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Abstract 

Nudibranchs are marine invertebrates that have developed an intriguing defense 

mechanism, including warning coloration and the use of chemicals accumulated through their 

sponge diet.  The goal of this study was to determine whether the strength of chemical defenses 

differs between dietary and accumulated secondary metabolites for two species: Glossodoris 

vespa and Ceratosoma brevicaudatum. First, NMR spectroscopy was used to not only identify 

specific compounds in the mantle (outer covering) and the viscera (gut) but also to analyze the 

possibility of nudibranch species transporting more toxic compounds for defensive purposes.  

Next, toxicity (brine shrimp) and palatability (Palaemon shrimp) assays were used to examine 

whether accumulated compounds differ in anti-predator activity. The results of this study show 

increased toxicity in the mantle compared to the viscera for both species. and while both species 

exhibited the possibility of selective sequestration, Glossodoris vespa hinted that nudibranchs 

may have other methods of chemical sequestration including chemical modification that would 

explain why more toxic and unpalatable compounds are found in the mantle. However, there was 

no significant change in unpalatability between the mantle and the viscera. Finally, comparisons 

between genera that have mantle dermal formations along the mantle rim (Glossodoris) and 

those that have mantle dermal formations concentrated in the mantle horn (Ceratosoma) show 

that despite varying classes of dietary chemicals and selectivity of sequestration, both species 

exhibited a chemical arsenal in the mantle that was more toxic than dietary metabolites, 

suggesting that toxicity is an important part of their defensive strategy.  

 

Keywords: nudibranch, toxicity, unpalatability, mantle dermal formations, selective 

sequestration 
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Introduction 
 

Chemical defenses are prevalent in the animal kingdom, but organisms vary in how they 

accrue these chemicals as a source of protection.  Some animals such as the cane toad (Rhinella 

marina) are able to synthesize their own toxins using basic chemical building blocks and 

accumulate them on their skin as a deterrent to predators such as the Slaty-grey snake (Phillips et 

al., 2003). However, other organisms have evolved to be able to sequester toxins from their diet 

such as poison dart frogs that accumulate the toxins found in millipedes and ants (Daly et al., 

1994).  While most organisms utilize one form of chemical accretion, the marine gastropods 

known as nudibranchs (Gastropoda, Mollusca, Animalia) have been observed to engage in both 

selective sequestration, the ability to only use certain chemicals from their diet, and chemical 

modification of dietary metabolites (Kubanek et al., 2000). 

    

The clade of Nudibranchia 
 

 There are over 3,000 species of nudibranchs around the world from the warm Caribbean 

Sea to the frigid Antarctic waters.  The term ‘nudibranch’ means ‘naked gills’ which aptly 

describes their appearance: unlike many of their snail-like relatives, these marine invertebrates 

have evolved to shed their hard outside shell following their larval stage.  Energy economy is a 

possible reason for this transformation, as the nudibranchs would save the cost of using and 

transporting a shell if they could develop a new form of protection (Faulkner & Ghiselin, 1983).  

Instead, nudibranchs have evolved to use chemical compounds as a deterrent. There are two 

primary methods of accruing these toxins. The first is de novo synthesis, which is the act of 

creating toxin molecules from more simple biomolecules such as sugars and amino acids.  

Through this process, species such as the Cadlina luteomarginata and the Melibe leonina are 
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able to synthesize defensive chemicals only when threatened (Kubanek et al. 2000). The second 

and most common method is the ability of these invertebrates to ‘steal’ secondary metabolites 

from sponges that they feed on.  Unlike primary metabolites, secondary metabolites, such as 

terpenes and alkaloids, are organic compounds that are not directly related to growth and 

development.  Nudibranchs are able to bioaccumulate these compounds in various parts of their 

body, namely the mantle (outer covering) and the viscera (gut). 

 

Nudibranch Anatomy and Chemical Storage 
 

 

Figure I.   Anatomical Representation of a Generic Nudibranch 

Nudibranchs have a simple external anatomy, including gills, a mantle, and rhinophores.  

