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Single-Domain Grain Size Limits for Metallic Iron 

ROBERT F. BUTLER1 AND SUBIR K. BANERJEE 

Department of Geology and Geophysics, University of Minnesota 
Minneapolis, Minnesota 55455 

Theoretical examination of possible nonuniform spin configurations in metallic iron indicates that 
circular spin (CS) is the lowest-energy nonuniform arrangement. The upper grain size limit (do) to single­
domain (SD) behavior is thus defined by the SD to CS transition. Superparamagnetic (SP) behavior 
marks the lower grain size limit to the stable SD range, and the SP to SD threshold size (d,) can be deter­
mined by Neel's relaxation theory. Calculations of d0 and d, for spherical metallic iron particles at 290°K 
indicate that do ( = 173 A) < d, ( = 260 A), and no stable SD range exists. A stable SD range does exist for 
prolate ellipsoids of elongation q > 1.1 but remains very constricted. For a prolate ellipsoid of q = 1.67, a 
stable SD range occurs between the SP critical length I.= 150 A and d0 = 360 A. Both d0 and d, increase 
with temperature, but the stable SD range decreases. The size and shape criteria for the stable SD 
behavior of metallic iron help to explain (I) the low SD content of lunar samples, (2) the widespread oc­
currence of SP behavior and viscous magnetization in lunar- soils and low metamorphic grade breccias, (3) 
the changes in the magnetic properties of breccias during annealing, and (4) the increased SD content of 
shocked breccias. The narrow grain size limits for SD behavior also suggest that magnetostatic interaction 
between metal grains in the solar nebula is not a viable mechanism for iron-silicate fractionation. 

The importance of stable single-domain (SD) grains to rock 
magnetism has been recognized for some time, primarily 
because of the very high efficiency of SD grains in carrying 
thermoremanent magnetization, in terms of both magnitude 
and stability of remanence [Neel, 1955]. Particles with parallel 
alignment of atomic magnetic moments throughout the entire 
grain volume are defined as SD. Each SD particle has an 
associated relaxation time over which its magnetization is 
stable. In SD grains below a critical size, thermal agitation of 
the magnetic moment destroys the remanence-carrying 
capability of the grain. This behavior is known as super­
paramagnetism. The SD grains above the critical size are called 
stable SD's since their relaxation times range from several 
minutes up to geologic times. The grain size at which the stable 
SD to superparamagnetic (SP) transition occurs is called d,. 
The upper grain size limit to SD behavior is imposed by transi­
tion to a nonuniform spin structure in which the atomic 
magnetic moments are no longer parallel throughout the parti­
cle. This transition is caused by the very high magnetostatic 
energy of SD grains and takes place at a critical size known as 
d0 • Thus stable SD behavior is observed only within the range 
d, < d < do. Although particles with d> d0 do carry remanent 
magnetization, their remanence is much lower in both 
magnitude and stability than the remanence in SD grains. 
Thus determination of the stable SD grain size range is ac­
complished by determining the upper and lower grain size 
limits, d0 and d,, respectively. 

Because of the obvious importance of fine-grained 
magnetite in carrying the natural remanent magnetization 
(NRM) of terrestrial volcanic rocks, a great deal of effort has 
been expended to delineate the stable SD grain size range for 
magnetite. Recent experimental determinations of d, and d0 for 
magnetite [Dunlop, 1972, 1973] compare favorably with 
theoretical estimates [Evans, 1972; Butler and Banerjee, 1975]. 
However, the importance of determining the stable SD grain 
size range in metallic iron has only recently become apparent. 
This interest is due primarily to the discovery that NRM in the 
lunar samples is carried by fine metallic iron particles 

'Now at Department of Geosciences, University of Arizona, Tuc­
son, Arizona 85721. 

[Strangway et al., 1972; Fuller, 1974]. It is generally, albeit only 
qualitatively, recognized that the stable SD grain size range for 
metallic iron is much narrower and occurs at a much smaller 
size than that for magnetite [Brown, 1968; Morrish, 1965, p. 
342]. In fact, it is commonly stated that the SD range is from 
150 to 300 A in diameter for spherical particles. However, a 
rigorous and thorough theoretical examination of the stable 
SD grain size range for metallic iron as a function of grain 
shape and temperature has not been undertaken. In view of the 
many experimental problems such as viscous magnetization 
[Gose et al., 1972; Nagata et al., 1972] and chemical and grain 
size changes during heating [Gromme and Doell, 1971; Pearce 
et al., 1972] that have been encountered in studying magnetic 
properties of lunar samples, determination of the SD range for 
metallic iron evolves as an important problem in lunar science. 

