,. E IR are given. Adding a nonzero 
constant to a homogeneous linear recurrence relation results in an inhomogeneous lin­
ear recurrence sequence: ak = y1ak-I + y2ak-2 + · · · + y,.ak-r + b, where Yr and b 
are nonzero. (Since we consider only linear sequences, we will omit descriptor "lin­
ear" from here on.) 

The order of a recurrence sequence is the largest index j for which Yj is nonzero; 
wc assume all recurrences have a finite order r. As before, by re-indexing if necessary, 
we assume a1 =J. 0, though other seeds (and coefficients) may be zero. Finally, a recur­
rence matrix is a matrix whose entries (read row-by-row) are the consecutive terms in 
some recurrence sequence. 

Any arithmetic sequence, such as 1, 2, 3, 4, 5, ... , is an example of a first-order 
inhomogeneous recurrence sequence. Geometric sequences form the class of first­
order homogeneous recurrence sequences. The classical Fibonacci numbers, 1, 1, 2, 
3, 5, 8, 13, ... , are a homogeneous recmrence sequence of order 2 of the form ak = 
ak-I + ak_2, likewise the Lucas numbers, 2, 1, 3, 4, 7, 11, ... , which are defined by 
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the same relation as the Fibonacci numbers but with different seeds (a 1 = 2, a2 = 1). 
Examples of recurrence matrices for these sequences are 

1 2 
13 21 

3 5] 
34 55 ' L = [~ 

18 

Clearly F has rank 2; we encourage you to verify that L also has rank 2. The references 
[2, 4, 7] contain a wealth of information on Fibonacci and Lucas numbers. 

The earlier cases of arithmetic and geometric matrices having ranks 2 and 1, re­
spectively, can now be viewed as illustrating more general and somewhat surprising 
facts, which we prove next: Given a homogeneous recurrence sequence, the rank of 
the associated recurrence matrix is bounded above by the order r of the recurrence. 
For inhomogeneous sequences, the upper bound on matrix rank is r + 1. 

Theorem 1. Consider the order r homogeneous recurrence sequence {ad defined 
by ak = y1ak-1 + · · · + y,.ak_, .. If R is the associated m x n recurrence matrix, then 
rank(R) _::: r. 

Proof If either m or n is less than r, then the theorem is automatically true, since the 
rank of R is bounded above by min(m, n). We therefore assume that m, n ~ r; note 
that this implies all r of the seeds for the sequence fall in the first row of R. 

For the sake of simplicity, we first consider the special case wherein all Y; = 1. 
To this end, let ak = ak-1 + · · · + ak_, .. Writing R 1, ... , R 11 for the columns of the 
recurrence matrix R, the equations Rk = Rk-I + · · · + Rk-r for r + 1 _::: k _::: n give 
linear dependencies among the columns of R. Therefore, the vectors 

1 0 0 
1 

1 0 
.... -1 .... 1 .... 0 
V1 = 0 'Vz = -1 '· ·· 'Vn-r = 1 

0 

0 1 
0 0 -1 

each with r ones, all belong to Null(R) ~ JR". Letting e1, ••• , e11 denote the standard 
basis vectors in JR", we have 

V1 = e1 + ez + ... + e,. - e,.+1, ... ' V11-r = e11-r + e11-r+l + ... +ell-I - ell. 

Observe that the vectors { v;} are linearly independent (from the placement of zeros 
and ones, for instance). There are n - r of these vectors; thus, the dimension of the 
null space of R is at least n - r. The Rank-Nullity Theorem [5, ch. 4] states that 
rank(R) + dim(Null(R)) = n, which implies rank(R) _::: r. 

Generalizing, we now consider ak = Y1 ak-1 + + y,.ak-r for arbitrary coefficients 
Yi with y,. =f. 0. The dependence relations among columns of R are now 

for r + 1 _::: k _::: n. Thus, the vectors 
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belong to Null(R). As before, the v; are linearly independent: Each iJ; is guaranteed 
to have a nonzero entry in Row i (from y,.) and in Row (r + i) (from -e,.+;). The 
Rank-Nullity Theorem again implies rank(R) _::: r. 

