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Direct observation of normal modes in coupled oscillators

Ryan Givens and O. F. de Alcantara Bonfim?
Department of Physics, University of Portland, Portland, Oregon 97203

Robert B. Ormond
Department of Physics, Reed College, Portland, Oregon 97202

(Received 5 March 2002; accepted 16 September 2002

We propose a simple and inexpensive method to directly observe each normal mode of a system of
coupled oscillators, as well as to measure its corresponding frequency, without performing Fourier
analysis or using expensive apparatus. The method consists of applying a frequency dependent force
to the system and using the resonance to excite each mode separately. The frequency of the excited
mode is determined by measuring the resonance frequency of the system. We found that the
measured normal mode frequencies of coupled oscillators exhibiting two and three normal modes
are in very good agreement with the theoretical estimates. The method is suitable for undergraduate
students with an elementary knowledge of differential equation®0@2 American Association of Physics

Teachers.
[DOI: 10.1119/1.1519230

[. INTRODUCTION periodic force. A normal mode of the system is found by
systematically changing the frequency of the driving force

A variety of systems in physics, chemistry, and engineeruntil the system exhibits resonance. This method is therefore

ing can be described by a set of coupled oscillators eachuitable for undergraduates with an elementary knowledge of

having a well-defined frequency of vibration. A solid, for differential equations.

instance, is composed of a large number of atgarsmol-

ecules arranged in a lattice. These lattice points represent

the equilibrium position of the atoms undergoing thermalll. THEORY

vibrations. Because of their interactions, the motion of a

given atom affects its neighbors. Due to the large number of Consider the system shown in Fig. 1 consisting of two

atoms in a solid, an accurate description of their individualmassean; and m, connected to each other and two other

motion would present insurmountable difficulties. However,points by three springs with elastic constakis k,, andk;.

many physical properties of solids are not determined by thehe system is vertically aligned. The top spring is connected

individual behavior of the constituting atoms, but instead byto a fixed point and the bottom spring is allowed to move

their collective behavior. In many applications each atomvertically about an initially fixed point. We consider one-

may be represented by a spring-mass system having a wellimensional motion along the line connecting the masses.

defined frequency of vibration. Due to the coupling betweernThe motion of the system is characterized by two degrees of

the atoms, the motion of each oscillator shows a complicategteedom, one for each mass. We define the coordinates,

pattern of motion, and vibrates in a multifrequency fashionangx,, as the downward displacement from equilibrium of

In a system of coupled oscillators described\bgegrees of m, andm,, respectively, after both masses are connected to

masses oscillate at the same frequency with fixed amplitudege following equations of motion:

Such patterns of vibrations are called normal modes. The _ .

importance of these modes is that the general motion of anf1X1= —KiX1+Ka(Xo—X1) —C1Xq, (1a

mass of the system consists of a linear combination of the,  _ ; i

individual norrr):al modes. ?nzxz kaXa~kalXo=X1) = CoXa + koD SiN(w1). (10
Several papers describe methods to study normal modes ihe absence of the gravitational force on each of the masses

coupled oscillators=® These methods are quite accurate, andn EQ. (1) is due to the appropriate choice of the origin of

use computer assisted Fourier analysis. However, due to thegpordinates, which cancels the effects of gravity. The param-

relative mathematical and experimental sophistication, thegtersc, andc,, are the coefficients of the velocity dependent

can only be used in an advanced laboratory for upperdamping forceD and w, respectively, are the amplitude and

division undergraduates. More recent wogkso investigates frequency of the displacement applied to the bottom spring.

the normal modes of coupled oscillators using video analy+or simplicity, we shall work with a system of identical

Sis. AIthough. less mathematically complex, i_t requires themassesn, and identical spring constarks From symmetry

use of a nonlinear fitting procedure to determine the normajrguments we also takg =c,=c. The equations of motion

mode frequencies as well as relatively expensive videg,ow read

equipment and commercial software packages. We propose a )

method that is inexpensive, mathematically simple, and al- M¥% = —2kx; +kx;—cXy, (2a)

lows direct observation of the normal modes in coupled os- v o 3 .

