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Abstract 

 The scleractinian coral species that so heavily define tropical coral reefs are 

increasingly threatened by anthropogenic global warming. Rising sea surface 

temperatures in combination with light stress causes the photosynthetic breakdown 

of the coral’s algal symbiont, Symbiodinium. Corals have developed a number of 

physiological responses to handle acute stressors, such as the production of 

ultraviolet-protecting amino acids, heat shock proteins, the ability to shift 

symbionts, and the production of fluorescent proteins. The latter has been thought 

to play a photoprotective role in the coral holobiont, and studies have shown 

evidence that corals orient these pigments to divert harmful light away from their 

symbionts in shallow reefs that are at great risk of environmental stress. The 

biological role these proteins play is still largely speculative. This study is part of a 

larger study examining coral physiological responses to thermal stress.  

 In total, 170 Acropora tenuis colonies were tagged in reefs surrounding 

Pelorus and Orpheus Islands before the onset on the bleaching event of 2017 that 

affected the Central Sector of the Great Barrier Reef. In addition to studying the 

genetic differences between resilient and susceptible individuals, the fluorescent 

protein expression of these colonies was examined during the height (March) and 

end (April) of the bleaching event. Of 25 colonies that underwent analysis, 21 

experienced extreme thermal stress and were nearly completely bleached in April 

and two colonies not only survived the bleaching, but increased their 

Symbiodinium counts. Fragments collected were split into top and bottom portions 

for analysis. Top fragments experienced greater rates of bleaching than bottom 
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fragments at both the March and April time point, suggesting that exposure to light 

in addition to heat is more stressful than heat alone. Total protein content linearly 

decreased weakly, but significantly, with the loss of Symbiodinium (r2 = 0.3226; P-

value = 4.292e^-10). Fluorescent protein expression between March and April in 

all 25 colonies did not significantly change (r2 = 0.0002365, P=0.3142), but the 

ratio in concentration of cyan fluorescent protein (475 nm) to green fluorescent 

protein (505 nm) was higher in top fragments of colonies that remained bleached 

than in top fragments of colonies that remained healthy throughout March and 

April (P < 0.05). The same ratio difference was not detected in the bottom 

fragments (P > 0.05). This pattern suggests variability in the effects light and heat 

have on coral’s physiological response to stress and that corals may downregulate 

energetically costly FPs during bleaching.  
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Introduction 

        Increasingly, coral reefs are facing a barrage of anthropogenic threats, none of 

which are more insidious than rising sea surface temperatures caused by human-driven 

climate change. The foundational species of coral reefs contributing to the growth and 

maintenance of the reef framework through calcium carbonate secretion belong to the 

order Scleractinia. These colonial animals form endosymbiotic relationships with a 

multitude of other organisms, including archaea, fungi, bacteria, and algae. The symbiotic 

relationship between coral and their alga (Symbiodinium spp.) is considerably important 

to the health of the coral holobiont as well as to the functionality of the reef. 

Unfortunately, this symbiosis is incredibly sensitive to environmental stressors, 

especially heat stress. 

        Symbiodinium receive protection from predators, preferential location in the water 

column, and waste products from corals. The coral host benefits from the algal symbiosis 

by obtaining photosynthetically fixed carbon compounds for skeletal formation, waste 

disposal, and possibly photo-enhanced light calcification (Falkowski 1984). Corals rely 

on their photosynthetic algal partners for over 95% of their total energy requirements and 

compounds necessary for metabolic processes and skeletal formation (Falkowsi et al. 

1984, Sutton & Hoegh-Guldberg 1990, Muscatine et al. 1981). Additionally, there is 

evidence to suggest the genus Acropora relies on its symbionts for metabolic processes. 

The amino acid cysteine biosynthesis that is necessary for some metabolic functions was 

not found in the coding region of the Acropora genome, suggesting that this genus may 

be more heavily dependent on its algal symbionts for metabolic processes than others 
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which could explain the fragility of these corals to environmental stress (Shinzato et al 

2011). This symbiotic relationship is crucial to colony survival and is the basis for the 

entire coral reef ecosystem. 