Rhinophores are external appendages that are used for odor detection, the mantle acts as an outer 

covering, and the gills are used for respiration. In response to a predator attack, most nudibranchs 

are able to invert themselves, retracting vital parts such as the gills and rhinophores towards the 

inside of its body while flaring the mantle outwards (Pawlik et al., 1988).  Scientists observing 
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this behavior hypothesized that chemical toxins that were found in the viscera of various families 

of nudibranchs may be present in the mantle to deter predators from eating the nudibranch (Avila 

& Paul, 1997).  Further research showed that there were records of toxins in the mantle that were 

especially concentrated in small dots on the edge of the mantle rim called mantle dermal 

formations (MDFs) while also uniformly distributed across the mantle at lower concentrations 

(Carbone et al., 2013).  MDFs are globular masses that measure approximately 250 micrometers 

in diameter and are composed of multiple cells, each with a large vacuole that holds the toxins 

(Fontana et al., 1994). Across nudibranch families, MDFs contain a wide range of chemicals: 

some are identical to the toxins found in the viscera, but others are different, which raises a few 

hypotheses.  First, nudibranchs may sequester more toxic sponge compounds in the mantle and 

less toxic compounds in the viscera to reduce the risk of autotoxicity, which is inadvertent self-

poisoning due to the presence of toxic compounds in the body. Certain species in the 

Doriprimatica and Chromodoris genera are able to selectively sequester more toxic compounds 

in the mantle and allow less toxic compounds to accumulate in the viscera (Cheney et al., 2016).  

Second, nudibranchs may ingest more benign sponge compounds and later chemically modify 

those compounds to be more active and then transport them to the mantle and MDFs. NMR 

spectroscopy with certain Glossodoris individuals have shown that the 12-keto scalarane 

compounds such as heteronemin that are present in the nudibranch cannot, themselves, be found 

in their sponge diet but are presumed to be derivatives of compounds that can be found in the 

sponge (Manzo et al., 2007).  Although there are examples that support both hypotheses, in most 

cases though, nudibranchs seem to have varying chemistries between their mantle and viscera. 
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Unpalatability vs. Toxicity 
 

In terms of feeding, nudibranch families are usually associated with a certain family of 

sponges whether due to dietary preference and/or geographical location, and there are also many 

that are even species-specific (Rudman & Berquist, 2010).  However, the variability of 

nudibranch chemical defenses relies mainly on the availability of secondary metabolites in their 

dietary sponges (Wägele et al., 2006). The primary way of characterizing these toxins that are 

applicable to the nudibranchs’ anti-predator defenses is to compare the toxicity levels and 

unpalatability levels.  Toxicity is the measure of a metabolite that causes physiological harm to 

the predator that ingests it while unpalatability refers to food containing the metabolite that are 

quickly rejected by predators without any subsequent damage (Pawlik, 2012). In terms of 

unpalatability, the secondary metabolites are insoluble in water, and many species of 

nudibranchs accumulate terpenoids, which are hydrocarbons that come from their sponge diet.  

Terpenoids are widely distributed in plant families and because they are volatile in nature, other 

terrestrial organisms sense them through odorant receptors (Tholl, 2015).  However, in a marine 

context, organisms are able to distinguish these hydrophobic molecules by taste receptors, and 

therefore, unpalatability is a more appropriate description (Atema, 2012).  Nudibranchs release 

these chemicals in high localized amounts through sacrificial body parts such as the mantle 

dermal formations, which are predominantly located along the mantle rim (Carbone et al., 2013).  

In addition to the variety of compound classes including alkaloids, terpenes, and macrolides, 

there are also many combinations of unpalatability and toxicity found in nudibranchs.  For 

example, some chemicals are toxic and palatable; this would eventually severely harm or kill the 

predator but would not prevent the nudibranch from being eaten. Although this method seems to 

have limited effectiveness, fish assays using Chasmodes bosquianus showed that nudibranchs 
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with unpalatable or toxic compounds that caused physiological damage to the fish when ingested 

led to both immediate rejection through vomiting and a learned behavior by the fish to avoid any 

nudibranchs with similar chemical compounds (Long & Hay, 2006).  However other chemicals 

are non-toxic but unpalatable, which would serve the nudibranch well not only because they act 

as antifeedant molecules but also because they would decrease the risk of autotoxicity while the 

compounds are stored in the nudibranch.  Naturally, the most effective combination would be 

unpalatable and toxic.  Therefore, this is an interesting topic of discussion from an evolutionary 

perspective because there are nudibranch species exhibiting each of these combinations: N. 

gardineri is toxic and palatable, D. tuberculosa is not toxic and palatable, C. elisabethina is toxic 

and unpalatable, and several Goniobranchus species showed low to no toxicity and high 

unpalatability (Winters, unpublished). 

