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ABSTRACT 

 

 On November 8
th

, 2009 the Trinity College Seismograph Station (TCCT) recorded an 

earthquake of magnitude Mw = 6.7 with body wave amplitudes that were larger than 

expected.  This earthquake, located in Sumbawa-Indonesia, generated similar body wave 

amplitudes as earthquakes of the same magnitude (Mw = 6.7) and comparable depth (shallow 

focus: 0<h<70km) that occurred closer to TCCT, such as the Vancouver earthquake on 

September 9
th

, 2010 and the Alaska earthquake on July 18
th

, 2010.  The large body wave 

amplitudes were caused by a set of consecutive PKP waves that constructively interfered.  

The distance from the Sumbawa-Indonesia earthquake to TCCT of 144.96° falls between the 

lower and higher estimates for the PKP caustic point.  The observations at TCCT helped 

establish a theoretical region, in which future seismic events could create a caustic at or in 

the proximity of TCCT.  It is suggested to use the IRIS network to better estimate the 

distance to the caustic point for future events occurring in the theoretical region. 
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INTRODUCTION 

 

On November 8
th

, 2009 the Trinity College Seismograph Station (TCCT) recorded an 

earthquake of magnitude Mw = 6.7 with body wave amplitudes that were larger than 

expected.  The large amplitudes were generated by PKP body waves, which are waves that 

enter the mantle as a P-wave, pass through the Earth’s core and then reemerge as a P-wave to 

continue to travel through the mantle (Macelwane, 1932; Bastings, 1934; Storchak et. al, 

2012). 

Earthquakes produce different types of seismic waves that can be classified under two 

main categories, body waves and surface waves.  Surface waves cause the strongest ground 

shaking after an earthquake and cause the most damage on infrastructure.  Body waves travel 

through the Earth’s interior and therefore the study of body wave propagation is fundamental 

to the understanding of the planet’s internal structure.  Most of the knowledge about the 

internal structure and physical properties of the Earth, from the core to the crust, is derived 

from the study of seismic waves generated both naturally and artificially.  The study of these 

seismic waves has enabled scientists to map the interior of the Earth.  However the internal 

structure of the Earth (e.g. thickness of layers) varies depending on location (Robertson, 

1966; Yockstick, 1987).   

As seismic body waves propagate through the Earth, they interact with its various 

layers.  Some waves may be reflected or diffracted at discontinuities, while others may travel 

from source to receiver without any major reflection or diffraction caused by the inner or 

outer core (Fig.1) (Lillie, 1999).  Along each unique travel path, seismic waves may change  
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Figure 1.  Cross section of the Earth showing two different travel paths of 

seismic waves between source and receiver.  The green line (S), shows the path 

of a direct wave that was not reflected or diffracted during its propagation from 

source to receiver.  The blue line (ScS) shows the travel path of a seismic wave 

that was reflected by the core mantle boundary (CBM).  The direct wave 

covers a shorter distance and will therefore arrive at the receiver in less time 

and with more energy than the reflected wave (Adapted from Boremann et. al, 

2009b). 
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their phase and/or speed after interacting with the different structures of the Earth’s interior.  

As a result, the body waves generated after an earthquake arrive at the receiver at different 

times and have different phases and intensities (Shearer, 1999). 

A specific type of body wave, called PKP can provide information on a discontinuity 

at the base of the mantle as well as on the depth of the core mantle boundary (CMB) (Houard 

et. al, 1993).  This type of body wave was recorded at the Trinity College Seismograph 

Station (TCCT) in Harford, Connecticut on November 8
th

, 2009 from an earthquake in 

Sumbawa, Indonesia.  The analysis of the data collected at TCCT is compared with previous 

studies that examine the implications of this type of body wave. 

SEISMIC WAVE ATTENUATION AND AMPLITUDE 

As seismic waves propagate through the Earth they undergo attenuation, which is a 

gradual loss in energy.  The seismic wave energy is reduced due to inelastic material 

behavior or internal friction during wave propagation.  In addition, energy is lost through the 

scattering of energy at heterogeneities along the travel path (Ben-Menahem and Singh, 1981; 

Boremann and Müller, 2012).  For this reason, seismic waves lose energy as they travel 

longer distances within the Earth’s interior. 

