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ON THE STRUCTURE OF GRAPHS WITH NON-SURJECTIVE
L(2,1)-LABELINGS*

JOHN P. GEORGEST AND DAVID W. MAUROf

Abstract. For a graph G, an L(2, 1)-labeling of G with span k is a mapping L — {0,1,2,...,k}
such that adjacent vertices are assigned integers which differ by at least 2, vertices at distance two
are assigned integers which differ by at least 1, and the image of L includes 0 and k. The minimum
span over all L(2,1)-labelings of G is denoted A(G), and each L(2,1)-labeling with span A(G) is
called a A-labeling. For h € {1,...,k — 1}, h is a hole of L if and only if h is not in the image of L.
The minimum number of holes over all A-labelings is denoted p(G), and the minimum k for which
there exists a surjective L(2,1)-labeling onto {0,1,...,k} is denoted u(G). This paper extends the
work of Fishburn and Roberts on p and p through the investigation of an equivalence relation on the
set of A-labelings with p holes. In particular, we establish that p < A. We analyze the structure of
those graphs for which p € {A —1, A}, and we show that u = A+ 1 whenever X is less than the order
of the graph. Finally, we give constructions of connected graphs with p = A and order t(A + 1),
1<t< A

Key words. L(2,1)-labeling, A-labeling, hole index, dominating vertex set
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1. Introduction. The L(2,1)-labeling problem is a vertex-labeling analog of
Hale’s channel assignment problem [14] which seeks to minimize the range of frequen-
cies used while at the same time ensuring that transmitters which are sufficiently
close together are assigned transmission frequencies which differ by no less than a
prescribed amount.

Let G be a simple graph with vertex set V(G) and edge set E(G). For fixed
positive integer k, an L(2, 1)-labeling of G with span k is a mapping L from V(G) into
{0,1,2,...,k} such that any two vertices which are adjacent are assigned integers
which differ by at least 2, any two vertices which are distance two apart are assigned
integers which differ by at least 1, and the integers 0 and k are each assigned to at
least one vertex. We denote the span k of L by s(L), and for each vertex v € V(G),
we refer to L(v) as the label of v assigned by L. The minimum span among all L(2, 1)-
labelings of G is called the A-number of G, denoted A(G). Any L(2,1)-labeling which
achieves a span of A\(G) is called a A-labeling of G.

For an L(2,1)-labeling L of G and for integer h such that 0 < h < s(L), h is a
hole of L if and only if h is not assigned by L to any vertex v in V(G). The minimum
number of holes over all A-labelings of G is called the hole index of G, and is denoted
p(G). If there exists a A-labeling L of G with no holes, then L is called a no-hole -
labeling of G and G is said to be A-full-colorable. Alternatively, G is A-full-colorable if
and only if there exists a surjective A-labeling of G. If there exists an L(2, 1)-labeling
of G (not necessarily a A-labeling) with no holes, then the minimum span over all
such L(2,1)-labelings of G is denoted u(G). Clearly, u(G) > A(G), and u(G) = A(G)
if and only if p(G) = 0.

*Received by the editors June 16, 2003; accepted for publication (in revised form) October 26,
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The L(2,1)-labeling was introduced by Griggs and Yeh [13] as an extension of T-
colorings (see [16]). There, they considered the A-numbers of graphs in various classes
such as trees, cycles, and paths, and they investigated the relationship between A(G)
and other graph invariants such as A(G) and x(G). Since then, many other authors
have extended these lines of study, exploring the A-numbers of the n-cube [19], chordal
graphs [17], various products of graphs [10, 11, 15], as well as exploring the relationship
between A(G) and other invariants such as the size of G [9] and the path covering
number of G¢ (the complement of G) [12]. Generalizations of L(2,1)-labelings have
also been considered; see [2, 4, 8, 10, 11, 18].

Recently, attention has turned to the study of graphs G for which p(G) = 0.
Fishburn and Roberts [6, 7] in particular have shown that p(G) = 0 if |[V(G)| =
AG) +1, and that p(G) =0 if G is any tree distinct from the claw K4 ,. They have
constructed a number of graphs G with p(G) > 0, and, in the event that p(G) > 0,
they have shown that A(G) + p(G) is an upper bound for p(G) if p(G) exists.

In this paper, we continue the study of p(G) with emphasis on p(G) > 0. Section
2 provides notation, definitions, and an equivalence class on the set of A-labelings of
G with p(G) holes which will facilitate our discussion. We consider the relationship
between p(G) and A(G) (section 3) and the relationships among p(G), u(G), and
A(G) (section 4). In section 5, we explore the structure of graphs with the property
p(G) = A(G).

2. Definitions and preliminary results. The sum G; + G2 of two graphs
Gy = (V1,E1) and Gy = (Va, Es) is the graph G = (V, E) with V = V3 |JV, and
E=E |E-.

Let L be an L(2,1)-labeling of G. Then M;(G,L) = {v € V(G)|L(v) = i} and
mz(G7L) = |M;(G, L)'

Let L be a A-labeling of G. Suppose 0 < hy < hy < hg < -+ < hy < A(G) are
the holes of L. Then for k, 1 < k < w — 1, the set of integers strictly between hj and
hi+1 shall be called island k of L, denoted Iy (L). Similarly, island 0 of L, denoted
Iy(L), and island w of L, denoted I,,(L), shall, respectively, mean {0,1,2,...,h; —1}
and {hy + 1, hy +2,...,A(G)}. For 0 < k < w, the smallest element of Ij(L) shall
be called the left coast of It(L) (denoted lc(Ix(L))) and the largest element of I (L)
shall be called the right coast of I(L) (denoted rc(I;(L))). Integers which are the
left coast or right coast of some island will be called coastal labels. The interior
of I, (L), denoted int(Iy(L)), shall mean I} (L) — {le(Ix(L)),rc(Ix(L))}. The set of
coastal labels in island Ij (L) will be denoted C'(I(L)). In the case of the equivalent
conditions |C(Ix(L))| = 1,[Ix(L)| = 1, and lc(Ix(L)) = rc(Ix(L)), we shall refer to
I(L) as an atoll.

For any island I;(L) = {z,z +1,...,x + 2z}, we let Z;(L) denote the sequence of
sets of vertices (My,(G,L), My41(G,L),..., My .(G,L)). We also define Z(L) to be
the sequence (Zo(L), Z1(L), Z2(L), ..., Zy(L)).

