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Quantitative Understanding of Nanoparticle Flocculation in Water 

Treatment 

 

Sungmin Youn, Ph.D.  
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Supervisor:  Desmond F. Lawler 

 

Flocculation is critical in drinking water treatment; in flocculation, the particle 

size distribution changes from a large number of small particles to a small number of 

larger particles. Larger particles are effectively removed by settling and filtration 

processes that follow flocculation. In recent years, manufacturing of engineered 

nanoparticles has skyrocketed, and these nanoparticles can enter our water supplies, but 

knowledge of their fate in water treatment is limited. The objective of this research was to 

update knowledge of flocculation by extending previous work at the microscale to the 

nanoscale. 

Flocculation involves transport of particles to the vicinity of one another and 

subsequent attachment if interactions at close distances are favorable. Transport and 

possible collisions are brought about by Brownian motion, differential sedimentation, and 

fluid shear; these processes, even at the nanoscale, are well understood. Whether 

collisions and attachment actually occur, however, depend on a balance of hydrodynamic 

interactions, van der Waals attraction, and electrostatic repulsion; this research 

quantitatively assessed, for the first time, this balance for collisions of nanoparticles by 

all three collision mechanisms using a well-established trajectory analysis approach. The 

collision efficiency (α) is the ratio of the number of successful collisions (attachment) to 
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the number of collisions predicted by the transport equations. The analysis was 

performed with and without electrostatic repulsion, which occurs if particles are charged. 

In all cases, Brownian motion was the dominant flocculation mechanism. 

However, without electrostatic repulsion, differential sedimentation and fluid shear were 

found to be far more important than heretofore expected because the α value can be 

substantially higher than one, contrary to all previous understanding. With electrostatic 

repulsion, collisions by these two mechanisms were found to occur only if the particles 

are substantially different in size. 

Experiments in which the changes in particle size distributions of nanoparticles 

were carefully monitored were also performed, and the results compared to the 

mathematical predictions. Although not perfect, excellent agreement between the 

measured and predicted particle size distributions was found. The conclusion is 

optimistic: if nanoparticles are properly destabilized to reduce or eliminate surface 

charge, they will be well removed in conventional water treatment plants. 



 ix 

Table of Contents 

List of Tables ....................................................................................................... xiii 

List of Figures ...................................................................................................... xiv 

Chapter 1: Introduction ............................................................................................1 

1.1 Background ...............................................................................................1 

1.2 Problem Statement ....................................................................................3 

1.3 Significance...............................................................................................5 

1.4 Objectives .................................................................................................5 

1.5 Approach ...................................................................................................5 

Chapter 2: Literature Review ...................................................................................7 

2.1 Flocculation...............................................................................................7 

2.1.1 Particle Size Distributions.............................................................8 

2.1.2 Particle Stability and Destabilization Mechanisms .......................9 

2.2 DLVO Theory .........................................................................................12 

2.3 Modeling Flocculation ............................................................................16 

2.3.1 Long-Range Force Model ...........................................................18 

2.3.2 Short-Range Force Model ...........................................................19 

2.3.3 Alternative Models......................................................................20 

2.4 Numerical Computation and Trajectory analysis ...................................21 

2.4.1 Brownian Motion ........................................................................21 

2.4.2 Differential Sedimentation ..........................................................22 

2.4.3 Fluid Shear ..................................................................................25 

2.5 Summary .................................................................................................27 

Chapter 3: Experimental Methods .........................................................................28 

3.1 Introduction .............................................................................................28 

3.2 experimental design ................................................................................28 

3.2.1 Silver Nanoparticles (AgNPs).....................................................29 

3.2.2 Experimental Conditions ............................................................30 

3.3 Laboratory-Scale Batch Flocculation .....................................................32 



 x 

3.3.1 Preparation of Materials ..............................................................32 

3.3.2 Experimental Procedure ..............................................................33 

3.4 characterization methods ........................................................................34 

3.4.1 Nanoparticle Tracking Analysis (NTA) ......................................34 

3.4.2 Dynamic Light Scattering (DLS) ................................................38 

3.4.3 Tunable Resistive Pulse Sensing (TRPS) ...................................40 

3.4.4 Electrophoretic Mobility .............................................................43 

3.5 Interpretation of Particle Size Distribution Data ....................................45 

3.5.1 Presentation of Size Distributions of Nanoparticles ...................46 

3.5.2 Data Manipulation ......................................................................49 

3.5.3 Quantifying Flocculation ............................................................49 

Chapter 4: Experimental Results ...........................................................................51 

4.1 Introduction .............................................................................................51 

4.2 Analysis of a Typical Laboratory Scale Flocculation Experiment .........52 

4.3 Flocculation Experiments of Monodisperse Solutions ...........................57 

4.3.1 Effects of Ionic Strengths of Destabilizing Agents.....................57 

4.3.2 Effect of Destabilizing Mechanisms ...........................................65 

4.3.3 Effect of the Initial Concentration of Nanoparticles ...................71 

4.3.4 Effect of Natural Organic Matter ................................................76 

4.3.5 Effect of Particle Size .................................................................82 

4.4 Flocculation Experiments of Heterodisperse Solutions ..........................85 

4.5 Summary .................................................................................................89 

Chapter 5: Results of Numerical Computation and Trajectory Analysis ..............92 

5.1 Introduction .............................................................................................92 

5.2 Mathematical Framework .......................................................................93 

5.2.1 Governing Equations for Two Particle Movement .....................93 

5.2.2 Velocities of Two Particles .........................................................95 

5.2.2.1 Velocity of Particles Under Influence of Gravity ...........96 

5.2.2.2 Velocity of Particles under Interparticle Potential Energy97 

5.2.2.3 Velocity of Particles under Brownian Motion ................97 



 xi 

5.2.3 The Collision Efficiency Functions ............................................98 

5.2.3.1 Collision Efficiency Functions for Brownian Motion (αBr)98 

5.2.3.2 Collision Efficiency Functions for Differential Sedimentation 

(αDs) ..................................................................................100 

5.2.3.3 Collision Efficiency Functions for Fluid Shear (αSh) ....102 

5.3 Solutions of Collision Efficiency Functions .........................................103 

5.3.1 In the Absence of Surface Potential ..........................................103 

5.3.1.1 Brownian Motion ..........................................................103 

5.3.1.2 Differential Sedimentation ............................................106 

5.3.1.3 Fluid Shear ....................................................................107 

5.3.2 In the Presence of Surface Potential .........................................109 

5.3.2.1 Brownian Motion ..........................................................109 

5.3.2.2 Differential Sedimentation ............................................113 

5.3.2.3 Fluid Shear ....................................................................115 

5.3.3 Summary ..........................................................................117 

Chapter 6: Flocculation Modeling and Results ....................................................120 

6.1 Introduction ...........................................................................................120 

6.2 Flocculation Model ...............................................................................120 

6.2.1 Inputs for the Model..................................................................121 

6.2.2 Model Performance ...................................................................122 

6.2.3 Collision Efficiency Factor (αemp) .............................................124 

6.2.4 Sensitivity to αemp ......................................................................126 

6.3 Model Predictions for the Experimental Results ..................................127 

6.3.1 Model Predictions for Different Ionic Strength of Destabilizing 

Agents .......................................................................................128 

