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Model f ~,chaotic dynamics of the perpendicular-pumping spin-wave instability 

S. M. Rezende, 0. F. de Alcantara Bonfim, and F. M. de Aguiar 
Departamento de Fistca, Universidade Federal de Pernambuco, 50000 Recife, Brazil 

(Received 11November1985) 

We propose a model for the dynamics of spin-wave instabilities driven by a rf field perpendicular to the 
de magnetic field in the second-order Suhl process. We show that a self-oscillation arises from the dynamic 
nonlinear interaction between the k - 0 mode driven by the pumping field and a degenerate k;ill! 0 magnon, 
with frequency that depends on the dissipation rates and the nonlinear interaction parameters and not on 
the sample dimensions. For certain parameter values, as the driving field increases we find a period
doubling route to chaos and odd-period bifurcation windows consistent with recent experiments in yttrium 
iron garnet. 

In a very elegant microwave experiment Gibson and Jef
fries1 (GJ) recently observed chaotic behavior in spin-wave 
instabilities driven by the perpendicular-pumping Suh! pro
cess. 2 The experiments utilized a ferromagnetic resonance 
configuration in which a sphere of Ga-doped yttrium iron 
garnet (YIG) is surrounded by driving and pick-up coils at 
right angles. At certain crystal orientations and sufficient 
pumping intensity GJ observed strong low-frequency ( -16 
kHz) self-oscillations in the amplitude of the transmitted 
microwave signal (frequency 1.3 GHz) when the static mag
netic field Ho is close to the resonance value. This low
frequency oscillation displays a period-doubling bifurcation 
route to chaos and periodic windows as the driving field H 1 

increases above the threshold for the Suh! instability. GJ 
have qualitatively interpreted their observations as arising 
from the nonlinear behavior of a dimensional resonance of 
the sphere pumped by the uniform mode k = 0, which is 
driven by the microwave field. The prevailing idea is that 
the standing spin-wave modes of the dimensional resonance 
generate the self-oscillations and the chaotic attractors in the 
manner predicted by Nakamura, Ohta, and Kawasaki.3 

However, there are several problems with this interpreta
tion. First, the theoretical studies of Nakamura et a/.3 are 
valid for the parallel-pumping instabilities4 which are 
described by equations quite different than those for the 
transverse pumping. Secondly, in order to explain the ob
served self-oscillation frequency, the spin-wave modes must 
propagate1•5 at an angle 9k=60.4° with respect to the static 
field Ho, which is surprisingly large considering that the 
mode with the lowest threshold2 in the second-order Suh! 
process has 9k = 0. Finally, the fact that GJ did not observe 
the low-frequency oscillation in pure YIG seems an indica
tion that this oscillation depends more on the material 
parameters than on sample boundary conditions. 

In this paper we propose a model that explains the essen
tial features of the spin-wave chaotic dynamics observed by 
GJ. We show that a self-oscillation can arise from the 
dynamic nonlinear competition between the k = 0 mode and 
a degenerate k, - k magnon-pair mode, which may display 
chaotic behavior as the driving field increases. Consider a 
ferromagnetic spin-wave system driven by a rf field H 1 of 
frequency w applied transversely to the static field Ho. 
described by the following Hamiltonian: 

where c; and ck are the creation and destruction operators 
of magnons with energy Kwk, 'Y"= KP.BIN is the gyromagnetic 
ratio, N is the number of spins S in the system, and Sick' 
and Tick' denote the interaction parameters between mag
nons with wave vectors k and k'. The justification for using 
spin-wave formalism is that above threshold only a few 
modes are drive parametrically, with population of order 
'Yk/Slck-1011 <<NS (yk is the thermal relaxation rate). 
The use of the restricted four-magnon interaction Hamil
tonian in (1) has been justified in detail. 6 In simple fer
romagnets the magnon-magnon interaction arises from the 
exchange, dipolar, and anisotropy interactions between the 
spins. For small values of k ( :E; 105 cm - 1), such as in YIG 
pumped by microwave fields, the contribution from the ex
change energy is negligible. The vertex of the magnetic di
polar contribution is7 

Vdip '7T(Kµ.s)
2 

(4 2 • 2 • 2 ) 
1234 = 

2 
V cos 9k3-k1 - sm 9k1 -sm 9k3 , (2) 

where V is the volume of the sample. This expression is 
valid for lOR- 1 :E; k << a- 1, where R is the sample dimen
sion and a is the lattice parameter. For k1 = 0 or k3 == 0, the 
corresponding sin29 k should be replaced by Nx + N1 and for 
k1-k3=0, cos29k3-k1 is replaced by Nz, where Nx, N1 , and 
Nz are the sample demagnetizing coefficients. The anisotro
py contribution depends on the crystal symmetry and on the 
sample orientation with respect to H0• For cubic symmetry 
and for Ho along the [100) or [111) crystal axes only, the 
four-magnon anisotropy interaction coefficient has the sim-
ple form · 

V~~~4= -2gµ.sHA./SN , (3) 

where HA. is the effective anisotropy field in the direction 
of the magnetization. For YIG, HA. (100) == - 80 Oe and 
HA.(111)- +60 Oe. 