Another incentive for calculating the stable SD grain size 
range comes from the cosmochemical problem of iron-silicate 
fractionation in the early solar nebula. Larimer and Anders 
[1970] and Grossman and Larimer [1974] have pointed out that 
the temperature at which the fractionation took place is very 
near the Curie temperature of the Fe-Ni alloy grains in chon­
dritic meteorites. Thus the possibility arises that the iron­
silicate fractionation is triggered by the onset of 
ferromagnetism in the metallic grains. Harris and Tozer [1967] 
suggested that magnetostatic interaction of the metallic grains 
could provide the required mechanism. However, their for­
mulation applies to SD particles only [Banerjee, 1967]. There­
fore determining the stable SD grain size range for metallic 
iron in the temperature range of iron-silicate fractionation will 
help in evaluating the applicability of the magnetostatic inter­
action mechanism of Harris and Tozer [1967]. 

Since fine particles of iron tend to form in ellipsoids of 
revolution rather than to be bounded by crystal faces, we will 
consider spherical particles and prolate ellipsoids of various 
elongation. The theory of SP threshold calculations and SD to 
nonuniform spin threshold calculations will first be in­
troduced. The stable SD grain size range for metallic iron will 
then be delineated by calculations of the lower and upper 
limits, d, and d0 , respectively. Results of these calculations will 
be followed by a discussion of the implications for lunar 

Copyright© 1975 by the American Geophysical Union. magnetism and iron-silicate fractionation in the solar nebula. 
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SP THRESHOLD d. 

The lower limit to stable SD behavior imposed by the transi­
tion to superparamagnetism can be calculated by employing 
Neel's [1955] relaxation equation: 

T = 1o-1 exp(vh,,J.l2kn (l) 

where T is the relaxation time (in seconds), lo is the frequency 
factor (-108 /s for iron), v is the grain volume (in cubic cen­
timeters), he is the particle coercive force (in oersteds), J. is the 
saturation magnetization (in emu/cm8), k is Boltzmann's con­
stant, and T is the absolute temperature (in degrees Kelvin). 
This equation was derived by Neel for fine particles with uni­
axial anisotropy. The factor (vh,,J,/2kT) in (l) is the energy 
barrier that the magnetic moment must surmount to spon­
taneously reverse. Thus (l) can be rewritten to give [Bean and 
Livingston, 1959] 

T = 1o-1 exp(Es/kT) (2) 

where E8 is the energy barrier for reversal of magnetic mo­
ment. Equation (2) applies to particles with either cubic or 
uniaxial anisotropy. 

For spherical iron particles the energy barrier between easy 
directions of magnetization is produced by magnetocrystalline 
anisotropy. When the magnetic moment flips between adjacent 
[100] easy directions of magnetization, if must go over the 
energy barrier supplied by the magnetocrystalline anisotropy 
energy in the [110] direction. Thus the energy barrier in (2) for 
spherical iron particles is (K1v/4), where K1 is a first-order 
magnetocrystalline anisotropy constant. The relaxation equa­
tion becomes 

T = / 0- 1 exp(K1v/4kT) (3) 

The SP threshold size as a function of temperature, d.(T), can 
be calculated by substituting a critical relaxation time T 8 for 
SP behavior into (3) and solving to give 

d.(n = {[24kT/7r K 1(T)] [In ({oT.)]} 1
'

8 (4) 

For prolate ellipsoids the anisotropy is uniaxial and is 
supplied by shape anisotropy. The resulting particle coercive 
force is 

he= ANJ. (5) 

where AN is the difference between the self-demagnetizing fac­
tors of the equatorial axis a and the polar axis b. Self­
demagnetizing factors are easily calculated for prolate ellip­
soids of various elongations, q = b/a, as shown by Morrish 
[1965, p. 10]. Substituting (5) into (l) and solving for the 
threshold length 1.cn yield 

1.cn = {[l2q2kT/1r ANJ.2(n][1n (loT.)]} 118 (6) 

Rigorous derivation of the frequency factor lo for uniaxial 
anisotropy by Brown [1963] has shown that/0 is a function of 
v, he, J., and T. Inclusion of the volume dependence of/o in (4) 
and (6) leads to very untidy transcendental equations for SP 
threshold size. However, as was pointed out by Dunlop and 
West [1969], this refinement of the relaxation equation is of 
limited importance to calculations of d •. For example, for a 
spherical iron particle at room temperature (T. = 100 s), d. = 
258 A when/0 = 108 /s and d. = 266 A when lo = 1010 /s. Thus a 
constant frequency factor of 108/s will be used here. It is in­
teresting to note, however, that a rigorous derivation of lo for 
cubic anisotropy and relaxation times of >10-s s is extremely 
difficult and has not yet been accomplished [Aharoni, 1973]. 

METHOD OF do CALCULATION 

The upper limit to SD behavior, d0 , is more difficult to 
predict theoretically than the SP threshold because there are 
many possible nonuniform configurations that must be con­
sidered. Therefore the nature of the upper limit to SD behavior 
will depend on the mineral in question. The particular non­
uniform configuration that does develop at d0 (presumably the 
lowest-energy configuration) is very important. One must 
know what the preferred configuration is in order to calculate 
the threshold grain size d0• 

Rigorously determined upper and lower bounds for d0 have 
been derived by micromagnetics theory [Brown, 1968]. For 
grain sizes less than the lower limit, the SD configuration must 
be the lowest-energy spin arrangement. Conversely, for grains 
larger than the upper bound derived from micromagnetics, a 
nonuniform spin configuration must be the lowest-energy 
arrangement. Therefore we can use micromagnetics to provide 
limits within which d0 must fall. However, micromagnetics 
theory is not able to tell us what the lowest-energy nonuniform 
configuration will be. 