6.3.2 Model Predictions for Different Destabilizing Mechanisms ....133 

6.3.3 Model Predictions for the Presence of NOM ............................136 

6.3.4 Model Predictions for Different Initial Particle Concentrations143 

6.3.6 Model Predictions for Heterodisperse Samples ........................146 

6.4 Discussion and Conclusions .................................................................150 



 xii 

Chapter 7: Conclusions ........................................................................................153 

7.1. Conclusions ..........................................................................................153 

7.2. Significance..........................................................................................155 

7.3. Recommendations for Future Work.....................................................157 

Appendix A: Particle Number Distributions........................................................159 

Appendix B: Results of Trajectory analysis ........................................................177 

Appendix C: Model Estimations for Total Number Concentrations ...................181 

Appendix D: The Reproducibility of Experimental Data ....................................199 

Appendix E: Zeta Potentials ................................................................................201 

References ............................................................................................................202 

Vita   ...................................................................................................................213 



 xiii 

List of Tables 

Table 2.1 Collision frequency functions for three transport mechanisms .............18 

Table 3.1 Experimental conditions for laboratory-scale flocculation ....................31 

Table 6.1 The collision efficiency factors for each experiment...........................128 

Table B.1 The collision efficiency functions in Brownian motion of AH = 10 kBT 

(Figure 5.1A)...................................................................................177 

Table B.2 The collision efficiency functions in Brownian motion of AH = 50 kBT 

(Figure 5.1B) ...................................................................................177 

Table B.3 The collision efficiency functions in differential sedimentation (Figure 5.2)

.........................................................................................................178 

Table B.4 The collision efficiency functions in fluid shear (Figure 5.3) .............178 

Table B.5 The collision efficiency functions in Brownian motion of AH = 10 kBT with 

the constant surface potential |25| mV (Figure 5.4) ........................179 

Table B.6 The collision efficiency functions in Brownian motion of AH = 10 kBT with 

the constant surface potential |25| mV and a1 is 5 nm (Figure 5.5A)179 

Table B.7 The collision efficiency functions in Brownian motion of AH = 10 kBT with 

the constant surface potential |25| mV and a1 is 5 nm (Figure 5.5B)180 

Table E.1 Measured Zeta Potentials ....................................................................201 



 xiv 

List of Figures 

Figure 2.1 Typical interaction energy curves ........................................................16 

Figure 2.2 Schematic drawing of two settling particles in polar coordinates ........23 

Figure 2.3 Critical areas in the absence (A) and presence (B) of interparticle 

interactions. .......................................................................................25 

Figure 2.4 Schematic representation of two particles in a linear shear flow .........26 

Figure 3.1 Particle number distributions of purchased citrate stabilized AgNPs ..29 

Figure 3.2 Number vs. Mass Concentration for A) 30 nm and B) 50 nm AgNPs .36 

Figure 3.3 Comparison of particle fraction remaining between NTA and ICP-OES 

from AgNPs removed by granular media filtration in Lawler et al., 2015

...........................................................................................................37 

Figure 3.4 Flocculation results from NTA (top) and DLS (bottom)......................39 

Figure 3.5 Flocculation of latex particles induced by I = 400 mM of KCl from qNano

...........................................................................................................42 

Figure 3.6 TEM image of the purchased 50 nm citrate capped AgNPs ................45 

Figure 3.7 Particle size distribution function for the purchased citrate-AgNPs ....47 

Figure 3.8 Particle number distribution for the purchased citrate-AgNPs as measured 

using NanoSight ................................................................................48 

Figure 3.9 Particle number fraction during flocculation of 30 nm AgNPs at I = 10 

mM ....................................................................................................50 

Figure 4.1 A) and B) Number distributions C) and D) Total particle concentrations, 

and E) and F) Number Fraction for 100 nm sized AgNPs under I = 30 

and 50 mM achieved by NaNO3, respectively ..................................55 



 xv 

Figure 4.2 Zeta potential measurements from Electrophoresis measurements 

(ZetaCompact, France) performed during Experiment #1 ................56 

Figure 4.3 Changes in the particle number distributions during flocculation for the 30 

nm AgNPs with A) I = 3 mM B) 10 mM and C) 30 mM of NaNO3 

which are from Experiment #8, Experiment #9, and Experiment #10, 

respectively .......................................................................................58 

Figure 4.4 Total number concentrations of the 30 nm AgNPs under various ionic 

strengths ............................................................................................59 

Figure 4.5 DLVO energy between two 30 nm sized AgNPs with a zeta potential of -

25.7 mV (AH was assumed to be 10E20 J) .......................................60 

Figure 4.6 Particle Number Fractions during flocculation for the 30 nm AgNPs with 

A) I = 3 mM B) 10 mM and C) 30 mM of NaNO3 ...........................63 

Figure 4.7 Total number concentrations of A) 50 nm and B) 100 nm of AgNPs under 

different ionic strengths. ...................................................................64 

Figure 4.8 DLVO Energy calculations for AgNPs of A) 50 nm and B) 100 nm...64 

Figure 4.9 The evolution of the particle size distribution of the 30 nm sized AgNPs at 

I = 3 mM A) of NaNO3 and B) Ca(NO3)2 .........................................66 

Figure 4.10 Changes in the total number concentrations with different destabilizing 

agents for the A) 30, B) 50, and C) 100 nm sized AgNPs ................69 

Figure 4.11 Particle fraction for Experiment #10 and #11 ....................................70 

Figure 4.12 Calculated interaction energy for the 100 nm sized AgNPs under two zeta 

potential conditions. I = 0.1 mM for both conditions. ......................71 

Figure 4.13 The particle size distributions of the 100 nm sized AgNPs for the initial 

number concentration of A) 1.3E9 #/mL and B) 1.9E9#/mL ...........72 



 xvi 

Figure 4.14 The changes of the total number concentration of A) the 100 nm sized 

and B) the 30 nm sized AgNPs .........................................................74 

Figure 4.15 The fractional changes during the flocculation experiments of the 100 nm 

sized AgNPs brought about by I = 30 mM of NaNO3 with initial number 

concentrations of A) 1.3E9 and B) 1.9E9 #/mL ...............................75 

Figure 4.16 The particle size distributions for the 100 nm sized AgNPs in A) the 

absence of NOM and B) the presence of NOM ................................77 

Figure 4.17 The changes in the total number concentration of the 100 nm sized 

AgNPs in the presence and absence of NOM when flocculation was 

induced by I = 50 mM of NaNO3......................................................78 

Figure 4.18 The fractional changes during flocculation by NaNO3 for the 100 nm 

sized AgNPs in A) the presence of NOM and B) absence of NOM .79 

Figure 4.19 The changes in the total number concentration of the 100 nm sized 

AgNPs in the presence and absence of NOM when flocculation was 

induced by I = 30 mM of Ca(NO3)2 ..................................................80 

Figure 4.20 The fractional changes during flocculation by I = 30 mM of Ca(NO3)2 for 

the 100 nm sized AgNPs in A) the presence of NOM (3.5 mg/L as DOC) 

and B) absence of NOM ...................................................................80 

Figure 4.21 The changes in the total number concentrations of the 100 and 30 nm 

sized AgNPs under I = 30 mM by NaNO3 (Experiments #1 and #8)83 

Figure 4.22 The changes in the total number concentrations of the 100 and 30 nm 

sized AgNPs under I = 3 mM by Ca(NO3)2 (Experiments #11 and #14)

