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Dynamical properties of an harmonic oscillator impacting a vibrating wall

O. F. de Alcantara Bonfim*
Department of Physics, University of Portland, Portland, Oregon 97203, USA

�Received 11 February 2009; published 13 May 2009�

The dynamics of a spring-mass system under repeated impact with a vibrating wall is investigated using the
static wall approximation. The evolution of the harmonic oscillator is described by two coupled difference
equations. These equations are solved numerically, and in some cases exact analytical expressions have also
been found. For a periodically vibrating wall, Fermi acceleration is only found at resonance. There, the average
rebounding velocity increases linearly with the number of collisions. Near resonance, the average rebounding
velocity grows initially with the number of collisions and eventually reaches a plateau. In the vicinity of
resonance, the motion of the oscillator exhibits scaling properties over a range of frequency ratios. The
presence of dissipation at resonance destroys the Fermi-acceleration process and induces scaling behavior
similar to that at near resonance. For a moving wall with a random amplitude at collisions, Fermi acceleration
is observed independently of the ratio between the wall and oscillator frequencies. In this case the average
rebounding velocity grows with the square root of the number of collisions with the wall. Also, in this latter
case, dissipation suppresses the Fermi-acceleration mechanism and induces a scaling behavior with the same
universality class as that of the dissipative bouncing ball model with random external perturbations.

DOI: 10.1103/PhysRevE.79.056212 PACS number�s�: 05.45.Pq, 05.45.Tp, 05.45.Ac

I. INTRODUCTION

In an attempt to understand the origin of fast particles in
cosmic rays, Fermi �1� proposed an acceleration mechanism
to explain the high speed of these particles. Fermi’s idea was
that the cosmic ray particles would speed up as a result of the
collisions between them and randomly moving magnetic
fields existing in stellar space.

A mechanical analog of this mechanism was proposed by
Ulam �2�. He suggested considering a system consisting of a
light particle �or ball� moving between two horizontal very
heavy walls, with one of them oscillating periodically. This
model is known as the Fermi-Ulam model. One would ex-
pect that after many collisions the heavy wall would share its
energy with the ball which, being lighter, would progres-
sively accelerate indefinitely. Contrary to his and others’ �3�
expectations, numerical simulations of the model revealed
that the average velocity of the particle did not become very
large even after several thousand successive collisions, and
no acceleration was found. The numerical simulations re-
ported by Ulam �2� indicated that the motion of the ball
appeared to be stochastic, but its energy on average did not
increase with time. However, if the phase of the wall oscil-
lation is chosen randomly at the time of the impact, then the
particle is indeed accelerated on average.

Later Lichtenberg et al. �4,5� showed that the phase space
structure for the model with a periodically oscillating wall
was different, depending on the velocity of the particle. For
instance, at low velocities the phase space is mostly chaotic;
at intermediate velocity regions �islands� of regular motion
are found imbedded in a chaotic sea and for large velocities
the motion is, in general, regular and shows a limited gain of
energy.

The effects of dissipation have been analyzed on the full
model �6–10�, as well as on a simplified version of the model

�9,11–13�. In the simplified version of the model, all colli-
sions with the moving wall are assumed to take place at the
same position. However, the velocity of the wall at the mo-
ment of collision is the same as if the wall was moving. This
approximation is sometimes called the static wall approxima-
tion. Both versions of the model have recently been investi-
gated where the moving wall is also stochastically oscillating
�14–16�.

A similar version of this model, first introduced by
Pustylnikov �17�, is known as the bouncer model. It consists
of a particle bouncing vertically on an oscillating table under
the action of a constant gravitational field. It has been shown
that in the case of a periodic oscillating table Fermi accel-
eration is observed �4,5,17�, that is, unlimited gain of energy
for the particle depending on the initial conditions and con-
trol parameters. The system also exhibits a variety of dy-
namical behavior such as periodic motion, period-doubling
cascade, and fully developed chaotic motion, depending on
the amplitude and frequency of the vibration of the table.