        Bleaching is caused by a number of stress factors, including overexposure to heat, 

light, drastic changes in salinity, sedimentation, and chemicals. Since the first global 

bleaching event of 1998, rising sea surface temperatures has been the culprit behind a 

majority of bleaching events around the world. The coral-Symbiodinium symbiosis is 

fragile to heat stress and can become especially stressed during the summer when 

bleaching thresholds are more likely to be surpassed. Heat stress causes photosynthetic 

breakdown within Symbiodinium cells, most likely beginning in photosystem II, and 

results in the accumulation of toxic reactive oxygen species within the cells (Warner et al. 

1999). Corals expel their symbionts as a mechanism for short-term survival and 

consequently lose their main energy source. Corals that have lost a large proportion of 

their pigmented symbionts appear white, exposing their skeleton through transparent 

tissues. 

        Bleaching is expected to increase in occurrence, duration, and intensity in the next 

several decades (Hughes et al. 2017). Sea surface temperatures have risen by a mean 

0.6oC in only 60 years (Bindoff et al. 2007). There are some projections that predict 

annual bleaching may occur on the GBR by 2030 if carbon emissions are not reduced 

(Hennessy et al. 2007). The distributions of scleractinian coral species will depend on 

inter and intraspecific variation in mechanisms designed to survive high stress conditions. 

Bleaching events in the past on the GBR have shown which species are more likely to be 

“winners” under future climate change conditions and which are the most susceptible to 
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increasing amounts of stress (Baird & Marshall 2000).  Massive species such as Porites 

and Platygyra historically have been less vulnerable to stressors such as heat and 

cyclonic activity while tabular, branching, and plating Acropora spp. and Pocillopora 

spp. are usually the first to bleach during episodes of heat stress (Van et al. 2011). 

Determining which species and genera are more likely to survive as spatial and 

environmental frameworks become limited is critical to understanding how composition 

of reef communities will shift in the future. 

        Recent research has shown acclimation and adaptation mechanisms within corals. 

        Symbiont Shuffling. Different clades of Symbiodinium are variable in their 

metabolic and photochemical efficiencies and abilities to withstand certain stressors. 

There are over 250 types of Symbiodinium grouped into clades A-H and their genetic 

differences correspond with physiological response in accordance with photo-

acclamatory response to light, growth, and thermotolerance (Coffroth & Santos 2005; 

Iglesias-Prieto et al. 2004, Robinson & Warner 2006). Types known to be particularly 

resilient to heat stress belong to Clade D (Baker 2004). Studies have shown that surviving 

corals shift their symbionts to predominantly Clade D after bleaching (Silverstein et al. 

2014).  

        Corals vary in their selectivity of differing Symbiodinium Clades, with some 

species willing to host a variety of types while others are very specialized in their choice 

of symbiotic partners. Advanced molecular techniques have revealed that many corals 

thought to be specialists are actually generalists that host a great genetic diversity of algal 

symbionts. (Silverstein, Correa, Baker 2012). The coral’s ability to shift Symbiodinium 
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assemblages is a crucial factor in acclimatizing to a changing environment under longer 

durations and occurrences of stress (Berkelmans & van Oppen 2006). 

        Bleaching provides the opportunity for the proliferation of taxa that are normally 

unfavorable during stress-free conditions. These opportunists have been defined as 

“disaster taxa” (Correa, Baker 2011), symbionts that normally live marginally in host 

tissues but become abundant during periods of extreme environmental stress. Corals tend 

to switch stress-sensitive symbionts for stress-resilient types during periods of high stress 

and keep stress-sensitive types under ambient conditions because members of disaster 

taxa have high-energy costs during stress-free conditions. Clade D, though known for its 

ability to withstand heat stress, is also known as a “selfish opportunist.” This 

Symbiodinium type is unfavorable for corals to host because it does not translate as much 

of its photosynthetic products to the coral as other types do (Stat & Gates 2011). 