Thus, in the case of a recurrence matrix for a linear homogeneous sequence of order 
r, "full rank" could be taken to mean "rank r" (the fullest possible rank). 

Corollary. Let {ad be an order r inhomogeneous recurrence sequence defined by the 
relation ak = y1ak-I + y2ak-2 + + y,.ak-r + b where b I- 0. If R is the associated 
111 x n recurrence matrix, then rank(R) _::: r + 1. 

Proof Since we may write 

ak+I = Y1ak + Y2ak-I + + y,.ak-r+I + b, 

ak = Y1ak-l + Y2ak-2 + · · · + y,.ak-r + b, 

the difference between successive terms is given by 

Adding ak to each side, we have 

By definition, y,. I- 0, hence an arbitrary term in the sequence can be expressed as an 
order r + 1 homogeneous relation and the result follows from Theorem 1. 

We note that this upper bound on rank is not necessarily tight: Experimenting with 
coefficients and initial conditions leads to examples of homogeneous recurrences of 
order r, whose matrices have rank substantially less than r, as we see next. 

Consider the second-order recmrence all = -3all-1 - 2all_2 with a1 = 1, a2 = -2. 
This relation produces the sequence 1, -2, 4, -8, 16, -32, 64, ... , which can also be 
written as the geometric sequence all = -2a11 _ 1• As such, Proposition 2 implies that 
every recurrence matrix for this sequence will have rank 1. 

As another example, the somewhat trivial fourth-order relation given by bll = bll_4 

with seeds b1 = 1, b2 = b3 = b4 = 0 produces the sequence 1, 0, 0, 0, 1, 0, 0, 0, .... 
In this case, the rank of the associated recurrence matrix depends on the number of 
columns present: A 4 x 4 matrix clearly has rank 1, while a 6 x 6 matrix has rank 
2, and a 5 x 5 has ("full") rank 4. In this fashion, we may construct a recurrence of 
arbitrarily large order where some associated recurrence matrices are rank 1. 

When does the rank drop? 

To explore precisely when and why a particular choice of coefficients or seeds leads 
to a drop in rank, we employ a strategy familiar to those who have studied differential 
equations. A homogeneous recurrence relation of order r may be written as a system 
of r homogeneous first-order equations. This is done by introducing r - 1 variables to 
take the place of ak-1, ... , ak-r+I [6]. 
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Definition. The roots of the characteristic polynomial for the coefficient matrix de­
scribing this linear system are the eigenvalues of the recurrence relation. 

We illustrate this in the order 2 case, which will be the focus of the classification 
to follow. The second-order recurrence relation ak = cak-l + dak_2 may be converted 
into a system of first-order equations by setting bk = ak-1' thereby implying h-1 = 
ak_2. Then, ak = cak-l + dbk-l and the recurrence relation may be written as a matrix 
equation 

The characteristic polynomial of the coefficient matrix is P (A) =A 2 - d - d and the 
roots of P(.A) are the eigenvalues, namely 

c±Jc2 +4d 
A= 2 . (1) 

The rank of a recurrence matrix for a second-order homogeneous relation depends 
on a particular relationship between the seeds and the eigenvalues of the relation. Be­
fore giving this classification of drops in rank in the order 2 homogeneous case, we 
present a technical lemma, which allows us to express ak as a linear combination of 
the initial values a 1 and a2• 

Lemma. Let ak = cak-I + dak_2 be a homogeneous recurrence relation of order 2. 
Let {sd and {tk} be the sequences of coefficients of a2 and a1 in {ad, respectively, such 
that ak = ska2 + tka1. Then, for all k ~ 3, 

(i) sk = csk-1 + dsk-2 and 

(ii) ak = ska2 + dsk-1a1. 