 The energy of a seismic wave is recorded in a seismogram and can be derived from 

the amplitude of the waveform.  The amplitude is the maximum value of the vertical 

displacement of the seismogram within a specified time frame (Fig. 2).  Therefore, seismic 

waves with higher energy cause larger amplitudes than seismic waves with low energy.  

According to this principle, a low magnitude earthquake close to a seismograph station could 

generate the same amplitude as a distant earthquake of higher magnitude.  Similarly, a nearby  
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Figure 2.  Seismogram of the 2010 Chile earthquake as recorded in the Trinity 

College Seismograph Station (TCCT).  The red arrow indicates the maximum vertical 

displacement during the Chile earthquake, which corresponds to the first body wave 

arrival.  
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earthquake generates larger wave amplitudes than a distant earthquake of the same 

magnitude. 

SHADOW ZONE 

The P-waves (or compressional waves) compress and expand the medium where they 

travel, which allows P-waves to travel through solid, gas and liquid.  The S-waves (or 

transversal waves) shake the ground transverse to the direction the wave is traveling and 

therefore cannot travel through liquid or gas.  When waves travel beyond 104° away from the 

source, they must interact with the liquid core, where S-waves are stopped and the density 

change slows down and refracts the P-waves.  The refracted P-waves then reemerge at 

distances beyond 140° away from the source after interacting with the inner and/or outer 

core.  This creates a shadow zone that occurs between 104° and 140° away from the source, 

where no direct seismic waves are received (Fig. 3) (Lehmann, 1953; Bullen, 1956; 

Boremann and Müller 2012).  The extent of the shadow zone has been found to vary 

depending on location (Lehmann, 1958).  The lowest estimate however is 140° (Boremann 

et. al, 2009a). 

THE PKP CAUSTIC  

Global spherical Earth models such as PREM, IASP1 or 1066B provide essential 

tools for travel-time calculations, as well as for waveform and amplitude analysis, but they 

are sometimes inaccurate, especially near discontinuities (Houard et. al, 1993).  Several 

studies support the existence of a discontinuity in the D’’ layer between the mantle and the 

outer core (Fig. 4) (Bullen, 1942; Lay and Helmberger, 1983; Baumgardt, 1989; Young and 

Lay, 1990; Houard and Nataf, 1992).  The existence of this discontinuity, as well as the depth 



!

! (!

 

 

 

 

 

Figure 3.  Cross-section of the Earth showing the shadow zone phenomenon.  As the 

distance from the source approaches 100°, the P-waves are diffracted by the CMB up 

to 104°.  After 104° however, the P-waves are refracted by the core and do not 

resurface until the distance approaches 140° (“Earthquake Glossary – Shadow Zone”).  
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Figure 4.  Cross-section of the earth showing the D’’ layer at the base of the core 

mantle boundary.  The D’’ layer is represented in orange and it is located between the 

mantle (red) and the outer core (light yellow) (Adapted from Beatty, 1990). 
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of the core-mantle boundary affects the distance at which large body wave amplitudes are 

recorded (Houard et. al, 1993).   

At a distance beyond 140°, which marks the shadow zone boundary, there is a point 

where large wave amplitudes can be recorded (!erven" and Jansk", 1994).  At 

approximately 145° away from the source, the PKP waves interfere constructively to form a 

caustic.  The caustic is the point at which a large concentration of simultaneously arriving 

seismic energy is observed (Boremann and Müller, 2012).  At the caustic, three branches of a 

seismic wave of the form PKP arrive at the receiver at the same time (Fig. 5).  These three 

branches constructively interfere or “stack” to create wave amplitudes similar to earthquakes 

of the same magnitude occurring at shorter distances from the seismograph station (Massot 

and Rocard, 1982; Houard et. al, 1993; Boremann et. al, 2009b).  The three branches are 

named PKPab, PKPbc and PKPdf.  The lower case letters specify in which part of the Earth 

the PKP wave is bottoming (i.e., having its turning point).  The PKPab is a wave bottoming 

in the upper outer core, the PKPbc is a wave bottoming in lower outer core and the PKPdf is 

a wave bottoming in the inner core (Storchak et. al, 2012).   

