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!tansverse thermal velocity broadening of focused beams from liquid metal 
10nsources 

J. W. Ward, R. L. Kubena, and M. W. Utlauta> 
Hughes Research Laboratories, Malibu, California 90265 

(Received 21 June 1988; accepted 24 August 1988) 

Experiments have shown that the target current density in focused ion beam columns have long 
"tails" outside the central submicron region. We show that these tails result from a transverse 
velocity distribution which has a Holtsmark probability density. Both theory and experiment 
show that the tails are reduced as the system magnification and source current are reduced. 

I. INl~ODUCTION 
!~n bearn lithography using focused ion beams has emerged 

h. ohneofthe best techniques for the microfabrication of very 
tg r 

m esolution structures. 1 Because of the much greater ion 
in:sshscattering effects are much less important in determin­
ra ~ e feature size and limiting pitch for ion beam lithog­
pr~ Y th~n for electron beam techniques. However, recent 
evidgress 1n reducing the spot size of focused ion beams and 
tio ~nee for large tails2

-4 in their current-density distribu­
ete~ ave led to increased interest in describing the param­
ion ~that limit feature size and packing density for focused 
limit ea.rn lithography. In this paper, we describe the focusing 
tio ations due to the transverse thermal velocity distribu-

n Of th . . e emitted ions. 

II. T~~RMAL VELOCITY EFFECTS 
It is 

prin . Well known that thermal velocity effects are one of the 
den : 1Pal limitations in the transport and focusing of high-

Slty · f . sourc ion beams rom conventional plasma-type ion 
by C es. For example, Brewer5 uses the theory worked out 
sou Utler and Hines6 to show that for a Pierce geometry ion 

rce h . . f tion avmg an emitter temperature o 1400 Kand extrac-
velo ~0tential of 10 kV, the mean deviation of a thermal 
µm city trajectory away from its laminar counterpart is - 7 
probat th~ beam minimum. This example shows that it is 
ven/hly impossible to achieve a submicron spot with a con­
tran~0na1 plasma-type ion source because of the effects of 

Th Verse thermal velocities. 
cusecte·effects of transverse velocity on the spot size of a fo­
figure 10n beam ar~ shown s~hem.atically in Fig. 1. In this 
focus \Ve show an ideal lens 1magmg a parallel beam into a 
pointed Spot at M = 0 or imaging a divergent beam from a 
either 80llrce into a focused spot at finite magnification M . In 
from case we show rays having a departure in slope of Ar' 
finite the laminar zero temperature trajectories due to the 
can b transverse ion temperature. For the parallel beam it 
focal~ easily hown that the spot growth r for a lens having 

engthf is given by 

r """'f 4-r' . (1 ) 

While for th' fi . "fi . . h b " d . d it is giy e mte magm cation case wit o ~ect istance , 
en by3 

. '"""' Afd Ar'. (2) 
l'o illus 
sensit' .trate how these equations translate to an extreme 

lVity to transverse velocity consider a 50-kV Ga..- beam 

(u 11 ~3.7 X 105m/s). If we assume a transverse velocity a 
only IO m/s, the corresponding slope error is Ar' = u

1
, 

u
11 
~ 3 X 10- 5 rad. If we further assume a focal length of2c1t 

(or a lens distance d = 2 cm with M = 1) then either 
equation predicts a radial spot growth ol 
r = (3 X 10- 5 )(2 )cm = 0.6 µm. Clearly, this example 
shows that the effects of transverse velocity are an importan1 
consideration in achieving submicron spot sizes. 

In our first analysis3 of the long tails which we had ob­
served in our single-lens column we worked backward from 
the measured current density. We asked what distribution in 
ray height and slope in the aperture plane - 20 mm down· 
stream of the emitter would produce the measured current 
density profiles. This study showed that the probability den· 
sity function of the measured current density was a nearly 
exact replica of the transverse velocity distribution in the 
aperture plane. Not included in this approximation was the 
contribution from the - 0.1-µm -diam chromatic aberration 
disk in the very central region. Outside of this central region 
the spot radius is directly proportional to transverse veloc· 
ity, so that the long tails in the current-density profile corre· 
spond to long tails in the transverse velocity distribution. 
This is illustrated in Fig. 2 where the probability density 
function for our single-lens column is plotted versus radius. 
Also shown in Fig. 2 is an equivalent transverse velocity 
scale converted from the radial position using Eq. (2 ) with 