The lower bound occurs at a critical radius aco. given by 
Brown [1968] as 

aco = (3.6055/J.)(A/211")112 (7) 

where A is the exchange constant. The upper bound occurs at a 
critical radius aci. given by 

ac1 = [(4.5292)(A/211")112]/[J.] [l.O -

(5.615)(Ki/4J.2)]112 (8) 

Any theoretically derived value of d0 that is proposed as the 
upper limit to SD behavior must fall within the limits de­
fined by micromagnetics theory. 

A search of the available literature has revealed three spin 
arrangements that are candidates for the lowest-energy non­
uniform configuration in metallic iron. These configurations 
are (I) magnetization curling [Frei et al., 1957; Brown, 1968], 

(a) 

Cc I 
z 

(b) 

(d) 

y 

~· 
Fig. I. The SD and nonuniform spin configurations. (a) The SD 

configuration in which all atomic magnetic moments are parallel. 
Semimajor axis b and semiminor axis a are also illustrated. (b) The 
magnetization curling arrangement. The component of magnetization 
parallel to the polar axis decreases with distance from the axis, and the 
circumferential component increases. (c) The CS configuration. The 
atomic magnetic moments curl about the polar axis and describe 
circles in the equatorial plane. (d) The two-domain plus 180° wall con­
figuration. The arrows show the directions of magnetization in the two 
domains and in the wall. The magnetic charge distribution is also 
shown. 
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(2) circular spin (CS) [Morrish, 1965, p. 342; Frei et al., 1957], 
and (3) two-domain plus 180° domain wall [Amar, 1957, 
1958a, b]. The magnetization curling arrangement is shown in 
Figure lb. In this configuration the component of magnetiza­
tion along the polar axis of the particle decreases with distance 
from the axis. The circumferential component increases with 
distance from the polar axis. Thus magnetization curling in­
volves magnetostatic, magnetocrystalline, and exchange en­
ergies. Although the configuration appears complex, the 
energies involved can be calculated without assumptions or 
approximations. Brown [1968] used the magnetization curling 
configuration to calculate the upper bound critical "radius ac1 

given by (8). He chose the magnetization curling mode for 
calculation of the upper bound not because curling is 
necessarily the lowest-energy nonuniform configuration but 
because the energies involved could be calculated rigorously. 

Morrish [1965, p. 342] and Frei et al. [1957] have considered 
the CS configuration (Figure le). For CS the atomic moments 
curl about the polar axis of the particle and describe circles in 
the equatorial plane. There are no free magnetic poles for this 
configuration, and therefore CS has the advantage that there is 
no magnetostatic energy involved. There is, of course, con­
siderable exchange energy in this configuration. However, 
several assumptions and approximations are necessary to 
calculate the energy of the CS arrangement. 

The first approximation is that magnetocrystalline 
anisotropy energy can be neglected. At d0 the energy density 
(energy per unit volume) of the SD particle would be equal to 
the energy density of the CS configuration. Thus we can 
evaluate the validity of neglecting magnetocrystalline energy 
by comparing the energy density of a SD particle with the 
maximum energy density that could arise from magneto­
crystalline anisotropy. The energy density of a SD particle, 
eso. is · 

(9) 

where N is the self-demagnetizing factor. For a spherical iron 
particle, N = 4r/3 and J, = 1720 emu/cm3

, and e80 = 6.2 X 
IQ8 ergs/cm3

• The maximum energy density from magneto­
crystalline anisotropy, eK, would occur if the entire particle 
was magnetized along a hard direction of magnetization. For 
iron this would be the [ 111] direction, and eK would be given by 

(10) 

For metallic iron, K1 = 4.5 X 106 ergs/cm3 and eK[l l l] = l.5 
X 108 ergs/cm3

• Thus e80 >> eK[l l l], and the approximation 
that magnetocrystalline energy can be neglected in deriving the 
energy of the CS configuration is valid. 

The second assumption involved occurs when the exchange 
energy of the CS arrangement is derived. As Morrish [1965, p. 
343] pointed out, a mathematical singularity in the expression 
for exchange energy arises at the center of the particle. This 
singularity simply reflects the fact that the direction of the 
magnetic moment of the central atom is indeterminate. This 
problem is more mathematical than ohvsical. The local high 
exchange energy of a contorted spin arrangement along the 
polar axis of the particle will add little to the toal exchange 
energy of the particle since the volume fraction involved is 
minute. Thus Morrish neglects the exchange energy of the 
atoms along the polar axis and integrates the total exchange 
energy by placing the lower limit of integration one lattice 
spacing away from the polar axis. 