cillators without requiring the use of fast Fourier transforms 2 2otk —CxptFosin(wt), (2b)

or video analysis. The method consists of observing the bewhere Fo=kD is the amplitude of the external periodic

havior of coupled oscillators in the presence of an externaforce.
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I Dsin ot Fig. 2. Modes of vibration for a system of coupled oscillators with two

. . . masses and three springa) The symmetric mode has the lowest frequency
Fig. 1. Schematics of the experimental arrangement for a system of couplegl,§ the motion of the masses is in phabgn the antisymmetric mode, the
oscillators consisting of two masses and three springs. One of the ends %otion is out of phase.
the bottom spring is connected to a wave driver and allowed to oscillate in

the vertical direction.
X1(t)=Ag sin(wt— 1) — Az sin(wt— ), (6a)

Equations(2a) and(2b) are coupled, that is, the motion of Xa(t) =Agsin(wt— 1) + A, sin(wt— ¢,), (6b)
one of the masses will affect the subsequent motion of the ooy — (g5 g9)/2, x,=(qS+q)/2, and A=A%2.

other. It is possible to find a new set of coordinates thal : . )
uncouples the motion, such that each new coordinate osci -quation(6) shows that the motion of each mass consists of

. . i a linear combination of two forced damped harmonic oscil-

Isat;se r':%?Sfunsdszrglﬁev;/ghﬂ?evﬁ\llvdgggfd?ng?;uency' +F;)r thqators with the same frequency but different amplitudes and
yd B dd' d sub alesarex, é phases. Note that the motion of each mass no longer depends

and g,=x,—x,. By adding and subtracting Eq&28 and 4, the initial conditions. To experimentally observe a given

(2b), we obtain normal mode, we adjust the external frequency so that it
mey +cq,+ kg, =Fysin(ot), (39 resonates with the desired normal mode. _When that occurs,
) _ _ the amplitude of that mode reaches a maximum. Because the
M+ cqz+ 3k, =Fo sin(wt). (3b)  oscillators are in the lightly damped regime, the amplitudes

Each of the two independent equations corresponds to tH@f the other modes will be negligibly small. Notice that the
motion of a damped harmonic oscillator in the presence of 4£S0nant frequency is not the same as the normal mode fre-

periodic external force. The first oscillator has an anguladuency, but they are approximately equal in the lightly
damped regime. A similar procedure has been proposed for

frequency given by, =yk/m=y", and the secor]d by, . finding the resonant frequencies of coupled oscillators using
= \/3k/m—»?, wherey=c/2m. The general solution to ei- computer simulation$

ther Eq.(34) or (3b) consists of the sum of the two parts. The ™ ajiqugh our discussion so far has been restricted to the
first part, is the transient solution corresponding to the Soluy,nign of two oscillators, the method may also be applied to
tion of EQ'(3) in the absence of a driving force. Th's solution any number of oscillators. We have simplified the discussion
is short lived, andsplays no role in the method discussed her%y considering identical oscillators, but the method also
The second party;, corresponds to the steady-state solutionyorks if the oscillators are not identical. The theoretical ex-

in the presence of the driving force. This solution reads as pressions for the normal mode frequencies for different
masses and springs of unequal elastic constants are rather

At =A7sin(wt= ), @ cumbersome and are found in Ref. 1.
where
E-/m I1l. EXPERIMENTAL PROCEDURE
AS= 2 (5)

' (0P = 02+ 4y20?] The experimental setup is indicated in Fig. 1. The end of
) > . the springks, is connected to a wave driver. The wave driver
and ¢; =tan [2yw/(wj—«%)]. Equation(4) represents the provides the frequency-dependent external force applied to
motion of a harmonic oscillator whose phase and amplitudgne system. We used identical springs, each \ith16.5
depend on the frequency of the external force and the.g 1 N/m, and masses of %0 g each. The wave driver
strength of the damping force. The maximum amplitude 0Cyya5 made from a loudspeaker purchased from a local elec-
curs at the resonant frequencw=w,, where o  {ronics storé? To transform the loudspeaker into a wave