1---- d 

I r=M~ 
_L ___ __ 

p ' t 
. r""n1 

FIG. I. Spot growth due to transverse velocity for parallel and dne •· 
beams. 
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FIG. 2. Probability density function for target current density in single-lens 
column fitted with a Holtsmark distribution. 

the single-lens values of M = 1.04 and d = 20.8 mm and a 
Ga+ extraction voltage of 6.2 kV. Thus, a radius of 1 µm 
corresponds to a transverse velocity of - 6 mis. 

We have also plotted in Fig. 2 a curve scaled from the 
Holtsmark 14 distribution which is computed in Sec. IV. 
Note the excellent agreement between the experimental data 
and the Holtsmark distribution. We shall see in Sec. V that 
this agreement continues when we apply it to the more re­
cent experimental data taken using our two-lens micro­
probe. 

Ill. TRANSVERSE AND AXIAL VELOCITY SPREAD 

As we have seen, one of the principal reasons for the 
"tails" on the current-density profiles is the transverse ve­
locity distribution of the emitted ions. We will now discuss 
the effect of acceleration on an ion beam emitted with an 
initial temperature. Let us assume that the ions are emitted 
with a Maxwellian distribution of initial velocities in the x 
and y directions with zero mean and a variance equal to kT I 
m so that 

(u~)=kTlm and (u~ ) =kTlm. (3) 

For the z direction we will assume a half-Maxwellian with 
the same temperature. We can also define temperature in 
terms of the full width at half-maximum (FWHM) of either 
the x or y velocity distribution so that 

FWHM = 2.35~kT Im . (4) 

If we assume an initial root-mean-square Ga+ velocity of 
- 1000 mis the corresponding energy and temperature is 
-0.72 eV and -8400 K, respectively. When these ions are 
accelerated, the internal energy, as represented by the tem­
perature, is reduced by a very large factor because a given 
velocity difference represents a much larger energy as the 
velocity increases. Zimmermann8 has shown that the axial 
beam temperature in the moving frame is 

kT
11 

= (kT) 214eV0 (5) 

and is extremely low after an acceleration of only a few kV. 
Using Eq. (5) for an initial temperature of0.72 eV and an 
acceleration of V0 = 50 keV we have 

kT
11 

= (0.72214(50 000) ~2.6X 10- 6 eV. 
(6) 

If we now solve for the mean-square velocity spread at this 
much lower temperature we find that (u;) 1 12~ 1.9 mis. 
However, since energy differences are preserved in accelera­
tion, the longitudinal energy spread remains at 0.72 eV. This 
large difference between energy spread and internal energy is 
tabulated in Table I as a function of mean-square velocity 
spread for both the axial and transverse directions. Zimmer­
mann8 and others have argued that since the transverse in­
ternal energy is not affected by the acceleration process the 
equipartition of energy will transfer this energy to the axial 
energy spread and will result in the anomalously high energy 

1~8LE I. Transvers~ and longitudinal energy spreads and temperatures for accelerated Ga + ion beam. 8u, = u, - (u,) . kT
11
/ m = (8u;); kT1 / m 

"'l/2((u!) + ( u;)). t:i.E = 2JkT eV.,; l::i.£1 = kT,. 

Longitudinal temperature 
UJ)>O 

'ou;)' ' (m/s) 

100 
10 
I 

kT (eV) 

-0.72 X 10 
X IO 4 

x 10-" 

Longitudinal energy spread at 
V., = 6 kV V., = 60 kV 

t:i.£
11 

(eV) 

13.2 
1.32 
0.13 

/:J.E (eV) 

41.7 
4.2 

0.42 
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(u,) = (u,.) =0 

(u: )' ' 