Based on the idea of the two-mode model of Nakamura et 
a/.3 we assume that above threshold only one k, - k mag
non pair is parametrically pumped by the k = 0 mode. In
troducing relaxation phenomenologically in the usual 
manner and using approximations similar to those of Ref. 6, 
we obtain the equations of motion for the two modes: 

dCo .. [- i~w0 -y0 - i2( Toono+2Toknk)1co 
dt 

- i(Soouo+ 2Sokuk)co- iy(SN/2) 112H1 , 

1 duk [ . .2 ---- -1~wk-'Yk-1 Tokno 
2 dt 

-i4(Slck+Tlck)nk)uk-iSokuonk, 

(4) 
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where co= (c0)exp(iwt) denotes a slowly varying ampli
tude, <Tk= (ckc-k)exp(i2wt) is a Cooper-pair density, 
nk= (c:ck) is the magnon population, which6 for 'Ykt >> 1 
is nk= lukl, Awk=wk-w is the detuning, and 'Yk is the re
laxation rate due to various dissipation processes. Since c0 
and uk are complex, Eqs. (4) describe a nonlinear dynamic 
system in a four-dimensional space where the external field 
drives the k = 0 mode, and this in turn pumps the k¢0 
magnon. For sufficiently small driving fields, all k¢0 mag
nons are essentially at the thermal level. When H 1 exceeds 
the Suhl threshold He- (2Wykya/yMVSok) 112, the 6k=O 
magnon degenerate with the uniform mode grows exponen
tially in time until the nonlinear interactions become impor
tant. The behavior of n0 and nk in the steady state then 
depends on the set of interaction parameters and dissipation 
rates. Numerical studies of the evolution of Eqs. (4) reveal 
that in general n0 and nk are attracted to fixed points. How
ever, for some sets of parameter values they are attracted to 
periodic trajectories corresponding to an oscillating dynamic 
interplay of energy between the two modes. Since the varia
tion of n0 modulates the absorbed microwave signal, this 
leads to a self-oscillation with fr_equency which unlike the 
dimensional resonance does not depend on the sample 
dimensions. We have found periodic trajectories for several 
sets of parameter values. Since GJ observe the lower
frequency (16 kHz) oscillation well above the minimum 
threshold, it is not possible from the experiments to deter
mine which k¢0 mode is involved in the process; it is cer
tainly the degenerate magnon that has the "right" dissipa
tion and nonlinear interaction with the k == 0 mode to gen-

(a) (e) 

(b) (f) 
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FIG. 1. Bifurcations in the auto-oscillations of the (normalized) 
uniform-mode magnon population, n0 vs 'Ykt: (a) period 1 at 
R-7.360, (b) period 2 at R-7.640, (c) period 4 at R-7.720, (d) 
onset of chaos at R-7.770, (e) period 3 at R-8.197, (()period 6 
at R - 8.210, (g) period 12 at R - 8.220, (h) chaos at R - 8.240. 

erate the oscillation first. 
Since the 6 k = 0 degenerate mode is the one of lowest 

threshold, we have considered it as a likely candidate. From 
(2) we determine for this mode the parameters arising 
from the dipolar interaction: S00 = Too= 0, Tok= 2G, Sok 
= lOG/3, Skk= -4G/3, Tkk == - G/3, where G = 1r(KµB) 2/ 

Ii V ( -10- 11 sec- 1 in Ga:YIG with 4'1TM- 300 Oe). In 
YIG the anisotropy interaction (3) is of the same order as 
the dipolar and its sign depends on the direction of the ap
plied field, so that actually the nonlinear parameters vary 
substantially with the sample orientation. Unfortunately, 
the orientation of the sample in the GJ experiments is not 
known with precision. 8 Guided by these values we have 
found a set of parameters that gives results qualitatively 
similar to the experimental observation of GJ: Aw0 

=Awe•O, Soo/ykF= Too/ykF=O.l, Sokf'YkF=3.0, Tok/ 
Y1cF-2.9, Skk/y1cF= -0.5, Tkk/ykF= -0.2, and y0/yk 
... 5.0, where F is a normalization factor of order G/ 
'Y1c( -10- 11 in YIG) used to make the normalized quanti
ties of order unity. 