For any graph G, let A,(G) be the collection of all A-labelings of G with p(G)
holes. Also, let £(G,t) be the collection of L(2,1)-labelings of G with span ¢. It is
clear that if L € £L(G,t), then the labeling L’ =t — L is also in £(G,t). We therefore
observe that v € M;(G, L) if and only if v € M;_;(G, L").

We next define and illustrate two classes of vertex labelings of G, elements of
which follow from a given labeling L € A,(G).

For any L € A,(G) and any island I;(L), define

L it L(v) ¢ I;(L),
¢;(L)(v) = { re(I; ((L))) —i if Lgvg i lc((fi(L)) +1 € I;(L).
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0 4
U1 ® U3
Vo V4
2 5

F1c. 2.1. L(2,1)-labeling of K1,1,2.

We call this labeling of the vertices of G an intra-island relabeling at L, and note that
¢j(L) is easily seen to be an element of A,(G) with holes identical to the holes of
L. Tt therefore follows that the composition of any number of intra-island relabelings
at L is an element of A,(G). We observe that the components of Z;(¢;(L)) are the
components of Z;(L) in opposite order. (For k # j, Zx(¢;(L)) = Zk(L).) We also
observe that the relation ® on A,(G), given by (L1, L) € @ if and only if L, is a finite
composition of intra-island relabelings at L1, is an equivalence relation. Moreover, the
cardinality of the equivalence class containing L is 2°(G)+1=¢ where @ is the number
of atolls of L.
For any L € A,(G) and for a fixed j, 0 < j < p(G) — 1, define

L(v) it L(v) ¢ I;(L) ULj41(L)
¥ (L)(v) = L(v) = (e(Lj11 (L)) — le(I5(L))) if L(U)GIJH( )
L(v) + re(lj41(L)) = le( 7+1(L))+2 if L(v) € I;(L).

We call this labeling of G an inter-island relabeling at L, and note that ¢;(L) is an
element of A,(G) with the following properties:

1. ¢;(L) has a hole at lc(f;(L))+rc(Lj41(L))—le(Ij41 (L)) + 1;

2. Zya(0,(L)) = Z (L)

3. Zj(4;(L)) = Zj1(L).
We also note that since 1;(L) € A,(G), it follows that the composition of any finite
number of inter-island relabelings at L is an element of A,(G) as well.

Ezample 2.1. Consider the graph G = K 12 along with an L(2, 1)-labeling L as
given in Figure 2.1.

Since it is easily seen that A\(G) = 5 and p(G) = 2, then L € A,(G) with islands
Iy(L) = {0}, (L) = {2} and (L) = {4,5}. Thus,

0 if v =wy,

R if v =ws,

¢1(L)(U)— 9 if'U:'Ug,

3 if v =y,

and the islands of ¢, (L) are {0}, {2,3}, and {5}.
Additionally,

0 if v =1,

)2 if v =y,

2(L)(v) = 5 if v = vs,

4 if v = vy.

We next note that for any finite composition (L) of inter-island relabelings at L,
there exists a permutation 6 of {0,1,2,...,p(G)} such that

Z(W(L)) = (Zog-1(0)(L), Zg-1(1y(L), - - -, Zg—1 (p(cy) (L))-
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And, conversely, for every permutation 6 of {0,1,2,...,p(G)}, there exists a finite
composition ¥ (L) of inter-island relabelings at L such that Z(y(L)) = (Zs-1(0y(L),
Zg-1(1)(L)s -y Zo-1(p(ay)(L)). Tt follows that for any L € A,(G) with islands In(L),
L(L),...,1I (G)(L) there is a composition ¢ of inter-island relabelings at L with
istands To($(L)), I ($(L)), . -, Ly (¥(L)) such that [To(e:(L)| < |L($(L))] < -+~ <
[y (W(L ))| Thus, without losing the generality of G, we shall assume |Iy(L )| <
|I; (L )| <---<I (G)( )| when convenient.

E:z:ample 2.2. Let G be a graph with p(G) = 2 and let L € A,(G). Let ¢(L) =
w() 9 ¢1(L) Then

Z(L) = (Zo(L), Z1(L), Z>(L))
and

Z((L)) = (Za(L), Zo(L), Z1(L))-

It is easy to see that the relation ¥ on A,(G), given by (L1, Ls) € ¥ if and only
if Ly = 1(Lq) for some finite composition ¢ of inter-island relabelings at Lq, is an
equivalence relation. Moreover, the cardinality of each equivalence class under ¥ is
(p(G) + 1)L

Finally, we observe that the relation Q on A,(G), given by (L1, Ls) € Q if and only
if Ly = w(Ly) for some finite composition w of inter- and/or intra-island relabelings
at Ly, is an equivalence relation, and that there are (p(G) + 1)!2°(%)+1=¢ members in
each equivalence class containing L, where a is the number of atolls of L.

Ezample 2.3. If G = Ky 3, then A(G) = 5 and p(G) = 1. Furthermore, every
A-labeling of G is in A,(G), each such labeling induces 2 islands (one with cardinality
two and one with cardinality three), and |A,(G)| = 24. Finally, for L € A,(G),
[L]e| =4, |[L]e] =2, and |[L]o| = 8.

Ezample 2.4. If G = Ko + K4, then A(G) = 6 and p(G) = 1. The graph G has
720 different A-labelings, of which 144 are in A,(G). Among the islands in A,(G), 48
induce 2 islands of cardinality 3 each, and the other 96 labelings induce 2 islands with
cardinalities 1 and 5. We are not aware of the existence of a connected graph having
p(G) > 1 which has two labelings which induce islands having different cardinalities
as illustrated in the analysis of the disconnected graph Ky + Kj.

We close this section with a definition and related theorem which will prove useful
in section 4.

Let H be a graph. Then a path covering of H is a set of vertex-disjoint paths in H
which cover V(H). The path-covering number of H, denoted ¢(H), is the minimum
cardinality over all path coverings of H.