...........................................................................................................84 

Figure 4.23 The particle size distribution of heterodispersed AgNPs at A) I =10 mM 

and B) 30 mM of NaNO3 ..................................................................85 



 xvii 

Figure 4.24 The changes in the total number concentrations of the heterodispersed 

AgNPs with two ionic strengths of 10 and 30 mM by NaNO3 .........86 

Figure 4.25 The interaction energy calculations for the 30 and 100 nm sized AgNPs 

when the ionic strengths were A) 10 and B) 30 mM by NaNO3 ......87 

Figure 4.26 The evolution of the particle size distribution of the heterodispersed 

AgNPs at the ionic strength of 3 mM of Ca(NO3)2 ..........................88 

Figure 4.27 The changes in the total number concentrations of the heterodispersed 

AgNPs with two ionic strengths of 3 mM by Ca(NO3)2 ...................89 

Figure 5.1 The collision efficiency functions in Brownian motion under two different 

Hamaker constant values of A) 10 kBT and B) 50 kBT. ..................105 

Figure 5.2 The collision efficiency functions in differential sedimentation. (The 

calculations were made with AH = 10 kBT, ρP = 2.6 g/cm3, and ρL = 1 

g/cm3 and the larger particle radius varied as shown in the legend but 

any combination of values that leads to the same Ng value leads to the 

same result.) ....................................................................................107 

Figure 5.3 The collision efficiency functions in fluid shear (The calculations were 

made with AH = 10 kBT, G = 20 s-1, and μ = 0.01 g/cm-s and the larger 

particle radius varied as shown in the legend but any combination of 

values that leads to the same HA value leads to the same result.) ...109 

Figure 5.4 αBr in the presence/absence of the constant surface potential of |25 mV|110 

Figure 5.5 αBr with A) various ionic strength and B) surface potential for a1 = 5 nm

.........................................................................................................112 



 xviii 

Figure 5.6 Simulated trajectory result from MATLAB (the size of the gray colored 

particle (a1) was 100 nm, and the size of the small clear particle (a2) was 

25 nm, the dotted line is the pathway of the center of the small particle, 

and the calculations were made with the surface potential of |25| mV 

when log(Ng) = 5.3) ........................................................................114 

Figure 5.7 Difference in shear velocities for large particles and small particles .117 

Figure 5.8 Total collision correction function: A) in the absence and B) in the 

presence of constant surface potential of -25 mV (the calculated values 

are indicated with points and the smooth curves fitting was generated 

between the points) .........................................................................118 

Figure 6.1. Flocculation model (αemp = 0.06) vs. experimental data (EXP #14: 50 nm, 

Ca(NO3)2, I = 3 mM, and 1.2E9 #/mL) at t= A) 15, B) 30, C) 45, and D) 

60 minutes .......................................................................................124 

Figure 6.2 Sensitivity of the short-range force model to αemp at = A) 15 and B) 60 

minutes ............................................................................................126 

Figure 6.3 Flocculation model (αemp = 0.02) vs. experimental data (EXP #1: 100 nm 

NaNO3, I = 30 mM 1.3E9 #/mL) ....................................................129 

Figure 6.4 Flocculation model (αemp = 0.005) vs. experimental data (EXP #1: 100 nm 

NaNO3, I = 30 mM 1.3E9 #/mL) ....................................................131 

Figure 6.5 Flocculation model vs. experimental data (EXP #2: 100 nm NaNO3, I = 50 

mM 1.1E9 #/mL) ............................................................................132 

Figure 6.6 Flocculation model vs. experimental data (EXP #3: 100 nm Ca(NO3)2, I = 

30 mM 1.2E9 #/mL) .......................................................................135 

Figure 6.7 Flocculation model vs. experimental data (EXP #6: 100 nm NaNO3, I = 50 

mM 1.1E9 #/mL in the presence of NOM) .....................................137 



 xix 

Figure 6.8 Flocculation model vs. experimental data (EXP #7: 100 nm Ca(NO3)2, I = 

30 mM 1.3E9 #/mL in the presence of NOM) ................................138 

Figure 6.9 Flocculation model vs. experimental data with varying αemp (EXP #6: 100 

nm NaNO3, I = 50 mM 1.1E9 #/mL in the presence of NOM) ......140 

Figure 6.10 The DLVO energy curves for three different sizes of AgNPs in the 

identical condition (with the assumptions that the surface potential -25.7 

mV, the ionic strength of 1 mM, and Hamaker constant of 20 kBT)142 

Figure 6.11 Flocculation model vs. experimental data with varying αemp (EXP #5: 100 

nm NaNO3, I = 30 mM 1.9E9 #/mL) ..............................................144 

Figure 6.12 Flocculation model vs. experimental data (EXP #18: 30+100 nm 

Ca(NO3)2 3 mM 1.3E9 #/mL) .........................................................147 

Figure 6.13 Flocculation model predictions for heterodisperse AgNPs (EXP #17: 

30+100 nm NaNO3 30 mM 1.0E9 #/mL) with the αemp values obtained 

from monodisperse experiments .....................................................149 

Figure A.1 Particle number distribution from Experiment #1 .............................159 

Figure A.2 Particle number distribution from Experiment #2 .............................160 

Figure A.3 Particle number distribution from Experiment #3 .............................161 

Figure A.4 Particle number distribution from Experiment #4 .............................162 

Figure A.5 Particle number distribution from Experiment #5 .............................163 

Figure A.6 Particle number distribution from Experiment #6 .............................164 

Figure A.7 Particle number distribution from Experiment #7 .............................165 

Figure A.8 Particle number distribution from Experiment #8 .............................166 

Figure A.9 Particle number distribution from Experiment #9 .............................167 

Figure A.10 Particle number distribution from Experiment #10 .........................168 

Figure A.11 Particle number distribution from Experiment #11 .........................169 



 xx 

Figure A.12 Particle number distribution from Experiment #12 .........................170 

Figure A.13 Particle number distribution from Experiment #13 .........................171 

Figure A.14 Particle number distribution from Experiment #14 .........................172 

Figure A.15 Particle number distribution from Experiment #15 .........................173 

Figure A.16 Particle number distribution from Experiment #16 .........................174 

Figure A.17 Particle number distribution from Experiment #17 .........................175 

Figure A.18 Particle number distribution from Experiment #18 .........................176 

Figure B.1 Simulated trajectory result (the size of the gray colored particle (a1) was 1 

µm, and the size of the small clear particle (a2) was 500 nm, the dotted 

line is the pathway of the center of the small particle, and the 

calculations were made with the surface potential of |25| mV when 

log(Ng) = 3.4) .................................................................................180 

Figure C.1 Model predictions for Experiment #1 ................................................181 

Figure C.2 Model predictions for Experiment #2 ................................................182 

Figure C.3 Model predictions for Experiment #3 ................................................183 

Figure C.4 Model predictions for Experiment #4 ................................................184 

Figure C.5 Model predictions for Experiment #5 ................................................185 

Figure C.6 Model predictions for Experiment #6 ................................................186 

Figure C.7 Model predictions for Experiment #7 ................................................187 

Figure C.8 Model predictions for Experiment #8 ................................................188 

Figure C.9 Model predictions for Experiment #9 ................................................189 

Figure C.10 Model predictions for Experiment #10 ............................................190 