=\/wi2—72 (see, for example, Ref.)8 driver, we use a plastic disk, 3 mm thick and 9.5 cm in
After the transient term is no longer relevant, the positionsdiameter. We glued it to the cone of the loudspeaker, perpen-
of the masses are given by dicularly to its symmetry axis. In this way, as the cone vi-
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Table I. Normal modes frequencies for a system of coupled oscillators withlable II. Measured and calculated normal modes frequencies for a system of
two masses and three sprin@ee Fig. 2 Both the calculated and measured coupled oscillators with three masses and four sprifgge Fig. 3 The
values are shown. The expressions for the theoretical values of the frequeexpressions for the theoretical values of the frequencies are in the text.
cies are in the text.

Frequency(Hz) Calculated Measured
Frequency(Hz) Calculated Measured
fi 2.21+0.03 2.10.1
fy 2.89+0.04 2.8-0.1 f, 4.09+0.06 4.10.1
fy 5.01+0.07 5.0:0.1 fy 5.34+0.07 5.3:0.1

brates so does the disk. To the center of the disk we screwed ) )
in a threaded hook to which the spring was attached. Th&V0 normal modes in the system. Because the damping co-

other end of the spring was attached to a mass. The Wa@ficignt is very small in our expe.riments, in what follqws we
driver was connected to a frequency generator via a lowWill disregard the damping _coeff|C|ent in th_e expressions for
power amplifier. The amplifier was built from a Rit.The the norn_1a| mode frequ.enmes. The one W|th_the lowest fre-
entire setup cost less than $25, not including the frequencguency is the symmetric mod€ig. 2@)]. In this mode the
generator, which is presumably available in any introductoryn@sses are moving in the same direction at all times with
physics |abc)rat()r§7_2 frequencyf;= w,/27= (1/27)Vk/m. The other modégFig.

To observe the normal modes, we start by driving the sys2(b)] is the antisymmetric mode, where the masses are mov-
tem with a low frequencyabout 1.0 Hz and low amplitude.  ing in the opposite direction at all times with the frequency
The motion of the system will initially be irregular. For a f,= w,/27=(1/27)+3k/m. By following the experimental
fixed driving amplitude, we slowly and systematically in- procedure previously described, we firffig=2.8+0.1 Hz
crease the driving frequency until the motion of the oscilla-and f,=5.0+0.1 Hz. For comparison, in Table | we present
tors becomes automatically synchronized. The masses Wihese results together with the expected theoretical values.
oscillate with the largest amplitude when the driving fre-gy repeating the theoretical analysis for a system having
quency is equal to one of the normal modes of the systemhree identical masses and four identical springs, we find
By further increasing the frequency of the generator and folthree normal modes, schematically shown in Fig. 3. As ex-
lowing the same procedure as before, the remaining normgjected, the mode with the lowest frequency is the one with

modes are easily found. highest symmetryFig. 3@]. This mode corresponds to the
motion of all masses in phase with frequendy
IV. RESULTS =(1/27)(2—v2)k/m, and the central mass having an am-

Consider first the case of two identical masses connectellitude greater than the masses on either side, by a factor of

by three identical springs, as depicted in Fig. 2. There ar&2. In the second modFig. 3(b)] the central mass remains
stationary, while the masses on either side oscillate with the

same amplitude in opposite directions and frequemgy
o =(1/27)\2k/m. The mode with the highest frequendyig.
3(c)] has the lowest symmetry. In this mode the masses on
either side oscillate in the same direction, while the central
mass is out of phase with them. They move with a frequency
1 given byfs=(1/27)J(2+v2)k/m. As for the mode of low-
est frequency, the central mass oscillates with an amplitude