 

Study Species 
 

    A)                                                              B) 

 
 

 

Figure II.   Images of Study Species. (A) Glossodoris vespa (B) Ceratosoma brevicaudatum  

 

 Two genera of nudibranchs were analyzed in this study.  Glossodoris nudibranchs feed 

exclusively on Thorectidae sponges, which possess sesterterpenes that are complex biomolecules 

with five isoprene branches (Manzo et al., 2007).  The two most common sesterterpenes are 
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scalaradials and heteronemin, which can be found in Glossodoris species such as the Glossodoris 

pallida (Manzo et al., 2007).  These nudibranchs rely primarily on mantle dermal formations to 

store their toxins, with scalaradials consisting of approximately 15% of the dry mass of the 

MDFs (Manzo et al., 2007).  One unique characteristic of Glossodoris nudibranchs is that some 

species are able to transform selected dietary scalaranes into compounds that act as detoxifiers 

but also on some occasions, increase the toxicity of raw sponge chemicals to improve the 

effectiveness of predator deterrence (Rogers & Paul, 1991).  The second genus comprises of the 

Ceratosoma nudibranchs that feed on Dysideidae sponges, which possess sesquiterpenes 

including furanosesquiterpenes (Rudman, 1984).  Unlike any other nudibranch genera, 

Ceratosoma individuals not only have MDFs around the mantle rim, but they also have MDFs 

near the rhinophores and inside a mantle horn that is present near the gills and possesses a much 

higher concentration of mantle dermal formations and toxins than the rest of the mantle.  Its 

purpose is most likely to be a primary target for potential predators and distract them away from 

essential appendages such as the gills and the rhinophores using contrasting coloration from the 

rest of the mantle (Mollo et al., 2005).  

 This study will explore two nudibranch species (Glossodoris vespa, Ceratosoma 

brevicaudatum) and analyze the chemical compositions in the mantle and the viscera in each.  

Comparing the unpalatability and toxicity levels of these chemicals will not only shed light on 

whether these two species, similar to others, sequester different toxins from the sponge tissues in 

their gut and their outer mantle rim but also allow us to test the hypothesis that they detoxify raw 

sponge compounds to avoid autotoxicity.  Furthermore, I hypothesize that nudibranchs sequester 

the more toxic and more unpalatable toxins to the mantle and mantle dermal formations to deter 
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predators more effectively while allowing the less active compounds to pass through the viscera 

to decrease the threat of autotoxicity.  

Materials and Methods 

 

Animals 
 

Specimens of the nudibranch Glossodoris vespa (18 individuals) were collected in 

Currimundi reef, Gneerings reef, and Mudjimba Island off the coast of Mooloolaba, Sunshine 

Coast, Queensland between the months of May and October 2016.  Ceratosoma brevicaudatum 

(3 individuals) were collected at Nelson Bay Pipeline in March 2016.  Collections were done on 

SCUBA, and specimens were stored at -20 degrees Celsius until chemical extract analysis was 

carried out.  The Palaemon shrimp were collected at Moffatt beach, King beach, and Shelley 

beach by hand-netting in the intertidal zone on October 30th, 2016 and stored in aquaria at UQ 

until use. 

 

Dissection and Extraction 
 

Nudibranch individuals from each species were dissected and separated into viscera 

masses and mantle masses and put into separate 20 mL vials along with 10 mL of acetone.  

Using a scale and the previously recorded mass value of a dry vial, the wet weight of the mantles 

and viscera were measured and recorded.  In addition, the volumes were recorded using acetone 

displacement in a graduated cylinder.  The mantles and viscera were then put in separate beakers 

and sonicated for 4-5 minutes to break up cellular membranes, allowing the chemical toxins to 

seep into the surrounding acetone solution.  The contents were allowed to settle and were 

subsequently filtered using cotton wool.  The sonication-filtration procedure was repeated three 
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times or until the liquid in the respective beakers were clear, which signaled that most of all the 

chemicals from the nudibranch tissues were removed from the tissue.  The filtered concentrate 

was put in a rotary evaporator until dry.  The solution was then partitioned with diethyl ether, 

placed under a separator funnel and added to 5-7 mL of diethyl ether and MQ-H2O. After three 

inversions of the separator funnel, the clear organic solution was pipetted into a separate beaker 

along with sodium sulfate that acts as a drying agent to remove any traces of water.  The darker 

solution consisting of lipids and tissue was poured back into the funnel, and the same procedure 

was repeated until there were no more traces of the organic liquid. The resulting clear liquid was 

subsequently pipetted into a final vial, leaving the sodium sulfate particles. The final vial was 

then placed under a nitrogen-releasing machine which removes all of the diethyl ether. The final 

result was crude nudibranch toxin extract.  This entire process was completed for both the mantle 

and the viscera chemicals.  Lastly, NMR spectroscopy was performed on the final extracts to 

ascertain what chemical compounds were present in both. 