Proof To prove (i), note that 

ak = cak-1 + dak-2 

= c(sk-1a2 + tk-1a1) + d(sk-2a2 + tk-2a1) 

= (csk-1 + dsk-2)a2 + (ctk-1 + dtk-2)a1. 

Since ak = ska2 + tka1, comparing the coefficients of a2 yields the result. 
The proof of (ii) proceeds by induction. Note that the first three terms of the se­

quence {ad are a 1, a2, ca2 + da 1, and so the first three terms of {sd are 0, 1, c. The 
base case k = 3 is therefore true with s3 = c and s2 = 1. Now, assume that (ii) is true 
for all l < k. Then, our inductive assumption implies that 

ak = cak-1 + dak-2 

= c(sk-1a2 + dsk-2a1) + d(sk-2a2 + dsk_3a1) 

= (csk-1 + dsk-2)a2 + d(csk-2 + dsk_3)a1. 

By (i), it follows that ak = ska2 + dsk-1 a1. 

We are now able to state precisely when a drop in rank occurs for a recurrence 
matrix of a homogeneous relation of order 2. 
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Theorem 2. Consider the second-order homogeneous recurrence sequence ak = 
cak-1 + dak-2 for nonzero c, d E JR. If R is the associated m x n recurrence matrix, 
then rank(R) = 1 whenever q_J_ is an eigenvalue of the recurrence relation for seeds a1 a1 

and a1. 

Proof Without loss of generality, we compute the rank of the transpose, RT [5]. By 
part (ii) of the lemma, the terms of the sequence {ad can be written entirely in terms of 
the coefficient sequence {sk} and the seeds a1 and a2. Specifically, ak = ska2 + dsk_1a1. 
As a result, the transpose RT may be written as 

r 
a1 
a2 

s11 a2 + ~s,,_1a1 

s,,+1a2 + ds,,a1 
s11+2a2 + ds11+1a1 

S(m-l)11+1a2 + ds(m-1)11a1 l 
S(m-l)11+2a2 ~ ds(m-1)11+1a1 . 

Sm 11 a2 + dsm 11-1a1 

As detailed in Theorem 1, the columns of R, and hence the rows of RT, are linearly 
dependent. In particular, when taken three at a time sequentially, the rows of RT are 
dependent. This implies that RT is row equivalent to 

a1 s,,+1a2 + ds11 a1 S(m-l)11+1a2 + ds(m-1)11a1 
a2 s11+2a2 + ds11+1a1 S(m-1)11+2a2 + ds(111-l)11+1a1 

M= 0 0 0 

0 0 0 

Now, for 1 _::: j _::: m - 1, consider the (j + l)st column in M, 

Sj11+1a2 + dsj,,a1 
Sj11+2a2 + dsj11+1a1 

0 

0 

After replacing Row 2 with -az (Row 1) +(Row 2), we have a, 

Sj11+1a2 + dsj,,a1 
-;k (sj11+1ai + (dsj,, - Sj11+2)a1a2 - dsj11+1ar) 

0 

0 

Since part (i) of the lemma implies that dsj,, - Sj11 +z = -csj11+1, this reduced form of 
the (j + l)st column of M may be written as 

0 
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It follows, then, that RT is row equivalent to 

0 0 

S(111-JJ11+1 a2ds<111-I)11a1 
_ S(m-l)n+l q 

GJ 

0 

0 

(2) 

where q =a~ - ca1a2 - daf. Therefore, rank(RT) = 1 whenever q = 0. Solving for 
a2 in terms of a 1 in q = 0 yields 

( 
c ± ,.j c2 + 4d) 

a2 = a1 2 , 

showing by (1) that ~ is an eigenvalue of the relation. 
GJ 

Note that the converse of the theorem fails: If R is any m x n recurrence matrix for 
a homogeneous relation of order 2 and rank(R) = 1, then ~ need not be an eigenvalue 

a1 

of the relation. To see see this, note from the reduced form of RT in (2) that rank(R) is 
also 1 when the coefficients s 11 + 1 , .•• , s(m-!Jn+I are zero (i.e., when the a2 component 
of ak vanishes periodically with n ). This is highlighted by the next example. 