Given these two reasonable approximations, Morrish [1965, 
p. 342] compares the exchange energy of the CS configuration 

with the magnetostatic energy of a SD configuration. The 
critical semiminor axis a0 at which the SD to CS transition will 
occur is given by the transcendental equation 

a0
2/[ln (2ao/c) - I.OJ = 6J.S2/cNbJ,2 (l l) 

where c is the lattice constant (2.9 A for metallic iron), J. is the 
exchange integral, S is the total spin quantum number per 
atom (l for iron), and Nb is the self-demagnetizing factor along 
the polar axis. Although there is not complete agreement on 
the value of the exchange constant A for metallic iron, there is 
much less agreement on the value of the exchange integral J •. 
Thus, rather than estimate J. from the Curie temperature, as 
was suggested by Morrish [1965, p. 283], we prefer to sub­
stitute A = 2J .S2 I c [ Chikazumi, 1964, p. 189] into (l l) to give 

a0
2/[ln (2a0/c) - I.OJ = 3A/NJ1

2 (12) 

Amar [1957, 1958a, b] suggested that the upper limit to SD 
behavior would be imposed by transition to a two-domain plus 
180° wall configuration (Figure Id). Amar's treatment in­
volves two refinements of Kittefs [1949] attempts to determine 
d0 by a similar method. Amar considered the energy 
dependence of the 180° wall on the wall thickness and included 
the magnetos ta tic energy of the spins in the wall itself. Both of 
these factors were neglected by Kittel. The technique amounts 
to assuming that a particle of a given sized contains a 180° 
wall and allowing the wall to adjust its width so as to minimize 
the energy of the two-domain configuration. The critical size d0 

is determined by the particle size at which the total energy of 
the two-domain configuration drops below that of a SD parti­
cle of equal size. The domain wall energy in bulk material, u0 , 

and the wall width in bulk material, 60, are necessary input 
parameters in Amar's technique. For these quantities we have 
used the values u0 = 1.25 ergs/cm2 and 60 = 1413 A for a 180° 
domain wall parallel to (100) and u0 = l.72 ergs/cm2 and 60 = 
727 A for a 180° wall parallel to (llO) [Lilley, 1950; Stoner, 
1950]. Amar's technique applies strictly to parallelepiped­
shaped particles only. However, since the self-demagnetizing 
factors for a cube and a sphere are equivalent, comparison of 
the predicted d0 for a cubic iron particle should give us a good 
estimate of the d0 for the two-domain configuration in a 
spherical particle. 

RESULTS 

Although the ferromagnetic properties of metallic iron have 
been investigated for many years, agreement on the value of 
the exchange constant A has not been reached. The range of 
reported values is from 0.3 X 10-• erg/cm [Wohlfarth, 1952] to 
2 X 10-a erg/cm [Kittel, 1949]. Given this uncertainty, we have 
used A = 10-• erg/cm as a representative value in calculating 
the d0 thresholds for spherical iron particles given in Table l. 
This table compares the d0 threshold grain sizes predicted by 
the three nonuniform spin configurations under consideration. 
These values were calculated by using (8) and (12) for curling 
and CS, respectively. The d0 for the two-domain configuration 
was determined by using Amar's technique with the input 
parameters discussed in the previous section. The lower limit 
for d0 derived by micromagnetics theory was calculated from 
(7) and is also given in Table l. 

The most obvious conclusion to be drawn from the results 
of Table I is that the two-domain configuration will not define 
the upper limit to SD behavior. For both the (100) and the 
(110) domain wall orientations, the predicted d0 falls above the 
upper bound defined by micromagnetics. Thus the two­
domain configuration can be eliminated as a possible upper 
limit to the SD range. 
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TABLE 1. Comparison of SD to Nonuniform Spin Transition 
Diameters in Spherical Iron Particles 

Nonuniform Spin Predicted d0 , • 

Configuration A Reference 

Two-domain plus Am:ir [1957' 1958a, bl 
180° wall 

(100) wall 265 
(llO) wall 225 

Magnetization 21Bt Brown [1968] 
curling 

[fo6B] Micromagnetics 167 Brown 
lower bound 

cs 173 Morrish [1965, p. 342] 

*Values for curling and CS calculated by using A = 10" 6 
erg/cm. 

tMicromagnetics upper bound. 

Of the two remaining arrangements, CS predicts the lowest 
do and is therefore the lowest-energy nonuniform configura­
tion. The d0 value predicted by CS easily falls between the 
bounds imposed by micromagnetics. The fact that CS satisfied 
the micromagnetics criterion gives us confidence that the 
calculations have been done correctly. These calculations 
11trongly suggest that the upper limit to SD behavior in metallic 
iron will take place by transition to the CS configuration. 