 

Morphological Plasticity. Scleractinian corals are diverse in their life history strategies 

and energy investments. Large, branching, tabular coral species such as Acropora, 

Pocillopora, Turbinaria, and Montipora invest in quick growth, live in shallow reef 

environments, and are broadcast reproductive spawners. (Darling et al. 2012). This 

competitive life strategy is very successful under shallow, high-light environments with 

few disturbances. Corals that appear to have a stress-tolerant life history include slow 

growing species that reproduce through broadcast spawning and have high fecundity 

rates. Species belonging to Orbicella and Montastrea in the Caribbean and massive 

Porites and Diploria are normally very resilient to bleaching stress (Darling et al. 2012). 

Massive species that follow weedy, stress-tolerant, or generalist life histories tend to 

display partial coral mortality after bleaching events rather than the whole-colony 
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mortality often observed in competitive Acropora species (Baird & Marshall 2002, 

Darling et al. 2012). Due to increasing severity and occurrence of stressors, it is predicted 

that competitive, fast-growth life histories that otherwise compete intensively and 

successfully under normal conditions will fare poorly under stressed conditions, and 

weedy, stress-tolerant species may become dominating on the reef, contributing to an 

overall “flattening” of the reefscape (Darling et al 2012.) 

 

Genetics. Shinzato et al 2011 found through analyzing the Acropora genome that corals 

can produce an amino acid (Mycosporine amino acids) independent of their symbionts 

that has ultraviolet protective abilities. Intraspecific variability in coral polymorphisms 

shows differences in genetic expression intraspecifically (Gittins et al 2015). 

Furthermore, Paley et al 2014 found that bleaching intensity differed greatly among 

different color morphs of Acropora millopora. Though stress-resilience is often attributed 

to the physiological response of the Symbiodinium, it is equally valid that corals 

themselves have distinct genotypes that produce phenotypic traits that vary in response to 

environmental factors. Subjecting coral colonies to experimental heat stress and 

subsequently selectively breeding stress-tolerant individuals has been proposed as a 

mechanism for restoring degraded reefs (Van Oppen et al. 2015). As an example, since 

heat stress combined with light intensity causes the production of noxious oxygen species 

by Symbiodinium, interspecific and intraspecific genetic variation in the ability to 

neutralize these species may determine bleaching severity. Indeed, two quantitative trait 

loci in Acropora millepora were identified for neutralization of reactive oxygen species 

(antioxidant capacity) and environmental stress tolerance (Jin 2016). Manipulations or 
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insertions from known genetic markers could be used to possibly bolster coral resilience 

against heat stress in the laboratory.  

 

Fluorescent Proteins. Reef-building corals are generally restricted to shallow tropical 

seas and must have developed mechanisms to contend with high levels of UV irradiance. 

Corals have been postulated to have the ability to shift damaging light away from their 

Symbiodinium by placing fluorescent protein pigments above these algae in shallow 

water (Sahil et al 2000). Conversely, at deeper depths with minimal light penetration, 

corals place these pigments adjacent to or below their Symbiodinium in order to enhance 

light acquisition (Sahil et al 2000). Proposed and tested photoprotective hypotheses have 

indicated FP’s may absorb and scatter damaging UV light that would otherwise damage 

photosystem II, a mechanism critical to the photosynthetic process (Gilmore et al. 2003) 

Coral FP’s display functions other than photoprotection. FP’s have been shown to 

deactivate reactive oxygen species and possess other antioxidant properties, which serves 

to mitigate toxicity stress to corals during bleaching (Bou-Abdallah et al. 2006; Palmer et 

al. 2009). 

        There are four basic colors of fluorescent proteins: Cyan (CFP), Green (GFP), 

Red, and a non-fluorescent purple/blue chromoprotein (Alieva et al. 2008). Cyan and 

green fluorescent proteins have the same chromophore, a molecule that absorbs light and 

re-emits it at a different wavelength, but are evolutionarily distinct, suggesting natural 

selective processes acting on these proteins resulted in two biologically distinct proteins 

(Henderson et al. 2005). Green fluorescent proteins emission maximum is greater than 

500 nm while cyan fluorescent proteins emission spectrum maximum is below 500 nm. 