Figure C.11 Model predictions for Experiment #11 ............................................191 

Figure C.12 Model predictions for Experiment #12 ............................................192 

Figure C.13 Model predictions for Experiment #13 ............................................193 



 xxi 

Figure C.14 Model predictions for Experiment #14 ............................................194 

Figure C.15 Model predictions for Experiment #15 ............................................195 

Figure C.16 Model predictions for Experiment #16 ............................................196 

Figure C.17 Model predictions for Experiment #17 ............................................197 

Figure C.18 Model predictions for Experiment #18 ............................................198 

Figure D.1 Particle number distribution from Experiment #3 .............................199 

Figure D.2 Total Particle number concentration measured A) in Experiment #3 and 

B) in the second iteration (reproduced data from) ..........................199 

Figure D.3 Particle number distributions measured A) in Experiment #18 and B) in 

the second iteration (reproduced data from) ...................................200 

Figure D.4 Total Particle number concentration measured A) in Experiment #18 and 

B) in the second iteration (reproduced data from) ..........................200 

 



 1 

Chapter 1: Introduction 

The objective of this research is to improve the quantitative understanding of the 

dynamics of particle size distributions at the nanoscale in conventional water treatment 

flocculation processes. Previous research has demonstrated that flocculation at the 

microscale (> 1 μm) can be explained quantitatively. In this research, particle 

destabilization and size growth at the nanoscale were studied both theoretically and 

experimentally. Numerical particle number balance equations and trajectory analysis 

were employed. Mathematical predictions were compared to experimental results 

obtained from well controlled laboratory scale flocculation. Improved understanding of 

particle flocculation at the nanoscale will enhance the design and operation of subsequent 

particle separation processes in conventional water treatment systems. Therefore, not 

only would the life-cycle pathways of nanoparticles in water treatment be addressed, but 

the overall quality of treated water would also be improved. 

1.1 BACKGROUND 

The current agreement on the definition of nanoparticles is natural, incidental, and 

manufactured materials that have external dimensions between 1 nm and 100 nm and 

show different properties from their bulk materials (Foss Hansen et al., 2007). The 

dramatic rise in the use of engineered nanoparticles means that nanoparticles are being 

discharged into natural water bodies; therefore, life-cycle pathways of nanoparticles in 

drinking water treatment must be considered (Wiesner et al., 2006).  

The present research addresses a critical question for conventional water 

treatment: can we effectively remove a high percentage of particles in treatment 

processes, even if the particles are very small? The literature suggests confusion about the 

effectiveness of conventional particle removal processes on engineered nanoparticles: 
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some scholars reported that conventional particle separation techniques are adequate 

(O’Brien and Cummins, 2010), while others disagree (Chalew et al., 2013; Limbach et 

al., 2008; Reijnders, 2006; Wiesner et al., 2006; Zhang et al., 2008). The present research 

addresses this question by examining, theoretically and experimentally, changes in 

(absolute) particle size distributions (number concentrations as a function of particle size) 

of particles at the nanoscale during laboratory scale flocculation. 

Water treatment processes, mainly due to flocculation, remove conventional 

particles from water, including inorganic particles, viruses, and bacteria. The ultimate 

removal of these contaminants actually occurs in subsequent particle removal processes 

(gravitational separation, granular media filtration, and/or membranes), all of which 

depend on the particle size distribution. Hence, the effluent particle size distribution of 

the flocculation process, which is the influent to these particle removal processes, is of 

paramount importance. Because the size of particles determines their settling velocity, 

surface area, and diffusion coefficient, the ability to predict the particle size distribution 

is critical in water and wastewater treatment (Benjamin and Lawler, 2013).  

Most particles in water are generally stable, and engineered nanoparticles often 

are coated with stabilizing agents to promote particle stability. Stable particles do not 

aggregate or attach to other surfaces (and are, therefore, not removed well in water 

treatment). To overcome the particle stability, destabilizing agents (e.g., alum or iron) are 

often used in water treatment. Destabilization is essential to successful flocculation and 

particle removal. Flocculation of particles in water is understood as a two-step process 

(O’Melia and Stumm, 1967; Stumm and O’Melia, 1968). A particle first travels to the 

vicinity of another particle through long-range transport and then the particle collides 

with the other particle through short-range transport to form aggregates and flocs. The 

long-range transport processes are caused by three predominant mechanisms: Brownian 
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motion, fluid shear, and differential sedimentation. The collision frequency functions (β) 

that mathematically describe long-range transport processes of two equal- or unequal-

sized spherical particles can be analytically calculated (O’Melia, 1978; Elimelech et al., 

1998). However, the collision efficiency (α) that accounts for short-range transport 

processes of two spherical particles requires numerical analysis due to the complexity of 

hydrodynamic and interparticle interaction energy (Benjamin and Lawler, 2013).  

Lawler and co-workers (Lawler et al., 1980; Lawler and Wilkes, 1984) developed 

a mathematical model for the evolution of size distributions based on Smoluchowski’s 

(1917) particle number balance with the collision frequency functions (β). Later, Han and 

Lawler (1991, 1992) summarized previously reported theoretical hydrodynamic 

interactions for Brownian motion and fluid shear and performed trajectory analysis for 

the differential sedimentation transport mechanism to generalize α when the larger 

particle in the two-particle collision was one micrometer or larger. Since then, the α 

values developed by Han and Lawler have been used to describe short-range transport 

mechanisms in flocculation processes in conventional water treatment, and the 

predictions made were in close agreement with experimental results when the 

destabilization did not involve precipitation (Li, 1996; Lawler and Nason, 2005; Nason, 

2006). 

1.2 PROBLEM STATEMENT 

Despite the previous success, a few limitations need to be addressed. First, the 

existing α values were calculated only for the conditions where the larger particle in the 

collision was one micrometer or greater. Because the use and production of engineered 

nanoparticles are dramatically increasing, life-cycle pathways of nanoparticles in water 

and wastewater treatment need to be addressed (Wiesner et al., 2006). The collision 
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efficiency functions (αBr, αSh, and αDs) that account for hydrodynamic and interparticle 

interaction energy for nanoparticles have not been calculated, and some of the short-

range transport processes, in particular, might be significantly different for such small 

particles. To better understand the fate and transport of nanoparticles in water treatment, 

α values for these small particles need to be calculated. 

Secondly, the current α values were calculated under the assumption that the EDL 

interactions between colliding particles in flocculation would be negligible if particles are 

well-destabilized by adsorption and charge neutralization. For this reason, the existing α 

values did not include the EDL interactions in their numerical calculations. In practice, 

however, perfect neutralization is not always achieved and particles are left with a 

smaller, but not zero, surface charge. In addition, particle destabilization can also be 

achieved by compression of the diffuse layer or enmeshment in a precipitate, and in these 

cases, the surface charge is not negligible. The EDL repulsive interactions must be 

incorporated into the derivation of α for comprehensive understanding of particle 

destabilization.  

