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Direct observation of normal modes in coupled oscillators
Ryan Givens and O. F. de Alcantara Bonfima)
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~Received 5 March 2002; accepted 16 September 2002!

We propose a simple and inexpensive method to directly observe each normal mode of a system of
coupled oscillators, as well as to measure its corresponding frequency, without performing Fourier
analysis or using expensive apparatus. The method consists of applying a frequency dependent force
to the system and using the resonance to excite each mode separately. The frequency of the excited
mode is determined by measuring the resonance frequency of the system. We found that the
measured normal mode frequencies of coupled oscillators exhibiting two and three normal modes
are in very good agreement with the theoretical estimates. The method is suitable for undergraduate
students with an elementary knowledge of differential equations. ©2003 American Association of Physics

Teachers.

@DOI: 10.1119/1.1519230#

I. INTRODUCTION

A variety of systems in physics, chemistry, and engineer-
ing can be described by a set of coupled oscillators each
having a well-defined frequency of vibration. A solid, for
instance, is composed of a large number of atoms~or mol-
ecules! arranged in a lattice. These lattice points represent
the equilibrium position of the atoms undergoing thermal
vibrations. Because of their interactions, the motion of a
given atom affects its neighbors. Due to the large number of
atoms in a solid, an accurate description of their individual
motion would present insurmountable difficulties. However,
many physical properties of solids are not determined by the
individual behavior of the constituting atoms, but instead by
their collective behavior. In many applications each atom
may be represented by a spring-mass system having a well-
defined frequency of vibration. Due to the coupling between
the atoms, the motion of each oscillator shows a complicated
pattern of motion, and vibrates in a multifrequency fashion.
In a system of coupled oscillators described byN degrees of
freedom, there areN unique patterns of vibration in which all
masses oscillate at the same frequency with fixed amplitudes.
Such patterns of vibrations are called normal modes. The
importance of these modes is that the general motion of any
mass of the system consists of a linear combination of the
individual normal modes.

Several papers describe methods to study normal modes in
coupled oscillators.1–6 These methods are quite accurate, and
use computer assisted Fourier analysis. However, due to their
relative mathematical and experimental sophistication, they
can only be used in an advanced laboratory for upper-
division undergraduates. More recent work7 also investigates
the normal modes of coupled oscillators using video analy-
sis. Although less mathematically complex, it requires the
use of a nonlinear fitting procedure to determine the normal
mode frequencies as well as relatively expensive video
equipment and commercial software packages. We propose a
method that is inexpensive, mathematically simple, and al-
lows direct observation of the normal modes in coupled os-
cillators without requiring the use of fast Fourier transforms
or video analysis. The method consists of observing the be-
havior of coupled oscillators in the presence of an external

periodic force. A normal mode of the system is found by
systematically changing the frequency of the driving force
until the system exhibits resonance. This method is therefore
suitable for undergraduates with an elementary knowledge of
differential equations.

II. THEORY

Consider the system shown in Fig. 1 consisting of two
massesm1 and m2 connected to each other and two other
points by three springs with elastic constantsk1 , k2 , andk3 .
The system is vertically aligned. The top spring is connected
to a fixed point and the bottom spring is allowed to move
vertically about an initially fixed point. We consider one-
dimensional motion along the line connecting the masses.
The motion of the system is characterized by two degrees of
freedom, one for each mass. We define the coordinates,x1

andx2 , as the downward displacement from equilibrium of
m1 andm2 , respectively, after both masses are connected to
the springs. If we apply Newton’s law to each mass, we find
the following equations of motion:

m1ẍ152k1x11k2~x22x1!2c1ẋ1 , ~1a!

m2ẍ252k2x22k2~x22x1!2c2ẋ21k3D sin~vt !. ~1b!

The absence of the gravitational force on each of the masses
in Eq. ~1! is due to the appropriate choice of the origin of
coordinates, which cancels the effects of gravity. The param-
etersc1 andc2 , are the coefficients of the velocity dependent
damping force.D andv, respectively, are the amplitude and
frequency of the displacement applied to the bottom spring.
For simplicity, we shall work with a system of identical
massesm, and identical spring constantsk. From symmetry
arguments we also takec15c25c. The equations of motion
now read

mẍ1522kx11kx22cẋ1 , ~2a!

mẍ2522kx21kx12cẋ21F0 sin~vt !, ~2b!

where F0[kD is the amplitude of the external periodic
force.
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Equations~2a! and~2b! are coupled, that is, the motion of
one of the masses will affect the subsequent motion of the
other. It is possible to find a new set of coordinates that
uncouples the motion, such that each new coordinate oscil-
lates independently with a well-defined frequency. For the
system discussed here, the new coordinates areq15x11x2

and q25x22x1 . By adding and subtracting Eqs.~2a! and
~2b!, we obtain

mq̈11cq̇11kq15F0 sin~vt !, ~3a!

mq̈21cq̇213kq25F0 sin~vt !. ~3b!