The distance from source to receiver where the caustic point is found, was estimated 

by Gilbert and Dziewonski (1975) and Dziewonski and Anderson (1981) to be 144.9° and 

Kenneth and Engdahl (1991) calculated the distance to be 144.2°.  Their measurements were 

tested by several authors such as Massot and Rocard (1982), who estimated the distance at 

145.6° and Houard et. al,  (1993) who calculated the distance to be 144.5°.  Previous studies 

such as the ones by Massot and Rocard (1982) and Houard et. al, (1993) recorded PKP 

waves in France from nuclear explosions in Mururoa in the south Pacific.  Young and Lay 

(1990) detected PKP waves in Alaska from earthquakes in the western Pacific.  The critical  
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Figure 5.  Cross-section of the Earth showing the travel paths of the three 

branches of a PKP wave.  The caption on the right denotes the name of the 

location where the earthquake occurred.  The captions on the left refer to the 

names of the seismograph stations that recorded the waves.  The focusing event is 

clearly seen in the station named BSEG, where the three branches represented by 

the solid lines meet at the same spot (Adapted from Boremann et. al, 2009b).  
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distance at which the caustic point for PKP waves is found seems to vary depending on the 

location of the earthquake as well as the location of the seismograph station (from 144.2° to 

145.6° away from seismic source)    

Studies such as the one carried out by Massot and Rocard (1982) used nuclear blasts 

in Mururoa to record seismic waves in the Labratoire De Detection Et Geophysique (LDG) 

network in France.  The LDG network contains numerous seismic stations with the same 

type of seismograph that can record seismic signals at different distances from an epicenter.  

For the LDG network, it was possible to plot epicentral distance circles centered in Mururoa 

every 1° (Fig. 6).  With this tool, Massot and Rocard (1982) were able to estimate the caustic 

point at 145.6° after plotting the seismic wave amplitude vs. distance for PKP waves near the 

caustic point (Fig. 7).  Using the same technique, Houard et. al, (1993) used more recent 

blasts in Mururoa and estimated the distance of the PKP caustic point at 144.5°. 

PKP WAVES RECORDED AT TCCT 

TCCT is equipped with an EQ-1 seismograph, which detects only the vertical ground 

motion.  It has recorded several earthquakes with the same magnitude and similar depths that 

occurred at different distances from the seismograph station.  These earthquakes have 

occurred both beyond the shadow zone boundary at 140° and at distances less than 104°, 

which marks the theoretical boundary of the shadow zone (Fig. 8).  On November 8
th

 2009 

TCCT recorded an earthquake of magnitude Mw = 6.7 with body wave amplitudes that were 

larger than expected.  The earthquake in the Sumbawa Region in Indonesia was positioned at 

nearly 145° away from TCCT in Hartford, Connecticut.  The earthquake in Sumbawa had 

similar body wave amplitudes as earthquakes occurring at distances less than 104°. 
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 Figure 6.  Map of the Labratoire De Detection Et Geophysique (LDG) network in 

France.  Epicentral distance circles centered in Mururoa were plotted every 1° in order 

to identify where the largest amplitude occurs (From Houard et. al, 1993). 
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Figure 7.  Plot of the PKP amplitude vs. distance from nuclear blasts in Munruroa.  