Lastly, the existing collision efficiency functions for fluid shear (αSh) need to be 

verified. The existing αSh was obtained by interpolation and extrapolation of Adler’s 

global capture efficiency values (1981a). Adler’s initial trajectory analysis was performed 

under narrow computational conditions (that had four particle size ratios, λ = 0.1, 0.2, 

0.5, and 1, where λ is the size ratio of the smaller to larger particle in the two-particle 

collision). Han (1989) extrapolated and interpolated to generate the collision efficiency 

functions for λ values from near zero to 1. To generate αSh that is more accurate over a 

broad size range of spherical particles and particle ratios, Adler’s trajectory analysis must 

be performed under a much greater number of computational conditions. 
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1.3 SIGNIFICANCE 

 The improved ability to predict particle size distributions precisely at the 

nanoscale during flocculation will advance our knowledge of particle destabilization and 

particle removal efficiency in conventional water treatment. The comprehensive 

understanding of flocculation will enhance the design and operation of conventional 

particle separation processes in water treatment. The optimized drinking water treatment 

could possibly promote the cost reduction of treatment while resulting in a better quality 

of drinking water. In addition, life-cycle pathways of nanoparticles in drinking water 

treatment would also be addressed. 

1.4 OBJECTIVES 

The present work sought to improve quantitative understanding of how the particle 

size changes during flocculation at the nanoscale. The scope of the research was refined to 

focus on flocculation of nano-sized particles. The objectives of this research were to: 

1) compute numerical models (trajectory analyses and particle number balances) to 

be able to predict the evolution of the particle size distributions at the nanoscale; 

2) experimentally measure and quantify the change in absolute particle size 

distributions during flocculation at the nanoscale under various experimental conditions; 

and 

3) compare experimental results with predictions made from the numerical models 

1.5 APPROACH 

 In the present research, both mathematical modeling and experimental 

investigation were used to accomplish the objectives stated above. This research 

methodology has been practiced in the Lawler research group. Prior to the present 

research, Lawler and Wilkes (1984), Han and Lawler (1992), Li (1996), and Nason 
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(2006) had given many iterations to minimize the deficiency between theoretical 

modeling and experimental results. The previous mathematical modeling was done in 

various programming languages including PL/I, Fortran 77, C and C++. To improve 

outdated models, both trajectory analysis and numerical particle number balance 

equations were re-written in MATLAB in this research. Laboratory scale experiments 

were performed with several independent variables that were systematically controlled. 

Particle size distributions were measured using a NanoSight instrument. Iterative 

comparisons between the mathematical predictions and experimental data manifested 

which areas were well captured by the theoretical models, and which areas require further 

experiments or modifications to the model. 

 The dissertation is organized as follows. Chapter 2 explains general background 

information of particle destabilization, flocculation, and mathematical theories behind 

flocculation modeling. Chapter 3 contains the experimental methods and design, while 

the experimental results are presented in Chapter 4. The detailed methods used in 

mathematical modeling are described in Chapter 5; the predictions of the mathematical 

model are discussed by comparison to experimental results in Chapter 6. Finally, 

conclusions and suggestions for future research are deliberated in Chapter 7. 
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Chapter 2: Literature Review 

This literature review provides an overview of flocculation processes, an 

introduction to particle stability and DLVO theory, and a comprehensive review of 

previously developed mathematical flocculation models. As summarized in Chapter 1, 

the objective of the present research is to improve the quantitative understanding of how 

the size distribution of nanoparticles change in laboratory-scale batch flocculation 

experiments. To quantitatively explain flocculation at the nanoscale, particle stability, 

particle destabilization, and particle transport mechanisms are first elucidated.  

2.1 FLOCCULATION 

Flocculation is a physical treatment process that follows coagulation (particle 

destabilization). During flocculation, granted enough detention time and gentle mixing, 

the destabilized particles are encouraged to collide and attach to one another. Due to 

these collisions and subsequent attachment, the particle size distribution changes from a 

large number of smaller particles to a smaller number of large particles (i.e., flocs). 

Because the effectiveness of the downstream particle separation processes such as 

sedimentation or filtration depends on the particle size distribution, flocculation is one of 

the most critical processes in water treatment systems. 

Flocculation is also known as an integral part of precipitation processes in water 

and wastewater treatment. For example, along with crystallization, the growth of calcium 

carbonate (CaCO3) solids in precipitative softening is also explained by flocculation 

(Nason, 2006). In the present research, precipitation is not considered in the mathematical 

formulations of flocculation; solid formation is assumed to be completed prior to 

flocculation.  
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Mathematical flocculation models employ a differential equation that simulates 

the rate of changes in a particle number distribution due to particle collisions with respect 

to time. The existing mathematical models have only been validated for micro-sized 

particle suspension. Recent advances in computing and analytical technology make it 

possible to obtain real-time particle size distributions at the nanoscale (Lawler et al., 

2015). 

2.1.1 Particle Size Distributions 

Generally, with very few exceptions, natural water and wastewater contain 

various sizes of particles. Knowing the distribution of particle sizes in a water source 

sheds insight into what technologies or processes need to be considered when treating the 

suspension. By comparing the particle size distributions before and after particle 

treatment, the treatment effectiveness can be evaluated (Hendricks, 2006). Tiehm et al. 

showed that the removal of chemical oxygen demand (COD) and phosphorus during 

wastewater treatment is closely related to particle size distributions of suspended solids. 

Particle size distributions need to be considered to optimize the operation of 

sedimentation tanks or designing deep bed filtration units (Tiehm et al., 1999). 

Comprehensive understanding of the particle size distribution is required for membrane 

processes to optimize and control the membrane fouling (Stoller, 2009). Particle size 

distributions have a significant impact on the performance of stormwater treatment as 

well (Hettler et al., 2010). 

The particle size distribution function is generated through graphically 

characterized particle size information or a mathematical model that fits experimentally 

measured data. The abscissa in a particle size distribution graph can be reported in terms 

of particle’s length, surface (or cross-sectional) area, or volume. The ordinate can be 
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measured by number, area, or volume. Cumulative, differential, logarithmic, or 

normalized manners are all accepted ways to plot particle size distribution functions. 

Although particle size distribution functions in terms of the particle volume have been 

more commonly used for flocculated suspensions, a number distribution function is 

employed throughout this study as the primary means of describing the particle size 

distribution. The number distribution function is different in that it presents the 

normalized number concentration of particles (i.e., (#/mL)/Δlog dp) as a function of the 

discretized particle sizes (Δlog dp) that is in equal increments on a logarithmic scale. The 

equal logarithmic increments of particle size capture the effects of different particle 

treatment processes better than arithmetic increments in particle sizes (Benjamin and 

Lawler, 2013). 

2.1.2 Particle Stability and Destabilization Mechanisms 

In general, particles in water are stable due to their electrical surface charges. The 

electrical surface charges originate in several different manners as detailed by Stumm and 

Morgan (1996). Regardless of the origin of surface charge, a charged surface will attract 

and form two surrounding layers of the counterions. The first inner layer is known as 

stern layer (or Helmholtz layer) where the counterions are temporarily bound to the 

charged surface. The second outer layer is called the diffuse layer. Here counterions are 

free in motion but still under the influence of the charged surface (Israelachvili, 2011). 

The electrical double layer (EDL) refers to these two layers of counterions surrounding 

the charged surface. In the presence of the EDL, the same sign of charged particles repel 

and change their trajectories to go around each other, thus creating stable suspensions of 

particles. 
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Along with the electrical repulsion between charged particles, an attractive 

interaction, called London-van der Waals (vdW) attraction, also exists. vdW attraction 

stems from constant oscillations of the electromagnetic fields due to electric dipoles 

(Elimelech, 1998). vdW attraction is stronger than the EDL repulsion at sufficiently short 

separation distances. If two approaching particles have enough momentum to overcome 

the repulsive interaction and obtain a short separation distance where attractive 

interaction is dominant, then the particles can attach to one another.  