Since the value of the exchange constant A is in 8ome dis­
pute, it is instructive to investigate the implications 9f value~ of 
A other than the 10-e erg/cm:value used for the calculations in 
Table 1. fr A = 0.5 x 10-• erg/cm, the lower bound f~r do in 
spherical irpn particles determined from (7) becomes 118 A. 
The upper bound calculated by using A == 0.5 X 10..: 8 erg/cm 
in (8) would be 154 A, whereas ·d0 predicted by CS from (12) 
becomes 114 A. If, on the other ha~d, A = 2 X 10-s erg/cm 
Oar2esi value reoorted). the lower and uoper bounds become 

Ill 
c: 
0 

0.2 

t; 0.1 
~ .08 
.t::. 
Ci .06 
c: 
Q) 

....J .04 
~ 
.!::! -... 

236 and 307 A, respectively. The CS would yield d0 = 260 A 
for A = 2 X 10-a erg/cm. The experimental results of Kneller 
and Luborsky [1963] can be of some help in this matter. For 
dilute dispersions of fin·e iron spheres in mercury, a value of do 
= 220 A at 207°K was determined. This value is larger than 
the theoretical upper bound for d0 if A = 0.5 X 10-• erg/cm. 
Thus A must be greater than 0.5 X 10-~ erg/cm. Conversely, 
for A = 2 X 10-• erg/cm, the theoretical lower bound to d0 is 
greater than the experimental value, and A must be less than 2 
X 10-e erg/cm. Thus· our initial choice of A = 10-• erg/cm is 
substantiated and will be used in the following calculations of 
d0 for the SD to CS transition. · 

The results of calculating do for the SD to CS transition as a 
function of temperature for spherical iron particles are shown 
in Figure 2. The temperature dependence of the exchange con­
stant A was l~troduced in (12) by µsing the·common and safe 
assumption that A(n!A(TR) = J.(n!J.(TR), where A(n and 
A(TR) are the exchange constants at temperature T and at 
room temperature, respectively, and J,(n and J.(TR) are the 
saturation magnetizations at T and at room temperature, 
respectively. The temperature dependence of J. was takep 
from Bozorth [1951, p. 112]. The value of c4 is seen to increase 
with temperature, as has' been suggested by Kneller [1969) and 
Pearce [1973]. Also shown in Figure 2 are the SP threshold 
sizes for r, = lQO sand r. = 4 X 109 years. These d. values were 
calculated by (4) wit11. the K1 versus T data of Klein and Kneller 
[1966]. Comparison of the calculated d, and d0 sizes (Figure 2) 
reveals that d. > d0 eyen at 'room temperature. This result is 
very interesting and somewhat' surprising. The calculations in­
dicate that there is no stable SD grain size range for spherical 
metallic iron particles. Using the highest reported value of A 
will increase d0 to 260 A. However, as wa~ mentioned 
previously, this value of A is inconsistent with experimental 
data. Also shown in Figure 2 is the micromagnetics upper 

-JI> 

10 3 E 
0 ... -Ill Cl 
c: 
<( 

.t::. -Cl 
c: 
Q) 

....J 

Q) 
c 
a.. .02 l .. ~~~--1~~~--1.,_C_i_rc_u_1a_r•S--p1-·n __ ,.....,_ ____ ,.....,.. ____ _... 

.~ -... c 
a.. 

. 01 
.008 

,00 400 

Single o·omoin 

500 600 
Temperature 

700 
( o K) 

800 900 

102 
. 

1000 

Fig. 2. Stable SD threshold diameters for spherical metallic iron particles. The SD to CS transition diameter is shown 
by the line through the solid circles and defines the upper limit to SD behavior d0 • Calculated Sb to SP threshold diameters 
d, for r, = 100 sand 4 X 10• years are also shown. Here d, > d0 indicates that no stable SD range exists for spherical metallic 
iron particles. The micromagnetics upper bound for do at room temperature is shown by the square. 
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bound for d0 at room temperature. Although there can be 
some debate as to the exact nature of the nonuniform config­
uration that develops at d0 (and therefore some uncertainty in 
d0), the upper limit to SD behavior must be at or below the up­
per bound derived from micromagnetics. This upper bound 
could be raised to 307 A by using A = 2 X 10-s erg/cm. 
However, as was mentioned previously, acceptance of this 
high value of A amounts to neglecting the experimental do 
determinations by Kneller and Luborsky (1963). Since we can­
not justify d0 > 218 A (micromagnetics upper bound for A = 
10-• erg/cm), the only alternative for calculating a stable SD 
range fpr spherical metallic iron is to decrease the SP threshold 
d •. This can be done only by increasing the anisotropy con­
stant Ki or decreasing the frequency factor lo in (4). As was 
pointed out previously, d. is very insensitive to the exact value 
of/0• Although a rigorous derivation oflo for cubic anisotropy 
and relaxation times of > 10-• s ha.s not yet been accomplished 
[Aharoni, 1973), it is very unlikely that revision of lo will lead 
to a significant decrease in d •. Also, the magnetocrystalline 
anisotropy data of Klein and Kneller (1966) are well accepted 
and not likely to be significantly revised. If magnetocrystalline 
anisotropy is the only source of coercivity in' spherical iron 
particles, there seems to be no defensible way to increase Ki in 
order to justify a decrease in d,. Thus the inescapable conclu­
sion seems to be that a stable SD grain size range does not exist 
for spherical iron particles at room temperature or above. We 
shall return to this point in the discussion. 