The influence of damping on this model has also been
investigated �18–30�. Experimental realizations of the
bouncer model have been studied by several authors
�22,31–36�. The inelastic bouncing ball has been used as a
simplified model to understand the dynamics of vibrated
granular media �37�. The Fermi-acceleration mechanism has
been found to be useful to study phenomena in other areas of
physics such as astrophysics �38–40�, atomic physics �41�,
optics �42,43�, and plasma physics �44,45�. Combining the
Fermi-Ulam model with the bouncer model, a hybrid model
was formed consisting of the bouncer with an additional
fixed barrier parallel to the oscillating table. The dynamic
properties of this hybrid model have been analyzed under
several conditions �46,47�.

Motivated by the study of these systems and their surpris-
ing dynamical behavior, in this work I investigate the dy-
namics of an harmonic oscillator undergoing repeated impact
with a periodically vibrating heavy wall. A simplified version
of this model, where the wall is kept in a fixed position and*bonfim@up.edu
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the oscillator mass is subjected to a sinusoidal force, has
been the subject of several studies both theoretically �48–55�
and experimentally �55�. This system exhibits a multitude of
complex behaviors such as period-doubling bifurcations
leading to chaos �48–50,52�, crises and hysteresis �52,54�,
grazing bifurcations �53,54�, intermittent transition to chaos,
and attractors showing the Devil’s stair-case behavior �52�.
The case where both the oscillator and the wall are periodi-
cally vibrating has been used to model experiments involv-
ing an atomic force microscope �56,57�.

This paper is arranged as follows. In Sec. II, the model is
introduced in detail and the methods used to investigate it are
outlined. In Sec. III, the results are presented and discussed.

II. MODEL

The system studied here consists of a mechanical oscilla-
tor, that is, a spring-mass system moving perpendicularly to a
vibrating wall, as shown in Fig. 1. The rest position of the
oscillator is placed at the equilibrium position of the wall.
The natural frequency of the oscillator is �o, and in the case
where the wall is held at its equilibrium position, all colli-
sions with the wall will take place at time intervals �t
=� /�o, corresponding to half of the oscillator period. It is
assumed that the wall vibrates harmonically around the rest
position of the oscillator with amplitude xw=xo sin��t�. Col-
lisions will take place in the interval �−xo ,xo�.

To simplify the analysis, the static wall approximation
was used �4,5�. In this framework the wall is assumed to be
fixed at the x=0 position at the moment of collision and
exchanges momentum with the oscillator as if it was moving
with velocity ẋw=xo� cos��t�. This approximation has been
applied to both the Fermi-Ulam �9,11–16� and bouncer
�26–30� models. Under these conditions, the oscillator mass
will repeatedly collide with the wall. Just after the nth colli-
sion, the oscillator mass will bounce off the wall with veloc-
ity un at time tn. The next collision will take place at tn+1,
with the mass rebounding with velocity un+1. Since the time
between collisions is �t=� /�o, this yields

tn+1 = tn + �/�o, �1�

un+1 = eun + �1 + e��xo cos��tn+1� , �2�

where e is the coefficient of restitution between the oscillator
mass and the vibrating wall. Defining the dimensionless vari-
ables �n=�tn, vn=un /�xo, and r=� /�o, Eqs. �1� and �2�
may be rewritten as

�n+1 = �n + �r , �3�

vn+1 = �evn + �1 + e�cos��n+1�� . �4�

The absolute value has been added to the right-hand side of
the velocity equation. This eliminates the nonphysical condi-
tion where the mass of the oscillator has a negative velocity
after collision with the wall and would therefore move
through the wall.

An important feature of the model used here springs from
adopting the static wall approximation. Under this approxi-
mation all collisions take place at the equilibrium position of
the oscillator. Hence the time between collisions is the same
�half the period of the oscillator� and is independent of the
velocity of the oscillator mass after collisions with the wall.
As a consequence, the equations describing the evolution of
the system are coupled in an asymmetrical fashion. Namely,
the phase of the moving wall affects the velocity of the os-
cillator mass, but the latter does not change the phase. This
makes it possible to obtain analytical solutions in various
cases of interest.

