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Abstract 
 

Background: Understanding factors which predict progression of renal failure is of great interest 

to clinicians. 

 

Objectives: We examined machine learning methods to predict the composite outcome of death, 

dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) 

data set.  

 

Methods: We specifically evaluated a generalized linear model, a support vector machine, a 

decision tree, a feed-forward neural network and a random forest evaluated within the context of 

10 fold validation using the CARET package available within the open source architecture R 

program.  

 

Results: We found that using clinical parameters available at entry into the study, these computer 

learning methods trained on 70% of the MDRD population had prediction accuracies ranging 

from 66-77% on the remaining 30%. Although the support vector machine methodology 

appeared to have the highest accuracy, all models studied worked relatively well.  

 

Conclusions: These results illustrate the utility of employing machine learning methods within R 

to address the prediction of long term clinical outcomes using initial clinical measurements. 

 

Keywords 

hypertension, blood pressure, chronic renal disease, correlation, machine learning, cardiovascular 

disease  

 

Introduction 

The modification of diet in renal disease study was a landmark clinical trial examining the 

effectiveness of blood pressure control and dietary protein restriction on renal disease 

progression.1 Although the maneuvers studied in the project were not very successful at 

attenuating renal disease progression, the most commonly used formula for estimating 

glomerular filtration rate (eGFR) was developed from this study. We chose to use this data set to 

examine whether we could predict outcomes using different mathematical methodologies on this 

population. 

 

Methods 

 

A retrospective study was performed using data acquired in the “Modification of Diet in Renal 

Diseases” or MDRD study.2 Results from this study have been reported elsewhere.1-5 This data 

containing 25,903 records was imported into R Studio and simplified into 840 unique patient 

records. Within this data, we found 692 subjects who had complete records for 76 variables 

determined on the initial visit which were used for modeling (Appendix 1). The outcome 
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measurement used was a composite variable consisting of death, dialysis or a doubling of the 

serum creatinine.6   

 

All analysis was performed using the open source program R. We used a generalized linear 

(logistic regression) model as our default.7 In addition, we examined the utility of a support 

vector machine which involves the multi-dimensional sorting of data based on the development 

of a “hyperplane” which effectively separates the data.8 We also examined the performance of 

decision trees with the RPART package and random forests with the randomForest package.9,10  

The decision tree approach utilized three or more decisions.  With the random forest technique, 

we found that the optimal number of trees was around nine.   Different feed forward neural 

network architectures were explored using the nnet and neuralnet packages.11 We found optimal 

performance with one hidden layer containing ten hidden neurons after this exploration. The 

CARET package was used for comparison of the mature models employing ten folds and three 

repeats.12 Other packages within R were used for different specific tasks (e.g., rminer to 

determine relative importance of variables, nnet for construction of the neural network, 

randomForest (RFor) for constructing random forests).11,13-17 Representative R routines for 

“cleaning the data” (e.g., centering and scaling, Appendix 2) splitting the data into training 

(70%) and testing (30%) sets, and comparing the different models with the categorical output 

(Appendix 3) are attached.  

 

Results and Discussion  

The MDRD study is famous for yielding clinical estimates of glomerular filtration rate, but it 

should be emphasized that it was developed to test whether dietary protein restriction would 

ameliorate the progression of renal failure. This study has been reviewed extensively elsewhere, 

but for the purpose of our interest, we had a group of patients with some degree of chronic 

kidney disease who developed a composite endpoint consisting of death, dialysis or a doubling 

of the baseline creatinine. Ergo, it was possible to fit the baseline data with different models.  

 

We found that each of the models studied had some success at prediction. It turns out that for 

each of the models, specificity was superior to sensitivity and accuracy ranged between 66 and 

77%. When we examined the Receiver Operator Curves (ROC, Figure 1), it appears that the 

SVM and the RFor models performed somewhat better than the other models. When we 

examined which variables were most important in these models with the rminer package (Figure 

2), we found that the baseline serum creatinine was featured in the top three variables (ranked in 

descending order) in all of the models and was the top variable in the GLM, the SVM and the 

RFor models. This is not terribly surprising as the initial renal function would be expected to 

predict outcomes in this population with chronic kidney disease. Of interest, dietary protein and 

blood pressure did not achieve great importance in these different models. Again, this was not 

surprising as these interventions did not significantly affect outcomes. Another point to 

emphasize was that each of the models we used did relatively well (Table 1). While we 

emphasized that all of the analysis was done within the context of ten fold validation with 

averaging on the training set within the CARET package (see Appendix 3), the truth is that this 

didn’t seem to make much difference for any of the aforementioned models which performed 

almost identically when just trained on the training set without ten fold validation. Variations in 
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the relative size of the training and testing sets (varying from 50:50 to 85:15) also did not 

significantly affect our results (data not shown).  