Blue-shifted variants are found ~477 nm (Alieva et al. 2008). 
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        There may be a number of discrete biological indicators that precede the onset of 

visual bleaching and may also be determinants of organismal stress-resilience. In 

previous studies, different color morphs characterized by differing dominant fluorescent 

protein concentrations resulted in variable bleaching susceptibility, showing coral-

mediated mechanisms in response to thermal stress (Paley et al. 2014). A study within the 

same thesis as Paley et al. 2014 found that changes in fluorescent protein type expression 

occurred in tandem with declining coral health. The switch from production of a highly 

fluorescent protein to a weaker fluorescent protein in correlation with degrading health 

suggests that continual production of certain fluorescent proteins are more energetically 

costly than others (Paley). An unpublished study from last year suggested a switch in 

CFP and GFP concentration in samples of Stylophora pistillata during a period of 

extreme thermal stress. This study aims follow up on the previous year’s data to possibly 

identify changes in fluorescent protein pigment assemblages in Acropora tenuis over the 

period of the 2017 bleaching event to further our understanding of fluorescent protein 

expression.  

                    

Methods and Materials 

2.1 Data Collection. In total, 170 Acropora tenuis colonies were tagged in groupings in 

four different locations surrounding Orpheus and Pelorus Island, two islands within the 

larger Palm Islands group in the central sector of the Great Barrier Reef (18°37’S 146° 

15’E). Colonies were monitored at from February until May on a monthly basis to follow 

the bleaching event as it progressed. Two time points of collected samples were used in 

this study, March and April. Using scuba and a dive knife, two fragments from each 
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colony were broken off from each colony and placed in labeled plastic bags. A third 

fragment was collected if the colony was bleached and stored in paraformaldehyde for 

microscopy not utilized in this paper. Samples were processed immediately upon 

resurfacing. Each fragment was wrapped in aluminum foil with a paper tag indicating 

which colony number it came from and then stored in a portable dry-shipper (liquid 

nitrogen container). Samples were kept frozen on dry ice in transport back to the Coral 

Physiology Lab at James Cook University. 

 

2.2 Sample Processing. Fragments from 25 colonies were spliced into upper and lower 

halves in order to eliminate biases resulting from light mediated spatial bleaching 

patterns. Each split fragment was labeled as either top or bottom and placed in its own 

plastic bag and filled with 10ml of filtered seawater. Fragments were tissue blasted 

completely using a high-pressure air gun to create tissue slurry in the bag that was then 

emptied into larger tubes for homogenization (Approximately for 30 seconds with IKA-

Labortechnik). For the purpose of evaluating bleaching severity, 900uL of each slurry 

sample was pipetted into an eppendorf tube with 100uL of formaldehyde for 

Symbiodinium counts. The slurry was then centrifuged for 5 minutes at 3500 rpm and 4°C 

to remove tissue and cellular particulates and immediately stored at -30°C. 

 

2.3 Surface Area Estimation Surface area of each nubbin was calculated to standardize 

Symbiodinium counts. Tissue blasted fragments that had been previously soaked in 20% 

bleach solution for two minutes were dipped into hot wax and weighed. After the first 

mass measurement was taken from the first wax dip, the fragment was then dipped in 

wax a second time, dried, and then weighed. The difference in weight between the first 
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and the second dipping was used to find surface area estimation based on a calibration 

curve formulated with plastic cylinders of known surface area and weight ranging from 

8.41 cm2 to 135.89cm2. Using the following regression equation: 

 

Equation 1.1                SA(cm-2)  = M x D 

 

where M is the variable from the regression equation (cm-2 mg-1) and D is the difference 

in weight in mg between wax dipping. The calibration curve is SA(cm-2) = 0.0344*D. 

