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Substitution Reactions of (C5Ph5)Cr(CO)3:  Structural, Electrochemical, and Spectroscopic 

Characterization of (C5Ph5)Cr(CO)2L, L = PMe3, PMe2Ph, P(OMe)3 

 

D. John Hammack,1a Mills M. Dillard,1a Michael P. Castellani,*,1a Arnold L. Rheingold,*,1b  

Anne L. Rieger,1c and Philip H. Rieger*,1c 

 

Departments of Chemistry, Marshall University, Huntington, West Virginia 25755, University of 

Delaware, Newark, Delaware, 19716, and Brown University, Providence, Rhode Island  02912 

 

Abstract 

The radical complex, (C5Ph5)Cr(CO)3, reacts with small, neutral, monodentate Lewis bases 

(PMe3, PMe2Ph, and P(OMe)3) in THF at -78 ºC (PMe2Ph reacts at ambient temperature) to 

yield the monomeric substitution products, (C5Ph5)Cr(CO)2L•THF as thermally stable solids. 

Electrochemical and spectroscopic data are provided.  An X-ray crystal structure of  the 

hemisolvate (C5Ph5)Cr(CO)2PMe3•0.5THF was obtained.  Frozen solution ESR spectra of 

(C5Ph5)Cr(CO)2L in toluene are comparable to those of other low-spin d5 “piano-stool” 

complexes.  Rotation of the Cr(CO)2L moiety relative to the C5Ph5 ring is rapid on the ESR time 

scale in low-temperature liquid solutions and leads to axial powder-like spectra.  Analysis of this 

effect leads to significant insights into the electronic structure. 
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Introduction 

Over the past two decades, the study of paramagnetic organometallic complexes has greatly 

expanded.2  These complexes are generally highly reactive and many have been postulated as 

reaction intermediates.  In particular, the (C5R5)Cr(CO)3 (R = H, Me, Ph) family of complexes 

recently has received much attention.  The R = H and Me complexes both exist in equilibria 

between 17e monomers and 18e dimers in solution and as dimers in the solid state,3 while for R 

= Ph the complex exists solely as a 17e monomer both in solution and the solid state.4 

Seventeen electron complexes containing CO ligands frequently undergo substitution 

reactions under mild conditions.5,6  The reactions tend to proceed via associative mechanisms7 

because of incompletely filled sets of bonding molecular orbitals.8  Baird and coworkers have 

studied extensively the substitution reactions of (C5R5)Cr(CO)3 (R = H,9 Me10,9e) with 

phosphines.  Where R = H (Cp) isolation of a product complex requires larger phosphines, while 

for R = Me (Cp*) only smaller phosphines replace CO in the starting complex. 

The very large size of the C5Ph5 ligand should significantly restrict the size of substituents 

that can substitute CO in (C5Ph5)Cr(CO)3, 1.  Three small, monodentate Lewis bases, PMe3, 

PMe2Ph, and P(OMe)3, react with 1 to yield isolable products, (C5Ph5)Cr(CO)2L.  These 

compounds have been spectroscopically and electrochemically characterized. 

There have been many ESR studies of low-spin d5 “piano-stool” complexes such as 

(C5R5)Cr(CO)3-xLx (R = H, Me), [(Arene)Cr(CO)3-xLx]+, and Mn(II) analogs.11  As we will 

show, the ESR spectra of (C5Ph5)Cr(CO)2L fit comfortably into the general scheme for these 

complexes and are thus rather unremarkable.  However, the unique steric bulk of the C5Ph5 

ligand leads to selective averaging of anisotropies in the ESR spectra of low-temperature liquid 

solutions, and parameters obtained from such spectra provide insights into the electronic 

structure which were unavailable in previous studies. 

 

Experimental Section 

General Data.  All reactions of air- and moisture-sensitive materials were performed under 
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a nitrogen atmosphere employing standard Schlenk techniques unless otherwise stated.  Solids 

were manipulated under nitrogen or argon in a Vacuum Atmospheres glovebox equipped with a 

HE-493 dri-train.  Solvents (Fisher) were distilled from the appropriate drying agent under argon:  

toluene, hexane (sodium/benzophenone), benzene, tetrahydrofuran (THF) 

(potassium/benzophenone), and dichloromethane (CaH2).  (C5Ph5)Cr(CO)3•C6H6 was prepared 

according to a literature procedure.4  NMR solvents were vacuum distilled from CaH2 and placed 

under an argon atmosphere.  PPh3 (PCR) was recrystallized from 95% ethanol.  PMe3, PMe2Ph, 

P(OMe)3, P(OPh)3 (Strem), CDCl3, CD2Cl2 (Aldrich), 2,2'-bipyridine (Matheson), 

diphenylacetylene (Eastman), and all other solvents (Fisher) were used without further 

purification.  Elemental analyses were performed by Schwartzkopf Microanalytical Laboratory, 

Woodside, N.Y and Mickroanalytisches Labor Pascher, Remagen, Germany.  1H (200.06 MHz) 

and 31P (80.962 MHz) NMR spectra were obtained on a Varian XL-200 NMR spectrometer 

equipped with a Motorola data system upgrade. 

Electrochemistry.  Electrochemical data were obtained on a EG&G PAR VersaStat Model 

250-1 Electrochemical Analysis system.  The apparatus was maintained on a bench top under 

constant nitrogen purge.  Freshly distilled CH2Cl2 was employed as the solvent, with a 

supporting electrolyte of 0.1 M nBu4NPF6 (recrystallized from 95% ethanol).  Solutions were ca. 

3 mM in complex.12  Decamethylferrocene was added as an internal reference.  Potentials are 

referred to the ferrocene/ferrocenium couple.  All data were obtained with a Pt disk working 

electrode (r = 1.6 mm) and either a Ag/AgCl reference electrode or a AgCl coated Ag wire 

reference electrode. 

ESR Spectroscopy.  Electron spin resonance spectra were obtained using a Bruker ER-

220D X-band spectrometer equipped with a Bruker variable temperature accessory, a Systron-

Donner microwave frequency counter and a Bruker gaussmeter.  Samples for ESR study were 

prepared in an argon-filled glove box by shaking the compound with degassed toluene to obtain a 

saturated solution; the solution was syringed into an ESR tube which was sealed with Parafilm 

before removal from the glove box. One series of spectra was obtained with 5 mg of the 
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P(OMe)3 complex in 3 mL of 1:1 1,2-C2H4Cl2/CH2Cl2 (dce/dcm); the solution was prepared in 

a glove box as  before. 

