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The physiological and clinical importance of sodium
potassium ATPase in cardiovascular diseases
Yanling Yan and Joseph I Shapiro

The Na/K-ATPase has been extensively studied, but it is only

recently that its role as a scaffolding and signaling protein has

been identified. It has been identified that cardiotonic steroids

(CTS) such as digitalis mediate signal transduction through the

Na/K-ATPase in a process found to result in the generation of

reactive oxygen species (ROS). As these ROS also appear

capable of initiating this signal cascade, a feed forward

amplification process has been postulated and subsequently

implicated in some disease pathways including uremic

cardiomyopathy.
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Introduction
The Na/K-ATPase enzyme (EC 3.6.3.9.), or ‘sodium

pump’ was first identified by Skou on the crab nerve in

1957 [1]. Besides its transportation of ions, in the late

1990s, Dr. Zijian Xie and our research group discovered a

scaffolding and signaling function for the Na/K-ATPase,

where the Na/K-ATPase/Src complex acts as a unique

receptor for cardiotonic steroids (CTS). This signaling

pathway appears to be involved a number of clinical

disorders including cardiovascular diseases and hyperten-

sion, salt balance, renal diseases, diabetes and other

metabolic diseases, as well as neurological disorders

[2,3]. Moreover, the alteration of signaling receptor func-

tion is also seen in hypertension, cardiac hypertrophy,

ischemia/reperfusion injury, cancer, and tissue fibrosis.

Therefore, this enzyme assumes an increasing impor-

tance for researchers and clinicians [4].

Structure and pumping function of the
Na/K-ATPase
Structurally, Na/K-ATPase primarily consists of three

subunits denoted by a, b, and g, with only the a and

b subunits necessary for ion pumping. The catalytic a

subunit contains binding sites for the cations (Na+ and

K+), ATP and cardiotonic steroids (CTS) such as ouabain

[5]. The b subunit is also essential for pump function, and

it appears to stabilize the a subunit conformation as well

as chaperone the delivery of the a/b complex to the

plasma membrane. In some tissues, a third subunit, g

subunit (FXYD protein) may help to regulate sodium

pump activity [6,7]. The Na/K-ATPase a subunit with

11 transmembrane domains has 4 isoforms. The a1 iso-

form is found in all cells, a2 and a3 isoforms are mainly

expressed in skeletal muscle, neuronal tissue, and cardiac

myocytes. The a4 isoform is in testis and regulates sperm

motility.

The structure–function relationships in Na/K-ATPase

were extensively studied in the later portions of the

20th century and has received new attention due to

the recently recognized Na/K-ATPase scaffolding and

signaling functions which we will discuss further [8�,9].

The alteration between two major conformational states

is responsible for pumping of ions. In E1 (Na+-form), the

cation-binding sites have high affinity for Na+ and face

the cytoplasm. In E2 (K+-form), the cation-binding sites

have high affinity for K and face the extracellular side

[9,10]. Functionally, the Na/K-ATPase a subunit has

3 cytoplasmic A (actuator), N (nucleotide binding) and

P (phosphorylation) domains. During the ion pumping

cycle, the relative positions of these domains change as

they also do in response to binding CTS [10].

Third factor
It was clear to renal physiologists and nephrologists that

changes in glomerular filtration rate (factor 1) and miner-

alocorticoids (factor 2) could not explain natriuretic

responses to acute or chronic expansion of blood volume

[11]. This point was first demonstrated in 1961 in a classic

paper by de Wardener and colleagues [12]. Natriuresis

induced by saline infusion occurred even if renal perfu-

sion pressure and glomerular filtration rate and aldoste-

rone concentrations were prevented from changing. This

so called ‘third factor,’ which we now understand is (are)

CTS, was proposed by Bricker and colleagues to be an

inhibitor of the Na/K-ATPase and, as such, produced

natriuresis by inhibiting Na reabsorption in the kidney

[13]. However, doubt as to the validity of circulating Na/

K-ATPase inhibitors developed during the 1980s and

1990s because of inconsistencies in the reported results.

In particular, prevailing CTS assays were based on cross-

reactivity of CTS with antibodies to digoxin. The most
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important inconsistency was that digitalis did not appear

to be natriuretic in normal subjects, something one would

expect in a candidate natriuretic substance [14]. Also,

atrial (and brain) natriuretic peptide(s) were discovered

and found to be natriuretic [15–19]. Undoubtedly, these

points, detracted focus from the study of CTS. However,

enthusiasm was renewed in the recent past for the fol-

lowing reasons. First, several CTS have been isolated

from experimental animals and humans and chemically

characterized. Specifically, marinobufagenin (MBG) as

well as telecinobufagin (TCB) have been isolated from

plasma and urine [20]. Ouabain has also been identified

although there is still some debate as to whether this is

ouabain or something distinct which also reacts to anti-

ouabain antibodies [21�,22]. The concentrations of oua-

bain (or ouabain like compound) and MBG appear to be

in the range of 2–30 � 10�10 M in humans, depending on

whether disease is present [2,3,23]. Plasma levels of TCB

and bufalin are less well defined at present.