 

2.4 Symbiodinium Counts. Symbiodinium cell counts were conducted using an improved 

Neubauer haemocytometer with two counting chambers in order to assess the bleaching 

severity of the bleaching state of the sample. Tissue slurry was pipetted into the chambers 

using glass pipettes and examined under a microscope at 40X magnification. Two 

replicate cell counts on each haemocytometer plate gave four cell counts, which were 

averaged for each sample. The average concentration of Symbiodinium for each branch 

was calculated by the equation: 

 

Equation 1.2        Zooxenthellae = N x 10-4 x D/SA 

 

where N is the mean of the four cell counts, D is the volume of water used in the bag 

during airbrushing (a dilution factor of 10mL), and SA is the surface area of the nubbin in 

cm-2. 
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2.5 Protein Quantification. Total protein concentration was calculated using a Peterson-s 

Lowry total protein standard assay utilizing a bovine serum albumin (BSA) serial dilution 

concentration of 2.0 mg ml-1 1.0 mg ml-1, 0.50 mg ml-1, 0.25 mg ml-1, 0.125 mg ml-1. A plate 

map describing the location of every sample and standard was drawn up before plating 

the microplate. Twenty uL of each concentration of BSA standard and samples were 

pipetted over ice in triplicate into a clear 96-well standard microplate along with180 uL 

of Red 660 reagent using a multichannel pipette. Samples and standards were read in a 

SpectraMax M2 spectrophotometer with endpoint absorbance set at 660 nm. 

Additionally, 20 uL of sample was placed in triplicate in a 384-black/clear bottom 

Greiner fluorescence plate over ice. Samples were read on the SpectraMax M2 

spectrophotometer set to read fluorescence within wavelengths 400-700 nm and read in 

increments of 5 nm at an excitation wavelength at 280 nm. 

 

2.6 Statistical Analysis 

Linear regression analyses in R were used to find significance and strength of correlation 

between: total protein content and Symbiodinium counts; cyan fluorescence and 

Symbiodinium counts. Welch Two-Sample T.Tests performed in R were used to find 

significant differences in the Symbiodinium counts from March to April time points and 

to find significance in differing CFP/GFP ratios. 

 

Results 

3.1 Symbiodinium Change Over Time 

 The relative numbers of Symbiodinium remaining in its host’s tissues measures 

bleaching intensity. Bleaching progressed, as correctly hypothesized, from the March to 
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April time point for both bottom and top fragments (Figure 1) relative to the top 

fragments, bottom fragments were less bleached overall in both the March and April time 

point. 

 

Figure 1. Symbiodinium density (cm-2) of top and bottom fragments shown with respect to time 

points in March (red) and April (blue).  
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Figure 2. Change in bottom zooxenthellae (Symbiodinium) counts as a function of change in top 

fragment cell counts between two time points, March and April (n=23). The direction of the 

arrow correlates with time from March to April. Twenty-one colonies experienced decreasing cell 

counts while two experienced increasing cell counts over the bleaching period.  

 

Symbiodinium, otherwise known as zooxenthellae, counts decreased both in the top and 

bottom fragments for 21 colonies from March to April. A total of two colonies 

experienced increases in cell count in both top and bottom fragments from March to 

April. Two colonies (top and bottom fragments) were removed from Figure 2 due to their 

determination as outliers, most likely due to processing bias.  
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3.2 Total Protein and Fluorescent Protein Temporal Variation 

 

Figure 3. Symbiodinium concentration per cm-2 correlated with total protein content in mg ml-1. 

Line shows linear regression line with 95% confidence intervals. (r2 = 0.3226; p = 4.29 x e-10) 
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Figure 4. Intensity of CFP emission (measured as RFU mg-1 protein) at 475 nm decreases as 

Symbiodinium counts increase. Line shows linear regression line with 95% confidence intervals. 

(r2 = 0.126; P-value = 0.000171)  
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Figure 5. CFP expression as a function of Symbiodinium counts but fixed by Surface Area of the 

nubbin (measured as RFU cm-2) as opposed to total protein content. Line shows linear regression 

line with 95% confidence intervals. (r2 = 0.0002365, P = 0.3142) 
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Figure 6.  Fluorescence measured in RFU per cm-2 of top and bottom fragments of bleached, 

pale, and healthy corals separated into time points. Bleached cell counts (<500,000); Pale cell 

counts (500,000 – 999,000); Healthy cell counts (>1,000,000). 