 

Brine Shrimp Toxicity Assays 
 

 The brine shrimp (Artemia sp.) eggs were put in a beaker filled with saltwater and aerated 

for about 30 hours, allowing them to hatch.  The crude extract was diluted with dichloromethane 

(DCM) to create a stock solution at natural concentration and 3 replicates were used for each 

treatment (0.5 mL of stock solution, 0.25 mL, 0.025 mL, 0.0025 mL) for both the mantle crude 

extract and the viscera crude extract. There were also 3 control vials that did not have any toxins. 

Circular pieces of glass microfiber filter paper were fit at the bottom of each vial with the 

specific amount of toxins soaked and dried into it.  Only DCM was added to the control vials. 

Then, 10 brine shrimp along with 2.5 mL of seawater were put in each vial and set with caps not 
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fully screwed on to allow the brine shrimp to respire but also to limit the amount of water that 

evaporates out of the vial.  These vials were put under a light source and untouched for exactly 

24 hours.  The following day, brine shrimp were pipetted into a petri dish one vial at a time.  To 

ensure that all the brine shrimp were transferred, the filter paper was washed with saltwater and 

poured into the petri dish as well.  Under a microscope, the number of living, dead, and slow-

moving brine shrimp were counted and recorded.  Slow-moving shrimp were characterized as 

those that beat their swimming appendages at a rate of less than 60 beats per minute with 

location static, have reduced range of motion of appendages, or exhibit erratic beating at a rate of 

less than 70 beats per minute.  

 

White-Gloved Shrimp (Palaemon sp.) Unpalatability Assays 

 

Assay Preparation  
 

 Two plastic eight-compartment boxes (33 cm x 27 cm) were placed in each of the four 

tanks that were filled with saltwater with a salinity in the range of 1.020 and 1.023 PSU and 

aerated.  Small holes were bore in all of the outer walls and in each of the dividers inside the box 

to allow water flow through the compartments.  The water level was approximately half an inch 

below the top of the boxes.  One white-gloved shrimp (Palaemon serrifer) was placed in each 

compartment that was labeled with a number from the range of 1 to 64.  For a period of 2-3 days, 

the shrimp were fed with standard fish food that was colored green and then starved for 1 day.  

Using a random number generator, each shrimp was randomly assigned one of the nine 

conditions that corresponded to the four concentrations that were tested for both the mantle and 

viscera (0.25 mL, 0.125 mL, 0.0625 mL, 0.03125 mL) and a control. Each chemical dosage was 

0.25 mL in total.  Therefore, the 0.25 mL of mantle stock solution represented the natural 
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concentration, and the 0.125 mL of mantle stock solution with 0.125 mL of dichloromethane 

solvent to reach the 0.25 mL mark represented half of the natural concentration.  Overall, 63 

shrimp were used.  In addition, the mantle toxin concentration and viscera toxin concentration 

were constant to ensure that the types of chemicals were the focus rather than the amount of 

chemicals: both stock solutions for the Glossodoris vespa were at a concentration of 31.03 

mg/mL while those for the Ceratosoma brevicaudatum were at a concentration of 11 mg/mL. 

Pellet Preparation 
 

 The following dry contents were measured to two decimal places using a scale: 25 mg 

freeze dry squid, 15 mg alginic acid, and 15 mg sand.  Then 0.25 mL of DCM/stock solution 

combination (9 total combinations) were added to the dry contents and mixed.  The mixture was 

then allowed to settle for 20 minutes to allow the DCM to evaporate, and then 0.25 mL of 

distilled water and 1 drop of red food coloring were added.  The combination of wet and dry 

contents was mixed until gelatinous to ensure toxins were evenly spread within the mixture and 

using a scraper, the red mass was put into the back of the front end of a 10-mL syringe.  The 

back end of the syringe was then used to push the mixture to the tip of the syringe.  With the 

front end of the syringe in a petri dish of calcium chloride, the red mass was exuded slowly out 

of the syringe, where it solidified in the CaCl2 solution.  Finally, the long resulting tube was 

picked up with tweezers, dipped into distilled water to ensure all the CaCl2 was removed from 

the pellets, and placed in a cleaned petri dish.  This exact process was performed for each 

condition, except for the control condition.  Because the control condition was used for both the 

seven shrimp in its condition group in the beginning and also as a method of ensuring that lack of 

hunger was not the cause of pellet rejection by the shrimp, all of the contents were quadrupled.   
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 Assay Completion 

After creating the red food pellets, each shrimp was fed its designated toxin concentration 

food pellet with tweezers and whether it accepted the pellet at the time of feeding or not was 

recorded.  After fifteen minutes from the first feeding, the shrimps were checked for red spots in 

their transparent bodies, which determined whether they ingested the pellet or not.  Small red 

spots, large red spots, and no red spots were recorded in a table.  The same was done for all 

shrimps at the thirty-minute mark and the one-hour mark.  If any shrimp were not observed to eat 

the pellet during the entire experiment, they were fed a control pellet (no toxins) to ensure that 

their rejection of the pellet was due to the toxins rather than a lack of hunger.  If the shrimp 

rejected the control pellet, it was omitted from the study. 