Ionic model for Na/K-ATPase signaling
The concept proposed by Bricker and others was that

third factor or cardiotonic steroids acted like digitalis and

inhibited the enzymatic, ion pumping function of the Na/

K-ATPase. The effects on sodium transport by the kid-

ney seemed obvious in that clearly a failure to pump

sodium out of epithelial cells would decrease net sodium

reabsorption and effect natriuresis. Coupling the Na/K-

ATPase to the Na/Ca exchanger, cardiac and smooth

muscle relevance of these substances also seemed very

clear in that subtle increases in cytosolic sodium would

have amplified effects on cytosolic calcium, effecting

changes in contractility in the heart as well as contractile

tone in smooth muscle cells. The concept is illustrated in

Figure 1.

Although we will explore an alternate hypothesis for the

much of the remainder of this review, it must be said that

this ionic model may explain some of the effects of

digitalis and other cardiotonic steroids previously charac-

terized as third factor. However, for reasons we will

discuss below, certain discrepancies provoked scientists

in our group, in particular Dr. Zijian Xie, to consider and

elaborate a very different mechanism by which these

cardiotonic steroids signal through the Na/K-ATPase.

Xie model of Na/K-ATPase signaling
The Xie model for the Na/K-ATPase signaling function

was derived from difficulties explaining signaling with the

ionic model along with experimental observations regard-

ing reactive oxygen species (ROS) and tyrosine kinase

activities being critical to such signaling. This model

proposed that the caveolar Na/K-ATPase alpha1 subunit

serves as a negative regulator of Src, and that during

conformational changes in alpha1 induced by CTS or

oxidation, Src is allowed to become active and trigger a

signal cascade which involves the generation of reactive

oxygen species (ROS). This model is shown schematical-

ly in Figure 2, and in our admittedly biased opinion

constitutes an important advance in our understanding

of sodium pump signaling.

Problems with ionic model
Although the ionic model makes some predictions con-

sistent with the observed pharmacology of Na/K-ATPase

inhibitors, in general the concentrations of such inhibitors

exceed by orders of magnitude those concentrations

achieved in physiologically relevant models and clinical

therapy. Although there is still some debate about this, it

is generally accepted that endogenous cardiotonic ster-

oids circulate at concentrations ranging from 10�10 to

10�8 M concentrations and pharmacologic treatment with

digitalis compounds achieves concentrations of approxi-

mately 1–2 � 10�9 M [2]. In mice and rats used for many

experiments, the IC50 for the a1 subunit approximates

10�5 M meaning that no detectable inhibition is seen

with these lower concentrations. Even in humans which

have a much more sensitive a1 subunit, the IC50 is

approximately 10�7 M suggesting that these compounds

might have relatively little effect. More importantly,

changes in bulk cytosolic sodium are essentially impossi-

ble to detect with existing methods. Although these

methods are not ideal and cannot identify sodium con-

centration changes in cytosolic subregions, it is still con-

cerning. Perhaps of greater concern, sodium ionophores
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A schematic illustrating the proposed ionic consequences of Na/K-

ATPase inhibition. Note that such inhibition would predict increases in

cytosolic sodium (Na+) which, through Na/Ca exchange could increase

cytosolic calcium (Ca2+) concentration ([Ca2+]. Decreases in cytosolic

potassium (K+) would change the membrane potential, favoring more

Ca2+ entry, further increasing cytosolic [Ca2+]. This would potentially

activate phosphokinase C (PKC) and other Ca2+ dependent proteins,

which in turn, would have a number of downstream effects.

Current Opinion in Pharmacology 2016, 27:43–49 www.sciencedirect.com



which can produce measurable changes in bulk cytosolic

sodium do not appear to produce physiological changes

similar to those produced by cardiotonic steroids [2,3].

Evidence for tyrosine kinase signaling
In the late 1990s, Dr. Xie and colleagues observed that in

neonatal cardiac myocytes, ouabain caused increases in

reactive oxygen species (ROS) measured with CMDCF

[24]. These increases in ROS could be demonstrated even

when cytosolic calcium was maintained low by removal of

extracellular calcium [25]. It was further noted that some of

the downstream effects of ouabain, specifically those on

gene expression, calcium cycling and contractility could be

blocked by N-Acetyl Cysteine (NAC) or vitamin E [24–
26]. It was further noted that Ras activation appeared to be

necessary to see increases in ROS [25]. Other studies

determined that interactions between the Na/K-ATPase

and Src appeared to initiate the signal cascade [27,28]. The

a1 subunit of the Na/K-ATPase binds Src and appears to

maintain it in an inactive state. However, binding a CTS

appears to alter the Na/K-ATPase structure allowing Src

became activated which, in turn, trans-activates the

EGFR, and begins the signal cascade which causes

increases in ROS [27–30]. The Na/K-ATPase-Src complex

appears to function similar to a receptor tyrosine kinase.