Overcoming the EDL repulsion is very rare for most particles in natural water or 

wastewater; therefore, particle collisions and attachment are prevented. For this reason, 

particles in water must be destabilized prior to flocculation to foster particle collisions 

and attachment. Particles can be destabilized by four destabilizing mechanisms (O’Melia, 

1978): (a) compression of the double layer, (b) adsorption and charge neutralization, (c) 

enmeshment in a precipitate, and (d) adsorption and interparticle bridging.  

The first destabilizing mechanism, the compression of the double layer, is 

achieved by increasing the ionic strength of the background solution. Because of 

increased ionic strength, more counterions are available near the charged surface to form 

the diffuse layer. Therefore, the thickness that the double layer extends is reduced with 

increased ionic strength. The reduction in the thickness of the double layer lowers the 

effect of the EDL repulsion between particles of the same sign charge. Compared to other 

destabilizing mechanisms, compression of the double layer is mathematically better 

understood because the ionic strength is a function of molar concentrations and the 

valency of the dissolved ions. By either increasing or decreasing these parameters, 

particle stability can be controlled. Hence, double layer compression is a popular 

destabilizing mechanism in research settings although it is not practical in full-scale 

engineered systems. 
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Particular chemical interactions between the particle surfaces and dissolved ions 

often result in destabilization. Surface charges can be neutralized by the adsorption of 

oppositely charged ions onto the surface. The adsorption of positively charged hydrated 

metal species (e.g., aluminum or iron) onto negatively charged particles demonstrate the 

mechanism of adsorption and charge neutralization. Because the surface charge is 

neutralized by adsorption of opposite charged ions, the EDL repulsion is effectively 

minimized or eliminated. However, a reversal of the surface charge can also occur if the 

neutralizing ions are overdosed. The excessive adsorption of oppositely charged ions 

overturns the sign of charged surfaces rather neutralizing. 

The third destabilizing mechanism occurs when a destabilizing chemical (a metal) 

is dosed in the solution in such quantity that precipitation takes place. In precipitation, 

precursors start forming to achieve a thermodynamically more stable state by minimizing 

the total surface area of the particles in solutions (Voorhees, 1985). The precursors of 

precipitates first adsorb onto the existing particles rather than form new nuclei. Then, the 

precursors grow and form insoluble precipitates (usually metal hydroxides) while the 

existing particles are trapped inside. Because the existing particles work as nucleation 

sites, the rate of precipitation is correlated to the number of the initial existing particles. If 

there are some particles left that have not been used as nucleation sites, those particles 

will be “swept” out by fluffy hydroxide precipitates as they settle. Common examples of 

enmeshment in a precipitate are aluminum hydroxide, ferric hydroxide, or calcium 

carbonate.  

The last destabilizing mechanism is adsorption and interparticle bridging. This 

mechanism utilizes long-chain polymer molecules, which possess chemical groups that 

can reach out to the particle surfaces, as destabilizing agents. When the destabilizing 

polymers adsorb at the surfaces, the remainder of the polymer extends out searching for 
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other particles for adsorption. Therefore, the long-chain polymer serves as a bridge 

between particles. However, this mechanism is rarely used in low particle concentrations 

because polymers cannot easily find other particles to bind. In this scenario, polymers 

often start bending around to adsorb onto the same particle surface. 

2.2 DLVO THEORY 

 DLVO stands for the first letters of four names of the scientists who contributed 

to the theory: Derjaguin and Landau (1941), and Verwey and Overbeek (1948). DLVO 

theory assesses particle stability by quantifying the total potential energy between two 

interacting plates, particles, a particle-plate combination, or other shapes. The total 

potential energy is assumed to be the sum of attractive and repulsive energies induced by 

the vdW and the EDL interactions, respectively.  

There are two approaches to vdW computation. Hamaker (1937) first derived the 

mathematical expression for attractive energy using a pairwise summation of all the 

intermolecular energies between the two interacting objects and the medium. Lifshitz 

(1956) later rectified oversights from Hamker’s assumption of simple pairwise addition 

by incorporating the effect of polarization of atoms (Israelachvili, 2011). However, the 

Hamaker approach is still commonly used in spite of its shortcoming due to its simplicity 

with negligible margins of error (Gregory, 1981). In calculation of the vdW energy, the 

retardation effect must be accounted for (Casimir and Polder, 1948). The retardation 

effect arises from a time lag of the oscillations of electric fields between interacting 

dipoles and it becomes significant when the separation distance between the pair of 

dipoles is greater than 0.1 nm (Anandarajah and Chen, 1995). 

Gregory (1981) simplified the complex mathematical expression for the vdW 

energy that was initially proposed by Clayfield et al. (1971) which employed the 
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Hamaker approach and the retardation effect. Throughout the present research, Gregory’s 

simplified vdW energy expression as shown in Equation (2.1) is used: 

 

 Va = −
AHa1a2

6(a1+a2)d
[1 −

bd

λ
ln (1 +

λ

bd
)] (2.1) 

 

where, AH is the Hamaker constant; a1 and a2 are the radii of the two interacting particles; 

d is the separation distance between their nearest edge particles; λ is the characteristic 

wavelength (0.1 nm); and b is a constant (b = 5.32) proposed by Gregory to fit exact 

values. 

 The computation of the EDL repulsive energy is more complicated. Owing to the 

nature of electric field interactions, the boundary conditions of the overlapping 

electromagnetic fields of two approach particles must be specified. The two extreme 

boundary conditions, which are most widely used, are constant surface potential and 

constant surface charge. These assumptions provide two different physiochemical views 

of the relevant surface phenomena upon approach. The constant potential boundary 

condition assumes that the surface potentials of interacting particles remain constant 

during the course of interaction (Derjaguin and Landau, 1941; Verwey and Overbeek, 

1948; Hogg et al., 1966; Gregory, 1975), whereas the constant charge boundary condition 

presumes that the surface charge density is maintained constant (Verwey and Overbeek, 

1948; Frens and Overbeek, 1972; Usui, 1973; Gregory, 1973). Calculated EDL energies 

using these two assumptions can be dramatically different from each other, especially at 

short separation distances. It is generally considered that the constant potential and 

constant charge models give the lower and upper limits, respectively, of the possible EDL 

interaction energy.  
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Once the boundary condition is set, an exact EDL repulsive energy between two 

approaching particles can be calculated by solving the Poisson-Botlzmann equation. 

Because the Poisson-Botlzmann equation is a nonlinear second-order differential 

equation, it requires numerical analysis to find exact solutions to it. To avoid 

computational complication, a few different approximation methods have been derived 

by linearization of the exponential function of the Poisson-Botlzmann equation (Gregory, 

1975). These approximation methods are sufficient for most relevant environmentally 

engineered systems; hence, they are frequently employed for routine use despite their 

shortcomings (Mikelonis et al., 2016).  