Figure 3 shows the results of d0 and /1 calculations for a 
prolate ellipsoid with a polar axis to equatorial axis ratio q of 
1.67. Again, the SD to CS critical length was calculated by us­
ing (6). Comparison of d0 and I. shows the development of a 
definite grain size range between I. and do within which SD 
behavior is expected. Any iron particle whose shape and size 
fall within this range will be a very efficient and stable carrier 
of remanent magnetization. It should be noted that the grain 
sizes involved are very small and the SD range is very narrow. 
At room temperature the upper lifllit to SD behavior in a 
prolate ellipsoid of q = 1.67 will occur at a length of -400 A, 
whereas the lower limit will occur at a length of -150 A. 
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Results of the room temperature calculations of d, and d0 for 
prolate ellipsoids of various elongations are given in Figure 4 
as a function of axial ratio. The axial ratio is expressed as the 
inverse of elongation, l/q. Spherical particles are on the rigl\t 
edge of Figure 4, and prolate ellipsoids of increasing elonga­
tion occur toward the left. The micromagnetics limits for 
spherical particles are also shown. Again, for spherical par­
ticles we see that d. > d0, and there is no stable SD range. As 
we move toward the left in Figure 4 (toward more elongated­
prolate ellipsoids), a definite SD grain size develops in which d0 

>I •. However, even for very elongated particles, SD behavior 
occurs only in extremely small particles and within a very 
narrow range of grain size. For example, even for particles 
with elongation 5: l (l/q = 0.2), SD behavior will occur only 
between particle lengths of 0.p2 :S: I :S: 0.2 µ. The SD grain size 
range will decrease for all elongations with increasing 
temperature, as was observed in Figure 3. 

It is important to mention here that we do not think t~at the 
CS configuration will persist for d >> d0 • The CS is a less 
energetic configuration than SD for d > d0 but is still a high­
energy arrangement. It is logical to expect domain structure to 
develop in grains significantly above d0 • This transition from 
CS to domain structure would be likely to occur at -100 A 
above do. The succession of spin structures expected in fine 
metallic iron particles would then be (1) SP below d1 , (2) stable 
SD ford, < d <do, (3) CS for do< d < d0 + 100 A, and (4) do­
main structure. The development of domain structure above 
the CS grain size range implies the possible development of 
pseudo SD behavior in small multidomain (MD) iron grains. 
These pseudo SD grains could be significant carriers of rema­
nent magnetism in lunar samples. 

DISCUSSION AND CONCLUSIONS 

Studies of the magnetic properties of lunar samples have 
recently been reviewed by Fuller (1974). Examination of 
hysteresis quantities such as saturation magnetization (J1 ), 

saturation remanence (J,), bulk coercive force (H.), remanence 
coercivity (H,.), and initial susceptibility (Xo) have aided in the 
characterization of the samples [Nagata et al.. 1972). In 
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Fig. 3. Stable SD threshold lengths for an iron prolate ellipsoid of elongation q = 1.67. The SD to SP threshold lengths 

I, for r, = 100 sand 4 X 10' years are shown by the two lower curves. The upper limit to the SD range, do. is defined by the 
SD to CS transition and is shown by the line through the solid circles. A definite stable SD grain size range exists between /, 
~4 . 
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Fig. 4. Stable SD grain size range for iron prolate ellipsoids at 
room temperature (290°K) as a function of axial ratio. The axial ratio 
is given as the inverse of elongation, so that spherical particles appear 
on the right edge of the diagram and elongated particles are shown 
toward the left. The SD to CS transition is shown by the line through 
the solid circles. The SP threshold lengths /, are shown for T, = 100 s 
and 4 X 10• year!!'. The dashed portions of the/, lines indicate the SP 
threshold length if shape anisotropy is the only source of coercive 
force. The dotted portions illustrate the SP critical length if mag­
netocrystalline anisotropy is the only source of coercivity. In reality, 
the dashed and dotted portions will be smoothly connected. The ex­
act shape of the /, lines in this region will depend on the 
crystallographic direction of particle elongation. The micromagnetics 
upper (solid triangle) and lower (open ~quare) bounds for do are also 
shown for spherical particles. 

general, the dominant magnetic mineral is metallic iron, and 
low J,/J, ratios indicate that only a small proportion of this 
iron is in the stable SD range. The majority of the metallic iron 
is present as SP or MD grains. 