X-ray Structural Determination.  Crystallographic data are summarized in Table 1.  A 

specimen mounted on a glass fiber was found photographically to possess only triclinic 

symmetry.  The centrosymmetric space group was initially assumed and later supported by the 

reasonable results of refinement.  Variation in azimuthal scans were less than 10% and 

corrections for absorption were ignored.  The structure was solved by direct methods.  The 

asymmetric unit is composed of two cyrstallographically independent but chemically very similar 

molecules of the Cr complex and one molecule of THF.   All non-hydrogen atoms were refined 

with anisotropic displacement parameters.  Selected bond distances and angles are collected in 

Tables 2 and 3, respectively. Phenyl dihedral angles are presented in Table 4.  All computations 

used SHELXTL 4.2 programs (G. Sheldrick, Siemens XRD, Madison, WI). 

Low Temperature IR Spectroscopy.  In a glovebag, a dilute solution of 1 in THF was 

cooled to -78 ºC.  Two equivalents of PMe3 were added and the solution was allowed to warm 

until the blue solution turned to a green color.  The solution was recooled to -78 ºC, then 

transferred to a precooled IR cell via a precooled syringe (both at -78 ºC).  The color changes 

observed are the same as occur in synthetic scale reactions. 

(C5Ph5)Cr(CO)2PMe3•THF (2).  (C5Ph5)Cr(CO)3•C6H6 (0.50 g, 0.76 mmol) was 

dissolved in 10 mL THF.  The solution was then cooled to -78 ºC and 0.21 mL PMe3 (2.0 mmol) 

was added.  The solution was allowed to warm to room temperature with stirring (ca. 1 h).   As 

the dark blue solution warmed it initially turned a jade green color, then deep cherry-red.  The 

solution was filtered via cannula and layered with 12 mL of hexane to yield 2 (0.48 g, 0.76 

mmol) in 88% yield as dark red crystals:  mp 211-218 ºC (dec); 1H NMR (C6D6) δ 7.32 (m, 

C5Ph5, br) 5.76 (s, PMe3, br); visible λmax (CH2Cl2) 516 nm.  Anal.  Calcd for C44H42CrO3P:  C, 

75.31; H, 6.03.  Found:  C, 75.69; H, 5.79. 

(C5Ph5)Cr(CO)2PMe2Ph•THF (3). (C5Ph5)Cr(CO)3•C6H6 (0.50 g, 0.76 mmol) was 

dissolved in 10 mL THF and 0.50 mL PMe2Ph (3.7 mmol) was added.  The solution was stirred 
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overnight.  The resulting red solution was filtered via cannula and layered with 12 mL of hexane 

to yield 3 (0.48 g, 0.76 mmol) in 72% yield as dark red crystals:  mp 198-200 ºC (dec); 1H NMR 

(C6D6) δ 7.18 (m, C5Ph5 and P(Me2Ph)3, br), 5.49 (s, P(Me2Ph)3, br); visible λmax (CH2Cl2) 470 

nm (sh).  Anal.  Calcd for C49H44CrO3P:  C, 77.05; H, 5.81.  Found:  C, 76.54; H, 5.50. 

(C5Ph5)Cr(CO)2P(OMe)3•THF (4).  The procedure is the same as for 2 except that a 

magenta colored product is obtained in 90% yield:  mp 188-192 ºC (dec); 1H NMR (C6D6) δ 7.34 

(m, C5Ph5, br), 5.32 (s, P(OMe)3, br); visible λmax (CH2Cl2) 532 nm.  Anal.  Calcd for 

C44H42CrO6P:  C, 70.49; H, 5.65.  Found:  C, 71.05; H, 5.06. 

 

Results and Discussion 

Syntheses.  Reaction of the (C5Ph5)Cr(CO)3 radical with a variety of neutral, monodentate 

Lewis bases resulted in substitution products or no reaction between the materials depending on 

the ligand.  The small, soft ligands PMe3 and P(OMe)3 react with (C5Ph5)Cr(CO)3 in THF 

solution at low temperatures to yield the substitution products, (C5Ph5)Cr(CO)2L (eq 1) as highly  

colored, crystalline materials in high yields (compounds 2 and 4, respectively).  PMe2Ph reacts 

with 1 at ambient temperature to yield this product (3) in slighly lower yields.  The former 

reactions proceed very rapidly at ambient temperature, however isolated yields of the products 

are somewhat reduced.  Unlike for CpMn(CO)3
+,6,13 no evidence for disubstitution of 1 was 

observed.  All are air-sensitive, both in solution and in the solid state.  1H NMR spectra were 

very broad and no resonances were observed in 31P NMR spectra of these compounds.   

Infrared spectral and electrochemical data for these complexes are collected in Tables 5 and 

6, respectively.  A cyclic voltammogram of 2 is presented in Figure 1.  The CO stretching 

frequencies and complex reduction potentials both follow the expected trends for the ligands.  

Two aspects of the electrochemical data are noteworthy.  Replacing Cp by C5Ph5 in a complex 

usually results in potential shifts of ca. 0.2 V to more positive values.4,14  In contrast, the -1/0 

couples for the PMe3 and PMe2Ph complexes show roughly the opposite trend.  Hershberger and 

(C5Ph5)Cr(CO)3  +  L (C5Ph5)Cr(CO)2L  +  COTHF
-78 ºC (1)
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Kochi examined a variety of (MeCp)Mn(CO)2L complexes by cyclic voltammetry and found that 

replacing CO by PEt3 and P(OMe)3, resulted in potential shifts of -0.70 V and -0.42 V, 

respectively.15  For complexes 2 and 4 the shifts are -0.85 V and -0.54 V, respectively.  Thus, the 

shifts in the reduction potentials of 2 and 4 relative to 1 are consistent with precedent.  At 

ambient temperature, each complex also undergoes an irreversible oxidation approximately 1.3 V 

to more positive potential than the reversible reduction.  The anodic waves equaled the cathodic 

waves in height within 20% in all cases and are also assigned as one-electron processes. 

A low temperature (-78º) infrared spectrum of the reaction mixture of 1 with excess PMe3 

shows 4 absorptions (Table 5).  The spectrum is consistent with a compound of the formula 

[(C5Ph5)Cr(CO)3PMe3][(C5Ph5)Cr(CO)3].16,17  It is well established that 17e complexes tend to 

undergo substitution reactions via associative pathways.2d,7  Thus, a plausible reaction 

mechanism is shown in eq (2) and (3).  When the reaction mixture is warmed to ambient 

temperature, 2 is produced quantitatively (eq 4).  Further studies of this and similar low 

temperature reactions are underway. 