Each of the two independent equations corresponds to the
motion of a damped harmonic oscillator in the presence of a
periodic external force. The first oscillator has an angular
frequency given byv15Ak/m2g2, and the second byv2

5A3k/m2g2, whereg5c/2m. The general solution to ei-
ther Eq.~3a! or ~3b! consists of the sum of the two parts. The
first part, is the transient solution corresponding to the solu-
tion of Eq.~3! in the absence of a driving force. This solution
is short lived, and plays no role in the method discussed here.
The second part,qi

s , corresponds to the steady-state solution
in the presence of the driving force. This solution reads as

qi
s~ t !5Ai

s sin~vt2f i !, ~4!

where

Ai
s5

F0 /m

A~v i
22v2!214g2v2

, ~5!

and f i5tan21@2gv/(vi
22v2)#. Equation ~4! represents the

motion of a harmonic oscillator whose phase and amplitude
depend on the frequency of the external force and the
strength of the damping force. The maximum amplitude oc-
curs at the resonant frequencyv5v r , where v r

5Av i
22g2 ~see, for example, Ref. 8!.

After the transient term is no longer relevant, the positions
of the masses are given by

x1~ t !5A1 sin~vt2f1!2A2 sin~vt2f2!, ~6a!

x2~ t !5A1 sin~vt2f1!1A2 sin~vt2f2!, ~6b!

where x15(q1
s2q2

s)/2, x25(q1
s1q2

s)/2, and Ai5Ai
s/2.

Equation~6! shows that the motion of each mass consists of
a linear combination of two forced damped harmonic oscil-
lators with the same frequency but different amplitudes and
phases. Note that the motion of each mass no longer depends
on the initial conditions. To experimentally observe a given
normal mode, we adjust the external frequency so that it
resonates with the desired normal mode. When that occurs,
the amplitude of that mode reaches a maximum. Because the
oscillators are in the lightly damped regime, the amplitudes
of the other modes will be negligibly small. Notice that the
resonant frequency is not the same as the normal mode fre-
quency, but they are approximately equal in the lightly
damped regime. A similar procedure has been proposed for
finding the resonant frequencies of coupled oscillators using
computer simulations.9

Although our discussion so far has been restricted to the
motion of two oscillators, the method may also be applied to
any number of oscillators. We have simplified the discussion
by considering identical oscillators, but the method also
works if the oscillators are not identical. The theoretical ex-
pressions for the normal mode frequencies for different
masses and springs of unequal elastic constants are rather
cumbersome and are found in Ref. 1.

III. EXPERIMENTAL PROCEDURE

The experimental setup is indicated in Fig. 1. The end of
the springk3 , is connected to a wave driver. The wave driver
provides the frequency-dependent external force applied to
the system. We used identical springs, each withk516.5
60.1 N/m, and masses of 5061 g each. The wave driver
was made from a loudspeaker purchased from a local elec-
tronics store.10 To transform the loudspeaker into a wave
driver, we use a plastic disk, 3 mm thick and 9.5 cm in
diameter. We glued it to the cone of the loudspeaker, perpen-
dicularly to its symmetry axis. In this way, as the cone vi-

Fig. 1. Schematics of the experimental arrangement for a system of coupled
oscillators consisting of two masses and three springs. One of the ends of
the bottom spring is connected to a wave driver and allowed to oscillate in
the vertical direction.

Fig. 2. Modes of vibration for a system of coupled oscillators with two
masses and three springs.~a! The symmetric mode has the lowest frequency
and the motion of the masses is in phase.~b! In the antisymmetric mode, the
motion is out of phase.
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brates so does the disk. To the center of the disk we screwed
in a threaded hook to which the spring was attached. The
other end of the spring was attached to a mass. The wave
driver was connected to a frequency generator via a low-
power amplifier. The amplifier was built from a kit.11 The
entire setup cost less than $25, not including the frequency
generator, which is presumably available in any introductory
physics laboratory.12

To observe the normal modes, we start by driving the sys-
tem with a low frequency~about 1.0 Hz! and low amplitude.
The motion of the system will initially be irregular. For a
fixed driving amplitude, we slowly and systematically in-
crease the driving frequency until the motion of the oscilla-
tors becomes automatically synchronized. The masses will
oscillate with the largest amplitude when the driving fre-
quency is equal to one of the normal modes of the system.
By further increasing the frequency of the generator and fol-
lowing the same procedure as before, the remaining normal
modes are easily found.