Downstream activation of PLC, PI(3)K and PKC has also

been established [31–35].

Some of our studies have shed light on the molecular basis

of the Na/K-ATPase a1 subunit-Src interaction. It

appears that there is a critical binding of the tyrosine

kinase domain of Src by a portion of the N domain of the

a1 subunit. Under basal conditions, this binding inhibits

the tyrosine kinase function of Src. We speculate that

conformational changes induced in the Na/K-ATPase by

cardiotonic steroids and/or the specific oxidation of some

amino-acids (vida infra) result in the internalization of this

epitope and the disinhibition of the tyrosine kinase

function of Src with attendant downstream signaling.

This is illustrated in Figure 2. From this speculation,

we have developed a peptide based on this epitope in

combination with a tat leader sequence that allows for

Scaffolding and signaling function of the sodium pump Yan and Shapiro 45
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A schematic illustrating the involvement of cardiotonic steroid (CTS)-induced Na/K-ATPase signal cascade initiated by the Na/K-ATPase mediated

activation of Src tyrosine kinase and subsequent downstream targets eventually leading to the development of reactive oxygen species (ROS).

Specifically, we postulate that in the microdomain of caveolae, the Na/K-ATPase functions as a scaffolding protein, interacting with CTS and

changing conformation so as to active Src. Src then transactivates the EGFR which leads to a signal cascade involving FAK, Shc, Grb2 and SOS

resulting in the generation of ROS which in turn activates additional Na/K-ATPase molecules as well as causes downstream activation of ERK as

well as effects on the nuclear transcription [68]. ERK activation has effects on both L-type channels and possibly the Na/Ca exchanger with net

effect to increase cytosolic Ca2+ in some tissues [35]. Nuclear effects in myocardial tissue include downregulation of SERCA transcription and

translation [69]. Abbreviations: Epidermal growth factor receptor (EGFR); focal adhesion kinase (FAK); Src homology-2 domain containing protein

(Shc); growth factor receptor-bound protein-2 (Grb2); son of sevenless protein (SOS); extracellular-signal-regulated kinase (ERK); sarcoplasmic/

endoplasmic reticulum calcium ATPase (SERCA).
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cellular penetration which we refer to as pNaKtide.

Although pNaKtide has no effect on Na/K-ATPase en-

zymatic or pumping function, it prevents a portion of Src

activation which is usually regulated by the plamalemmal

Na/K-ATPase [36,37].

Oxidant stress in chronic renal failure
Our group and others first proposed that oxidant stress

contributed to the progression of chronic renal failure in

the mid 1980s [38]. The concept which we proposed was

that oxygen consumption by the chronic renal failure

kidney could not be explained by the amount of tubular

sodium transport performed in the setting of a reduced

glomerular filtration rate. Patients with chronic renal

failure consistently demonstrate elevations in circulating

levels of oxidized proteins and byproducts of lipid per-

oxidation. This oxidant stress has been implicated in the

pathogenesis of uremic cardiovascular disease on several

levels [39].

A number of studies utilizing echocardiography have

demonstrated that both left ventricular hypertrophy

(LVH) and diastolic dysfunction (as assessed by left

ventricular, atrial and pulmonary venous doppler flow

studies) are extremely common in end stage renal disease

(ESRD) patients treated with hemodialysis(HD) [40] as

well as patients incident to ESRD [41–43]. In general,

most studies have demonstrated that LVH predicts dia-

stolic dysfunction with some accuracy. Systolic dysfunc-

tion while not uncommon is much less often

demonstrable than diastolic dysfunction and LVH [44].

In experimental chronic renal failure, we have observed

that left ventricular hypertrophy develops quite early and

that impaired myocyte relaxation accompanies the cardi-

ac enlargement. This impaired myocyte relaxation

appears to be associated with a marked downregulation

of SERCA2a mRNA, protein and activity. SERCA2a is

the dominant isoform of the sarcoplasmic reticulum cal-

cium ATPase and is responsible for the rapid reduction in

cytosolic calcium following systole. We have found ex-

cellent correlations between the reduction in SERCA2a

expression and SERCA enzymatic activity as well as

calcium renormalization following electrical stimulation.