 

Total protein content (mg ml-1) significantly, but weakly increased with increasing 

numbers of Symbiodinium (Figure 3; r2 = 0.3226; P-value = 4.292e^-10). Cyan 

Fluorescent Protein (CFP) emission intensity at 475 nm was compared with increasing 

numbers of Symbiodinium cell counts. A significant, but weak, correlation was found 

showing increasing CFP concentration (when standardized by total protein content) with 

decreasing Symbiodinium density across all samples, including top and bottom fragments 

from both time points (Figure 4; r2 = 0.126; P-value = 0.000171). However, this 

relationship becomes statistically non-significant and even weaker when CFP is 

standardized by surface area of the coral fragment (Figure 5; r2 = 0.0002365, P = 0.3142). 
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Additionally, no distinguishable pattern in fluorescent expression can be found based on 

results shown in Figure 6.  

 

3.3 Temporal Patterns of CFP/GFP Ratio 

 

Figure 7. Ratio of CFP to GFP in top fragments of colonies that remained healthy and bleached 

in March and April (P = 0.04881). Fragments that contained >800,000 Symbiodinium cm-2 in both 

March and April were designated as HH and fragments that contained <20,000 Symbiodinium in 

both March and April were designated as BB. 
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Figure 8. Ratio of CFP to GFP in top fragments of colonies that remained healthy and bleached 

in March and April  (Not significant; P > 0.5). 

 

CFP/GFP ratios were significantly different in top fragments from colonies that were 

bleached as opposed to top fragments in colonies that remained healthy during the 

bleaching event (Figure 6). The mean ratio in bleached top fragments was 1.558806 and 

the mean ratio in healthy top fragments was 1.448552 (Welch Two-Sample T.Test; P = 

0.04881). This significant difference in the ratio in top fragments was not detected in the 

bottom fragments (Figure 7). The mean ratio in bleached bottom fragments was 1.465512 

and the mean ratio for healthy bottom fragments was 1.516692 (Welch Two-Sample 

T.Test; P = 0.4126). 
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Discussion  

Spatial Bleaching Patterns 

Bleaching status of a coral is dependent on the stress incurred and the numbers of 

Symbiodinium lost from its tissues. Greater losses of Symbiodinium correlate with 

increasing amounts of stress and increasing bleaching severity. Based on the 

Symbiodinium counts of our 25 samples, the bottom fragments contained higher densities 

of cells than the top fragments in both March and April (Figure 1). This pattern of 

bleaching was consistent across all bleached colonies, with most samples showing more 

severe bleaching in the tips than in the bottoms of the fragments. Tops of the fragments 

were exposed to both heat and light stress while bottom fragments only experienced heat 

stress because upper portions of the colony shaded them. This spatial bleaching pattern is 

a strong indication that exposure to higher levels of solar radiation in combination with 

heat stress results in more severe bleaching than heat stress alone. Downs et al. 2013 

demonstrated that light stress causes significantly more oxidative damage than heat stress 

alone and that light stress causes a buildup of damaged proteins. Oxidative damage was 

shown to be greater in samples exposed to a combination of heat and light stress than heat 

stress alone, thus indicating that heat and light stress cause photosynthetic degradation 

through different mechanisms.   

In 21 of 25 colonies, densities of Symbiodinium decreased in both the top and 

bottom fragments as time progressed between March and April, respectively the height 

and end point of the bleaching event. The loss of Symbiodinium between March and April 

for both top and bottom fragments was highly significant. Two colonies showing 

bleaching anomalies inconsistent with our visual-based bleaching assessment were 
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removed as outliers likely due to laboratory processing bias. A total of two colonies 

surprisingly increased the densities of their Symbiodinium community in both the top and 

bottom fragment, suggesting intraspecific variation in physiological response to cope 

with environmental stress. Possible explanations for why these two colonies were not 

only able to cope with the thermal stress that bleached other colonies, but actually 

increase their photosynthetic Symbiodinium counts could be due to a switching or 

proliferation of stress-resilient Symbiodinium types or a genetic trait that would enable 

the individual to better cope with oxidative stress. (Berkelmans & van Oppen 2006, 

Baker 2004, Jin et al. 2016). The genetic structure of “winners” and “losers” in this study 

will be further analyzed at a later stage for differences in their genetic markers in order to 

assess environmental effects on gene expression. Additionally, the Symbiodinium will be 

genetically typed to determine whether Symbiodinium types differed between bleached 

and healthy colonies and determine if surviving bleached colonies recovered and changed 

symbiont types.  