1000 
100 

10 

kT, 

;_0.72 
o.n x 10-' 

x 10- 4 

x 10 6 

Transverse energy spread at 
r =gr11 
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spread first observed by Boersch and which has been verified 
by a number of experimenters. Other workers 16 have shown 
that the transverse temperature defined as 

kT1lrn = ( (x2
) + (y2) )/2 (7) 

varies as T1 r = const so that we would expect a large drop 
in transverse internal energy as ions are accelerated away 
from the emitter in a liquid metal ion source where there is 
considerable expansion in the radial direction. To investi­
gate this further we computed trajectories in a sphere-on­
orthogonal 18 (SOC) diode using our Monte Carlo 13 com­
puter program. Figure 3 shows the large reduction in 
transverse velocity which occurs after the ions are acceler­
ated only a short distance downstream of the SOC emitter. 
The initial conditions assumed for this calculation were 

(x2
) = (y) 2 = (.i2 ) = kT /m for kT= 1.4 eV. (8) 

Note that the transverse velocity has been reduced from an 
initial spread of ~ ± 2000 mis to a spread of ~ ± 110 m/ s. 

(a) 

(b) 
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F1G. 3. Computer simulation of beam cooling in a SOC diode due to large 
radial expansion: (a) at emitter, V(z) = 0, initial temperature 1.4 eV; (b) I 
µm downstream of emitter, V(z) ""'808. 
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A calculation of the phase space area3 from Fig. 3 showst 
at the emitter the area is A0~ 5.5 X 10-s mrad, while at 
downstream position it is A 1 ~2. 3 X 10-9 mrad ""A 

~eV/kT . This reduction in transverse velocity spread 
consistent with Liouville's theorem which states that tit 
normalized phase space area is conserved in beam acceler 
tion. If this beam cooling continued, we might expect ata~ 
position where the beam radius had increased by anotht, 
factor of 10 (at 2r~4 µm) , the transverse velocity spread 
would drop to ~ ± 1.1 m/ s. Of course, we also might ex!lett 
that the Coulomb collisions would cancel some of this COOi­

ing in the same way that the axial energy spread is broadened 
after emission. 

IV. HOL TSMARK DISTRIBUTION 

This distribution was first derived by the German phys1• 
cist Holtsmark 14 in connection with his work on the Stark 
broadening of spectral lines. It was then rediscovered by tht 
French mathematician Levy, 15 who showed that it is a spe. 
cial case of the so-called "stable distributions" which have 
the property that they have long tails and no variance. The 
Holtsmark is the distribution in electric field strength which 
results from a random distribution of charged particles in 
teracting with a Coulomb 1/r force and having a constant 
charge density. Since the gravitational force also varies as 11 
? , the Holtsmark distribution also represents the gravita· 
tional force due to a random distribution of stars having a 
constant number density. Chandrasekhar7 has used this dis· 
tribution in the solution of a number of problems in stellar 
dynamics. Because we found no tables for the two-dimen· 
sional Holtsmark in the literature, we now describe how we 
numerically evaluated the Holtsmark in all three dimen· 
sions. We believe our calculations are accurate to at least 
four significant figures. The tables for the Holtsmark distn· 
bution given in Refs. 7 and 9 have only one significant figure 
for large values of the argument. 

It can be shown that the characteristic function of the 
stable distribution is 10 

exp[ - a2!2lk 1
13 J 0 </3<2, (9} 

where the parameter a2 plays the role of the variance al­
though the second moment (variance) is never finite for 
f3 < 2. Expressing the probability distribution for the veloc· 
ity u as the Fourier transform of the characteristic function 
we have for n = 1, 2, and 3 dimensions and putting cl"° 2 
we have that 

P(u ) = -
1-J"" exp(- lk i13)exp( - ik·u)dk, (!Ol 

(21T) 11 
-oo 

where the integral is evaluated over the entire range of then· 
dimensional vectors u and k. For the Holtsmark, the charac· 
teristic exponent, beta, is ~ while the Gaussian and CauchY 
distributions are obtained as special cases when f3 = 2 and 1· 

F rom Eq. ( 10) we obtain for n = 3, following the sarne 
steps outlined by Chandrasekhar7 where 

lul = (u~ + u; + u; ) 112
, that 

P3 (lul) = 2lul ( "" exp(-k 13)ksin(klul)dk. (Ill 
1T Jo 

For n = 2 where lul = (u~ + u; ) 112
, we find 

I 
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(12) 