We have also found marked abnormalities in cardiac

myocyte calcium concentrations during both systole

and diastole [26,45]. It is unclear at present whether

the abnormalities in SERCA2a expression explain all of

the changes in calcium cycling or active relaxation. Re-

garding passive relaxation, it is very clear that uremic

cardiomyopathy is associated with profound cardiac fibro-

sis, both clinically and in both rats and mice with experi-

mental renal failure [46�]. Our group has developed

extensive evidence that blockade of Na/K-ATPase sig-

naling results in amelioration of oxidant stress, down-

regulation of SERCA2a and cardiac fibrosis in these

experimental uremic cardiomyopathy models [47–50].

Na/K-ATPase is a receptor for natriuretic
hormones
Our group has identified that concentrations of CTS

below that necessary to significantly inhibit the enzymatic

function of the Na/K-ATPase directly induce endocytosis

of the Na/K-ATPase in cell lines approximating proximal

tubules, decreasing plasmalemmal Na/K-ATPase expres-

sion and function [51–53]. We have also found that this

ligand-induced endocytosis appears to play a role in

sodium homeostasis in intact animals [54]. We will discuss

some of these mechanistic data below.

In renal proximal tubules, binding of CTS to Na/K-

ATPase stimulates Na/K-ATPase-Src signaling pathway

and reactive oxygen species (ROS) generation, which

induces the redistribution of basalateral a1 subunit of

Na/K-ATPase and apical sodium proton exchanger3

(NHE3). NHE3 (SLC9A3) is responsible for two-third

of filtered sodium and fluid reabsorption as well as main-

tenance and regulation of intravascular volume and blood

pressure [55–57]. Therefore, the downregulation of

NHE3 will decrease transepithelial sodium transporta-

tion from apical membrane into basalateral membrane,

leading to a net increase in urinary sodium excretion

[25,52,58��,59–62].

We have begun to address the molecular basis of this

regulation [63]. We have demonstrated that ouabain

increases the carbonylation of a1 Na/K-ATPase in cul-

tured porcine renal proximal tubular LLC-PK1 cells. A

GO-glucose system was used to mimic overall ROS stress

since GO induces a low and sustained generation of H2O2

in the presence of glucose in culture medium [24,25,64].

Like ouabain, the GO-generated ROS were able to acti-

vate Src/ERK and cause redistribution of the Na/K.

Interestingly, the increase in intracellular ROS generated

by the addition of glucose oxidase (GO) to the culture

medium resulted in a nearly identical pattern of protein

carbonylation to that seen with ouabain as well as what

appears to be specific carbonylation of the a1 Na/K-

ATPase. We have further identified that Pro222 and

Thr224 residues of a1 Na/K-ATPase are specifically

carbonylated in response to either exposure to ouabain

or GO-generated ROS. Finally, using well-established

animal models we have demonstrated that high salt

intake is capable of eliciting this oxidative modification

of the Na/K-ATPase as well as the associated signaling

and salt handling events in the renal PT of Sprague

Dawley rats and Dahl-salt resistant (R) but not Dahl

salt-sensitive (S) rats [65]. Overall, our studies show that

ROS are involved in CTS-mediated sodium handling

through Na/K-ATPase signaling in a feed-forward mech-

anism [58��,66]. This is illustrated in Figure 3.

The implications of this feed-forward amplification are

profound. One might think of the circulating CTS as the

rheostat on an amplifier which promiscuously allows

46 Cardiovascular and renal
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oxidant signals from a variety of signal cascades to be

amplified. This is clearly something which may be rele-

vant beyond the circumstances discussed in this review.

In fact, we have recently observed that the Na/K-ATPase

amplification of such oxidant signals is essential for the

development of an obesity phenotype, and the applica-

tion of pNaKtide, a peptide we designed to bind the

tyrosine kinase domain of Src based on the region of the

Na/K-ATPase a1 subunit N domain which normally does

so, dramatically attenuates this process [67��].

Conclusions
The recently discovered oxidant amplification function of

the Na/K-ATPase appears relevant to a number of phys-

iological and pathological processes including renal sodi-

um handling and progressive cardiac fibrosis. Exploitation

of this understanding may allow for modulation of such

processes and the potential development of new clinical

therapies.
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Schematic showing the possible promiscuous consequences of feed forward oxidant amplification of the Na/K-ATPase. Here oxidants can be

formed by receptor tyrosine kinases (RTK) or non-tyrosine kinase receptors (Non TK Receptor). Activation of the Na/K-ATPase signal cascade or

RTK would activate the Ras-Raf-Rac-Nox pathway. As this leads to further generation of oxidants, a feed-forward pathway is thus established.

We speculate that the endocytosis of the Na/K-ATPase (not shown on this schematic) which we discuss in the text terminates this feed-forward

signal amplification.
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