 

CFP/GFP Ratio 

        The aim of this study was to find a distinct change in the intensity of the 

fluorescent protein expression between CFP and GFP based on preliminary results from a 

study on Stylophora pistillata last year. Analysis of bleaching S. pistillata colonies 

indicated a switch in the concentrations of CFP and GFP over the duration of the 

bleaching event (Figure A). The ratio of CFP/GFP in healthy colonies changed 

significantly once those colonies bleached, creating an “X” pattern in the expression of 

these two different proteins. The concentration of CFP rose in comparison to the 
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concentration of GFP, which fell. This could imply that physiological stress response in 

corals occurred or that GFP degrades more quickly than CFP. We hypothesized based on 

this unpublished work that the expression of CFPs would increase while expression of 

GFP would decrease in our study species, Acropora tenuis during the months of thermal 

stress. The results from this study conclude a significant, but weak, difference in the 

CFP/GFP concentration ratios in top fragments of healthy and bleached colonies. 

However, this result came from a very small sample size comparing colonies that 

remained bleached to colonies that remained completely healthy throughout the period of 

thermal stress. 

 

Figure A. Chromoprotein concentration per ug of total protein and CFP/GFP ratios of S. 

pistillata when the corals were healthy and subsequently bleached.  This graph is the basis for the 

current study. 
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        We offer an explanation to explain fluorescent protein type switching under 

stressful conditions. As bleaching progresses, corals lose their photosynthetic symbionts. 

Theoretically, it would be advantageous for corals not to invest their energy into 

processes that would not increase their resilience to stress. If we assume that FPs do play 

a photoprotective role for Symbiodinium under normal environmental conditions (Salih et 

al. 2000), corals may stop producing these fluorescent proteins during periods of 

bleaching because there is no longer a need to protect symbionts that are no longer in its 

tissues (Paley et al. 2014). If corals stop producing fluorescent proteins during stress, it is 

unclear at which stage during bleaching that fluorescent protein production may cease. It 

is likely that corals may continue to produce fluorescent proteins until the stress becomes 

severe, categorized by the loss of nearly all Symbiodinium. Production of assumed 

unnecessary fluorescent pigments may cease at this point. Breakdown rates between FPs 

may differ, and CFP may not degrade as quickly as GFP. This would result in relatively 

similar concentration of CFP and GFP concentrations at the onset of bleaching and 

decreased concentration of GFP towards the end of bleaching. Since CFP concentration 

did not significantly change during the bleaching event across colonies, we may speculate 

that either FPs were being produced at the same rates or that both proteins take a long 

time to degrade.  

 Some FP types may play a greater photoprotective role than other FP types under 

severely stressful conditions. Under normal circumstances, both CFP and GFP may be 

expressed at normal production levels with natural fluctuations (Paley et al 2014.) but 

thermal stress could trigger a shift in the upregulation of different FPs. Corals may 

upregulate CFP expression in the early stages of a warming event as a preventative 
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measure. However, further evidence of upregulation of CFP during thermal stress could 

indicate the existence of a fluorescent protein-specific stress-response mechanism in 

corals to protect remaining Symbiodinium. The upregulation, and favoritism, of one type 

of fluorescent protein over another during extreme stress may be analogous to observed 

Symbiodinium switching during thermal stress. (Berkelmans & van Oppen 2006, 

Silverstein et al 2014, Baker). However, we would need further evidence showing 

upregulation of a certain FP type during a period of extreme thermal stress. 