THEOREM 2.5 ([12]). Suppose G is a graph with |V(G)| =n. Then

1. MG) =n+c(G°) -2 if ¢(G°) > 2
2. MG) <n—1ifc(G°) =1.

3. Relating p(G) and A(G). In this section, we make use of configurations of
islands to explore the relationship between p(G) and A(G).
LEMMA 3.1. Let G be a graph with p(G) > 1, let L € A,(G) and let 0 <i < j <
p(G). Suppose x € {lc(I;(L)),re(I;(L))} and y € {lc( (L)), rc( i(L))}. Then
1. for each v € My (G, L), there exists a unique vertex w € My(G, L) such that
w and v are adjacent, and
2. mz(G,L) =my(G,L).
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0 3 ) 0
Fi1G. 3.1. Graph G with p(G) = 0.

Proof. Through some finite composition w of inter- and /or intra-island relabelings
at L, we may construct an element w(L) of A,(G) such that for some ¢, « is a hole
of w(L), My(G,L) = Ma-1(G,w(L)), and My (G, L) = Mq11(G,w(L)).

Proof of (1). Select v € M,_1(G,w(L)), and suppose to the contrary that for
every vertex w € My4+1(G,w(L)), {v,w} ¢ E(G). Select vertex w' € My11(G,w(L)).
If IMa41(G,w(L))| > 2, we produce an L(2,1)-labeling L’ of G with p(G) — 1 holes

L e fut,
Li(u) = {w(L)(u) 21 iu=uw

contradicting that w(L) is a A-labeling with the minimum number of holes. On the
other hand, if |[M,41(G,w(L))| = 1, then we produce an L(2,1)-labeling L’ of G with
span A(G) — 1,

rooN w(L)(u) if wL)(u) <a-1,
Li(u) = {w(L)(u) -1 otherwise,

contradicting that w(L) is a A-labeling. Thus, for each v € M, (G, L), there exists
vertex w € M, (G, L) such that w and v are adjacent. Uniqueness of w follows from
the distance 2 condition.

Proof of (2) follows immediately from (1). d

Ezample 3.2. Consider the graph G and L(2,1)-labeling L of G given in Figure
3.1. It is easily verified that L is a A-labeling of G with one hole at 2; hence p(G) < 1.
Since 1 = m5(G, L) # mo(G, L) = 2, Lemma 3.1 implies that p(G) < 1. Hence, there
must exist a A-labeling of G with p(G) = 0.

When there is no chance of confusion, we may hereafter suppress the functional
dependence of the various island notations on L. Likewise, we may suppress the
functional dependence of the notations M;(G, L) and m;(G, L) on G and L.

LEMMA 3.3. Let G be a graph with p(G) > 1 and let L € A,(G). Then A(G) >
S IC)] 2 p(G).

Proof. Let v be a vertex with label rc(lp) under L. Then from Lemma 3.1, it
follows that for 1 < j < p(G) and for y in {le(1;),rc(I;)}, v is adjacent to some vertex
in My Thus, A(G) > d(v) > T5D |0(1)| > 27 1=p(G). D

Recalling that L exists in A,(G) such that [lo| < [[1] < [lo] < --- < |y )l, we
note that the greatest lower bound for A(G) afforded by Zf(ﬁ) |C(I;)| occurs at such
L. We also note that the following result is an immediate consequence of Lemma 3.3.

THEOREM 3.4. For any graph G, p(G) < A(G).

For the remainder of this section, we shall consider the structures of graphs as-
sociated with p(G) = A(G) and p(G) = A(G) — 1, with particular attention paid to
A-regular graphs.

THEOREM 3.5. Let G be a graph with p(G) = A(G) and let L € A,(G). Then

1. every island of L is an atoll; particularly, I; = {25} for 0 < j < A(G).
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2. MQ) =2A(G).
3. G is A-regular and |V (G)| =0 mod (A(G) + 1).
4. For every j, 0 < j < A(G), Ma; is a dominating set of vertices in G.

Proof. With no loss of generality, we assume |Io| < [I1] < || < --- < [Tl

Proof of (1). By the monotonicity of the cardinality of the islands, it suf-
fices to show that [Iaq)| = 1 Suppose to the contrary that |[Ia(g)| > 2. Then
SAXD o)) = 2+ 2D o) = 24+ X297 > A(G) + 1, contradicting
Lemma 3.3. Since each island is thus an atoll and no two holes are consecutive [see
Lemma 2.2 in [12]], then I; = {2j} for 0 < j < A(G).

Proof of (2). From (1), rc(Iaq)) = 2A(G). But MG) = rc(Iyq)) = re(Ia)),
since A(G) = p(G).

Proof of (3). Since each vertex of G is assigned a coastal label under L, the result
follows from Lemma 3.1.

Proof of (4). For each fixed j, 0 < j < A(G), and each i # j, 0 < i < A(G), each
vertex in Mp; is adjacent to some vertex in My; by Lemma 3.1. 0

We note that in the next section, additional consideration will be given to the
structure of graphs in the case A(G) = p(G).

THEOREM 3.6. Let G be a graph with A(G) > 1 and p(G) = A(G) — 1. Then
2A(G) — 1 < X(G) < 2A(G). Furthermore, if A(G) = 2A(G), then

1. If A(G) =1, then G = mKy + nK;y where m,n > 1.
2. If A(G) =2, then G = nCy or H+ K, where H is a graph with p(H) = A(G).
3. If A(G) > 3, then G = H + K; where H is a graph with p(H) = A(G).

Proof. To show that 2A(G) —1 < A(G), we note that since K1 () is a subgraph
of G, every L(2,1)-labeling L uses at least A(G) + 1 distinct labels. Since p(G) =
A(G) — 1, it follows that s(L) > 2A(G) —

We next show that A(G) < 2A(G). For any graph G, if A(G) = 1 (resp. 2),
then A(G) = 2 (resp. < 4). In the case A(G) > 3, suppose to the contrary that
AG) > 2A(G) + 1, and let L € A,(G) with |Io(L)| < |[L(L)] < |I(L)] < --- <
[Ia(c)-1(L)|. We observe that [In()_2(L)| = 1; otherwise, 2~ |C(1,(L))| >
44 YAOS 1 0(1(L)| = 4+ (AG) — 3) = A(G) + 1, contradicting Lemma 3.3.
Since it follows that I;(L) = {2} for 0 < j < A(G) -2, then Ing)-1(L) = {2A(G) -
2,2A(G) = 1,...,A(G)}. But A(G) > 2A(G) + 1, implying that |[Ing)—1(L)] > 4
and hence |C(Ia(g)—1(L))| = 2. Therefore, by the arbitrariness of L, every element
of A,(G) induces A(G) islands, exactly A(G) — 1 of which are atolls.