 

Data analysis procedure 
 

 Data was recorded in Excel spreadsheets, and graphs were created in the GraphPad 7 

Prism program.  In addition, LD50 values were calculated for each brine shrimp condition using 

Abbott’s formula on Excel. This was done to account for natural mortality of the brine shrimp 

(observed in the control samples); after the results were altered, the LD50 was calculated.  The 

LD50 is the amount of toxins required for a 50% mortality rate of the brine shrimp.  This value 

was calculated using the data and graphs via interpolation of sigmoidal curves. Also, ED50 values 

were calculated for each Palaemon shrimp condition, which represented the amount of toxins 

required for a 50% food pellet rejection by the shrimp.  Chemical analysis of the mantle and 

viscera extracts were performed by NMR spectroscopy machines provided by the University of 

Queensland before the assays were started. 

 



                                                                                                                                                         Youn 18 

Results 

Compounds detected by the NMR 

 
 

 

Figure III.   Chemical structures of sesterterpene molecules in the mantle and viscera of 

Glossodoris vespa.  The locations of these compounds are shown in Table I. 

 

Table I.   Identification and location of chemical compounds in the mantle and viscera of the 

Glossodoris vespa.  “P” signifies the presence of the compound and “NP” signifies non-

presence.    

 

 

 

 

 

 

 

 

 

Species 

 

 

Location 

 

 

Scalaradial 

 

12-

deacetoxy-

12-oxo-

scalaradial 

 

 

12-

deacetoxy-

12-oxo-

deoxoscalarin 

 

 

 

Heteronemin 

 

 

G. vespa 

Mantle P P P NP 

Viscera NP NP NP P 
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The NMR spectroscopy image showed that the mantle and the viscera of the Glossodoris 

vespa consisted of different chemical compounds.  Through organic analysis, three distinct 

scalaradial compounds were found in the mantle: scalaradial, 12-deacetoxy-12 oxo-scalardaial, 

12-deacetoxy-12-oxo-deoxoscalarin. However, only one distinct compound was found in the 

viscera and identified as heteronemin. 

 

 

 

Figure IV.   Chemical structures of sesquiterpene molecules in Ceratosoma 

brevicaudatum.  The locations of these compounds are shown in Table II. 
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Table II.   Identification and location of chemical compounds in the mantle and viscera of the 

Ceratosoma brevicaudatum.  “P” signifies the presence of the compound and “NP” signifies 

non-presence. 

 

The NMR spectroscopy image showed that the compounds in the viscera were also 

present in the mantle and the mantle horn, but the mantle held one additional sesquiterpene while 

the mantle horn held two.  Agassizin, 6E, 8E, 10E – dehydrodendrolasin, and Pallescensin B 

were found in the mantle, the mantle horn and the viscera.  However, furodysinin was found to 

be a major compound only in the mantle and mantle horn while 6E, 8Z, 10E – 

dehydrodendrolasin was only found in the horn. 
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Palatability Results 
 

 

    A)                                                                B) 

 

Figure V.   Unpalatability results from Palaemon shrimp assays using A) G. vespa 

mantle extract and B) G. vespa viscera extract.  The x-axis represents the amount of extract used 

and the y-axis represents the corresponding percentage of food rejection by the shrimp.  % with 

no red spot (y-axis) is synonymous with % of pellets rejected because of toxins present in pellets. 

 

 Palatability assays were run for the mantle and viscera extract for the Glossodoris vespa 

using Palaemon shrimp, and the results are shown in Figure V. For the assays using viscera 

toxins, the corresponding ED50 value was 14.14 mg with the upper limit as 24.75 mg and the 

lower limit as 2.71 mg using 95% confidence intervals.  For the assays using mantle toxins, the 

corresponding ED50 value was 16.89 mg with the upper limit as 21.38 mg and the lower limit as 

14.4 mg while also using 95% confidence intervals. 
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        A)                                                                    B) 

 

Figure VI.   Unpalatability results from Palaemon shrimp assays using A) C. 

brevicaudatum mantle extract and B) C. brevicaudatum viscera extract.  The x-axis represents 

the amount of extract used and the y-axis represents the corresponding percentage of food 

rejection by the shrimp.  % with no red spot (y-axis) is synonymous with % of pellets rejected 

because of toxins present in pellets. 