L s é
é greater than the other masses by a factovaf The mea-

sured values of the vibrational modes are summarized to-
gether with the theoretical estimates in Table Il. In both ex-
periments we estimated the error in the measurement of any
1 frequency to be about 0.1 Hz. This uncertainty is due mainly
to the inaccuracy in reading the frequency from the dial of
the function generator.
To conclude, we have presented a method that allows di-
rect observation as well as determination of the normal
| T modes of vibration of a system of coupled oscillators. The
advantage of this method is that it does not require the use of
fast Fourier transforms or video analysis to measure the nor-
mal mode frequencies. Also, each normal mode of the sys-
tem can actually be seen in the experiment. The low cost of

7 7 the apparatus and simplicity of the method make it suitable
ez I L for students at the beginning undergraduate level.

@ L ©

Fig. 3. Modes of vibration for a system of coupled oscillators with three

masses and four spring&@) Normal mode with the lowest frequency. The ?Author to whom correspondence should be addressed. Electronic mail:
motion of the three masses is in pha&®.Normal mode with intermediate bonfim@up.edu

frequency. The central mass is at rest and the motion of the other masses 1. Shanker, V. K. Gupta, N. K. Sharma, and D. P. Khandelwal, “Normal
out of phase(c) Highest frequency normal mode. The motion of the outer modes and dispersion relations in a beaded string: An experiment for un-
masses is in phase while the motion of center mass is out of phase with thedergraduate laboratory,” Am. J. Phys3, 479—-481(1985.

others. 2B. J. Weigman and H. F. Perry, “Experimental determination of normal
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frequencies in coupled harmonic oscillator system using fast Fourier trans- cepts in classical mechanics,” Am. J. Phg§, 818-820(2001).

forms: An advanced undergraduate laboratory,” Am. J. PBs.1022— 8G. R. Fowles and G. L. Cassidanalytical Mechanics6th ed.(Saunders
31027(1993- ‘ College Publishing, New York, 1999p. 103.

G. Hansen, O. Harang, and R. J. Armstrong, “Coupled oscillators: A labo- 9y - Gould and J. TobochnikAn Introduction to Computer Simulation
ratory experiment,” Am. J. Phy$4, 656—660(1996. Methods 2nd ed.(Addison-Wesley, New York, 1996See problem 9.2.

4 ; . . -
P.A. DeYoung, D. LaPomte., and W. Lorenz, *Nonlinear coupled osc’|’lla 19N our experiment we used &Bloudspeaker from Radio Shack, catalog
tors and Fourier transforms: An advanced undergraduate laboratory,” Am. NO. 40-1345A

J. Phys.64, 898—-902(1996.
Y (1999 "We used a 7-watt mono amplifier kit from Jameco, part No. 117612.

5. Bull and R. Lincke, “Teaching Fourier analysis in a microcomputer e - )
based laboratory,” Am. J. Phy$4, 906—913(1996. 2For the results presented in this paper we used the LG-Precision Function

63 H. Eggert, “One-dimensional lattice dynamics with periodic boundary Generator FG-8002. We have also used the BK-Precision Function Gen-

conditions: An analog demonstrator,” Am. J. Phg§, 108—116(1996. erator 3020, which gave similar results. Both function generators are low
"W. M. Wehrbein, “Using video analysis to investigate intermediate con- cost and have a calibrated knob-dial frequency selector.

Liquid Level Device. The water in each of the tubes in the liquid level device is subject to the same atmospheric pressure at the upper surfaee. If the bas
is level, the pressure at the bottom of each tube must be the same. Therefore, the depth of the water in each tube is independent of its shape, @nd is the sam
The demonstration is still done today, although not with apparatus as attractive as the typical nineteenth century device shown here. This wthe made by
Philadelphia firm of James W. Queen & Co., and was listed in the 1881 catalogue at $3.50. The missing tube was wide at the bottom and tapered to a narrow

top. This example is at St. Mary’s College in Notre Dame, IndigRaotograph and notes by Thomas B. Greenslade, Jr., Kenyon Qollege
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