By Lemma 3.1, each vertex in My(G, L) has degree A(G) and is thus adjacent
only to vertices with labels in UA(G) ' C(I;(L)). This implies that no vertex with
label 0 is adjacent to a vertex with label 2A(G) — 1. It similarly follows that no vertex
with label 2 is adjacent to any vertex with label 2A(G) — 1. Therefore, given fixed
vo € Mya(e)—1(G, L), we may produce a new M-labeling L' of G as follows:

/ _ L(U) if v 7& Vo,
L(U){ 1 if v=wg.

If mon(e)—1(G,L) > 2, then L' has A(G) — 2 < p(G) holes, a contradiction of
the minimality of p(G). If moa(g)-1(G, L) = 1, then L' is in A,(G) and induces
A(G) islands of which exactly A(G) — 2 are atolls. But this contradicts the earlier
observation that every element of A,(G) induces A(G) islands, exactly A(G) — 1 of
which are atolls. These contradictions imply that A(G) < 2A(G).

We now turn to parts (1), (2), and (3). Suppose A(G) = 2A(G), with p(G) =
2A(G) - 1.
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Proof of (1). Obvious.

Proof of (2). If A(G) = 2, then \(G) = 4 and p(G) = 1. If L € A,(G), then L
induces the following islands:

IO = {0}7 L = {27334}3 or

IO = {O, 1,2}7 Il = {4}, or

Iy = {07 1}7 11{374}

In the first of these cases, every vertex in M, has degree 2, and, by Lemma 3.1, is
adjacent to some vertex in My and some vertex in My. Thus, no vertex in Ms is
adjacent to a vertex in My. Moreover, since no vertex in M3 can be adjacent to a
vertex in My or My, then each vertex in M3 is isolated. Now fix v € M3. If mz > 2,
then we can produce a new A-labeling L’ of G with no holes by relabeling v with 1,
contradicting the minimality of p(G). Therefore ms = 1, whence G = H + K1, where
H = (V(G) — {v}, E(Q)) is a graph with p(H) = A(G) = 2. A similar argument can
be applied to the case Iy = {0,1,2}, I; = {4}.

If IO = {O7 1} and Il = {3,4}, then

1. every vertex in My is adjacent to some vertex in M3 and some vertex in My;

2. every vertex in M is adjacent to some vertex in M3 and some vertex in My;

3. every vertex in M3 is adjacent to some vertex in My and some vertex in M;; and

4. every vertex in M, is adjacent to some vertex in My and some vertex in M;.
Thus, G is a 2-regular graph and hence is a sum of cycles. Furthermore, since L has
a hole at two, each cycle of G has length 4k, k > 1. However, for any k > 2, it can
be easily shown that a cycle of length 4k has a A-labeling with no holes. Thus k£ = 1.

Proof of (3). Suppose A(G) > 3, p(G) = A(G) — 1, and A\(G) = 2A(G). Let
L € Ay(G) with [Ig| < || < |Io] < -+ < [Iag)-1]- Since A(G) = 2A(G) and
1C(IA(G)72) > QA(G) — 4, either |IA(G)72| = ‘IA(G)fll = 2 or |IA(G)72| =1 and
|[Ia(@)—1| = 3. In the former case, each vertex in My has degree A(G) + 1 by Lemma
3.1, a contradiction. In the latter case, I; is an atoll for 0 < j < A(G) — 2, and
Ing-1 = {2A(G) — 2,2A(G) — 1,2A(G)}. Therefore, by arguments identical to
those given for the first case of (2), Maa(g)—1 contains exactly one vertex v, and that
vertex is isolated. Thus G = H + K; where H = (V(G) — {v}, E(G)) is a graph with
p(H) = A(G). O

THEOREM 3.7. For arbitrary k > 1, there is no k-regular graph G with p(G) =
k—1 except for k=2 and G =nCy, n > 1.

Proof. Suppose k > 3 and let G be k-regular with p(G) = k — 1. By Theorem
3.6(3), A(G) = 2k —1 since G has no isolated vertex. Let L € A,(G) with |Io| < [I1] <
|Io] < -+ <|Ip—1|. Then I; = {25} for 0 < j < k—2and Iy = {2k —2,2k —1}. Let
v € Mpi—2. Then v can be adjacent only to vertices with labels in I;, 0 < j <k — 2,
implying d(v) = k — 1, a contradiction to the k-regularity of G. The cases k = 1,2
follow from inspection. ]

COROLLARY 3.8. Let G be a graph with 6(G) > 1. If §(G) < A(G) — 2, then
p(G) < A(G) —2.

Proof. By Theorem 3.4, p(G) < A(G). If p(G) = A(G), then by Theorem
3.5, G is A(G)-regular, and §(G) = A(G). So, suppose p(G) = A(G) — 1. Then
by Theorem 3.6, \(G) < 2A(G). If A(G) = 2A(G), then by Theorem 3.6 and the
assumption 6§(G) > 1, it follows that A(G) = 2, implying the contradiction §(G)—2 <
0. Therefore A(G) = 2A(G) — 1. Arguing as above, let L € A,(G) with |Iy] < |[1] <
|[I| < -+ < |Iag)—1]- Then every island under L is necessarily an atoll except
Ingy-1 = {2A(G) — 2,2A(G) — 1}, So, for v € Mop(g)—2, d(v) = A(G) — 1 by
Lemma 3.1, a contradiction to the assumption §(G) < A(G) — 2. O
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THEOREM 3.9. Let G be k-regular and let L € A, (G) with |Iy| < || < --- <
|Ip(G)|' Then
L If |I,)| =1, then p(G) = k and \(G) = 2k.
2. If Iyl = 2, then p(G) > 1, |I;] = 2 for all 0 < j < p(G), k =2p(G), and
MG)=3p(G)+1=3k+1.
3. If Iye| >3, then k> 2, p(G) <k —2, and \(G) > k + 2+ p(G).

Proof. (1) There are p(G)+1 islands of L, each of which is an atoll since |I,)| =
1. Thus, by Lemma 3.1, k¥ = p(G), from which it follows from Theorem 3.5 that
AMG) = 2k.

Proof of (2). If p(G) = 0, then Iy = {0,1}, implying the contradiction that
AMG) =1. So p(G) > 1. We now show that |I;| = 2 for all 0 < j < p(G) by showing
that |I0| = 2.