It takes a few seconds for the disturbed double layers to establish the equilibrium 

whereas particle collisions through Brownian motion take place approximately in a 

hundred nanoseconds (Frens and Overbeek, 1972). It is reasonable to assume that the 

surface charge remains constant during the nanoparticle collision where Brownian motion 

is the predominant transport mechanism and the surface potential does not maintain its 

equilibrium. In the present research, the linearized Poisson-Botlzmann approximation 

was used with the constant charge boundary assumption as following (Gregory, 1975):  

 

 Vr =
a1a2

a1+a2

2πnkBT

κ2
(y1

2 + y2
2) [

2y1y2

y1
2+y2

2 ln (
1+exp(−κd)

1−exp(−κd)
) − ln(1 − exp(−2κd))] (2.2) 

where, a1 and a2 are the radii of the two interacting particles, n is the number 

concentration of ions, kB is Boltzmann’s constant, T is the temperature in Kelvin, κ is the 

Debye-Huckel parameter (κ2 = 2e2nz2/εkBT), e is the electron charge, z is the valency of 

the electrolyte, ε is the permittivity of the medium, y1 and y2 are the dimensionless 

normalized surface potentials (e.g., y1=zeψ1/kBT) from the surface potentials (ψ1 and ψ2), 

and d is the separation distance.  
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Figure 2.1 shows an example of interaction energy between two equal-sized 

particles, calculated using Equations (2.1) and (2.2). For the calculation, zeta potentials of 

-25.7 mV, Hamaker constant of 10E-20 J, the ionic strength of 1 mM, temperature of 297 

K and the particle diameter of 100 nm were assumed. By convention, the negative 

interaction energy indicates attractive interaction between the two particles, and the 

positive energy associates the repulsive interaction. The total interaction energy is the 

summation of the vdW and EDL energy terms. When the separation distance between the 

two particles is substantial, the interparticle interaction is inconsequential. As the 

particles draw near each other, both attractive and repulsive interactions become more 

notable; however, the repulsive energy outbalances the attractive energy. The maximum 

positive net energy occurs at a separation of ~3 nm; this maximum energy of interaction 

is known as the energy barrier. At a very small separation distance beyond the energy 

barrier where it is called the primary minimum of interaction energy, the attractive energy 

exceeds the repulsive one; hence, the particles are strongly attracted to each other. A floc 

will be formed from the two particles only if the momentums of the two approaching 

particles are sufficient to overcome the barrier. 
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Figure 2.1 Typical interaction energy curves 

 In addition to the vdW and EDL interactions discussed in DVLO theory, several 

scholars have suggested other interactions that could affect particle stability in relevant 

water conditions. These interactions include acid-base interactions (Grasso et al., 2000), 

magnetic (Considine et al., 1998), hydration (Yotsumoto and Yoon, 1993), hydrophobic 

(Christenson, 1988; Song et al., 2011), and steric interactions (Lin and Wiesner, 2012). 

The experimental conditions of the present work were carefully chosen where these non-

DLVO interactions were insignificant; therefore, the present work focuses on classical 

DLVO theory.  

2.3 MODELING FLOCCULATION 

 Flocculation processes are generally explained by Smoluchowski’s number 

balance equation (1917). With a few assumptions and simplifications, Smoluchowski was 
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the first to derive a mathematical description for flocculation. The assumptions included 

that (1) flocculation happens from every particle-particle collision; (2) resulting flocs do 

not break; (3) particles are spherical before and after flocculation and volume is 

conserved (coalescence assumption); and (4) all collisions are binary (two-particle 

collisions only). In Smoluchowski’s number balance, the number concentration of a 

particular size particle (k, for example) is defined as the sum of the gain and the loss of k-

sized particles (i.e., k-sized particles are created by collision of two smaller particles, and 

k-sized particles are lost by collision of k-sized particles with any particles). This number 

balance can be written in words: 

 

Accumulation  Gain  Loss 

Rate of change with time of 

the number concentration 

of particles of size k 

= 

Rate of creation of particles 

of size k by flocculation of 

smaller particles (the sum 

of whose volumes is size k) 

- 

Rate of loss of particles of 

size k by flocculation of 

size k particles with any 

size particles 

 

A discretized number concentration balance equation was then derived by Smoluchowski 

as follows: 

 

 rk
Smoluchowski =

dnk

dt
=

1

2
∑ βijninjall i and j

Vi+Vj=Vk

− nk ∑ βikniall i  (2.3) 

where i, j and k are size classes of particles; ni is the number concentration of i-sized 

particles (L-3); Vi is the volume of a size i particle (L3); and βij is the collision frequency 

function for particles of size i and j (L3/T). The collision frequency function (βij), which 

is also known as the aggregation kernel, quantifies physical transport mechanisms of the 

two colliding particles at long-range. Due to the assumption of an adequate separation 

distance between the two colliding particles, the collision frequency function does not 
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consider the movement of water (or fluids) between the two colliding particles (no 

hydrodynamic effects included).  

As mentioned in Chapter 1, the three particle transport mechanisms play 

important roles in flocculation. Mathematical expressions for Brownian motion and fluid 

shear were developed by Smoluchowski (1917). Camp and Stein (1943) revised 

Smoluchowski’s fluid shear and derived an equation describing the mechanism of 

differential sedimentation. Detailed expressions for the collision efficiency function of 

each transport mechanism are tabulated in Table 2.1. 

Table 2.1 Collision frequency functions for three transport mechanisms 

Transport Collision frequency function, βij  

Brownian motion βij
Br =

2kBT

3μ
(

1

di
+

1

dj
) (di + dj) (2.4) 

Fluid shear βij
Sh =

1

6
G(di + dj)

3
 (2.5) 

Differential 

sedimentation 
βij

Ds =
πg

72μ
(ρp − ρL)(di + di)

3|di − dj| (2.6) 

These expressions give collision frequency functions in a unit of volume per time where 

kB is Boltzmann’s constant; T is temperature in Kelvin; μ is the viscosity of water; di and 

dj are the diameters of i and j-sized particles; G is the mixing intensity or the velocity 

gradient; g is standard gravitational acceleration; and ρp and ρL are the densities of 

particles and water.   

2.3.1 Long-Range Force Model 

Because the three principal transport mechanisms are assumed to be independent, 

the total long-range transport mechanism is the sum of those three collision frequencies 

(Han, 1989). Lawler and Wilkes (1984) introduced an empirical factor (αemp) into 
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Smoluchowski’s number balance to adjust mathematical predictions to fit the 

experimental data better as shown below: 

 

 rk
Long−range

=
dnk

dt
=

1

2
αemp ∑ βij

totninjall i and j
Vi+Vj=Vk

− αempnk ∑ βij
totniall i  (2.7) 

The variables represent the same parameters that are previously defined in Equation (2.3). 

This equation is referred as the long-range force model herein. The empirical factor (αemp) 

incorporates observational/measurement errors or physiochemical phenomena that were 

not accounted for in mathematical modeling. The long-range force model was tested 

against the collected data from both laboratory-scale experiments and a conventional 

softening plant (Lawler and Wilkes, 1984; Li, 1996). The predictions made from the 

long-range force model constantly overestimated flocculation between large and small 

particles although the model produced good estimations in the intermediate particle size 

ranges. 

2.3.2 Short-Range Force Model 

 To address the overestimation of flocculation between large and small particles in 

the long-rage force model, Han and Lawler (1992) introduced the collision efficiency 

function (αij) that introduces particle transport at short-range, which had been previously 

missing, into the mathematical model. Because of the short separation distance 

assumption, the collision efficiency function took interparticle interactions into account 

in flocculation modeling. To consider interparticle interaction such as hydrodynamic and 

the vdW energy at short-range, Han and Lawler executed numerical trajectory analysis. 