Define a sequence by ak = 2ak-l - 2ak_2 with seeds a1 = 1, a2 = 2. The character­
istic polynomial 'A 2 

- 2A + 2 has complex roots, so the ratio of initial values is not an 
eigenvalue of the relation (this is true for any real seeds). Yet, writing out a few terms 
of this sequence, we have 1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0 and you can verify 
a4k = 0 for all integers k :'.'.: 1. Any recmTence matrix with n = 4k columns, then, will 
have rank 1. If we write the sequence another way, as in pa1t (ii) of the lemma, then 
we can easily see the entries in which the coefficients skn+I of a2 vanish: 

a1, a2, 2a2 - 2a1, 2a2 - 4a1, -4a1, -4a2, -8a2 + 8a1, -8a2 + l6a1, l6a1 ._,_., 
s211+1=0 

Observe, however, that a 3 x 3 recurrence matrix for this sequence has rank 2. This 
indicates that, in some cases, the rank of a recurrence matrix depends on subtle re­
lationships between the coefficients defining the relation, the initial values, and the 
number of columns in R. 

When c, d, a1, a2 are all positive, the coefficients sk are always nonzero in the 
second-order recurrence relation ak = cak-I + dak_2. Hence, we have the following 
corollary to Theorem 2. 

Corollary. Form, n :'.'.: 2, them x n recurrence matrix for any generalized Fibonacci 
sequence Fk = Fk-1 + Fk-2 with positive integer seeds F1 = a1 and F2 = a2 has 
rank 2. In particulm; any m x n recurrence matrix for the standard Fibonacci se­
quence I, I, 2, 3, 5, ... or the Lucas sequence 2, I, 4, 3, 7, 11, ... has rank 2. 

Proof All terms in the sequence above are positive, so sk i- 0 for k > 1. The char­
acteristic polynomial of the relation ak = ak-I + ak_2 is P() .. ) = J...2 

- 'A - 1, hence 

the eigenvalues of the relation are 1±/5. Since the seeds a1, a2 are integers, their ratio 
cannot be either of these eigenvalues. The result follows from Theorem 2. 
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Suggestions for further study 

By the proof of Theorem 2, the rank of a recunence matrix for the relation ak 
ska2 + tka1 is linked to the dynamics of the sequence of coefficients {sd: If these 
vanish periodically, then the rank of the matrix depends on its width (i.e., number of 
columns), as seen in the last example. In attempting to examine this more deeply (as 
well as in extending to higher-order relations), we suspect that an alternate viewpoint 
will be useful. Specifically, rather than writing an arbitrary term ak with respect to ini­
tial values a1 and a2 (and other seeds, in the case r > 2) and then examining how the 
sequence {sd behaves, we may instead find a general formula for ak as a linear com­
bination of fundamental solutions for the recurrence. These fundamental solutions are 
defined with respect to eigenvalues of the relation and their multiplicities; the method 
for finding general solutions to recurrences is well-known [l]. Preliminary investiga­
tions using this perspective suggest a characterization of when an order r recurrence 
can actually be realized as an order q recurrence for some q < r. In this case, The­
orem 1 would imply that the rank of the recurrence matrix is bounded above by q, 
necessarily indicating a drop in rank from r. 

Acknowledgment. The authors appreciate productive conversations they had with S. Bozlee 
and C. Hallstrom regarding this project, and are grateful for the insights and helpful feedback 
provided by a number of additional colleagues and anonymous reviewers. 

Summary. A recurrence matrix is defined as a matrix whose entries (read left-to-right, row­
by-row) are sequential elements generated by a linear recurrence relation. The maximal rank 
of this matrix is determined by the order of the corresponding recurrence. In the case of an 
order-two recurrence, the associated matrix fails to have full rank whenever the ratio of the 
two initial values of the sequence is an eigenvalue of the relation. 
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