In order to compare the present model with the results of
the scaling behavior in the Fermi-Ulam and bouncer models,
various quantities were introduced �58�. First, the cumulative
velocity and cumulative square-velocity after n collisions are
defined as

Vi
��r,e,n� =

1

n
�
j=1

n

vi,j
� �r,e� , �5�

where �=1,2. These quantities are calculated for a given
initial condition for the phase and the rebounding velocity,
labeled by the index i. By sampling over N initial conditions,
the average of either quantity may be written as

�V��r,e,n�� =
1

n
�
j=1

n

�v j
��r,e�� , �6�

where �V��r ,e ,n��=�i=1
N Vi

��r ,e ,n� /N and �v j
��r ,e��

=�i=1
N vi,j

� �r ,e� /N. The cumulative velocity standard deviation
is evaluated using

�V�r,e,n� = 	�V2�r,e,n�� − �V�r,e,n��2. �7�

The initial conditions for the phase are sampled from a
random uniform distribution in the interval �0,2��. For sim-
plicity, through out this work the initial condition v1=0 is
used for the rebounding velocity after the first collision. This
sets the initial energy of the oscillator to zero. The above
averages are calculated by sampling over N=104 initial con-
ditions.

III. RESULTS AND CONCLUSIONS

The equation for the wall phase �Eq. �3�� can be readily
integrated giving �n=�1+ �n−1��r, where �1 is the phase of

x

FIG. 1. Sketch of a spring-mass system which repeatedly col-
lides with a vibrating wall.
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the vibrating wall at the first collision. The velocity equation
can also be found analytically as long as the expression in-
side the absolute value, namely, f�vn ,�n+1�=evn+ �1
+e�cos��n+1�, remains positive for all values of n, which can
be found depending on a judicious choice of the initial con-
ditions. Next the solutions to the velocity equation for vari-
ous cases of interest are presented.

First consider the situation where the collisions are elastic
�e=1� and analyze the dynamics of the system as a function
of r=� /�o. At resonance, that is for r=2k�k=1,2 , . . .� and if
cos��1��0, it is found that f�vn ,�n+1��0 for all values of
n. Thus, the velocity equation can be integrated to give vn
=2 cos��1��n−1�. Therefore, the motion of the oscillator is
unbounded and the rebounding velocity of the oscillator
mass increases linearly with the number of collisions n
�Fermi acceleration�. If cos��1��0, the absolute value in Eq.
�4� cannot be discarded since the rebounding velocity may
become negative immediately after a collision. Thus, no ana-
lytical solution can be found in this case. However, the val-
ues for �vn� and �vn

2� can be exactly evaluated over the entire
range of initial conditions for �1, resulting in �vn�= 4

� �n−1�
and �vn

2�=2�n−1�2.
As pointed out earlier, the phase equation general solution

is given by �n+1=�1+n�r. Let r=2k�	, where 	 measures
the deviation from resonance. In the expression for the ve-
locity �Eq. �4��, the phase enters as the argument of the co-
sine, yielding cos��n+1�=cos��1�n�	�, which is indepen-
dent of k. Therefore the behavior of the rebounding velocity
near higher resonances is the same as for the first resonance.
Because of that we only consider the motion of the oscillator
near the first resonance �k=1�, that is, r=2�	. For initial
conditions with �1�3� /2, the oscillator mass undergoes
successive collisions until the phase of the wall reaches �
=3� /2 after n�= �3� /2−�1� /�	 collisions. Beyond that
point the rebounding velocity becomes non-negative and pe-
riodic. If �1
3� /2, a transient is also observed until the
phase of the wall reaches �=2�+3� /2 after n�= �2�
+3� /2−�1� /�	 collisions, beyond which the rebounding
velocity is also non-negative and periodic, as shown in Fig.
2. If �1=3� /2, then f�vn ,�n+1��0 for n�1. Therefore, the
velocity equation can be integrated yielding vn�	�
= 4