Lunar soil samples contain an average of0.5% metallic iron. 
Hysteresis properties measured at various temperatures in­
dicate that a large proportion of the iron particles are SP 
[Nagata and Carleton, 1970]. Breccia samples also contain 
about 0.5% metallic iron but display hysteresis properties that 
are a function of the degree of annealing (metamorphism) 
[Gose et al., 1972]. The least-annealed samples are a mixture of 
very fine SP and SD p~rticles, whereas the most severely 
metamorphosed samples are dominated by MD behavior. This 
transition in the magnetic properties of the breccias is an ap­
parent reflection of grain growth during annealing [Pearce et 
al., 1972]. Both breccias and soils commonly exhibit large com­
ponents of viscous magnetization [Gose et al., 1972; Nagata et 
al., 1972]. Lunar igneous rocks contain -0.1% metallic iron 
that is predominantly MD. 

Results of the present investigation may help to explain 
some of these properties. The basic results of our investigation 
of stable SD grain size limits in metallic iron are twofold: (I) 
there is no stable SD range for spherical particles, and (2) only 
very small elongate~ iron grains (q > 1.1, 150 < d < 600 A) 
will have a stable SD range, and this range will be extremely 
narrow. Fine particles of metallic iron will tend to form as 
spherical particles in order to minimize their surface to volume 

ratio. Thus it is not surprising that only a small proportion of 
the iron grains in lunar soils satisfy both the size and the shape 
criteria required for them to fall within the stable SD range 
(Figure 4). The small average grain size in lunar soils and 
soillike breccias (100-300 A) [Housley et al., 1973] and the 
proximity of d, and d0 for spherical or slightly elongate par­
ticles (q < l. l) may also explain the widespread occurrence of 
viscous magnetization in these samples . 

It is interesting to note that the frequently assumed 150- to 
300-A-diameter SD range for spherical iron particles is in con­
flict with experimental data. Observation of the size distribu­
tion of metallic iron spheres in glass-welded aggregates by 
Housley et al. [1973] has revealed that 100- to 250-A spheres 
dominate the distribution. Approximately 30% of the metallic 
iron is in the 150- to 300-A range. If this distribution is 
representative of the iron grain size distributions for soils and 
low metamorphic grade breccias, the 150- to 300-A stable SD 
range would predict a saturation isothermal remanence 
(IRM,) of >I emu/g. However, the largest IRM, values ob­
served are less than 10- 1 emu/g [Fuller, 1974, Figure 28], and 
assumption of the 150- to 300-A SD range leads to a direct 
conflict with the experimental data. 

The magnetic granulometry experiments on lunar breccia 
14313 by Dunlop et al. [1973] are very interesting in the context 
of the present SD grain size calculations. A grain size versus 
coercive force distribution was determined for 14313,29 by 
partial thermoremanence and af demagnetization experiments. 
The distribution is illustrated by Dunlop et al. [1973, Figure 5). 
The main peak in tile distribution at a coercivity of -1000 Oe 
is undoubtedly due to elongate SD metallic iron. However, the 
distribution also exhibits a truncation below coercive forces of 
300-500 Oe. Dunlop et a/. [1973] attribute this truncation to a 
minimum coercivity due to magnetocrystalline anisotropy for 
spherical SD particles. Thus the magnetic granulometry of 
14313,29 appears to require stable SD spherical iron grains, a 
result that conflicts with the present calculations. There are 
two possible explanations for the apparent conflict. 

One possibility is that the grain shape distribution is heavily 
skewed in favor of ~pherical grains rather than elongate gniins. 
Such a skewed distribution would, in fact, be predicted by the 
tendency of fine iron particles to minimize the surface to 
volume ratio. The combination of the expected grain shape 
distribution with our result that grains with an elongation of 
<I. I do not possess a stable SD grain size range would yield 
the truncation effect observed by Dunlop et al. [1973). The sec­
ond possible explanation of the apparent conflict between the 
magnetic granulometry data for 14313,29 and our theoretical 
results.is that a stable SD range does, in fact, exist. We are con­
fident that our calculations are numerically correct and, as was 
discussed previously, that d0 cannot be raised abovti 218 A by 
any justifiable adjustment of the input parameters. The only 
recourse is to decrease d. by speculating that magneto­
crystalline anisotropy is not the only source of coercivity in the 
fine iron grains of lunar samples. Two conceivable sources of 
additional anisotropy would be (I) an increase in mag­
netocrystalline anisotropy by the alloying of the iron with 
highly- anisotropic impurities such as cobalt or (2) mag­
netostrictive effects due to coherent strain in these extremely 
fine grained iron particles. Both of thtise mechanisms for in­
creasing the effective anisotropy constant are highly 
speculative. Thus we favor the first explanation of the 
magnetic granulometry data for lunar breccia 14313,29. 