 

 The mantle and viscera palatability results for Ceratosoma brevicaudatum are shown in 

Figure VI.  For the assays using viscera toxins, the ED50 value was 4.18 mg with the upper limit 

as 5.55 mg and the lower limit as 3.06 using 95% confidence intervals.  For the assays using 

mantle toxins, the ED50 value was 2.67 mg with the upper limit as 3.31 mg and the lower limit as 

2.04 mg using 95% confidence intervals. 
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Toxicity Results 
 

A)                                                         B) 

 

Figure VII.   Brine shrimp toxicity assays for the Glossodoris vespa using A) mantle extract and 

B) viscera extract.  95% confidence intervals are shown as the dotted lines.  The x-axis shows the 

amount of toxins used while the y-axis shows the corresponding percentages of brine shrimp that 

were slow-moving or dead after a period of 24 hours of exposure to the nudibranch toxins. 

 

 The brine shrimp toxicity results (dose responses) for the mantle and viscera of 

Glossodoris vespa are shown in Figure VII.  For the assays using mantle toxins, the LD50 value 

was 5.29 mg of the compounds with no calculated upper limit and the lower limit as 2.86 mg 

using 95% confidence intervals.  The LD50 value for the assays using viscera toxins was not able 

to be calculated because no experimental condition resulted in at least 50% brine shrimp 

mortality after 24 hours of exposure to the toxins. 
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A)                                                         B) 

 

Figure VIII.   Brine shrimp toxicity assays for the Ceratosoma brevicaudatum using A) mantle 

extract and B) viscera extract.  95% confidence intervals are shown as the dotted lines.  The x-

axis shows the amount of toxins used while the y-axis shows the corresponding percentages of 

brine shrimp that were slow-moving or dead after a period of 24 hours of exposure to the 

nudibranch toxins. 

 

The toxicity results (dose responses) for the mantle and viscera of Ceratosoma 

brevicaudatum are shown in Figure VIII. For the assays using mantle toxins, the LD50 value 

was 0.84 mg of the compounds with the upper limit as 1.81 mg and the lower limit as 0.20 mg 

using 95% confidence intervals.  The LD50 value for the assays using viscera toxins was 1.92 mg 

of the compounds with the upper limit as 3.04 mg and the lower limit as 0.90 mg using 95% 

confidence intervals. 

 

 

 

 



                                                                                                                                                         Youn 25 

Discussion 
 

1. Hypothesis that nudibranchs detoxify raw chemical compounds from sponges is 

refuted while the hypothesis that they are still eventually able to accumulate toxic 

compounds in the mantle is supported 
 

One of the primary goals of this study was to assess the manner in which certain species 

of nudibranchs store toxic compounds from their sponge diets.  As stated previously, the first 

hypothesis involved nudibranchs detoxifying raw sponge toxins to avoid the possibility of 

autotoxication of the nudibranch as the compounds pass through and are stored in the viscera 

and mantle.  Data from the brine shrimp and Palaemon shrimp assays revealed the opposite: 

there was, in fact, an increase in toxicity between compounds in the viscera and the mantle of 

the same species.  For the Glossodoris vespa, there was a 62% increase in mortality at natural 

concentrations from the viscera and the mantle and a 27% increase for the Ceratosoma 

brevicaudatum.  In addition, the LD50 value for the Glossodoris vespa mantle was 5.29 mg 

while the LD50 for its viscera was much higher than 15 mg, which shows that a much smaller 

amount of mantle toxins is required for a 50% mortality rate when compared to viscera 

toxins (Fig VII); the Ceratosoma brevicaudatum also showed the same result with an 

increase of 1.08 in LD50 value from mantle to viscera (Fig VIII).  This trend was also found 

in various Chromodoris species including C. elisabethina and C. magnifica; the mantles 

contained Latrunculin A, a potent chemical that at natural concentration, led to 100% 

mortality in brine shrimp assays while the viscera possessed two more benign compounds 

that exhibited less than 25% mortality (Cheney et al., 2016).  The second hypothesis stated 

that to maximize predator deterrence, nudibranchs have evolved a complex mechanism to 

store more toxic compounds in the mantle than in the viscera. Olfaction and taste of 

chemicals in the water are believed to have evolved to allow marine organisms to not only 
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find nutrient sources but also to avoid toxins (Lunceford & Kubanek, 2015).  Therefore, 

more toxic compounds released by the nudibranch would lead to greater chemical deterrence.  