Figure 1 shows the self-oscillations of the (normalized) 
uniform-mode magnon population n0 in the steady-state re
gime, for several values of the pumping intensity 
R !!!!. Hi/ He (note that the actual population is n0/ F). The 
oscillation is first observed at R = 5.5. As R increases a 
cascade of period-doubling bifurcations is observed in Figs. 
1 (a)-1 (d) leading to chaos at R = 7.820. At higher R a 

(a) 

( b) 
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FIG. 2. Phase-space trajectories n0 vs nk. for period-2" self
oscillations and corresponding power spectra of the n0 mode ampli
tude: (a) and (e) n -oat R - 7.360, (b) and (() n -1 at R - 7.640. 
(c) and (g) n-2 at R-7.720, (d) and (h) onset of chaos at 
R-7.770. 
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FIG. 3. (a) Fully developed strange attractor at R -7.820, (b) 
Lorenz plot for n0 at the same value of R, constructed from the 
Poincare section shown in (a). 

narrow window of period 5 x in develops (not shown) and 
for still larger R a narrow 3 x in window is seen in Figs. 
l(e)-l(h), in good qualitative agreement with the observa
tions of GJ. The period-doubling bifurcation route can be 
further analyzed with the phase-space no x nk trajectories 
and the Fourier transform of no shown in Fig. i. The 
subharmonic components / 0/i, fo/4, /o/8, and /o/16 
emerge at R 2 = 7.398, R4 = 7.66i6, Rs= 7.73i 91, and 
R 16 = 7.748 79, respectively. These values give a conver
gence scaling parameter 8 =(Rs - R4)/(R16- Rs)= 4.43. 
This is close to the Feigenbaum9 universal value 4.669 ... , 
indicating that the system behaves like a one-dimensional 
map. The scaling parameter a= i.6 is also close to the 
universal value i.50i . . . . Figure 3 shows a fully develop
ed strange attractor and the corresponding Lorenz plot, this 
being quite similar to the return map (Fig. 8) of GJ. Final
ly, in Fig. 4 we show spectra and trajectories characteristic 
of a narrow (/0/3) x in window obtained at larger R, con
sistent with the observations of GJ. 

In regard to the numerical value of the self-oscillation fre
quency / 0, we note that the calculations give /o = iy k· 

Since the actual relaxation rate has not been measured in 
the experiments, we used microscopic spin-wave theory to 
calculate it, assuming that its source is the three-magnon in
teraction process.10• 11 For the 9 k = 0 magnon degenerate 
with the k = 0 mode, we obtain for w/i7T = 1.3 GHz, 
4TTM,=300 Oe, at room temperature 'Yk=4.4x 105 sec- 1. 

Since the uniform-mode linewidth is !lHo - O.i-0.4 Oe, 
y0 =y!lH0/i-0.7--3.4)x106 sec- 1, this is consistent 
with the ratio y 0/ y k = 5 used in the calculation. However, 
this value of y k gives an oscillation frequency lo more than 
an order of magnitude higher than the observed one (16 
kHz). A similar discrepancy has been found in studies of 
the parallel-pumping spin-wave instability.12 This suggests 
that the actual relaxation rates 'Yo and 'Yk at high pumping 
levels is smaller than at low power. This is consistent with 
the remarkably slow decay of the low-frequency oscillations 
reported by GJ. Our calculation of y k assumes that the 
magnons involved in the relaxation of the k mode are in 
thermal equilibrium with the lattice. Probably, due to a 
bottleneck effect at high power, this is not true and the ac
tual value of y k is smaller than the calculated one. 

In conclusion, we believe that the i50-kHz oscillation ob
served by GJ is a dimensional resonance, since it scales 
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FIG. 4. Same as Fig. 2 for the period-3 x 2n window: (a) and (e) 
n-0 at R-8.197, (b) and (f) n=l at R =8.210, (c) and (g) n-2 
at R - 8.220, (d) and (h) chaos at R = 8.240. 

properly with sample diameter and corresponds to 9 k = 0 
standing waves. However, the low-frequency (16 kHz) os
cillation which displays the interesting nonlinear dynamics is 
associated with an oscillating interplay of energy between 
the k ""0 magnon and a degenerate k¢0 pair mode. The 
similarity between all the results above and the observation 
of GJ demonstrate that the two-mode mechanism proposed 
here can explain the low-frequency (16 kHz) self
oscillations and the chaotic dynamics observed in Ref. 1. It 
remains to be determined which k¢0 magnon oscillates 
with the k-= 0 mode and its relaxation rate at high power. 
This would presumably allow a quantitative comparison of 
the calculated oscillation frequency and pumping intensities 
with the measured ones. More combined experimental and 
theoretical work is needed in this direction. 

Since this paper was originally submitted for publication 
we learned that Zhang and Suhl13 have proposed a model 
similar to ours to explain the GJ experiments. 

The authors acknowledge stimulating discussions with Dr. 
R. M. White and Dr. C. Jeffries. This work has been sup
ported by the Financiadora de Estudos e Projetos, the Con
selho Nacional de Desenvolvimento Cientlfico e 
Tecnologico, and the Coordenayiio de Aperfeiyoamento do 
Pessoal de Ensino Superior of Brazil. 
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