 Though our data shows a significant difference in the ratio of CFP to GFP in 

bleached top fragments of colonies during the bleaching event, the ratio in the bottom 

fragments is widely variable and there was no significant change in the ratio. This 

difference could be attributable to the differences in bleaching observed between top and 

bottom fragments. As previously discussed, evidence has been found to indicate that 

different stressors (heat and light) may negatively compromise Symbiodinium by different 

mechanisms (Downs et al. 2014). However, we cannot affirm that the local population of 

Acropora tenuis at Orpheus and Pelorus Islands switches expression of two of its FPs 

within the duration of high thermal stress. The samples of S. pistillata gathered last year 

that resulted in the “X” configuration were possibly collected under a more severe stress 

event than what our A. tenuis colonies experienced this year. This FP switching may be 

dependent on the severity of the stressor as well as dependent on species. In any case, the 

results from our study indicate probable inter and intraspecific variability in coral’s 

physiological responses to stress through fluorescent protein expression. 

  

Total Protein Standardization 
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 This study can confirm a significant, but slightly weak, decrease of total proteins 

as Symbiodinium density decreases (protein loss correlated with bleaching), furthering 

evidence to suggest that loss of symbionts results in loss of energy necessary for 

metabolic processes. Additionally, we offer evidence to suggest that the method of 

standardization for fluorescent proteins should not be dependent on the total protein 

content of the sample. Our data shows that based on method of standardization, a 

significant relationship may be found that is otherwise statistically non-significant. When 

CFP expression was standardized by total protein content (RFU mg-1 protein) of the 

sample and mapped against Symbiodinium density, a weak, positive, significant 

correlation was found (increasing protein concentration with increasing coral health). 

However, when CFP was instead standardized by surface area (RFU cm-2), this supposed 

positive correlation became statistically insignificant and the linear regression model 

become negative. The basis of our understanding for why this occurred is due to the 

negative change in total protein content over the course of the bleaching event. 

Standardizing fluorescent protein content by a metric that isn’t stable may have produced 

the differences in the significant and non-significant relationship between CFP and 

bleaching progression. This is important and should be considered when evaluating past 

studies that have standardized FP data by total protein content. (See Palmer et al. 2009, 

Alieva et al. 2008). Based off the differences in statistical significance and concentration 

between fluorescence measured as RFU mg-1 of protein and RFU cm-2, we conclude that 

less error is introduced when standardizing by the latter metric.  

 

Data Anomalies 
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        There was a discrepancy between in-field visual bleaching assessments of 

fragments from the time point in March versus the Symbiodinium count results from 

those samples. The visual data shows healthy bottom portions of several fragments while 

the Symbiodinium estimates for those fragments show relatively low counts that would be 

expected from pale or even bleaching colonies. Since this study only includes 100 

samples from a total of 25 colonies, and the removal of these outliers does not create a 

visual difference in our data, besides the change in intensity of bleaching progression 

from March to April in the bottom samples, we kept the outliers in this data set. This 

project preliminarily examining fluorescent protein concentration using 25 colonies is 

part of a larger project that includes approximately 130 other colonies. Once all colonies 

have been processed, it will become more prudent to eliminate outliers because the 

sampling size will be much larger. Additionally, a greater sampling size will allow 

greater inference into determining the cause of this discrepancy and whether they are true 

biological anomalies or results from laboratory processing errors, such as biased tissue 

blasting techniques. 

 

Conclusion 

 The processes underlying stress response in the coral holobiont are still widely 

unknown. Past studies have strongly indicated that fluorescent proteins act as 

antioxidants and are modulated for the photoprotection of Symbiodinium. (Palmer et al. 

2009, Salih et al. 2000). Though a significant difference was detected in the CFP/GFP 

ratio in bleached versus healthy top portions of A. tenuis, the difference in ratio in the 

bottom samples was non-significant. Any conclusions we can obtain from this data are 

purely speculative due to our low sample size. Overall, CFP concentration (when 
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standardized by a method that introduces less bias) did not change with decreasing 

Symbiodinium counts nor did it differ significantly between bleached, pale, or healthy 

colonies. Past studies have indicated that high concentrations of FPs correlate well with 

higher stress tolerance (Paley et al. 2014), though there is likely variation among different 

coral species. Overall, fluorescent protein expression may be dependent upon a number 

of variables, including the severity of stress and the species being studied. A. tenuis may 

not be the best candidate for studying fluorescent protein profiles due to its low 

concentration of FPs.  
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