The similarity of unpalatability levels between the mantle and viscera for both nudibranch 

species proved to be an interesting finding (Fig V, Fig VI); although we expect a strong 

correlation between unpalatability and toxicity, there are no clear associations between the 

two amongst various species (Glendinning, 1994).  Some were unpalatable yet non-toxic 

such as the Goniobranchus nudibranchs while others were toxic yet palatable such as the 

Mexichromis (Wägele et al., 2006).  Overall, though, these results support the hypothesis in 

which nudibranchs prioritize predator deterrence over the threat of autotoxication.  Further 

research should be focused on how nudibranchs are able to withstand the deleterious effects 

of these toxins and especially in the mantle, store them in such high concentrations.  Even in 

the viscera, the Ceratosoma brevicaudatum exhibited a 73% mortality at natural 

concentrations with an LD50 value of 1.92 mg (Fig VIII).  Therefore, even in the dietary tract 

near vital organs, the toxicity levels of these chemical compounds are still quite high.  One 

possible explanation may involve the development of enlarged vacuoles inside the cells of 

digestive tract tissue that allows separation between organelles and the toxins.  Similar to 

those in mantle dermal formations, these vacuoles would essentially allow the nudibranch to 

not only ingest these compounds but also to store them in large quantities in the viscera 

(Wägele & Klussmann-Kolb, 2005). 

 

2. There is evidence of both selective sequestration and chemical modification of raw 

sponge chemicals 
 

There are two methods of creating a more toxic and/or more unpalatable mantle covering, 

and NMR spectroscopy of the chemical compounds in each species shows that both may 
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possibly be used.  For the Glossodoris vespa, there were records of sesterterpenes, which are 

compounds commonly found in Thorectidae sponges.  In the mantle, the predominant compound 

was scalaradial along with two other sesterterpenes while the viscera had high concentrations of 

heteronemin (Table I).  Although this has not been proven, Glossodoris vespa most likely 

accrues its mantle toxins through selective sequestration.  Thorectidae sponges that are the 

primary feeding target for Glossodoris vespa individuals are known to contain heteronemin and 

scalaradial derivatives, which leads to the conclusion that scalaradial and scalaradial derivatives 

are selectively sequestered by the nudibranch to its mantle for increased predator deterrence.  

However, the fact that not all Thorectidae sponges contain scalaradials and the structural 

similarity between the mantle and viscera toxins introduces the possibility of these nudibranchs 

chemically transforming less toxic compounds such as heteronemin into more toxic compounds 

such as 12-deacetoxy-12 oxo-scalaradial and moving them to the mantle dermal formations.  The 

difference in structures lies in the absence of one closed ring structure (in contrast to the open 

ring structure of the three mantle compounds) and a dialdehyde functional group. This behavior 

was also observed in the species Cadlina luteomarginata, where compounds such as pallescensin 

A and furodysinin were not found in the sponge they feed on, Leosella idia (Pawlik, 1993).  

Therefore, those two compounds must have been biosynthesized by the nudibranch itself. In 

terms of the Glossodoris vespa, future studies may involve using radioactive carbons to label 

heteronemin compounds found in Thorectidae sponges and tracking those carbons to decipher 

whether the heteronemin was transformed into another compound or not in the viscera.  Studies 

with Dendrodoris limbata involved using carbon isotope markers to label mevalonic acid to 

prove that these nudibranchs are able to biosynthesize their own compounds without using 

sponge chemicals; I believe that this mechanism could be used to ascertain whether Glossodoris 
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nudibranchs are able to chemically modify sponge chemicals into ones that are more toxic and 

therefore more effective against predators (Fontana et al., 2000).  On the other hand, the 

Ceratosoma brevicaudatum exhibits the possibility of selective sequestration that may contribute 

to the higher toxicity in this species.  All of the chemical compounds found in both the mantle 

and viscera of the nudibranch can also be found in the Dysideidae sponges that they feed on, 

where the more toxic and more unpalatable compounds are in the mantle.  This species stored all 

compounds in the mantle that were also found in the viscera. This contrasts with Glossodoris 

vespa, which only had one compound in the viscera and did not store that compound in the 

mantle.  Additional evidence for this comes from the fact that the mantle is the only part of the 

nudibranch that shows furodysinin and 6E,8Z,10E- dehydrodendrolasin in the NMR 

spectroscopy results, which leads us to believe that both compounds may have been selectively 

concentrated from previous sponge meals and cause the increase in toxicity from the viscera to 

the mantle (Table II).  Furthermore, both compounds can be found in the Dysideidae sponges; 

these points lead to the probable selective sequestration mechanism that the Ceratosoma 

brevicaudatum employs.  Finally, only C. luteomarginata and Dendrodoris grandiflora are 

known to manifest both selective sequestration and chemical modification, so further research 

must be devoted to finding if there are more nudibranchs that exhibit this dual mechanism of 

sequestration (Kubanek et al., 2000). 