The largest wave amplitude was found at 145.6° (From Massot and Rocard 1982). 
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Figure 8.  Map showing the location of TCCT relative to the earthquakes included in 

this study.  The theoretical shadow zone for TCCT was included in the map in the 

light orange polygon.  The red marker indicates the location of the Sumbawa 

earthquake, which had body wave amplitudes comparable to earthquakes (green 

markers) of similar magnitude and depth that occurred closer to TCCT.  The body 

wave amplitude of the Sumbawa earthquake exceeded the body wave amplitude of 

two of the three earthquakes shown in green.  The green captions indicate the specific 

location of the Japan (Jn), Alaska (Aa) and Vancouver (Va) earthquakes, which were 

used to compare the body wave amplitudes. 
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 The distance between the Sumbawa earthquake (8°18'59.04''S/118°41'47.76''E) and 

TCCT (41°44'45.38"N/ 72°41'27.77"W) was calculated using the measurement tool in 

Google Earth to be 144.96°.  This earthquake generated similar body wave amplitudes as 

earthquakes of the same magnitude (Mw = 6.7) and comparable depth (shallow focus: 

0<h<70km) that occurred closer to TCCT, such as the Vancouver earthquake on September 

9
th

, 2010 and the Alaska earthquake on July 18
th

, 2010.  In addition, the Sumbawa earthquake 

generated larger wave amplitudes than the Japan earthquake of higher magnitude (Mw = 7.2) 

on March 9
th

, 2011 (Fig. 9).  The location of the earthquakes relative to TCCT is shown in 

Figure 8.  An essential difference between the earthquakes mentioned above is the seismic 

phase in which the body waves arrived at TCCT.  The Alaska, Japan and Vancouver 

earthquakes occurred at an angle less than 104°, while the Sumbawa earthquake occurred 

beyond the shadow zone limit at 140°.  For this reason, the first waves recorded from Alaska, 

Japan and Vancouver are direct P-waves that did not travel through the Earth’s core.  On the 

other hand, the first body waves recorded from Sumbawa are diffracted and refracted P-

waves that traveled through the Earth’s core, changing their phase and arriving to TCCT as 

PKP waves.  The phase identification and arrival times for the earthquakes recorded at TCCT 

are shown in Figures 10 and 11.   

LARGE WAVE AMPLITUDE FROM SUMBAWA CAUSED BY PKP CAUSTIC 

 As it is shown in the seismogram analysis (Fig. 11), the first body wave arrival from 

Sumbawa is a set of consecutive PKP waves arriving 19 minutes and 27 seconds after the 

earthquake.  The location of the Sumbawa earthquake at 144.96° falls between the lowest  
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Figure 9.  Seismogram of the Sumbawa earthquake compared to the Vancouver, 

Alaska and Japan earthquakes.  The blue line indicates the first body wave arrival and 

the dashed black lines indicate the peak amplitude of the body wave.  The earthquake 

in Vancouver occurred 37.95° from Hartford and had a peak amplitude of 2.10 * 10
3
 

counts, while the Sumbawa earthquake occurred 144.96° from Hartford and its peak 

amplitude was 1.66 * 10
3
 counts.  This represents a difference of only 0.44 * 10

3
 

counts.  The body wave amplitude of the Sumbawa earthquake is larger than the 

Alaska earthquake which occurred 61.53° from Hartford.  In addition, the Sumbawa 

earthquake had larger amplitude than the Japan earthquake of greater magnitude and 

lesser distance. 
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Sumbawa 

Mw = 6.7 

Distance: 
144.96°  
Peak amplitude: 
1.66*103 

 

 

Vancouver 

Mw = 6.7 

Distance: 
37.95° 

Peak amplitude: 
2.10*103 
 

 

 

Alaska 

Mw = 6.7 

Distance: 
61.53° 

Peak amplitude: 
1.25*103 
 

 

Japan 

Mw = 7.2 

Distance: 
93.96° 

Peak amplitude: 
1.09*103 
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Figure 10.  The seismic-wave travel time curves are shown above.  The black vertical 

line indicates the distance from the Vancouver earthquake epicenter to TCCT.  The 

green, blue and purple horizontal lines indicate the first possible body waves and their 

respective arrival times.  In this case, the first body wave arrival occurs 7m and 2s 

after the earthquake and it is a direct P wave (below).   
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Figure 11.  The seismic-wave travel time curves are shown above.  The black vertical 

line indicates the distance from the Sumbawa earthquake epicenter to TCCT.  The 

green, blue, purple and orange horizontal lines indicate the first possible body waves 

and their respective arrival times. In this case, the first body wave arrival occurs 19m 

and 27s after the earthquake and it is a PKP wave (below). 
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estimate of 144.2° (Kenneth and Engdahl, 1991) and the highest estimate of 145.6° (Massot 

and Rocard, 1982). 