(C5Ph5)Cr(CO)3  +  PMe3  -78 ºC (C5Ph5)Cr(CO)3PMe3 (2) 

(C5Ph5)Cr(CO)3PMe3  +  (C5Ph5)Cr(CO)3  -78 ºC  

 [(C5Ph5)Cr(CO)3PMe3][(C5Ph5)Cr(CO)3] (3) 

[(C5Ph5)Cr(CO)3PMe3][(C5Ph5)Cr(CO)3] PMe3 2 (C5Ph5)Cr(CO)2PMe3  +  2 CO (4) 

PMePh2 reacts with 1 at ambient temperature to yield solutions which display CO 

absorptions in the infrared where expected, but from which very little substitution product can be 

isolated.  The following ligands do not react with 1 even at elevated temperatures (e.g. refluxing 

THF or benzene): PPh3, P(OPh)3,  2, 2’-bipyridine, and PhC≡CPh.  The data for PMe3, PMe2Ph, 

and PMePh2 suggest that steric effects are probably very important in the lack of reactivity of 

PPh3 and P(OPh)3. 

Molecular Structure of (C5Ph5)Cr(CO)2PMe3•0.5THF.  The X-ray crystal structure of 

(C5Ph5)Cr(CO)2PMe3•0.5THF is displayed in Figure 2.  Bond distances and angles are listed in 

Tables 2 and 3, respectively. Phenyl dihedral angles are given in Table 4.  There are two 
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conformers in the unit cell that do not differ in any chemically significant way.  As in other, 

similar paramagnetic systems, the tripodal angles deviate significantly from 90º.4,9a,e  Fortier and 

coworkers have reported calculations describing the origin of this effect.9e  The P atom lies 

below a C-C bond of the C5 ring (a staggered conformation).  Cp*Cr(CO)2PMe3,9e also adopts a 

staggered conformation, but for CpCr(CO)2PPh3
9a the P atom eclipses a carbon atom of the C5 

ring.  As we will show below, the conformational energy difference for 2 is small, less than or on 

the order of kT at 200 K (0.02 eV).  One further feature of the structure warrants comment.  

Elemental analysis, 1H NMR, and thermogravimetric analysis18 all support formulation of the 

solid phase as a monosolvate.  Since all atoms in this structure were at full occupancy, it is likely 

that the structure was obtained of a rare crystal of an unrepresentative solvation number. 

ESR Spectra.  ESR spectra of 2, 3, and 4 in frozen toluene solution are rhombic with three 

distinct g-components.  Spectra of 2 and 3 are shown in Figures 3 and 4.  The spectrum of 4 is 

very similar to that of 2. Interpretation of the spectra is straightforward, and the resulting 

parameters are given in Table 7(a).  In all cases, the low-field features (gmax) are much broader 

than those corresponding to the two smaller g components.  For 2 and 4, the low-field features 

increase in width with increasing temperature whereas in spectra of 3, these features are not as 

broad and sharpen slightly with increasing temperature.  Spectra of 4 in dcm/dce were essentially 

identical to those in toluene except that the low-field features were broader and could not be 

located accurately, even at 125 K.  These linewidth effects will be discussed elsewhere.19 

 The g-matrices have one component close to the free-electron g-value, ge, a second 

component slightly larger than ge, and a third component substantially larger than ge.  This 

pattern is characteristic of low-spin d5 systems11 and can be understood qualitatively in terms of 

a simple ligand-field theory model.  The degeneracy of the octahedral ligand-field configuration, 

t2g5, is lifted in lower symmetry, but strong spin-orbit coupling of the singly-occupied orbital 

(SOMO) with the other two components of the t2g set leads to two g-components greater than ge; 

the third g-component differs from ge through spin-orbit coupling with one of the eg orbitals 

which is empty and at much higher energy.  Although the spectra of (C5Ph5)Cr(CO)2L fit this 
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qualitative pattern, they exhibit a temperature-dependent linewidth effect which requires a more 

detailed analysis.  Furthermore, the spectra in liquid solution at low temperatures are not 

isotropic but resemble the frozen solution spectra, albeit with significant shifts in the positions of 

features. 

 The complexes (C5Ph5)Cr(CO)2L have nominal Cs symmetry so that the SOMO could 

belong to either the a' or a" representation.  Previous work on related systems9e,20,21 and 

extended Hückel MO calculations19 suggest a SOMO of a" symmetry.  Taking xz as the plane of 

symmetry, the SOMO is given by eq (5). 

 |SOMO〉 = a1|xy〉 + a2|yz〉 + ... (5) 

Components of the g-matrix are given by eqs (6)11 where, for example, δx2-y2 is given 

 gxx = ge + 2[ a1
2 δxz + a2

2 (δx2-y2 + 3δz2)] (6a) 

 gyy = ge + 2( a1
2 δyz + a2

2 δxy) (6b) 

 gzz = ge + 2(4 a1
2 δx2-y2 + a2

2 δxz) (6c) 

 gxz = -2a1a2(δxz + 2δx2-y2) (6d) 

by eq (7), in which ζCr is the spin-orbit coupling constant for Cr, E0 – Ek is the energy of the kth 

 δx2-y2 = ζCr
c

E E
k x y

kk

, 2 2
2

00

−

≠ −∑  (7) 

MO relative to the energy of the SOMO, and ck,x2-y2 is the LCAO coefficient of dx2-y2 in the kth 

MO.  EHMO calculations19 suggest that the two highest doubly-occupied MO's, just below the 

SOMO in energy  (the other members of the t2g set), are predominantly dx2-y2 and dz2 in character 

so that δxz, δyz, δxy << δx2-y2, δz.;  Thus gyy is expected to be close to ge, but the other components 

should be larger.   The g-matrix is diagonalized by rotation about the y-axis by the angle β , given 

by eq (8), where R = a2/a1 and Q = δz2/δx2-y2. 

 
   tan 2β = – 4R

4 – R2 1 + 3Q  (8) 

The X and Z principal values of the g-matrix then are given by eq (9). Since experimentally, gX is 
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gX,Z = ge + a1

2δx2– y2 4 + R2 1 + 3Q 1 ± 1 – 48R2Q

4 + R2 1 + 3Q
2

 (9) 

close to ge and gZ is much larger than ge, the square root term of eq (9) is apparently close to 1.22 

Spectra in liquid solution 10-20 K above the melting point of the solvent appear as 

approximately axial powder patterns.  Spectra of 2 and 3 are shown in Figures 3 and 4; again the 

spectrum of 4 is qualitatively similar to that of 2, with features significantly sharper than for 3.  

In all cases, the features broaden at higher temperatures and eventually coalesce into a single 

broad line.  Although the line narrows somewhat near room temperature, 31P splitting is never 

resolved.  Parameters for the approximately axial spectra are given in Table 7(b). 