 

3. Toxin concentration plays an important role with the development of mantle 

dermal formations and the mantle horn of Ceratosoma brevicaudatum  
 

Not only are the levels of unpalatability and toxicity important for predator deterrence but 

concentration of the chemical compounds in the mantle are vital as well.  As mentioned earlier, 

most nudibranch species carry mantle dermal formations on the mantle rim that consist of cells 
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carrying relatively high volumes of sponge toxins.  These are positioned in such a way around 

the mantle rim and also colored differently than the rest of the mantle to maximize the 

probability of predator exposure to the toxins when an organism attempts to bite the nudibranch 

(Marin et al., 1997).  In an experiment with the species Glossodoris pallida, experimental 

removal of MDFs along the outside of the mantle corresponded with increased rates of predation 

towards the nudibranch, which highlights the importance of these specialized cells (Avila & 

Paul, 1997).  While this is the case for the Glossodoris vespa, the Ceratosoma brevicaudatum not 

only has MDFs along the mantle rim but also has MDFs at a higher concentration in the mantle 

horn that is colored differently than the mantle.  The mantle horn has been observed as a 

sacrificial appendage which was frequently damaged by predators but decreased the risk towards 

vital parts of the nudibranch; this was seen in experiments with C. trilobatum and C. gracillimum 

(Mollo et al., 2005).  In the Ceratosoma brevicaudatum extracts, the toxin concentration in the 

mantle horn was 90 mg/mL while those of the mantle and the viscera were 5.2 mg/mL and 11 

mg/mL, respectively; the mantle toxin concentration was lower than that of the viscera because 

the toxins are mainly found in the mantle dermal formations, which comprise a small proportion 

of the overall surface area of the mantle. However, the fact that the mantle horn is known to hold 

a higher concentration of toxins and MDFs than the mantle is a possible reason why the 

Ceratosoma brevicaudatum mantle is more toxic than the Glossodoris vespa mantle with the two 

highest concentrations (based on natural viscera concentrations) at 100% rate of mortality in the 

brine shrimp assays for the Ceratosoma brevicaudatum while the corresponding rates for the 

Glossodoris vespa were 75% and 30% respectively.  Further research can be focused on finding 

additional roles of the MDFs such as possibly allowing nudibranchs to transform sponge toxins 

in the MDFs rather than the viscera and transporting them to the MDFs; this would decrease the 
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risk of autotoxicity.  In addition, how do nudibranchs transport the toxins from the viscera to the 

mantle?  Do the MDFs have certain chemoreceptors that aid in selective sequestration: 

accumulating more toxic and more unpalatable compounds in the mantle?  In addition, because it 

is proven that Ceratosoma brevicaudatum individuals accumulate more toxic compounds in the 

mantle, future studies should address how the nudibranchs are able to gauge the relative toxicity 

of multiple compounds to perform selective sequestration of sponge chemicals. 

 

4. Proof of nudibranchs’ multimodal defense mechanism 
 

Finally, this data supports the notion that nudibranchs’ aposematic characteristics are multimodal 

in nature.  These organisms have evolved to not only possess bright coloration as a warning 

signal to potential predators but to also be unpalatable and even toxic by using sponge toxins 

from their diet.  Whether it be selectively sequestering and increasing the local concentration of 

more toxic compounds in the mantle or possibly transforming less toxic sponge compounds into 

more toxic compounds, nudibranchs have utilized a complex defense mechanism that presents 

scientists around the world exciting questions to answer. 

 

Conclusion 
 

 This study showed how complex nudibranch defense mechanisms are, and how much 

there is still to learn about these incredible invertebrates.  The two species that were examined 

exhibited a variety of different kinds of toxins, different ways of using them when threatened by 

a potential predator, and two possible ways of accumulating the most toxic and unpalatable 

compounds in the mantle.  Another primary finding of this study is that nudibranchs are capable 

of modifying the chemical arsenal of secondary metabolites from their sponge diet to increase 
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the effectiveness of predator deterrence. Both species showed differences in the toxin 

composition of the mantle and viscera that were either present or not present in the sponges that 

they feed on.  Finally, the ability to accrue a multitude of toxins both in their viscera and mantle 

and the way they are able to withstand toxicity in their bodies are topics of prime importance in 

future research.  Overall, understanding transport mechanisms, selective sequestration, and how 

they are able to chemically modify sponge toxins will help us piece together the evolutionary 

history of what are seemingly primitive organisms are actually an intriguing model system to 

study chemical and anti-predator defenses.  
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