  The observation of large amplitudes at TCCT from the Sumbawa earthquake at 

144.96° suggests that the seismograph is at or nearby the caustic point.  The set of waves 

observed at TCCT contains the energy of the three different branches, which are arriving at 

the same time.  As a result, constructive interference generated large amplitudes comparable 

to amplitudes of earthquakes of same magnitude and similar depth occurring closer to TCCT 

(Fig. 12). 

DISCUSSION 

 Using the Trinity College Seismograph Station, it was possible to record PKP waves 

from an earthquake located at a teleseismic distance.  The favorable position of the Sumbawa 

earthquake and TCCT allowed the examination of the Sumbawa-Hartford caustic point.  The 

data from a single earthquake does not provide sufficient evidence to calculate a more 

accurate distance.  However, the large amplitude recorded does suggest that TCCT is located 

at or in the proximity of the caustic point for the Sumbawa-TCCT azimuth.   

 Because TCCT belongs to a network of seismograph stations (Incorporated Research 

Institutions for Seismology network or IRIS), such as the LDG network, it could be possible 

to estimate with greater accuracy, the distance at which the caustic point occurs.  When the 

earthquake in Sumbawa-Indonesia occurred, only three other stations in the IRIS network 

recorded the earthquake.  Two of the stations are located at distances less than 142°, which is 

less than the lowest estimate of 144.2° (Kenneth and Engdahl, 1991).  The third station, 

located at 145.4° used an AS-1 seismograph instead of an EQ-1 seismograph, like the one at  
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Figure 12.  Travel time curves for PKPab, PKPbc, PKPdf, Pdif and PKiKP for surface 

focus and deep focus events.  The vertical black line indicates the distance of the 

Sumbawa earthquake from TCCT.  The caustic point at which the three travel time 

curves intersect is labeled as B.  This intersection occurs between 19 and 20 minutes 

for a shallow focus earthquake at around 145°.  At this distance, three branches 

namely PKPab (orange), PKPbc (red) and PKPdf (blue) arrive at the same time (From 

Boremann et. al, 2009b modified from Gilbert and Dziewonski, 1975). 
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TCCT.  With only one additional seismograph of a different model, it was not possible to 

create an amplitude vs. distance plot.  

The observations at TCCT helped establish a theoretical region, in which future 

seismic events could create a caustic at or in the proximity of TCCT.  This region is beyond 

the shadow zone boundary at 140° and covers the north coast of the Java Island in Indonesia 

as well as parts of North and West Australia (Fig. 13).  Future earthquakes occurring in this 

area could generate body wave amplitudes larger than expected.  

CONCLUSION 

 -The large amplitudes from the Sumbawa-Indonesia earthquake on November 8
th

, 

2009 were caused by a set of consecutive PKP waves.  

-The distance from Sumbawa to TCCT of 144.96° falls between the lower and higher 

estimates for the caustic point.  

-The large amplitudes recorded from Sumbawa suggest that TCCT is at or in the 

proximity of the caustic point. 

-With a larger set of data, it would be possible to better estimate the distance between 

the theoretical region (Fig. 13) and the caustic point in the proximity of TCCT.  
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Figure 13.  Theoretical region, in which earthquakes could produce amplitudes larger 

than expected at TCCT. The region is designated by the two green lines between 

144.2° and 145.6. The red line is located at 144.9° away from TCCT. The location of 

the Sumbawa earthquake on November 8
th

, 2009 is labeled with an S. 
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