 The parallel features in the axial spectra are shifted upfield from the frozen solution gZ 

features and the perpendicular features are close to the position of the gY features of the frozen 

solution spectra.  At temperatures just above the melting point, the viscosity of toluene or 

dce/dcm is high, and it is not surprising that molecular rotation is too slow to produce an 

isotropic spectrum.  Apparently there is some degree of averaging, however, such that the gX and 

gY features are merged and the gZ features somewhat shifted.  The most likely explanation of this 

behavior is that the Cr(CO)2L moiety is nearly freely rotating relative to the C5Ph5 group.  In 

other words, the very bulky "seat" of the "piano stool" is essentially stationary on the ESR time 

scale while the "legs" rotate freely.  The bulkier PMe2Ph ligand would be expected to impede this 

averaging process, and features in the approximately axial spectra of 3 are significantly broader 

than those of 2 or 4. 

 This behavior can be simulated using the program described by Schneider and Freed.23  

Shown in Figure 5 are computer simulations using the spin Hamiltonian parameters for 2 and a 

5-Gauss Lorentzian linewidth.  For the simulations in Figure 5a, isotropic rotational diffusion is 

assumed with Dx = Dy = Dz ranging from 107 to 5 × 108 s-1 whereas in Figure 5b, rotational 

diffusion is anisotropic with Dx = Dy = 106 s-1 and Dz ranging from 107 to 5 × 108 s-1.  Although 

isotropic rotational diffusion can lead to an approximately axial spectrum, the parallel features 
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are very broad and both the parallel and perpendicular features shift significantly from the frozen 

solution positions.  We can obtain an order-of-magnitude estimate of the isotropic rotational 

diffusion coefficients from eqs (10).  Extrapolating literature values of the viscosity of  

 D = 1/6τr (10a) 

 τr = Vhη/kT (10b) 

toluene24 to 200 K, we obtain η ≈ 0.43 kg m-1s-1.  Assuming that 2 is approximately spherical 

with a radius of about 7 Å, τr ≈ 2 × 10-7 s, D ≈ 7 × 105 s-1, about two orders of magnitude slower 

than required to obtain an approximately axial spectrum from isotropic motion. 

 On the other hand, anisotropic rotational diffusion with Dx = Dy <<  Dz ≈ 2 × 108 s-1 

gives a reasonable account of the experimental results.  This rate is considerably faster than 

might have been expected for rotational diffusion of the Cr(CO)2PMe3 moiety in toluene at 200 

K, (Dz ≈ 3 × 107 s-1, assuming a volume about 1/10 that of the whole complex and accounting for 

rotation about one axis).  The most likely explanation is that the "piano-stool legs" rotate in a 

nearly solvent-free cavity created by the C5Ph5 ligand. 

 Assuming that anisotropic rotational diffusion is fast enough to completely average gx 

and gy, that the parallel axis corresponds to the Cr–Cp vector (the z-axis) and that the Z principal 

axis of the g-matrix differs from this axis by the angle β, the parallel and perpendicular 

components of the averaged g-matrix are given by eqs (11).  These equations were used to 

compute the values of 

 2g||2 = gZ
2 + gX

2 + (gZ
2 – gX

2)cos22β (11a) 

 4g⊥
2 = gZ

2 + gX
2 + 2gY

2 – (gZ
2 – gX

2)cos22β (11b) 

β listed in Table 8. Except for 4, the agreement between values of β computed from g||—eq 

(11a)—and those computed from g⊥—eq (11b)—is quite good, suggesting that the model is at 

least qualitatively correct.  Extended Hückel MO calculations19 suggest that Q ≈ 1.4; with this 

value, β = 16º and eq (8) give R = –0.46, in reasonable agreement with the EHMO prediction of 

0.34.  The values of beta listed in Table 8 also may be compared with those obtained from ESR 
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studies of CpCr(CO)2PPh3
9c and (C5Me5)Cr(CO)2PMe3

9e diluted into single crystals of the Mn 

analogs.  For CpCr(CO)2PPh3, four paramagnetic sites were found with slightly different 

principal values of the g-matrix and beta ranging from 3 to 8º; for (C5Me5)Cr(CO)2PMe3, only 

one site was found with beta = 2.4º.  These angles refer to the orientation of the gmax principal 

axis relataive to the Mn-CNT axis in the host crystal and so may not be exactly equal to those 

relative to the Cr-CNT axis.  Nonetheless, the angles are considerably smaller than those found in 

the present work; whether this reflects an error in our analysis or a true difference between the 

C5Ph5 ligand and the Cp and C5Me5 ligands is unclear. 
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 Table 1.  Crystal and Refinement Data for (C5Ph5)Cr(CO)2PMe3•0.5THF 

a.  Crystal Data 

 formula             C40H34CrO2P 

 fw                  629.6 

 cryst system        Triclinic 

 space group         P1  

 a, Å                12.834(2) 

 b, Å                13.271(3) 

 c, Å                22.536(5) 

 α, deg              90.96(2) 

 β, deg              94.29(2) 

 γ, deg              112.55(1) 

 V, Å3               3530.6(12) 

 Z                   4 

 color               dark red 

 crystal size, mm    0.44 x 0.58 x 0.74 

 D (Calcd), g/cm3    1.185  

 abs coeff, cm-1    0.401 mm-1 

b.  Data Collection 

 diffractometer      Siemens P4 

 radiation           MoKα (λ =0.710 73 Å)                 

 temp, K             293 

 2θ scan range, deg  1.00° 

 scan type           Wycoff 

 reflns collcd       14234 

 obsd rflns          6465 (F > 5.0σ(F)) 
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c.  Solution and Refinement 

 solution            direct methods 

 refinement method   full-matrix least-squares 

 quantity minimized  Σw(Fo - Fc)2 

 weighting scheme    w-1 = σ2(F) + 0.0015F2 

 number of parameters refined     838 

 final R indices (obs. data),%    R = 5.62, wR = 6.67 

 R indices (all data), %          R = 12.75, wR = 8.93 

 GOF     1.11 

 data-to-parameter ratio          7.7:1 

 largest difference peak, eÅ-3   0.34  

 largest difference hole, eÅ-3   -0.39 
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 Table 2.  Selected Bond Distances (Å) in (C5Ph5)Cr(CO)2PMe3•0.5THF 

 

 conformer A conformer B 

Cr-C(1) 2.254(5) 2.269(5) 

Cr-C(2) 2.288(5) 2.256(4) 

Cr-C(3) 2.241(6) 2.236(5) 

Cr-C(4) 2.198(7) 2.212(5) 

Cr-C(5) 2.218(6) 2.221(4) 

Cr-CNTa 1.881 1.881 

Cr-C(6) 1.837(6) 1.836(7) 

Cr-C(7) 1.834(6) 1.812(7) 

Cr-P 2.383(2) 2.372(2) 

C(1)-C(2) 1.430(7) 1.424(7) 

C(2)-C(3) 1.441(8) 1.425(8) 

C(3)-C(4) 1.425(6) 1.430(7) 