~·hich we believe has not been derived before. fiereJ0 (k [u [) 
the zero-order Bessel function. For n = l it is easy to show 

that Eq. ( 10) reduces to 

l l "" p
1
(u ) = - exp( - kf:l)cos(ku )dk , 

1T 0 

(13) 

~nee P 1 ( u) is an even function in the one-dimensional case. 
As a check we evaluated Eqs. ( 11)- (13 ) for f3 = 2 (Gaus­
sian) and obtained 

P
1
(u ) = (1 / 2y1T)exp( - u2/ 4) , 

p2(u ) = (u/ 2)exp( - u2/ 4 ), 

and 

P3(u ) = (u2/ 2y 1T)exp( - u2/ 4) , (14) 

which are the well-known Maxwellian distributions for kT I 
m = 2 in one, two, and three dimensions. For f3 = 3/ 2 
(Holtsmark) , the integrals cannot be expressed in closed 
form and in Table II we present in tabular form the result of 
evaluating Eqs. ( 11)- (13) for u = 0 to 100. In Figs. 4 and 5, 
we show plots of the one- and two-dimensional Holtsmark 
distributions. Note that in the linear plot of Fig. 4, the distri­
butions are nearly identical out to about u = 5. However, we 
see in the log plot of Fig. 5 that slightly past this value, the 
Maxwellian is dropping very rapidly compared to the Holts­
mark. Mandelbrot 11 has called this slow drop-off in the tail 
region "hyperbolic" and shows that for the Holtsmark dis­
tribution, the probability in the tail region varies as 
P(u) a: u- 512

. This slow drop-off results in an infinite vari­
ance (u2

) = oo, so there is no characteristic size for any of 
the stable distributions which have/3 < 2. He also shows tha·t 
this absence of characteristic size is one of the features of self­
Slrrlilarity or scale invariance which is also one of the most 
important features of fractals. 17 

TABLE II. The Holtsmark distribution in one, two, and three dimensions fo r 
a':2. 

u P,( u ) P2(U) P3 ( u ) 

o.oo 2.8735E-Ol O.OOOOE +oo O.OOOOE +OO 
0.20 2.8315E- 01 1. 17IOE - 01 l .6665E-02 
0.40 2.7099E - 0 1 2.2336E -01 6.3088E- 02 
0.60 2.52 15E- 0 1 3.0759E - 0 1 1.2959E - 01 
0.80 2.2847E - 0 1 3.6614E - 01 2.0323E - 01 
1.00 2.0204E- 01 3.9701E- 01 2.7 122E- 01 
1.20 l.7485E - 01 4.0262E- 01 3.2378E - 01 
1.40 l.4855E - 01 3.8794E- 01 3.5570E - 01 
1.60 l.2434E - 01 3.5910E - 01 3.6633E - Ol 
1.80 l.0292E -O I 3.221lE-01 3.5850E - 01 
2.00 8.4540E- 02 2.8201E - 01 3.3694E- 01 
4.00 l.3673E - 02 5.4173£-02 8.0674E- 02 
6.00 4.2235E - 03 l .6203E - 02 2.3822E - 02 
8.00 l.9065E - 03 7.1502E - 03 l.0350E - 02 

10.00 l .0478E-03 3.8629E - 03 5.5614E - 03 
20.00 l.7337E - 04 6.3037E - 04 8.8558E - 04 
40.00 2.9944E - 05 l.0807E - 04 1.5086E- 04 
60.oo l .0803E - 05 3.8922E- 05 5.4241E - 05 
80.00 5.2512E - 06 l .8900E - 05 2.632 IE - 05 

100.00 3.0016E- 06 1.0801E - 05 J.5037E - 05 
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FIG. 4. One-dimensional Maxwellian and Holtsmark velocity distributions 
for a2- = 2. 

V. CALCULATION OF TARGET CURRENT DENSITY 

Figure 6 shows Ga+ target current-density profiles mea­
sured at two different magnifications on our 50-keV, two­
lens ion microprobe system. A complete description of the 
experimental conditions anq the measurement technique us­
ing dot exposures ofbilevel negative resist is given in Ref. 2. 
We see that these profiles have long tails extending out to 
several thousand angstroms at 10- 5 of the peak density. We 
will now describe the computer model used to simulate these 
beam profiles. The basic idea is that the current density at the 
target is determined by the combination of effects due to the 
virtual source (transverse velocity spread) plus the effects 
due to the chromatic aberration of lenses (longitudinal ve-

1.0 ,-----,..-- ---,------.-----., 

0.4 

0.3 

:::::- 0.1 
~ 
0.. 

