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Critical behavior of the one-dimensional S = 1 XY model with single-ion anisotropy 

0. F. de Alcantara Bonfim* and T. Schneider 
IBM Zurich Research Laboratory, 8803 Riisch/ikon, Switzerland 

(Received 19 March 1984) 

We study the quantum critical behavior of the one-dimensional, S = 1 XY model in !he presence of a 
single-ion anisotropy. Using a path-integral approach, we obtain, at T = 0 and for a positive anisotropy 
constant, a classical free-energy functional that allows discussion of the critical properties. The rescaling of 
frequencies is governed by the critical exponent z =I. Renormalization-group arguments reveal that at cri­
ticality the system belongs to the same universality class as the isotropic 2- d XY model. 

The ground-state properties of spin chains have been 
widely studied in the past years; however, the emphasis has 
been on spin-{ chains, where in some cases exact solutions 

i.re available . L Only recently was it realized that properties 
for integer-spin systems may differ considerably from those 
with half-integer spins. I. 2 'one of the systems presently of 
great interest3•4 is the spin-1 anisotropic Heisenberg chain in 
the presence of a uniaxial symmetry-breaking field, namely, 

K= -t !Jv(S;xSf+SfSJ+ilSfSj)+D I(Sf) 2 
. (1) 

(ij) i 

Here, the exchange J and single-ion anisotropy D have been 
chosen to be positive. Examples of current concern are 
CsNiF3 (Ref. 5) (fl= l) and compounds like RbNiCl 3 and 
CsNiC13 (Ref. 6) for fl~ 1. The above model with fl= 0 
can also be viewed as a truncated version of a quantum cou­
pled rotator [the quantum 0(2) model] where only the 
three lowest states are retained.7 The two limiting cases for 
zero and infinite anisotropy have degenerate and nondegen­
erate ground states, respectively; hence, a phase transition is 
expected at T = 0 at a particular value of D. Evidence for 
such a transition at D = 0.4 was given by finite-ring calcu­
lations.3·4· 7 Moreover, it has been suggested that in the 
(D, fl) plane, including A= 0, a critical line exists, exhibit­
ing Kosterlitz-Thouless behavior.3•

4 However, these numer­
ical calculations have not been able to identify the nature of 
this transition unambiguously. In this Rapid Communica­
tion, we shall investigate, by using a path-integral ap­
proach, 3-

10 the quantum critical behavior of the above Ham-

iltonian for fl= 0, driven to criticality by changes in the 
single-ion anisotropy parameter D. We show that the 
universal properties of this transition are equivalent to those 
of the 2 - d classical XY model exhibiting a Kosterlitz­
Thouless type of phase transition. 

We shall separate (I) into two parts, namely, 

K=Ko+V (2) 

with 

(3) 

as the unperturbed Hamiltonian with D > 0, and for the 
perturbative part (A= 0) 

V= -+ Ilu(SfSJ+SfSf) . 
(ij) 

Now, one can write the partition function as 

Z=Tr[e -PKoTexp(- s: dT V(d]] , 

(4) 

(5) 

where Tis the "inverse-temperature" ordering which reor­
ders a product of operators from left to right in order of de­
creasing /3. The T dependence of the perturbation V is 
given by 

(6) 

To write the partition function in a convenient form, we 
make use of the following identity: 10 

(7) 

preceded by a discretization of the values of T in the exponential of (5), that is, 

fli M 
Jo dTV(T)= lim Ji..M I V({3m/M) , 

0 M-oo m-l 
(8) 

which allows the partition function to be written as a functional integral 

Z = Zo f 9X9Y exp[--} .r dT tX;(r
1
)uXj + Y;(r l)vY1J [Texp( .C dT t[Sf(T )X/T) +Si(T) Yi( T) 1 Jt (9) 

where the average is taken with respect to the noninteracting ensemble defined by Ko (with respective partition function 
Z 0). The measure of the functional integral is defined as 

f J
oo N M 

~X = lim 11 11 dX;(m{3/ M) • 
M-oo - ooi-lm - 1 

(10) 
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and similarly for the Y component. Here, N stands for the 
total number of spins in the chain. In the present form, we 
have effectively replaced the original interacting system of 
quantum spins by a noninteracting one subjected to a r­

independent random field which exactly mimics the interac­
tions of the original system. 11 

The expectation value of (9) may be rewritten in terms of 
the cumulant averages, again taken with respect to the 
noninteracting ensemble of Ko; thus 

Z = Z 0 J .!?i'X .~"Y exp(-K.rr[X(T ), Y( r) ]) (11) 

with the effective Hamiltonian Herr given by 

Kerr=+ .C dT I!X;( T )(;- l) ;;X; ( T) + Y;( T) uu- l )Yj( r) l 
ij 

-(Texp .C dT I!Sf(T)X;(T)+Sf(r)Y;(T)lJc , 
I 

(12) 

where c stands for cumulant average. The effective Hamil­
tonian obtained here is the quantum generalization of the 

classical Landau-Ginzburg-Wilson free-energy functional 
which is the starting point of the renormalization group de­
vised by Wilson.12 In this new form, however, the order 
parameter is T dependent. The origin of this extra variable 
can be traced back to the noncommutativity of the quan­
tum-mechanical operators in the original Hamiltonian. 