C(4)-C(5) 1.429(8) 1.432(8) 

C(1)-C(5) 1.429(7) 1.429(8) 

C(6)-O(6) 1.162(7) 1.156(9) 

C(7)-O(7) 1.149(8) 1.158(9) 
aCNT = centroid of the cyclopentadienyl ring 
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Table 3.  Bond Angles (º) in (C5Ph5)Cr(CO)2PMe3•0.5THF 

 

 conformer A conformer B 

C(6)-Cr-C(7) 78.7(3) 78.0(4) 

P-Cr-C(6) 89.4(2) 86.9(2) 

P-Cr-C(7) 89.8(2) 90.4(2) 

OC-Cr-CO (avg) 175.8(6) 176.8(7) 

C(6)-Cr-CNTa 125.8 124.8 

C(7)-Cr-CNT 122.4 126.1 

P-Cr-CNT 134.8 133.3 
aCNT = centroid of the cyclopentadienyl ring  
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Table 4.  Phenyl Ring Torsion Angles (deg) in (C5Ph5)Cr(CO)2PMe3•0.5THF 

  

Cp Carbon conformer A conformer B 

1 51.9 47.7 

2 48.0 55.6 

3 51.1 45.6 

4 54.7 56.8 

5 50.0 55.0 
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 Table 5.  Infrared Spectral Data for (C5Ph5)Cr(CO)2L Complexes 

 

complex solvent ν(C≡O), cm-1,a reference 

(C5Ph5)Cr(CO)3 THF 2005, 1897 4 

(C5Ph5)Cr(CO)2PMe3 THF 1911, 1797 this work 

CpCr(CO)2PMe3 CH2Cl2 1910, 1778 9f 

(C5Ph5)Cr(CO)2PMe2Ph THF 1911, 1792 this work 

(C5Ph5)Cr(CO)2P(OMe)3 THF 1923, 1816 this work 

[(C5Ph5)Cr(CO)3PMe3][(C5Ph5)Cr(CO)3]b THF 2025, 1956, 1892, 1791 this work 

aAbsorptions are strong unless otherwise stated. 

bSpectrum taken at -78 ºC. 
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Table 6.  Electrochemical Data for (C5Ph5)Cr(CO)2L in CH2Cl2 

 

complex Epa(0/1+) (V)a, b Eº(0/1-) (V)a ipa/ipc
c reference 

(C5Ph5)Cr(CO)3 ca . 0.9e -0.69 1.0 4 

(C5H5)Cr(CO)2PMe3 ----- -1.42 ----- 9f 

(C5Ph5)Cr(CO)2PMe3
d -0.07 -1.56 0.98 this work 

(C5H5)Cr(CO)2PMe2Ph -0.37 -1.36 ----- 9f 

(C5Ph5)Cr(CO)2PMe2Phd -0.06 -1.48 0.86 this work 

(C5Ph5)Cr(CO)2P(OMe)3
d  0.05 -1.26 0.95 this work 

aPotential vs Fc. 

bIrreverisible. 

cDetermined according to ref. 25. 

dScan rate 100 mV/s; 0.1 M (nBu4N)PF6;  ca. 3 mM complex. 

eAppears as a very broad peak.  This work 
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Table 7.  ESR Parameters for (C5Ph5)Cr(CO)2L. 

(a) Frozen Solution Spectra. 

L T/K 
(solvent) 

g1 g2 g3 A1
a A2

a A3
a 

PMe3 (2) 125-160  
(toluene) 

1.9941(3) 2.0130(3) 2.104(2) 34.2(2) 35.8(4) 34(1) 

PMe2Ph (3) 105-120  
(toluene) 

1.9940(2) 2.0130(2) 2.1060(2) 32.6(2) 34.8(2) 34.2(2) 

P(OMe)3 (4) 125-145  
(toluene) 

1.9944(3) 2.0147(5) 2.130(3) 40.4(2) 45.9(2) 35(2) 

P(OMe)3 (4) 125-160  
(dcm/dce) 

1.9940(2) 2.0140(2) b 40.2(3) 45.5(2) b 

  

 (b) Liquid Solution Spectra. 

L T/K 
(Solvent) 

g⊥ g|| A⊥a A||a 

PMe3 (2) 200 K 
(toluene) 

2.012(1) 2.090(1) 35(1) 35(1) 

PMe2Ph (3) 190 K 
(toluene) 

2.011(1) 2.091(1) 36(1) 32(2) 

P(OMe)3 (4) 180-195 K 
(toluene) 

2.006(2) 2.112(1) 46(3) 45(1) 

P(OMe)3 (4) 185 K 
(dcm/dce) 

2.012(1) 2.095(1) 45(1) 41(1) 

a 31P hyperfine coupling in units of 10-4 cm-1. b Features poorly resolved. 
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Table 8.  Values of the angle β computed from axial spectra in toluene. 

 

L β [eq (11a)] β [eq (11b)] β (avg) 

PMe3 15.3 ± 1.0º 16.6 ± 1.3º 15.8 ± 0.6º 

PMe2Ph 15.7 ± 0.9º 15.4 ± 1.4º 15.6 ± 0.1º 

P(OMe)3 15.8 ± 1.0º 5.8 ± 4.8º 15.4 ± 2.0º 
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 Figure Captions 

Figure 1. Cyclic voltammogram of (C5Ph5)Cr(CO)2PMe3 (2). Scan rate 100 mV/s; 0.1 M 

(nBu4N)PF6;  ca. 3 mM complex in CH2Cl2. 

Figure 2. Molecular structure and labeling scheme for (C5Ph5)Cr(CO)2PMe3•0.5THF (2). 

Figure 3. ESR spectra of (C5Ph5)Cr(CO)2PMe3 (2) in toluene solution at 125, 165, and 200 K.  

The low-field portions of the 125 and 165 K spectra are shown magnified by a factor 

of 4. 

Figure 4. ESR spectra of (C5Ph5)Cr(CO)2PMe2Ph (3) in toluene solution at 120, 160, and 190 

K. 