 

 

Figure 1:  Receiver operator curves (ROC) showing sensitivity against 1-specificity for 

generalized linear model (GLM) - red color, area under curve (AUC) = 0.59, support 

vector machine (SVM) – green color, AUC=0.77, decision tree (RPART) – blue 

color, AUC=0.64, neural network (NNet) – orange color, AUC= 0.67, random forest 

(RFor) – purple color, AUC= 0.72  developed with the training set (70% of total) and 

applied to the testing set (30% of total) using a categorical output. 
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Figure 2:  Relative importance of variables in the SVM model. Similar plots were produced and 

analyzed for all of the models studied. For all but the neural network model, the top 

three variables accounted for the vast majority of the model. The top three variables 

in importance for each model were as follows. GLM: SCr (serum [creatinine]), GFR 

(glomerular filtration rate) and Pro (proteinuria); SVM: SCr, Pro and Bicarb (serum 

[bicarbonate]); RPART: SCr, pack-years, and Pro; NNet: UPot (urinary [potassium], 

Packs (packs of cigarettes/day) and SCr, and RFor: SCr, GFR and Prot. 

 

 
 

 

Among subjects that had complete records, 591 were Caucasian, 51 were Black and 34 identified 

themselves as Hispanic (the remaining 16 were spread among other categories). To examine 

whether the models developed on the training set described above performed well with different 

racial groups, we looked at the performance on the Caucasian, Black and Hispanic subsets. We 
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found that the predictive models performed similarly across the different racial subsets (Figure 

3). It is important here to point out that the predictive value of these models was superior in these 

racial subsets to that achieved in the aforementioned randomly selected testing set, in part, 

because they were tested on some patients who were in the original training set. Therefore and 

due to these difficulties, ethnicity is an area that shows promise but will be explored later in 

another study with different dataset. 

 

 

Figure 3: Receiver operator curves (ROC) showing sensitivity against 1-specificity for 

generalized linear model (GLM) - red color, support vector machine (SVM) – green 

color, decision tree (RPART) – blue color, neural network (NNet) – orange color, 

random forest (RFor) – purple color, developed with the training set (70% of total) and 

applied to testing set consisting of all Caucasian, Black and Hispanic patients, 

respectively. Note that some patients in these racial groups were used in both the 

training and testing sets. Although the linear model did not perform well in the 

Hispanic subset, other models especially the random forest, neural network and 

support vector machine models performed extremely well in all racial subsets. 

 
 

 

These data are of interest for several reasons. First, they show that creation of several different 

prediction models with clinical data sets is relatively straightforward within the open source 

architecture of R. Second, these data demonstrate that all of these models perform relatively well 

and end up “choosing” the same key clinical elements to predict clinical outcomes. Moreover, 

the models validate the clinical impression that knowing the severity of patient’s renal failure is 

an excellent predictor of a composite clinical outcome which is weighted toward renal functional 

deterioration. For future projects, we recommend expansion of these models to include other 

clinical variables not included in the MDRD study which are known to reflect CKD progression. 
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Table 1: Confusion Matrices with Different Models 

Model Yes No Specificity Sensitivity Accuracy 

Reference 50 134    

GLM 18/50 100/134 82% 36% 64% 

SVM 23/50 119/134 89% 46% 77% 

RPart 21/50 108/134 81% 42% 70% 

NNet 19/50 102/134 76% 38% 66% 

RForest 20/50 114/134 85% 40% 73% 

Sensitivity refers to true positives divided by the sum of true positives and false negatives. 

Specificity refers to the true negatives divided by the sum of true negatives and false positives. 

Accuracy is calculated on the testing set as the fraction of all assignments which are correct.  
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Appendix 1: 

Var Name 

 

"STDWT" 

"CURHT" 

"WEIGHT" 

"BMI" 

"GFR" 

"MAP1" 

"UCRE" 

"UUN" 

"UPHO" 

"UVOL" 

"UPOT" 

"SUN" 

"SCR" 

"TCHOL" 

"TRAN" 

"ALB" 

"HBA1C" 

"PHOS" 

"TRIG" 

"LDL" 

"HDL" 

"POT" 

"BICARB" 

"CAL" 

"MG" 

"HB" 

"HCT" 

"DPRO" 

"DCALS" 

"DPHOS" 

"IRON" 

"WBC" 

"MAP" 

 

"UNEPI" 

"STUDY" 

"DIET" 

"PRO" 

"SYS" 

"DIA" 

Var Description 

 

Ideal Weight 

Height 

Weight 

Body Mass Index 

Glomerular Filtration Rate 

Mean Arterial Pressure 1 

Urinary [Creatinine] 

Urinary [Urea Nitrogen] 