We observe that each island under L contains only coastal labels since |1,c)| = 2.
Let w be a vertex with L(w) € I,q). Since G is k-regular, Lemma 3.1 implies
that for every label | € I; # I ), w is adjacent to some vertex labeled /. Hence,

Zfi%;)_l |I;| = k. By similar consideration of a vertex v with L(v) € I, we have
Zficf) |I;| = k. Thus, by the two summations, |Io| = [I,@)| = 2.

Since |I;| = 2 for all j, 0 < j < p(G), we have I; = {35,3j + 1}. Hence, \(G) =
3p(G) + 1. But as indicated above, for v a vertex with L(v) = 0, v has neighbors
with labels precisely the elements of Uficf) I;. Hence, k = |Uficf) I;| = 2p(G), so
MG) =2k +1.

Proof of (3). Since I,y > 3, the label A(G) — 1 is an interior label. Thus, for
vertex v with L(v) = A(G) — 1, the neighbors of v are assigned distinct labels not in
{MG) —2,A\(G) — 1, \(G)}, implying that L assigns at least d(v) + 3 = k + 3 labels.
Hence, A(G) > (k+3+p(G)) —1=k+2+ p(G).

To show that p(G) < k — 2, we note by Theorem 3.4 that p(G) < k. Since not
every island of L is an atoll, then p(G) # k by Theorem 3.5. The result follows by
Theorem 3.7 and the observation that |/, > 3 implies that G’ cannot be a sum of
4-cycles. |

We note that K, and the complete multipartite graphs K5 o . o satisfy Theorem
3.9(1) and (2), respectively. In regard to Theorem 3.9(3), the bound k + 2 + p(G)
is not necessarily sharp. For example, we argue as follows that there is no 5-regular
graph G such that p(G) = 3 and A(G) = 10. Suppose to the contrary that such
a graph exists. Let L € A,(G) such that |Iy| < |[I1] < |I2] < [I3]. Then |Ip| < 2
(for otherwise A(G) > 10). If |Iy| = 2, then Iy = {0,1},I; = {3,4},I, = {6,7} and
Is = {9,10}. Hence, by Lemma 3.1, each vertex v has degree 6, a contradiction.
Thus, |Ip] = 1. Noting that |I;]| < 2, if |[I;| = 2, then Iy = {0}, = {2,3}, I, = {5,6}
and I3 = {8,9,10}. Hence, by Lemma 3.1, each vertex v with L(v) = 0 has degree
6, another contradiction. Thus |[;| = 1. Now, |Io| is either 1, 2, or 3. If |I5| = 3,
then Iy = {0},I; = {2}, = {4,5,6}, and I3 = {8,9,10}. Thus, by Lemma 3.1,
each vertex v with L(v) = 0 has neighbors with labels 2, 4, 6, 8, and 10. But by the
distance 1 condition and the 5-regularity of G, each vertex w with L(w) = 9 has a
neighbor with label 0, a contradiction. A similar argument which focuses on vertices
with labels 0 and 8 demonstrates that |I3| cannot be 2. Hence, |I3| = 1. In this case,
we have Iy = {0}, I; = {2}, 1> = {4}, and I3 = {6,7,8,9,10}. So, by Lemma 3.1 and
the 5-regularity of G, each vertex v with L(v) # 0 has a neighbor labeled 0. Thus,
My is a dominating set, and |V(G)| = 6myg (since G is 5-regular). Since mg = myg
by Lemma 3.1, Mj( is a dominating set as well. Therefore, since My # ¢, there are
adjacent vertices with respective labels 9 and 10, a contradiction.



216 JOHN P. GEORGES AND DAVID W. MAURO

We have been unable to find a 5-regular graph G with p(G) = 3. We conjecture
that if G is a k-regular graph with p(G) > 1, then p(G) divides k.

4. Relating p(G), A(G), and p(G). For purposes of this discussion, it will
be convenient to consider the two cases A(G) > n — 1 and AMG) < n — 2, where
n = |V(G)|. We begin with the case A(G) > n — 1.

THEOREM 4.1. Let G be a graph with order n and A(G) > n — 1. Then

1. p(G) =¢(G) —1=XG)— (n—1), and
2. for L € A,(G), mi(G,L) =0 or 1.

Proof of (1). Since A(G) > n — 1, it follows from Theorem 2.5 that ¢(G°) — 1 =
AMG) = (n—1).

Let C be a path covering of G¢ with minimum order. Then C induces a A-labeling
of G with ¢(G°) — 1 holes (see [12]). Hence, p(G) < ¢(G®) — 1= A(G) — (n — 1).

Now let L € A,(G) and let H(L) and N(L) denote the set of holes of L and the
set of labels assigned by L, respectively. We observe that |H(L)| = p(G) and that
|H(L)|+|N(L)|—1 = X(G). Thus, \(G) = (n—1)+(c(G°)—1) = |H(L)|+|N(L)|-1 =
p(G) + IN(L)| — 1< p(G) +n — 1, giving p(G) = AG) — (n — 1).

Proof of (2). Select L € A,(G). We have seen A\(G) =n +¢(G) —2 = |[N(L)| +
p(G) — 1. Tt thus follows that n = |[N(L)| by (1). d

COROLLARY 4.2. Let G be a graph with order n and A(G) > n — 1. Then

1. ¢(G°) < A(G)+1, and
2. p(G) < x(G) —1.
Proof.
1. By Theorems 4.1 and 3.4, ¢(G°) — 1 = p(G) < A(G).
2. For any graph G, ¢(G¢) < x(G). The result follows by Theorem 4.1. d

We now turn our attention to graphs G with A(G) < n — 2, and consider the
upper bound on the invariant x(G) given by Fishburn and Roberts in the following
theorem.

THEOREM 4.3. See 7. If G is a graph such that p(G) > 1 and \(G) < n—2, then
1(G) < NG) + p(G).

It is easily seen that for p(G) > 1, a lower bound for u(G) is A(G) + 1. Thus by
Theorem 4.3, u(G) = AMG) + 1 if p(G) = 1. Tt is also immediate from Theorem 3.4
that an alternative upper bound for u(G) is A(G) + A(G).

We now improve the upper bound of A(G) + p(G) in the cases p(G) = A(G) — 1
and p(G) = A(G).