Figure 5. Simulated spectra based on the spin Hamiltonian parameters of 2:  (a) Isotropic 

rotational diffusion with Dx = Dy = Dz = D; and  (b) anisotropic rotational diffusion 

with Dx = Dy = 106 s-1 and Dz =  D = (i) 1 × 107, (ii) 2 × 107, (iii) 5 × 107, (iv) 1 × 108, 

and (v) 2 × 108 s-1. 
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Table 1S.  Atomic Coordinates (x104) and Equivalent Isotropic Displacement Coefficients 

(Å2 x 103)  for (C5Ph5)Cr(CO)2PMe3•0.5THF 

      x      y       z   Ua 

Cr 4760.8(7) 2519.2(7) 1403.6(4) 33(1) 

P 3441(1) 3332(1) 1581.0(7)  47(1) 

O(6) 6663(4) 4615(4) 1835(2) 74(2) 

O(7) 5127(4) 2242(4) 2702(2) 73(3) 

C(1) 4309(4) 1849(4) 452(2) 32(2) 

C(2) 3799(4) 959(4) 822(2) 29(2) 

C(3) 4693(4) 835(4) 1202(2) 30(2) 

C(4) 5744(4) 1634(4) 1058(2) 33(2) 

C(5) 5507(4) 2248(4) 589(2) 32(2) 

C(6) 5926(6) 3816(5) 1649(3) 50(3) 

C(7) 4941(5) 2341(5) 2205(3) 47(3) 

C(8) 4056(7) 4705(6) 1888(4) 108(5) 

C(9) 2528(7) 2654(7) 2149(4) 104(5) 

C(10) 2430(7) 3497(7) 1028(3) 93(5) 

C(11) 3049(5) 1448(5)  -492(2) 42(2) 

C(12) 2603(5) 1778(6) -999(3) 61(3) 

C(13) 2846(6) 2865(7) -1072(3) 64(3) 

C(14) 3541(6) 3632(6) -641(3) 62(3) 

C(15) 3992(5) 3309(5) -138(3) 47(3) 

C(16) 3748(4) 2204(4) -59(2) 33(2) 

C(21) 1696(5) 517(5) 746(3) 50(3) 

C(22) 585(5) -247(6) 687(3) 62(3) 

C(23) 352(5) -1336(6) 662(3) 57(3) 

C(24) 1235(5) -1692(5) 681(3) 55(3) 
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C(25) 2344(5) -934(5) 748(3) 45(3) 

C(26) 2593(4) 176(4) 781(2) 32(2) 

C(31) 3769(5) -263(5) 2063(3) 48(3) 

C(32) 3621(6) -1119(5) 2435(3) 60(3) 

C(33) 4253(6) -1756(5) 2391(3) 67(3) 

C(34) 5019(6) -1552(5) 1971(3)  61(3) 

C(35) 5175(5) -696(4) 1592(3) 44(2) 

C(36) 4543(4) -46(4) 1631(2) 36(2) 

C(41) 7265(5) 1748(5) 1865(3) 48(3) 

C(42) 8297(6) 1691(6) 2036(3) 67(3) 

C(43) 8994(6) 1609(6) 1619(3) 68(3) 

C(44) 8639(5) 1551(5) 1016(3) 58(3) 

C(45) 7602(5) 1581(5) 850(3) 45(3) 

C(46) 6899(4) 1675(4) 1266(2) 33(2) 

C(51) 6289(5) 2892(5) -382(3) 46(3) 

C(52) 7138(6) 3528(6) -715(3) 64(4) 

C(53) 8104(6) 4324(6) -446(4) 70(4) 

C(54) 8217(6) 4491(5) 162(4) 66(3) 

C(55) 7370(5) 3857(5) 504(3) 50(3) 

C(56) 6388(5) 3042(4) 236(2) 36(2) 

Cr’ 7100(1) 6890(1) 4046(1) 33(1) 

P’ 6725(1) 4997(1) 3948(1) 41(1) 

O(6’) 6230(5) 6722(4) 2764(2) 109(3) 

O(7’) 4648(4) 6411(5) 4076(3) 138(4) 

C(1’) 8981(4) 7677(4) 4334(2) 27(2) 

C(2’) 8367(4) 7563(4) 4846(2) 27(2) 

C(3’) 7676(4) 8184(4) 4783(2) 29(2) 
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C(4’) 7854(4) 8682(4) 4221(2) 26(2) 

C(5’) 8653(4) 8360(4) 3943(2) 29(2) 

C(6’) 6590(6) 6791(5) 3255(3) 61(3) 

C(7’) 5605(6) 6586(6) 4085(4) 77(4) 

C(8’) 7487(6) 4662(5) 3382(3) 64(3) 

C(9’) 5250(5) 4167(5) 3693(3) 74(3) 

C(10’) 6916(6) 4204(5) 4570(3) 64(3) 

C(11’) 10965(5) 8084(5) 4101(2) 40(2) 

C(12’) 11893(5) 7800(5) 4054(3) 51(3) 

C(13’) 11801(5) 6750(6) 4167(3) 56(3) 

C(14’) 10821(5) 6006(5) 4335(3) 51(3) 

C(15’) 9889(5) 6291(4) 4387(3) 41(2) 

C(16’) 9944(4) 7331(4) 4263(2) 30(2) 

C(21’) 9612(5) 7359(4) 5700(3) 40(2) 

C(22’) 9762(5) 6979(5) 6255(3) 50(3) 

C(23’) 8869(6) 6288(5) 6531(3) 58(3) 

C(24’) 7783(5) 5943(5) 6243(3) 52(3) 

C(25’) 7622(5) 6310(4) 5686(2) 40(2) 

C(26’) 8520(4) 7030(4) 5410(2) 29(2) 

C(31’) 7515(5) 8731(4) 5824(2) 39(2) 

C(32’) 6981(5) 9083(5) 6246(3) 51(3) 

C(33’) 5951(5) 9163(5) 6094(3) 52(3) 

C(34’) 5464(5) 8885(5) 5523(3) 52(3) 

C(35’) 5985(4) 8524(4) 5100(3) 40(2) 

C(36’) 7029(4) 8446(4) 5244(2) 30(2) 

C(41’) 7687(4) 10457(4) 4385(2) 34(2) 

C(42’) 7395(5) 11317(4) 4198(3) 43(2) 
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C(43’) 6864(5) 11262(5) 3635(3) 46(3) 

C(44’) 6610(5) 10345(5) 3268(3) 48(3) 

C(45’) 6901(4) 9492(4) 3451(2) 39(2) 

C(46’) 7455(4) 9548(4) 4013(2) 28(2) 

C(51’) 9667(4) 9919(4) 3331(2) 38(2) 

C(52’) 10206(5) 10365(5) 2834(3) 51(3) 

C(53’) 10238(6) 9685(6) 2368(3) 66(4) 

C(54’) 9748(6) 8572(6) 2413(3) 66(4) 

C(55’) 9208(5) 8121(5) 2914(3) 52(3) 

C(56’) 9164(4) 8799(4) 3378(2) 32(2) 

O(1S) 8964(8) 5124(7) 8001(3) 127(4) 

C(1S) 8509(8) 4149(8) 7683(5) 112(6) 

C(2S) 9294(13) 3753(11) 7631(7) 249(13) 

C(3S) 10284(11) 4412(14) 7943(9) 248(14) 

C(4S) 10146(12) 5342(10) 8107(7) 179(9) 
aEquivalent isotropic U defined as one third of the trace of the orthogonalized Uij tensor. 
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Table 2S.  Anisotropic Displacement Coefficients (Å2x103). 