0.1 
>-' 
I-
::::; 
iii 2 3 
<{ IUI m O.Ql 0 
a: 
0.. 

0.001 
MAXWEL LIAN 

0 . 0001 '------'-----'----~---~-
0 5 10 15 20 

NO RMA LI ZED T RANSVERSE VELOCITY. IUI 

FIG. 5. Two-dimensional Maxwellian and Holtsmark distributions for 
a2 = 2 . 
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0 1000 2000 3000 4000 5000 6000 

r, BEAM RADIUS (A) 

FIG. 6. Current-density profiles of the 50-keV Ga+ ion microprobe vs sys­
tem magnification for experimental and from simulation using Holtsmark 
distribution. 

locity spread). This model has only two adjustable param­
eters which are the FWHM widths of the transverse and 
longitudinal (Holtsmark) velocity distributions measured 
in the aperture plane. The details of the mapping process are 
more fully described in Ref. 3 so we will briefly describe the 
computer simulations. 

(i) Choose three random numbers from the one-dimen­
sional Holtsmark distribution. The first two 8ux and 
8uy are from a distribution having width wl and the 
third 8u

11 
is from a distribution with width w2. 

(ii) Form8u1 =~ou; +ou; whichrepresentsarandom 
transverse velocity from a two-dimensional Holts­
mark and form 6.r'. 

(iii) Convert axial velocity spread to an equivalent energy 
spread using 6. VI V0 = 2 *DU 1 1 I u0 and form 
dz= Ccob *6. V /V0 . 

(iv) Use matrix formulation to transport a ray having 
slope ( r' + 6.r') and radius r to the target plane. The 
effect of chromatic aberration is accounted for by 
adding ± dz to the object positions. 

( v) Repe<rt steps (i )-(iv) - 300 000 times and form a 
running histogram of number of rays landing be­
tween rand r + dr in the target plane. 

T1ial and error showed that wl = 1.5 mis and w2 = 160 
mi s accurately represent the M = 0.14 data in Fig. 6. We 
next changed the matrix coefficients of the second Jens to 
model the longer working distance for the M = 0.26 case. 
We then reran the simulation using the same "seed" for the 
transverse and longitudinal velocities. The new simulation is 
not quite as good as the original, but is still quite good espe-

J. Vac. Sci. Technol. B, Vol. 6, No. 6, Nov/Dec 1988 

cially for the smaller radii. lfwe convert the FWHM Holts. 
mark values to an equivalent root-mean-square velocity us. 
ing Eq. ( 4) (which rigorously only applies to a 
Maxwellian), we find that the widths wl and w2 become 
(u;) 112 = (u;) 112 = 1.5/2.35~0.64 mis and (u;) 112 

= 160/2.35 ~ 68 m/s equivalent root-mean-square veloc. 
ities. Converting these values to equivalent temperatures us. 
ing Eq. (3), we see that kT1 =6X10- 7 eV and 
kT

11 
= 3.3X 10- 3 eV. UsingEq. (5) toconvertthis longitu. 

dinal temperature to an equivalent energy spreag we have 

that 6.E11 = 2~(3X 10- 3 ) 26200~9 eV. This is not too far 
from the 8-eV value that was reported in Ref. 12 for a 4-µA 
Ga+ source current. We also see that the large difference 
between the transverse and longitudinal temperature implies 
that there is negligible exchange of energy between the trans­
verse and longitudinal directions. 

VI. CONCLUSIONS 

Experiments have shown that the target current density in 
focused ion beam columns have long tails outside the central 
submicron region. We have shown that these tails result 
from a transverse and longitudinal velocity distribution 
which has a Holtsmark probability distribution. We have 
described a computer model used to accurately simulate the 
measured current-density profiles. This model has only two 
adjustable parameters which are the FWHM widths of the 
transverse and longitudinal velocity distributions. Both the· 
ory and experiment show that the long tails are reduced a5 

the system magnification and extracted source currents are 
reduced. 
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