�	sin2��	�n−1� /2�, with 	�1. This expression indicates
that the rebounding velocity of the mass is limited, grows at
a rate inversely proportional to 	, and varies sinusoidally
with the number of collisions n. Although this result is valid
only if �1=3� /2, it shows a important point, namely, that
the dependence on 	 may be scaled out using the reduced
variables vn /	� and �n−1� /	z, with �=z=−1. A numerical fit
for the average rebounding velocity over all �1 leads to
�vn�= 
A1�1−e−B1��n − 1�	�2

��1/2 /	, with A1=0.406�1� and B1
=1.09�1�. This indicates that the scaling behavior persists for
all values of �1 even where no analytical solution is found.
Similarly, for the average rebounding square velocity one
gets �vn

2�=A2�1−e−B2��n − 1�	�2
� /	2, with A2=0.608�1� and B2

=1.73�1�. These fitted expressions are for all practical pur-
poses indistinguishable from their corresponding values cal-
culated directly from Eqs. �3� and �4�. In Fig. 3, the behavior
of the cumulative velocity standard deviation is plotted as a
function of the number of collisions for several values of 	,

from 10−2 to 10−6. Observe that �V initially grows linearly
with the number of collisions and rapidly changes to a satu-
rated value �Vs beyond a crossover value nx. By analyzing
the plots following the procedure used in �58�, one arrives at
the following results:

�V�	,n� 
 n� �n � nx� with � = + 1.00�2� , �8�

�Vs�	� 
 	� �n � nx� with � = − 1.00�1� , �9�

nx 
 	z with z = − 1.00�1� , �10�

where the exponents � and z agree with the analytical values
calculated above. Using the scaling concepts discussed in
�58�, it is found that the set of exponents �� ,� ,z� are not
independent but related by z=� /�. Also the standard devia-
tion of the cumulative velocity obeys the scaling relation

�V�	,n� � 	�f�n/	z� , �11�

where f�u� is a universal scaling function which can be
found for the data in Fig. 3 by plotting �V /	� versus n /	z as

0 100 200 300 400 500
n

0

50

100

150

vn

FIG. 2. Rebounding velocity of the oscillator mass as a function
of the number of collisions n for 	=10−2 in the elastic case, with
initial conditions ��1 ,v1�= �� /3,0� �dotted line� and ��1 ,v1�
= �5� /3,0� �solid line�. In both cases a transient persists until the
phase of the moving wall reaches �=3� /2, beyond which the re-
bounding velocity becomes periodic.
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FIG. 3. Rebounding velocity standard deviation versus the num-
ber of collisions near resonance for several values of 	. Here the
collisions with the wall are elastic.
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shown in Fig. 4, where all curves collapse into a single scal-
ing function.

Now consider the case where the system is at resonance,
that is, 	=0, with inelastic collisions. First take the coeffi-
cient of restitution close to unity, e=1−�, where ��1. In
this case, one can also find a closed expression for the re-
bounding velocity by integrating Eq. �4�, as long as
cos��1��0, namely, vn���= 2

� cos��1��1−e−��n−1��.
This result shows that for a range of initial conditions, the

effects of dissipation can also be scaled out by introducing
the reduced variables vn /�� and �n−1� /�z, with �=z=−1, as
in the elastic case near resonance previously discussed. A
numerical fit for �vn� averaged over all �1 yields �vn�
=A1�1−e−��n−1�� /�, with A1=0.64�1�, and similarly �vn

2�
= 
A2�1−e−��n−1�� /��2, with A2=1.00�1�.

In Fig. 5 the cumulative velocity standard deviation is
plotted against the number of collisions for several values of
�. Initially �V grows with a power-law behavior for each �.
Eventually it reaches a plateau similar to the behavior in the
case of elastic collisions. As previously, there is a crossover
at nx between the two regimes, which is determined by the
intersection of the two tangents to the power-law curves.
Scaling is also observed in this case.

Figure 6 shows the collapse of the curves for different
dampings into a single curve. It was found that the dynami-
cal exponents z and � are the same as in the case of no
damping, indicating that both cases belong to the same uni-
versality class. It must be pointed out that the scaling prop-
erties found in the present model do not involve chaos in the
region of limited energy, unlike the Fermi-Ulam �9,11,12�
and bouncer �26–28,30� models.