 U11 U22 U33 U12 U13 U23 

Cr    39(1)   34(1)   29(1)   19(1)    2(1)    2(1) 

P    48(1)   44(1)   53(1)   24(1)    6(1)   -3(1) 

O(6)    71(3)   56(3)   74(3)     4(3)    1(3) -15(3) 

O(7)  123(4)   76(3)   31(3)   52(3)    4(3)    7(2) 

C(1)    38(3)   30(3)   30(3)   15(3)    1(2)    2(2)  

C(2)    38(3)   30(3)   26(3)   20(2)    2(2)    1(2) 

C(3)    37(3)   33(3)   26(3)   19(3)    8(2)    0(2) 

C(4)    39(3)   33(3)   27(3)   15(3)    3(2)    0(2)   

C(5)    39(3)   33(3)   29(3)   18(3)    6(2)    4(2) 

C(6)    58(4)   52(4)   44(4)   26(4)    9(3)    1(3) 

C(7)    67(4)   45(4)   38(4)   31(3)    6(3)   -1(3) 

C(8)    77(6)   67(5) 181(9)   35(5)   -7(6) -49(6) 

C(9)    99(7) 133(8) 116(7)   73(6)  63(6)  51(6) 

C(10)  103(6) 104(6) 105(7)   84(6) -19(5) -19(5) 

C(11)    45(4)   48(4)   34(3)   20(3)   -4(3)    3(3) 

C(12)    50(4)   82(5)   47(4)   24(4)   -6(3)    7(4) 

C(13)    60(5)   92(6)   43(4)   34(4)   -9(3)   28(4) 

C(14)   64(5)   69(5)   63(5)   36(4)    5(4)   30(4) 

C(15)   54(4)   49(4)   42(4)   25(3)   -2(3)     6(3) 

C(16)   35(3)   43(3)   27(3)   22(3)    5(2)     7(2) 

C(21)   45(4)   54(4)   55(4)   25(3)    2(3)    -2(3) 

C(22)   41(4)   82(5)   72(5)   32(4)    7(3)    -4(4)   

C(23)   35(4)   67(5)   61(4)   10(3)    8(3)     3(4) 

C(24)   45(4)   43(4)   64(4)     4(3)    5(3)     6(3) 

C(25)   43(4)   42(4)   50(4)   16(3)    2(3)     2(3) 
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C(26)   34(3)   38(3)   27(3)   16(3)    2(2)     2(2) 

C(31)   57(4)   50(4)   36(3)   19(3)    5(3)     6(3) 

C(32)   68(5)   55(4)   43(4)    7(4)    3(3)   17(3) 

C(33)   82(6)   44(4)   57(5)    6(4) -10(4)   30(4) 

C(34)   71(5)   40(4)   69(5)  22(3) -21(4)   13(3) 

C(35)   46(4)   39(3)   47(4)  16(3)   -4(3)     1(3)  

C(36)   39(3)   34(3)   31(3)  10(3)   -3(3)     3(2) 

C(41)   37(4)   61(4)   47(4)  19(3)    0(3)   12(3) 

C(42)   58(5)   93(6)   52(4)  34(4)   -8(4)   16(4) 

C(43)   38(4)   88(5)   80(6)  30(4)   -3(4)   18(4) 

C(44)   47(4)   70(5)   71(5)  35(4)  11(4)   15(4) 

C(45)   46(4)   53(4)   41(4)  26(3)   -1(3)     3(3) 

C(46)   38(3)   32(3)   33(3)  18(3)   -1(3)     4(2) 

C(51)   54(4)   55(4)   39(4)  28(3)   14(3)   13(3) 

C(52)   76(5)   86(5)   48(4)  45(5)   27(4)   30(4) 

C(53)   61(5)   74(5)   87(6)  35(4)   35(5)   43(5) 

C(54)   53(4)   50(4)   94(6)  14(3)   21(4)   16(4) 

C(55)   49(4)   45(4)   53(4)  14(3)     5(3)     6(3) 

C(56)   44(4)   36(3)   35(3)  23(3)     4(3)   11(3) 

Cr’   31(1)   27(1)   38(1)  10(1)    -2(1)    -2(1) 

P’   45(1)   29(1)   46(1)  10(1)     1(1)    -1(1) 

O(6’) 170(6)   62(4)   69(4)  29(4)  -63(4)    -3(3) 

O(7’)   42(3) 111(5) 245(8)  18(3)     1(4)  -83(5) 

C(1’)   26(3)   24(3)   30(3)    8(2)     4(2)     0(2) 

C(2’)   20(3)   27(3)   30(3)    6(2)     0(2)     3(2) 

C(3’)   20(3)   29(3)   35(3)    5(2)     1(2)     6(2) 

C(4’)   26(3)   19(3)   32(3)    7(2)     0(2)    -3(2) 
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C(5’)   34(3)   27(3)   24(3)  10(2)     1(2)    -1(2) 

C(6’)   73(5)   36(4)   60(5)    9(3)  -25(4)     1(3) 

C(7’)   31(4)   64(5) 127(7)  11(4)     2(4)  -42(4)  

C(8’)   71(5)   52(4)   69(5)  22(4)   14(4)  -16(4) 

C(9’)   56(5)   43(4) 109(6)    6(3)    -8(4)    -8(4) 

C(10’)   87(5)   37(4)   60(4)  15(4)     7(4)   16(3) 

C(11’)   40(3)   41(3)   41(3)  18(3)     5(3)     3(3) 

C(12’)   37(4)   63(4)   58(4)  22(3)   15(3)   13(3) 

C(13’)   44(4)   80(5)   61(4)  45(4)     9(3)     1(4) 

C(14’)   56(4)   41(4)   66(4)  29(3)     1(3)     6(3) 

C(15’)   33(3)   38(3)   52(4)  13(3)     5(3)   10(3) 

C(16’)   31(3)   34(3)   25(3)  15(3)     1(2)   -2(2) 

C(21’)   39(3)   34(3)   46(4)  12(3)     3(3)     7(3) 

C(22’)   48(4)   58(4)   47(4)  24(3)    -9(3)     6(3) 

C(23’)   79(5)   58(4)   47(4)  35(4)     9(4)   22(3) 

C(24’)   51(4)   60(4)   46(4)  20(3)   18(3)   23(3) 

C(25’)   36(3)   44(3)   38(3)  13(3)     8(3)   10(3) 

C(26’)   27(3)   30(3)   30(3)  12(2)     2(2)     0(2) 

C(31’)   42(3)   39(3)   38(3)  19(3)     6(3)     3(3) 