Examination of the stable SD field (Figure 4) can also aid in 
understanding the transition in the magnetic behavior of brec-
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cias during annealing and attendant . grain growth. Least­
annealed breccias will have a grain size and shape distribution 
similar to those for soils. Since no stable SD range exists for 
spheric~! particles and since the iron grains in the soils and low 
metamorphic grade breccias are thought to be spherical, the 
increase in the SD content of intermediate metamorphic grade 
breccias cannot t~ke place simply by growth of SP iron 
spheres, as was proposed by Pearce et al. [1972]. However, 
sintering of adjacent spherical SD grains to yield elongated SD 
particles during the short-time and/o'r low-temperature 
annealing experienced by jntermediate metamorphic grade 
breccias would produce· the increased SD content observed. 
Continued annealing at higher temperatures would yield larger 
grains with d > d0 and favor formation of spherical iron par­
ticles. Thus severe an.nealing would result in predominantly 
MD grains, such as those observed in highly metamorphosed 
Wreccias. , 

Cisowski et al. [1973] have observed an increase in He and 
the J,/J, ratio of breccias during laboratory shock ex­
periments: They interpret these changes as an in.crease in the 
proportfon of stable SD iron grains and suggest deformation 
of originally spherical particles during shock as the explana­
tion. As is illustrated by Figure 4, our results indicate that 
deformation of 100- to 400-A-diameter spheres to produce 
prolate ellipsoids of elongation q > 1.1 would indeed produce 
a substantial increase in the stable SD content of shocked brec­
cias. 

We have stressed the constricted nature of the stable SD 
grain size range and have attempted to explain a number of 
observations of magnetic properties of lunar samples on the 
basis of the low probability of finding metallic iron particles 
within the stable SD field. It is therefore essential to establish 
that only a small proportion of stable SD particles are required 
to account for the NRM's of high stability that have been ob­
served in SO!lle' iunar breccias and igneous rocks. The largest 
IRM, reported for breccias and igneous samples are approx­
imately 0.5 X 10.- 1 emu/g [Fuller, 1974, Figure 28]. For an 
assemblage of randomly oriented stable SD particles with 
uniaxial anisotropy, IRM, is (J,/2) emu/g of ferromagnetic 
material. The percentage of the metallic iron content that must 
be present as stable SD's in order to account for a given IRM, 
in a rock would be 

% S!) = {(IRM,)/[(fraction Fe)(J,/2)]} X 100% (13) 

For metallic iron in lunar samples, J, = 220 emu/g and the 
fraction of iron is :::..0.005. Thus ( 13) yields % SD "" 9% for the 
highest values of IRM., and at most, only 9% of the metallic 
iron present is required to be in the stable SD range. This 
calculation neglects the contribution of MD grains to IRM,. 
The contribution from MD grains may be considerable, and 
the 9% SD figure is an upper limit even for the lunar samples 
with the strongest IRM,. These calculations illustrate that the 
}'llRM of lunar breccias and igneous samples can be accounted 
for by a very small stable SD content. Since it is very likely that 
l-10% of the iron particles in lunar samples would be 
sufficiently elongate to fall within the SD bounds in Figure 4, 
the results of our theoretical calculations are not in conflict 
with the observations of stable NRM in some lunar samples. 

As was mentioned previously, calculations of SD grain size 
limits for metallic iron are also important in evaluating the 
iron-silicate fractionation mechanism of Harris and Tozer 
[1967]. The magnetostatic interaction mechanism proposed by 
Harris and Tozer [1967] applies only to interaction between 
SD particles. Since neither K1 nor J, is significantly affected by 

the alloying of a small percentage of Ni with Fe, the SD limits 
for the 5% Ni alloys found in chondritic meteorites will be vir­
tually ·identical to those of metallic iron. Larimer and Anders 
[1970] have examined the abundances of volatile siderophile 
elements in chondritic meteorites in order to estimate the 
temperature range in which the iron-silicate fractionation oc­
curred. These temperature limits are approximately 680° < T 
< l050°K. As was indicated in Figure 3, the stable SD range 
becomes narrower with increasing temperature. Thus the re­
quirements of grain shape and size for SD behavior shown for 
room temperature (Figure 4) will be even more confining in the 
temperature region of iron-silicate fractionation. Given the 
size and shape requirements for stable SD behavior (Figure 4), 
we consider it unlikely that a significant proportion of the 
metal grains in the solar nebula would be in the SD region. 
Thus we do not consider magnetostatic interaction between 
metal grains in the solar nebula to be a likely mechanism for 
iron-silicate fractionation. 

·If the appearance of ferromagnetism in the metal phase did 
trigger the fractionation, it appears most likely that the 
mechanism must involve the magnetic susceptibility contrast 
between metals and silicates rather than the magnetostatic in­
teraction of metal grains. The magnetic susceptibility of 
metallic iron is much larger than the susceptibility of sjlicates. 
Thus metal grains in the solar nebula would experience a much 
stronger translational force due to a magnetic field gradient 
than silicate particles would. Although evidence does exist for 
the presence of a ·magnetic field at the time of accretion of car­
bonaceous chondrites [Banerjee and Hargraves, 1~72; Brecher, 
1972; Butler, 1972], the existence of magnetic field grad.ients 
sufficient for an effective separation of metal and silicate par­
ticles is purely speculative. However, local intensification of 
magnetic lines of flux in a turbulent condensing solar nebula 
may have produced the required magnetic field gradient. 
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