Since we are interested in the critical behavior of the sys­
tem, we shall keep only the relevant terms of (12), namely, 

(13) 

where Ho is the first term of (12), K 2 and K 4 the first two 
terms obtained by expanding the exponential factor, 

K2- _J_ ffl dr1 ffl dr2(TIF(T1)F(T2)))c , (14) 
2! Jo Jo 
1 LfJ LfJ K.i - - - d TI 0 d T 4 ( T [F (Tl) . . . F ( T 4) l ) c ' 

4! 0 
(15) 

with 

F(T)= I!X;(r)Sf(T)+Y;(r)S/(r)] 
; 

The cumulant average in (15) is given by 

(16) 

A further simplification of (13) is achieved by taking the Fourier transform over the spatial and temperature variables, 
defined by 

where w. = 27T n I f3 are the Matsubara frequencies. Thus, in the Fourier-Matsubara space one obtains 

K.rr=p_ .( ([r 1 (k)-/3mf'(w)][l1V(q)l 2 +l1JIY(q)l 2l+~+ · · ·) . 2 q 

Here, J (k) is the Fourier transform of l;j, and the second-order cumulant average m f 0 (a= x,y) is given by 

i LfJ LfJ ; (·1"'1 +.2 .. 2> 
mf"(w1,w2)B .. 

1
+w o=-2 dr1 dT2l (TS"(r1)S"(r2))c 

2' /3 0 0 

This gives 

crcr ( ) 2d 1- e -{JD 

m2 w = f3(D2+w2) 1+2e-f!D • a=x,y . 

We have also used the notation 

q = (k. w.> • .( = I-21 J dk 
q w 7T 

m 

(17) 

(18) 

(19) 

(20) 

At T = 0, the Matsubara frequencies will run over a continuum spectrum; hence, in the limit f3 - oo we must replace the 
sums over "'• by an integral over w preceded by a rescaling of the fields8 

Therefore, (18) yields 

Kerr=-} i u- 1(k) - ,Bmf' (w) ][ i•V(q)l2+i<f>Y(q)1 21-~mF (0) f , · · 
q 4! Jql 

.£ I .pa(q 1> <1>"<q2><1>b<q3)<f>b<q4) + 
3a,b - x,y 

Here 

/3 mxx2 (w) = J_ _ _L_w 2 {3mxxxx4 (0) = - ~ 
D D 3 ' D 3 

(21) 

The cumulant mF is the fourth-order term analog to (19). We have set thew dependence on the fourth-order term equal 
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to zero since this is the only relevant part as far as the critical region is concerned. The wa ve vector k and the Matsubara 
frequency w appear in the propagator on the same footing (this gives a dynamical critical exponent z = 1), allowing the de­
finition of a two-dimensional wave vector q = (qx, q,.) by suitable rescaling of the frequency and wave vector, namely, 
k = [J(O)/J]lf2qx and w= [D 3/2J(O)J112q,.; thus 

K. rr =..!. f. (1- 4J +q 2J ll<V(q)i2+l<t>"(q)l2l+ (21)2 
e 2 q D DJ 

where the irrelevant multiplicative constants have been ab­
sorbed into the fields. The effective Hamiltonian (22) un­
dergoes a continuous transition at the mean-field critical 
parameter DI J = 4. It has an 0 (2) symmetry, and conse­
quently belongs to the same universality class as the two­
dimensional classical XY model which presents a Kosterlitz­
Thouless type of phase transition .13

• 
14 

To summarize, using a functional integral approach we 
studied the critical properties at T = 0 of a one-dimensional 
S = 1 XY model with a single-ion anisotropy. At criticality, 
the system was mapped into the two-dimensional 0(2) 
model, belonging to the Kosterlitz-Thouless universality 
class. For the general case, in the presence of the exchange 
anisotropy [Eq. (1)), we found for small A, a critical line 
with the same critical properties as for A= 0. The details of 
these calculations will be given elsewhere. 15 For S = + our 

approach leads to a complex effective Hamiltonian indicat­
ing that there is no Kosterlitz-Thouless line. 

Finally, we note that our results have important implica-

'Permanent address: Departarnento de Fisica, Universidade Federal 
de Pernarnbuco, Cidade Universitaria, 50,000- Recife, Pernarn­
buco, Brazil. 
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lions for the dynamics as well. In fact, because z = 1 and at 
criticality Sxx(q) - q- 1+"Wl, dynamic scaling implies for 
small wave numbers q 

(23) 

where w(q)-q 1 and 'IJ=t. This result confirms the 1/s­
expansion expression 16 and extends it to the critical cou­
pling. Moreover, it reveals that for small q values , 
Sxx(q, w) probes transition from the ground state to the 
I 1 Si'= ± 1 continuum and exhibits a singularity along the 
bottom of this continuum. 
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