C(32’)   62(4)   53(4)   38(4)  22(3)     8(3)    -6(3) 

C(33’)   61(4)   48(4)   52(4)  21(3)   30(4)     3(3) 

C(34’)   41(4)   61(4)   64(5)  25(3)   22(3)     9(3) 

C(35’)   32(3)   44(3)   45(4)  14(3)     7(3)     1(3) 

C(36’)   31(3)   25(3)   35(3)   9(2)   10(2)     6(2) 

C(41’)   31(3)   33(3)   39(3)  14(3)     3(2)     4(3) 

C(42’)   41(3)   32(3)   59(4)  18(3)     5(3)     0(3) 

C(43’)   39(4)   36(3)   69(4)  20(3)     8(3)   21(3) 
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C(44’)   49(4)   48(4)   50(4)  22(3)    -7(3)   15(3) 

C(45’)   42(3)   31(3)   42(3)  14(3)    -1(3)     1(3) 

C(46’)   26(3)   22(3)   33(3)    8(2)     4(2)     4(2) 

C(51’)   35(3)   40(3)   41(3)  16(3)     5(3)     9(3) 

C(52’)   57(4)   49(4)   52(4)  24(3)   16(3)   21(3) 

C(53’)   75(5)   88(6)   46(4)  39(4)   27(4)   28(4) 

C(54’) 100(6)   79(5)   37(4)  53(5)   15(4)     3(4) 

C(55’)   70(4)   55(4)   38(4)  31(4)   11(3)     2(3) 

C(56’)   32(3)   39(3)   30(3)  19(3)     3(2)     2(2) 

O(1S) 146(7) 122(6) 128(6)  70(5)     9(5)  -41(5) 

C(1S)   92(8) 100(8) 125(9)  15(6)     4(6)   26(7) 

C(2S) 178(15) 176(14) 421(26)       129(14)        -108(16)      -151(15) 

C(3S)   88(9) 199(19) 440(30)  51(12)  -27(13)      -101(19) 

C(4S) 146(13)   91(9) 240(15)   -1(9)  -85(11) -15(9) 

aThe anisotropic displacement factor exponent takes the form:  -2π2(h2a*2U11 + ... + 2hka*b*U12) 
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Table 3S.  H-Atom Coordinates (x104) and Isotropic Displacement Coefficients (Å2x103). 

      x                   y             z           U 

H(8A) 3482 4983 1949 80 

H(8B) 4481 4730 2261 80  

H(8C) 4556 5143 1612 80 

H(9A) 2002 2990 2214 80 

H(9B) 2120 1906 2012 80 

H(9C) 2974 2682 2515 80 

H(10A) 1994 3843 1213 80 

H(10B) 2835 3948   726 80 

H(10C) 1931 2799   851 80 

H(11A) 2896   689  -440 80 

H(12A) 2106 1245 -1293 80 

H(13A) 2558 3110 -1423 80 

H(14A) 3716 4395  -692 80 

H(15A) 4462 3843   164 80 

H(21A) 1855 1286   761 80 

H(22A)   -28       1   668 80 

H(23A)  -417 -1856   635 80 

H(24A) 1084 -2485   642 80 

H(25A) 2962 -1175   779 80 

H(31A) 3330   179 2094 80 

H(32A) 3097 -1259 2735 80 

H(33A) 4136 -2359 2643 80 

H(34A)  5456 -1995 1940 80 

H(35A)  5726 -536 1305 80 

H(41A)  6791 1827 2157 80 
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H(42A)  8529 1707 2452 80 

H(43A)  9727 1608 1740 80 

H(44A)  9119 1497   720 80 

H(45A)  7341 1507   435 80 

H(51A)  5611 2342  -574 80 

H(52A)  7061 3406 -1140 80 

H(53A)  8692 4757  -683 80 

H(54A)  8881 5064   349 80 

H(55A)  7466 3963   930 80 

H(8’A)  7309 3890 3359 80 

H(8’B)  7266 4884 3006 80 

H(8’C)  8287 5045 3477 80 

H(9’A)  5156 3414 3662 80 

H(9’B)  4769 4257 3978 80 

H(9’C)  5050 4385 3311 80 

H(10D)  6714 3461 4429 80 

H(10E)  7694 4500 4731 80 

H(10F)  6441 4226 4875 80 

H(11B)  11027 8809 4015 80 

H(12B)  12589 8328 3936 80 

H(13B)  12488 6561 4144 80 

H(14B)  10754 5274 4408 80 

H(15B)  9200 5764 4512 80 

H(21B)  10251 7832 5508 80 

H(22B)  10515 7215 6448 80 

H(23B)  8990 6044 6919 80 

H(24B)  7148 5453 6431 80 
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H(25B)  6872 6073 5489 80 

H(31B)  8230 8682 5935 80 

H(32B)  7317 9263 6649 80 

H(33B)  5601 9436 6384 80 

H(34B)  4741 8924 5422 80 

H(35B)  5630 8328 4702 80 

H(41B)  8048 10490 4777 80 

H(42B)  7569 11950 4459 80 

H(43B)  6668 11857 3505 80 

H(44B)  6216 10303 2883 80 

H(45B)  6726 8660 3189 80 

H(51B)  9632 10387 3652 80 

H(52B)  10559 11143 2811 80 

H(53B)  10601 9986 2018 80 

H(54B)  9774 8102 2091 80 

H(55B)  8867 7343 2941 80 

H(1SA)  8078 4204 7327 80 

H(1SB)  8001 3633 7928 80 

H(2SA)  9548 3998 7250 80 

H(2SB)  9014 2969 7622 80 

H(3SA)  10189 3956 8277 80 

H(3SB)  11015 4564 7802 80 

H(4SA)  10294 5519 8528 80 

H(4SB)  10648 5940 7903 80 
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FFoorr  TTaabbllee  ooff  CCoonntteennttss  UUssee  OOnnllyy  

Substitution Reactions of (C5Ph5)Cr(CO)3:  Structural, Electrochemical, and Spectroscopic 

Characterization of (C5Ph5)Cr(CO)2L, L = PMe3, PMe2Ph, P(OMe)3 

 

D. John Hammack, Mills M. Dillard, Michael P. Castellani,* Arnold L. Rheingold,*  

Anne L. Rieger, and Philip H. Rieger* 

 

The series of compounds (C5Ph5)Cr(CO)2L (L = PMe3, PMe2Ph,  P(OMe)3) have been 

prepared and characterized by IR, NMR, and ESR spectroscopies, cyclic voltammetry, and X-ray 

crystallography (L = PMe3).  Frozen solution ESR studies and extended Hückel molecular orbital 

calcuations suggest the Cr(CO)2L moiety freely rotates relative to the C5Ph5 ligand. 
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