In the velocity equation �Eq. �4��, the change in velocity
comes from two different mechanisms. The first is due to the
nature of the inelastic collisions that reduces the rebounding
velocity by a factor evn, with e�1. The second corresponds
to the transfer of momentum between the oscillator mass and
the moving wall. This term is the one responsible for the
Fermi acceleration.

To simplify our discussion, consider the extreme case
where the transfer of momentum from the wall to the mass is
at its maximum at every collision. Thus the velocity equation
reads as vn+1=evn+ �1+e�. From this equation it is clear that
the velocity change due to momentum transfer, �1+e�, is
fixed and independent of the velocity of the oscillator mass.
On the other hand, the reduction in velocity due to inelastic
collisions depends on the velocity of the oscillator mass. For
low velocities, the second term dominates and the velocity of
the oscillator mass increases after each collision. However,
as the velocity increases the first term will become more and
more dominant until the contribution from each term cancels
out the other leading to the limiting velocity vL= �1+e� / �1
−e� and to the suppression of Fermi acceleration. The actual
limiting velocity averaged over many initial conditions is in
fact smaller than the value found above since the momentum
transfer term is between −�1+e� and �1+e� for an arbitrary
collision with the wall. A numerical expression for the aver-
age rebounding velocity as a function of the number of col-
lisions is reported above.

By adding random perturbation to the phase of the vibrat-
ing wall, the finite difference equations for phase and veloc-
ity become

�n+1 = �n + �r + R2��n� , �12�
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vn+1 = �evn + �1 + e�cos��n+1�� , �13�

where R2��n� is a uniform random number on the interval
�0,2��.

For elastic collisions, the random perturbation modifies
the functional dependence of the average rebounding veloc-
ity with the number of collisions. As discussed earlier, in the
unperturbed elastic case, the rebounding velocity grows lin-
early with n. In the present case, however, the randomness
induces a square-root dependence on n, which is found nu-
merically to be �vn�= �A1�n−1��1/2, with A1=1.273�2�. How-
ever, the mean-square rebounding velocity can be calculated
exactly by direct integration of Eq. 14, yielding �vn

2�=2�n
−1�. It turns out that the ratio between the frequencies, r,
becomes irrelevant when random perturbation is introduced
due to the periodicity of the cosine.

When dissipation is present an exact expression for �vn
2�

can also be found, obtained again by direct integration of Eq.
14, �vn

2����= 1
� �1−e−2��n−1��. This expression shows that in the

dissipative regime the mean-square rebounding velocity can
be described by scalable variables. Numerical calculations
clearly show that the same is observed for the average re-
bounding velocity, giving �vn�= 
A1�1−e−2��n−1�� /��1/2, with
A1=0.636�1�. The expressions for �vn� and �vn

2� show that
scaling is observed with critical exponents �� ,z�= �− 1

2 ,−1�.
These are the same exponents found in the dissipative bounc-
ing model with random external perturbations �27�, placing

both models in the same universality class. The effects of
dissipation on the cumulative velocity standard deviation as
a function of the number of collisions with the wall are
shown in Fig. 7 for several values of the coefficient of resti-
tution.

These curves can also be made to collapse by using nu-
merical fits to the power-law behaviors clearly identified in
Fig. 7 for both the small and large numbers of collision re-
gimes. The collapse is shown in Fig. 8 using the theoretical
values for the exponents found above.

In summary, the behavior of an harmonic oscillator under-
going repeated impacts with a moving wall has been studied.
For elastic collisions Fermi acceleration is observed at reso-
nance when the wall is moving sinusoidally and for any fre-
quencies ratios when the phase of the moving wall at colli-
sions is random. Near resonance Fermi acceleration is
suppressed, and the rebounding velocity exhibits scaling
properties. For inelastic collisions, the rebounding velocity is
limited, exhibiting scaling at resonance when the motion of
the wall is periodic and for any frequency ratios when the
phase of the moving wall is selected randomly at collisions.
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