THEOREM 4.4. Suppose G is a graph with order n, A(G) < n —2, and p(G) =
A(G) > 1. Then u(G) = X\(G) + 1.

Proof. By Theorem 3.5, G is A-regular with A(G) = 2A, and for each L in A,(G),
L induces A + 1 islands I, Iy, ..., Ia, where I; is the atoll {2i}. By Lemma 3.1 and
Theorem 3.5(3), then n = mo(A + 1), implying 2A < mg(A + 1) — 2. This gives
mo > 2.

By Lemma 3.1, we may denote the mg elements of My; by v1,2i,v2.2i, - -, Umg,2i
where, with no loss of generality, v; 2; is adjacent to vj2i42. In particular, with j fixed
equal to 1, v1,0,v1,2,V1,4,--.,01,24 is a path in G. It now suffices to produce a no-hole
L(2,1)-labeling L* of G with span 2A + 1 = A(G) + 1, which we do as follows:

vy JL(w)+1 if v = vy,9; for some 4,
L) = { L(v) otherwise. 0

THEOREM 4.5. Suppose G is a graph with order n, A(G) < n —2, and p(G) =
A(G) —1. Then
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1. (@) = XG) if AG) =1,
2. u(G) =XG)+1if AG) > 2.

Proof. By Theorem 3.6, 2A(G) — 1 < A(G) < 2A(G). We first consider the case
AMG) =2A(G).

Case 1: A(G) =2A(G).

If A(G) =1, then p(G) = 0, implying u(G) = A(G).

If A(G) = 2, then by Theorem 3.6(2), G is isomorphic to either mCy (for some
positive integer m) or H + K7 where p(H) = A(G) = 2. In the former case, A\(G) =
4 <n—2=4m—2, implying m > 2. By labeling the vertices of m—1 copies of Cy with
integers 0, 3, 1, 4, and labeling the vertices in the remaining copy of C; with integers 1,
4,2, 5, we produce a no-hole L(2, 1)-labeling of H with span 5 = A\(G)+1. Thus, there
exists a no-hole labeling of G with span A(G) + 1 as well. But p(G) = A(G) -1 =1,
so f1(G) > A(G). This implies u(G) = A(G) + 1. In the latter case, Fishburn and
Roberts [6] show that H is necessarily isomorphic to mCs 4+ kCg for some integers
m,k > 0. Since 4 = A\(G) < n—2 = (3m + 6k + 1) — 2, it follows that m > 2 or
k > 1. In either event, it is easy to establish a no-hole L(2,1)-labeling of H with span
5 = A(G) + 1, from which it follows as above that pu(G) = A\(G) + 1.

If A(G) > 3, then by Theorem 3.6(3), G is isomorphic H + K7 where p(H) =
A(G). But A(G) = A(H), so by Theorem 3.5, A(H) = 2A(H) and |V(H)| =
w(A(H) + 1) for some w > 1. Hence, since A\(H) = AMG) < n — 2, we have
2A(H) < n—-2=|V(H)|+1-2 = w(A(H) +1) — 1, implying w > 2. This
implies A(H) < |V(H)| — 2. By Theorem 4.4, u(H) = M(H) + 1 = M(G) + 1, which
implies that H (and therefore G) have no-hole labelings with span A(G) + 1. But
p(G)=A(G) —1>1,s0 u(G) > A(G). Thus p(G) = A\(G) + 1.

We now turn to the case A\(G) = 2A(G) — 1. Let L € A,(G), where || <
|I| < --- < |I]. Then I; = {2j} for 0 < j < p—1and I, = {2p,2p+ 1} =
{2A(G) — 2,2A(G) — 1}. Hence, L assigns p(G) +2 = A(G) + 1 distinct labels, each
of which is coastal. By Lemma 3.1, m; = my for every label ¢ assigned by L. Therefore
n =mo(A(G)+1), giving M(G) = 2A(G)—1 < n—2 = mo(A(G)+1)—2, which implies
my > 2. For 0 < i < A(G)—1, let Ma; = {v1,2:,v2,2i,...,VUmg,2:}- By Lemma 3.1 and
without loss of generality, we may suppose v;2; is adjacent to vj 242, 1 < j < mo,
0 <4 < A(G) — 2. In particular, with j fixed equal to 1, v1,0,v1,2,01,4, - - -, V1,2A(G)—2
is a path in G. Tt now suffices to produce a no-hole L(2,1)-labeling L* of G with span
AG) + 1 = 2A(G), which we perform as follows:

L) = L(v) if v =wvq,9; for some 7,0 < i < A(GQ) — 1,
v = L(v)+1 otherwise. 0

5. On the structure of graphs G with p(G) = A(G). Asshown in Theorem
3.5, for each graph G with p(G) = A(G) and each L € A,(G),

1. G is A-regular with |V(G)| = 0 mod (A(G) + 1);

2. MG) =2A(G);

3. M;(G, L) is a dominating set for each j, 0 < j < A(G);

4. I; = {25} for each j, 0 < j < A(G).
Let Ga,; be the collection of connected graphs G with p(G) = A(G) = A and order
t(A + 1) (implying mo;(G,L) =t for every L € A,(G) and each j, 0 < j < A(G).)
Let Ba,: be the subcollection of graphs in Ga ; which are bipartite. We note that
Ga1 = {Kat1}. We thus restrict our attention to the case ¢ > 2, with particular
emphasis on t = 2.
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In [7], Fishburn and Roberts construct connected graphs G with \(G) = 2m,
[V(G)] = 2(m + 1), and p(G) = m, for m > 2. We note that for m = 2, the
constructed graph is isomorphic to Cg, and for m > 3, the constructed graph is not
bipartite. Thus, it follows that for A > 2, By 2, and Ga 2 are not empty. We also note
that 3272 = 9272.

The following lemma will assist in characterizing Ba o for all A > 2.

LEMMA 5.1. If G is a connected A-regular graph of order 2(A+1), then G € Ga 2
or M(G) =2A + 1.

Proof. Since G¢ is a (A + 1)-regular graph on 2(A + 1) vertices, then by Dirac’s
theorem [5], G¢ has a Hamilton path. Hence, by Theorem 2.5, A(G) < |V(G)| -1 =
2A + 1. It suffices to show that if A(G) < 2A, then G € Ga 2.