Urinary [Phosphate] 

Urine Volume 

Urine [Protein] 

Serum Urea Nitrogen 

Serum Creatinine 

Total Cholesterol 

Transferrin 

Albumin 

HBA1C 

Serum Phosphate 

Serum Triglycerides 

Low Density Lipoprotein 

High Density Lipoprotein 

Serum Potassium 

Serum Bicarbonate 

Serum Calcium 

Serum Magnesium 

Hemoglobin 

Hematocrit 

Dietary Protein 

Dietary Calcium 

Dietary Phosphate 

Serum Iron 

White Blood Cells 

Mean Arterial Pressure 

during Study 

UNEPI 

Study Group 

Diet Study 

Protein Study 

Systolic Blood Pressure 

Diastolic Blood Pressure 

Var Name 

 

"UNADJGFR" 

"BSA" 

"HT" 

"RACE" 

"EDUC" 

"OCCUP" 

"HOME" 

"EMPL" 

"RELDIET" 

"MARSTAT" 

"ALONE" 

"DIAB" 

"CAD" 

"PEPULC" 

"CANCER" 

"CVD" 

"PVD" 

 

"HYPERTEN" 

"HYPERLIP" 

"SURGERY" 

"PACKS" 

"YEARS" 

"Pyr" 

"SODIUM" 

"CHLORIDE" 

"URIC" 

"BILI" 

"LDH" 

"SGOT" 

"GLUC" 

"POT_FOOD" 

"POT_BOTH" 

"SOD_FOOD" 

"SOD_BOTH" 

"CAL_FOOD" 

"CAL_BOTH" 

"B0AGE" 

 

Var Description 

 

GFR not adjusted 

Body Surface Area 

Height during study 

Race 

Education level 

Occupation code 

Stay at Home 

Employment 

Diet Group 

Marital Status 

Live Alone 

Diabetic 

Coronary Artery Disease 

Peptic Ulcer 

Cancer 

Stroke 

Peripheral Vascular Disease 

Hypertension 

Hyperlipidemia 

Prior Surgery 

Smoking packs per day 

Years smoking 

Product of prior two 

Serum Sodium 

Serum Chloride 

Serum Uric Acid 

Serum Bili 

Serum LDH 

Alanine Transaminase 

Serum Glucose 

Potassium from food 

Total Potassium 

Sodium from food 

Total Sodium 

Calcium from food 

Total Calcium 

Age at randomization 

76

Khitan et al.: Predictive Analytics and the MDRD Study

Published by Marshall University's Joan C. Edwards School of Medicine, 2017



 

 

 

Appendix 2: Cleaning Data 

 

#call in data set, remove patient index variable 

xx=x[2:86] 

# only complete cases 

xx=xx[complete.cases(xx),] 

dim(xx) 

 

#create yes no variable for outcome 

k=NULL 

for(i in 1:dim(xx)[1]){ 

  if(xx$EV_ALL[i]>0){ 

    k[i]="yes" 

  }else{ 

    k[i]="no" 

  } 

} 

#create set for analysis 

z=xx[,2:77] 

z=cbind(z,k) 

colnames(z)[77]="output1" 

#scale and center data 

zz=preProcess(z,c("center","scale")) 

z=predict(zz,z) 
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Appendix 3: ROC curve and model analysis 

#load libraries 

library(ROCR) 

library(pROC) 

library(rpart) 

library(caret) 

library(nnet) 

library(C50) 

library(ggplot2) 

library(lattice) 

library(randomForest) 

library(rminer) 

 

# produce copy in a text file 

sink('output1_2.txt', split=TRUE) 

 

# separate the “cleaned” dataset z randomly into training and testing sets 

set.seed(2)  

ind = sample(2, nrow(z), replace = TRUE, prob = c(0.75, 0.25))  

trainset = z[ind == 1,]  

testset = z[ind == 2,] 

 

# train the different models within CARET on the training set 

control = trainControl(method = "repeatedcv", number = 10, repeats = 3, classProbs = TRUE, 

summaryFunction = twoClassSummary) 

 

glm.model = train(output1 ~ ., data = trainset, method = "glm", metric = "ROC", trControl = 

control) 

 

svm.model = train(output1 ~ ., data = trainset, method = "svmRadial",metric = "ROC", trControl 

= control) 

 

rpart.model = train(output1 ~ ., data = trainset, method = "rpart", metric = "ROC", trControl = 

control) 

 

tunGrid=expand.grid(size=c(5),decay=c(0.1)) 

nnet.model = train(output1 ~ ., data=trainset, method = "nnet", metric="ROC", 

trControl=control, tuneGrid=tunGrid) 

 

rfor.model = train(output1 ~ ., data=trainset, method = "rf", metric="ROC", trControl=control) 