IV. RESULTS

Consider first the case of two identical masses connected
by three identical springs, as depicted in Fig. 2. There are

two normal modes in the system. Because the damping co-
efficient is very small in our experiments, in what follows we
will disregard the damping coefficient in the expressions for
the normal mode frequencies. The one with the lowest fre-
quency is the symmetric mode@Fig. 2~a!#. In this mode the
masses are moving in the same direction at all times with
frequencyf 15v1/2p5 (1/2p)Ak/m. The other mode@Fig.
2~b!# is the antisymmetric mode, where the masses are mov-
ing in the opposite direction at all times with the frequency
f 25v2/2p5(1/2p)A3k/m. By following the experimental
procedure previously described, we findf 152.860.1 Hz
and f 255.060.1 Hz. For comparison, in Table I we present
these results together with the expected theoretical values.
By repeating the theoretical analysis for a system having
three identical masses and four identical springs, we find
three normal modes, schematically shown in Fig. 3. As ex-
pected, the mode with the lowest frequency is the one with
highest symmetry@Fig. 3~a!#. This mode corresponds to the
motion of all masses in phase with frequencyf 1

5(1/2p)A(22&)k/m, and the central mass having an am-
plitude greater than the masses on either side, by a factor of
&. In the second mode@Fig. 3~b!# the central mass remains
stationary, while the masses on either side oscillate with the
same amplitude in opposite directions and frequencyf 2

5(1/2p)A2k/m. The mode with the highest frequency@Fig.
3~c!# has the lowest symmetry. In this mode the masses on
either side oscillate in the same direction, while the central
mass is out of phase with them. They move with a frequency
given by f 35(1/2p)A(21&)k/m. As for the mode of low-
est frequency, the central mass oscillates with an amplitude
greater than the other masses by a factor of&. The mea-
sured values of the vibrational modes are summarized to-
gether with the theoretical estimates in Table II. In both ex-
periments we estimated the error in the measurement of any
frequency to be about 0.1 Hz. This uncertainty is due mainly
to the inaccuracy in reading the frequency from the dial of
the function generator.

To conclude, we have presented a method that allows di-
rect observation as well as determination of the normal
modes of vibration of a system of coupled oscillators. The
advantage of this method is that it does not require the use of
fast Fourier transforms or video analysis to measure the nor-
mal mode frequencies. Also, each normal mode of the sys-
tem can actually be seen in the experiment. The low cost of
the apparatus and simplicity of the method make it suitable
for students at the beginning undergraduate level.

a!Author to whom correspondence should be addressed. Electronic mail:
bonfim@up.edu
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Fig. 3. Modes of vibration for a system of coupled oscillators with three
masses and four springs.~a! Normal mode with the lowest frequency. The
motion of the three masses is in phase.~b! Normal mode with intermediate
frequency. The central mass is at rest and the motion of the other masses is
out of phase.~c! Highest frequency normal mode. The motion of the outer
masses is in phase while the motion of center mass is out of phase with the
others.

Table I. Normal modes frequencies for a system of coupled oscillators with
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values are shown. The expressions for the theoretical values of the frequen-
cies are in the text.
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expressions for the theoretical values of the frequencies are in the text.

Frequency~Hz! Calculated Measured

f 1 2.2160.03 2.160.1
f 2 4.0960.06 4.160.1
f 2 5.3460.07 5.360.1
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Liquid Level Device. The water in each of the tubes in the liquid level device is subject to the same atmospheric pressure at the upper surface. If the base
is level, the pressure at the bottom of each tube must be the same. Therefore, the depth of the water in each tube is independent of its shape, and is the same.
The demonstration is still done today, although not with apparatus as attractive as the typical nineteenth century device shown here. This was made bythe
Philadelphia firm of James W. Queen & Co., and was listed in the 1881 catalogue at $3.50. The missing tube was wide at the bottom and tapered to a narrow
top. This example is at St. Mary’s College in Notre Dame, Indiana.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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