Let L be an arbitrary L(2, 1)-labeling of G with span s(L), A(G) < s(L) < 2A. If
v and w are vertices in V(G) such that L(v) = L(w) =, then {v,w} is a dominating
set due to the distance conditions and regularity and order of G. Hence, there exists
no vertex with label I — 1 or [ + 1, which in turn implies m; + m;4+1 < 2 for each ¢,
0 <i < s(L) — 1. Therefore, |V(G)| =2A+2 < QLWJ, giving s(L) > 2A. Since
L was arbitrary, A(G) > 2A as well, giving A(G) = 2A.

Now let L be an arbitrary A-labeling of G. To see that L necessarily has A holes,
we note that since A(G) = 2A, then |[V(G)| = 2A+42 = (mg+mq)+(ma+m3)+---+
(maa—2+maa—1)+maa = mo+(mi+ma)+ (mz+ma)+-- -+ (Mmaa—1+maa). Since
m;+m;+1 < 2 as above, then m; +m;41 = 2 for all i, 0 < ¢ < 2A—1, and mg, ma = 2
as well. Hence, for 0 < i < 2A — 2, (myy2 +mit1) — (Migp1 +my) = mipo —m; =0,
which gives m; = 2 for even i and m; = 0 for odd i. 0

Now, for A > 2, let AB be a connected A-regular bipartite graph with order
2(A +1). It is easy to see that B can be obtained by deleting a perfect matching
from Kay1,A+1, and is unique up to isomorphism.

THEOREM 5.2. For A > 2, Ba o= {aB}.

Proof. Since AB has diameter 3, then for every vertex v € V(aB), there ex-
ists a unique vertex w € V(aB) such that d(v,w) = 3. Hence there exists an
L(2,1)-labeling of AB with span 2A. Thus, by Lemma 5.1, AB € Ga 2, implying
AB € BA’Q. 0

From Theorem 5.2 and the discussion preceding Lemma 5.1, it follows that
|Gm.2| > 2 for m > 3. We further note that Bz 2 = {Qs}.

To determine G3 5, we consider the four nonisomorphic connected 3-regular graphs
of order 8 (see [1]) as shown in Figure 5.1.

The graph in Figure 5.1(a) is the graph constructed by Fishburn and Roberts,
while the graph in Figure 5.1(b) is Q3. Each is clearly in Gs 2. On the other hand,
if G € Ga 2, then V(G) can be partitioned into A(G) + 1 sets containing precisely 2
vertices which are exactly distance 3 apart. Since the diameter of the graph in Figure
5.1(d) is 2, its A-number is 7 by Lemma 5.1. And since, in Figure 5.1(c), there is a
vertex which is at most distance 2 from every other vertex, that graph is not in Gs ».
It follows from Lemma 5.1 that the A-number of this graph is 7 as well.

We next introduce a particular graph construction which will aid in characterizing

Ga 2.

)

5.1. The S-exchange of the sum of two graphs. Let G be a graph with
V(G) = {vp,v1,v2,...,v,—1} and for i = 1,2, let ¢; be a graph isomorphism from G to
graph G; where ¢;(v;) = v;;. Let e = {v;, v} € E(G). Then the e-exchange of graph
G1 + G2, denoted X.(G1 + G2), is the graph with vertex set V(G + G2) and edge set
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(©) (d)

Fic. 5.1. Four nonisomorphic connected 3-regular graphs of order 8.

(E(G1+G2)—{¢1(e), p2(e)}) UT (e), where T'(e) = {{vy1,vs 2}, {vr,2,vs,1}}. Further-
more, if S C E(G), then the S-exchange of graph G1+G2, denoted Xg(G1+G2), is the
graph with vertex set V(G + G2) and edge set (E(G1+G2) — U, cgi¢1(e), p2(e)}) U
Uees T(e).

By way of illustration, we note that if G is isomorphic to K3 and S = E(G),
then Xg(G1 + G2) is isomorphic to Cg. Additionally, if G is isomorphic to K4 and e
is any edge in E(G), then X.(G1 + G2) is isomorphic to the graph in Figure 5.1(a).
We also note that for any v € V(G), if S(v) = {e € E(G)|e is incident to v}, then
Xs(v)(G1 + G2) is isomorphic to G + Gb.

THEOREM 5.3. Let H be a connected A-reqular graph with order 2(A+1). Then
H € Gaz if and only if there exists S C E(Kay1) such that H is isomorphic to
Xs(Kay1 + Katr).

Proof. (=). Let H € Ga 2 and let L be a A-labeling of H. Then for 0 < i < 2A,
m,; = 0 if ¢ is odd and m; = 2 if ¢ is even. Let vp; and vg 2 denote the two vertices in
V(H) with label 0 under L. For ¢ = 1,2 and for 1 < j < A, let v;; be the vertex in
V(H) which has label 25 and which is adjacent to v ;. Also let H; be the subgraph
of H induced by {vo,v1,i,--.,va,} and let W be the edge set of Hf. (We note that
H, is isomorphic to Hy.) Setting S = ¢, (W) (where ¢ is the graph isomorphism
from G to G such that ¢(v;) = v; 1, where G = Ka4q and V(G) = {vo, v1,...,va}),
we easily see that H is isomorphic to Xg(Kat+1 + Kay1)-

(«<). Suppose S C E(Kay1) such that H is isomorphic to Xs(Ka+1 + Kat1)-
Let L be the L(2,1)-labeling of H such that L(v;;) = 2j for ¢ = 1,2. Since the span
of L is 2A < 2A + 1, Lemma 5.1 implies that H € Ga . O

It is easily seen that the graphs in Figures 5.1(a) and 5.1(b) are S-exchanges of
K, + K4, where, in the latter case, |S| = 2 (for independent edges) and in the former
case, |S] = 1.

To this point, we have restricted our attention to elements of Ga ; for t = 2. Using
two new graph constructions, we next extend the discussion to 2 < t < A(G).

The graph Q,. For r > 1, let X =rK, and Y = rK;. We form a new graph
Q, by joining the vertices of Y to certain vertices of X. Formally, let V(Q,.) =
V(X)UJV(Y) where

1. V(X) = U2y Bi Bi = {bijl0 < j <r—1}, and
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ao ai

a2

Fic. 5.2. The graph Q3.