 

# establish predictions from these models on the testing set 

glm.probs = predict(glm.model, testset[,! names(testset) %in% c("output1")], type = "prob") 

svm.probs = predict(svm.model, testset[,! names(testset) %in% c("output1")], type = "prob") 
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rpart.probs = predict(rpart.model, testset[,! names(testset) %in% c("output1")], type = "prob") 

nnet.probs=predict(nnet.model,  testset[,! names(testset) %in% c("output1")], type = "prob") 

rfor.probs=predict(rfor.model,  testset[,! names(testset) %in% c("output1")], type = "prob") 

 

#create receiver operator curves 

windows() 

 

glm.ROC = roc(response = testset[, c("output1")], predictor = glm.probs$yes, levels = 

levels(testset[, c("output1")])) 

plot(glm.ROC,add=F, col =" red") 

 

svm.ROC = roc(response = testset[, c("output1")], predictor = svm.probs$yes, levels = 

levels(testset[, c("output1")])) 

plot(svm.ROC, add = TRUE, col ="green") 

 

rpart.ROC = roc(response = testset[, c("output1")], predictor = rpart.probs$yes, levels = 

levels(testset[, c("output1")])) 

plot(rpart.ROC, add = TRUE, col ="blue") 

 

nnet.ROC=roc(response = testset[, c("output1")], predictor = nnet.probs$yes, levels = 

levels(testset[, c("output1")])) 

plot(nnet.ROC, add = TRUE, col ="orange") 

 

rfor.ROC=roc(response = testset[, c("output1")], predictor = rfor.probs$yes, levels = 

levels(testset[, c("output1")])) 

plot(rfor.ROC, add = TRUE, col ="purple") 

 

#produce confusion matrices 

 

glm.pred=predict(glm.model,testset[,!names(testset)%in% c("output1")]) 

table(glm.pred,testset[,c("output1")]) 

confusionMatrix(glm.pred,testset[,c("output1")]) 

 

svm.pred=predict(svm.model,testset[,!names(testset)%in% c("output1")]) 

table(svm.pred,testset[,c("output1")]) 

confusionMatrix(svm.pred,testset[,c("output1")]) 

 

rpart.pred=predict(rpart.model,testset[,!names(testset)%in% c("output1")]) 

table(rpart.pred,testset[,c("output1")]) 

confusionMatrix(rpart.pred,testset[,c("output1")]) 

 

nnet.pred=predict(nnet.model,testset[,!names(testset)%in% c("output1")]) 

table(nnet.pred,testset[,c("output1")]) 

confusionMatrix(nnet.pred,testset[,c("output1")]) 

 

rfor.pred=predict(rfor.model,testset[,!names(testset)%in% c("output1")]) 
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table(rfor.pred,testset[,c("output1")]) 

confusionMatrix(rfor.pred,testset[,c("output1")]) 

 

#determine variable importance in different models 

 

model_rpart=fit(output1~., trainset, model="dt") 

VI_rpart=Importance(model_rpart,trainset,method="sensv") 

L_rpart=list(runs=1,sen=t(VI_rpart$imp), sresponses=VI_rpart$sresponses) 

windows() 

mgraph(L_rpart,graph="IMP",leg=names(trainset),cex=0.6,col="blue") 

 

model_rfor=fit(output1~., trainset, model="randomForest") 

VI_rfor=Importance(model_rfor,trainset,method="sensv") 

L_rfor=list(runs=1,sen=t(VI_rfor$imp), sresponses=VI_rfor$sresponses) 

windows() 

mgraph(L_rfor,graph="IMP",leg=names(trainset),cex=0.6, col="purple") 

 

model_glm=fit(output1~., trainset, model="cv.glmnet") 

VI_glm=Importance(model_glm,trainset,method="sensv") 

L_glm=list(runs=1,sen=t(VI_glm$imp), sresponses=VI_glm$sresponses) 

windows() 

mgraph(L_rfor,graph="IMP",leg=names(trainset),cex=0.6,col="red") 

 

model_nn=fit(output1~., trainset, model="mlpe") 

VI_nn=Importance(model_nn,trainset,method="sensv") 

L_nn=list(runs=1,sen=t(VI_nn$imp), sresponses=VI_nn$sresponses) 

windows() 

mgraph(L_nn,graph="IMP",leg=names(trainset),cex=0.6,col="orange") 

 

model_svm=fit(output1~., trainset, model="svm") 

VI_svm=Importance(model_svm,trainset,method="sensv") 

L_svm=list(runs=1,sen=t(VI_svm$imp), sresponses=VI_svm$sresponses) 

windows() 

mgraph(L_svm,graph="IMP",leg=names(trainset),cex=0.6,col="green") 
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