UiZy Ri, where R; = {{b; ;,b; x}|0 < j < k <r—1}, and
= UiZo Si, where S; = {{a;, by i }0 <m < v —1}.
We note that € is isomorphic to K5, and 25 is isomorphic to Cg. We illustrate €23
in Figure 5.2.
We make the following observations about the structure of €2,.:
Obs. 1) Q, is r-regular and has order r* +r; |V(X)| =r? and |V (V)| = r;
Obs. 2) for 0 < i,j <r—1, d(aj,a;) = 3 for j # 1;
Obs. 3) for 0 <4,5,k, I <7 —1

1 ifi=kandj#I,
d(bij,bey) =4 2 ifi#kandj=1,
3 otherwise;

Obs. 4) For 0 <i,5,k <r—1,

d(aivbj,’f) - {2 otherwise.

LEMMA 5.4. Let L be an L(2,1)-labeling of Q... Then
1. for every y € V(Y) and every x € V(X), L(z) # L(y);
2. for0<t<s(L)—1, my+musq <.

Proof. By Obs. 4, (1) follows.

To show (2), suppose to the contrary that there exists ¢, 0 < ¢ < s(L) — 1, such
that m; + myp1 > r+ 1. From Obs. 2, 3, 4, either every vertex labeled ¢ (resp.
t+1)is in V(X) or every vertex labeled ¢ (resp. t 4+ 1) is in V(Y). Furthermore, if
every vertex in My |J M1y is in V(Y'), then we have the contradiction that r +1 <
my +myp1 < |V(Y)| = r. Similarly, if every vertex in M |J M1 is in V(X), then by
the pigeon-hole principle, there exist two vertices b; j, by, in M; J M1 where i = k.
Thus, b; ; and by, are adjacent, a contradiction of the assumption that their labels
under L differ by at most 1. We have therefore established that either M; C V(Y)
and M1 CV(X) or M; CV(X) and M1 CV(Y).

Suppose the former. Let s; = {ila; € M;} and let s;41 = {k|bjx € My for
some j}. We observe that |s;| = m;, and from Obs. 3, |s;41| = miy1. Noting that s;
and s;41 are subsets of {0,1,2,...,7 — 1}, |s¢| + |s¢+1] = ms +myy1 > 7+ 1 implies
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s¢[)st+1 # ¢. Thus, for some integers y,z, 0 < y,z < r — 1, there exist adjacent
vertices a, and b, , in M; |J M;41, a contradiction of the distance one condition on L.
A similar argument can be made in the latter case. 1]
THEOREM 5.5. Forr >1, Q, € G,,.
Proof. We first establish that A(€2,) = 2r. Suppose A(Q2) < 2r. Let L be an

L(2,1)-labeling of Q, with span 2r — 1. By Obs. 1, 72 + 7 = |V( )| = Zf;gl m;.

However, by Lemma 5.4, 37" "m; = Z;:é(mgj + maoj+1) < r?, a contradiction.
Hence, A(Q) > 2r. To show that A(Q2.) = 2r, let By = {b;;|(j — i) = k mod r},
0 <k <r —1. Noting that |By| = r and that vertices in By, are pairwise distance 3
apart, we produce an L(2,1)-labeling L of €, as follows:

(2% ifve By,
L(v) = {27" otherwise.

To show p(Q ) =r, let L* be any \- labeling of Q.. Then r? +r = Z?;o m; =
Moy + Zl 0 U By Lemma 5.4, Zfrol m; < r?, implying ma, = r. By Obs. 1 (the
r-regularity of , in particular), Ma, is therefore a dominating set. Thus, ma,_; = 0.

Proceeding by induction, it is easily seen that for 0 < j < 2r,

— {r if j is even,
7710 if jis odd.
Hence, p(Q2.) = 1. O
Theorem 5.5 establishes the fact that G, , is nonempty. Earlier discussions have
demonstrated that G, 1 = {K,41}, and that for r > 2, G, 5 is nonempty. The question
is thus raised: for what values of ¢ is G, ; nonempty?
To see that such graphs exist for arbitrary ¢ < r, we introduce one last graph
construction.

The graph (2, ;. Fix integers ¢ and 7 such that 1 <t <r. Let X =¢K, and let
Y =tK;. We form a new graph 2, ; by joining the vertices in Y to certain vertices
in X Formally, let V(Q, ;) equal V(X)|JV(Y), where

V(X)=U!ZiBi, Bi = {bi;l0<j <r—1}, and

2 V( ) {ao,al,.. Ay — 1}

Let E(Q,:) = RUUSUT, where

3. R=J_y Ri where R; = {{b;;,bi4}|0 <j <k <r—1}, and

4. 5= Uf;é S;, where S; = {{a;, bm,i}|0 <m <t —1}, and

5. T ='Zy Ti, where T; = {{a;, b j}|t <j <r—1}.

We illustrate {4 2 in Figure 5.3.

We note that {25 ; is isomorphic to K3, and in general (2, ; is isomorphic to K.
We also note that Q, = €, ,, and that Q32 is isomorphic to the graph in Figure
5.1(a).

Arguments similar to those used in the analysis of 2, demonstrate that Q, , is a
graph G with p(G) = r and my;(G,L) =t for L € A,(G).

We observe that the edges of 2, , may be manipulated to produce other graphs G
with p(G) = r and m;(G,L) =t for L € A,(G). Such a graph is illustrated in Figure
54 forr =4,t=2.

We point out that the graphs in Figures 5.3 and 5.4 can be constructed as S-
exchanges of K5 + K.

We have been unable to establish that G, ; is nonempty for ¢ > r, and conjecture
that G, = ¢ for all t > r.
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ao ai

bo,0 bo,1 b1,0 b1

bo,3 bo,2 b1,3 b1,2

Fi1G. 5.3. The graph Q4 2.

ag ai

bo
bo.o bio bi1

bo.3 bo.2 b1 3 bi2

Fic. 5.4. Graph G with p(G) =4 and m;(G,L) =0 or 2 for L € A(G, p).

6. Closing remarks. We have offered several conjectures about the structure
of nonfull colorable graphs in earlier sections of this paper. Throughout our investi-
gations of graphs G with positive p(G) we found none with \(G) > 2A(G). Thus, we
conjecture that if A(G) > 2A(G), then p(G) = 0.

Acknowledgement. The authors wish to thank the referees for their suggestions
which greatly improved the paper.
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