However, the EDL repulsive energy between the particles was not included in Han and 

Lawler’s trajectory analysis for two reasons. First, particles are often destabilized in 

flocculation which implies that the EDL energy would be very small and negligible. 
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Secondly, the EDL interaction is determined by particle properties and electrolyte 

conditions and incorporating all these factors would have been burdensome in numerical 

computation at the time of study. Rather, the EDL interactions between the particles were 

accounted for by the empirical collision efficiency factor (αemp). The long-range force 

model with the collision efficiency functions is called the short-range force model and is 

written as follows: 

 

 rk
Short−range

=
dnk

dt
=

1

2
αemp ∑ γij

totninjall i and j
Vi+Vj=Vk

− αempnk ∑ γij
totniall i  (2.8) 

 

 γij
tot = αij

Brβij
Br + αij

Shβij
Sh + αij

Dsβij
Ds 

The short- and long-range force models were examined in laboratory-scale experiments 

including both flocculation by Li (1996) and precipitative flocculation by Nason (2006). 

The short-range force model was able to yield better predictions to the experimental data 

than the long-range force model. In spite of the success of the short-range force model, 

both short- and long-range force models have not been tested on the flocculation of 

nanoparticles.  

2.3.3 Alternative Models 

 Alternate mathematical models have been suggested by a number of scholars to 

enhance mathematical predictions of flocculation by improving the underlying 

assumptions proposed by Smoluchowski. The fractal dimension was incorporated into the 

mathematical modeling by Lee et al. (2000, 2002) and Thill et al. (2001). They argued 

that the assumption of coalescence flocs differs from the true nature of porous flocs and 

developed mathematical models that consider the fractal nature of flocs. Some other 

scholars have focused on floc breakup, and explained that the discrepancy between model 

predictions and experimental flocculation results arise from the presumption of 
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everlasting flocs without considering breakup of flocs. Particle size distributions were 

better predicted when a breakup term was included in the flocculation model (Kramer 

and Clark, 1999; 2000). Unfortunately, none of these models account for nanoparticle 

flocculation. The main focus of the present research is to verify the original flocculation 

model with Smoluchowski’s assumptions to laboratory-scale experimental results. 

However, it is possible that the effects of the fractal nature and breakup of flocs will need 

to be addressed in future work. 

2.4 NUMERICAL COMPUTATION AND TRAJECTORY ANALYSIS 

As it was mentioned in Chapter 1, the collision frequency functions (β) that 

mathematically describe long-range transport mechanisms of two equal- or unequal-sized 

spherical particles can be analytically calculated. However, due to the complexity of 

hydrodynamic and interparticle interactions, calculating the collision efficiency functions 

(α) that account for transport mechanisms of two spherical particles at short range require 

numerical analysis (Benjamin and Lawler, 2013). To accurately quantify particle 

transport mechanisms in flocculation, both α and β have to be calculated. 

2.4.1 Brownian Motion 

By definition, stability (W) is the ratio of the aggregation rate in the absence of 

repulsive interactions between particles to the aggregation rate in the presence of 

repulsive interactions (Stumm and Morgan, 1996). Smoluchowski’s diffusion equation 

(1917) gives the solution to the aggregation rates in the absence of repulsive interactions, 

and Fuchs’ diffusion equation (1934) provides the solution to the aggregation rate in the 

presence of repulsive interactions. Spielman (1970) derived the stability ratio (W) 

considering repulsive interactions including the hydrodynamic and the EDL energy 

between two particles as follows: 
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 W = (1 +
a2

a1
) ∫

D12
∞

D12

exp(
VT

kBT
)

s2 ds
∞

2
=

1

αBr
 (2.9) 

where a1 and a2 are the radii of two colliding particles (a1 is always bigger than a2 by 

convention), D12 is the relative diffusion coefficient, D∞
12 is the diffusion coefficient at 

infinite separation, VT is the total interparticle potential energy (i.e., the sum of DLVO 

energies), k is the Boltzmann constant, and T is temperature in Kelvin. The collision 

efficiency functions (αBr) for Brownian motion is the reciprocal of the stability ratio 

(Stumm and Morgan, 1996). Han (1989) solved the hydrodynamic portion of the equation 

(i.e., D∞
12/D12) using Jeffrey and Onishi’s resistance and mobility tensor solutions (1984), 

and then numerically solved the integral to acquire the collision efficiency functions from 

the stability ratio (Han et al., 1997). In this research, Han’s method was utilized and 

Equation 2.9 was solved numerically using ordinary differential equation (ODE) solvers 

in MATLAB. The default value of MATLAB for absolute error tolerance was used in 

this integration; therefore, the upper bound is chosen large enough that the error becomes 

less than 1E-10.  

2.4.2 Differential Sedimentation 

Han and Lawler (1991) summarized theoretical calculations of hydrodynamic 

effects made by other scholars and performed trajectory analysis to calculate the collision 

efficiency function during differential sedimentation. Han and Lawler used Batchelor’s 

equation (1982) to convert Jeffrey and Onishi’s resistance and mobility tensor solutions 

(1984) to velocities of two settling particles. The mathematical derivations in the present 

work closely follow Han and Lawler’s paper (1991). The relative trajectory of the smaller 

particle with respect to the larger particle is depicted in a polar coordinate system shown 

in Figure 2.2. 
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Figure 2.2 Schematic drawing of two settling particles in polar coordinates 

From the Lagrangian point of view, the origin of the polar coordinate is at the 

center of the larger particle (a1). The angle between the two particles is θ, and the center-

to-center distance between the particles is r. Han and Lawler derived a first order 

differential equation that gives the distance between the two settling particles as a 

function of the angle between the particles as given below: 

 

 
dr

dθ
= r

[−cosθL(s,λ)U12−D12G(s,λ)F(s,λ)]

sinθM(s,λ)U12
  (2.10) 

where s is the dimensionless separation distance that is normalized by the average size of 

two particle radii (i.e., s=r/((a1+a2)/2)), λ is the ratio of the two particle sizes (a2 to a1), 

L(s, λ) and M(s, λ) are the hydrodynamic correction terms to a particle’s settling velocity, 

G(s, λ) represents the hydrodynamic correction term to the diffusivity coefficient, Us12 is 

differential settling velocity, and ∇Φ12 represents the gradient of the total interparticle 

potential energy (i.e., the sum of DLVO energy). Solving the above equation, the distance 

and the angle of the smaller particle is determined with respect to the larger particle at the 

θ r

x

y

a1

a2
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origin. Details of mathematical derivations and computational conditions are provided by 

Han (1989) and Han and Lawler (1991). In this research, this first order nonlinear 

differential equation was solved numerically using ODE Solvers in MATLAB. 

In trajectory analysis, open trajectories are defined as instances where particles 

miss each other, and closed trajectories are defined as instances where particle collisions 

occur during the course of their interaction (i.e., the dimensionless separation distance 

between the two particles, s, is equal to 1). A critical cross-sectional area is defined for 

particular particles as the verge of a possible closed trajectory. Figure 2.3 illustrates 

hypothetical trajectories in differential sedimentation. In the absence of interparticle 

interactions (Figure 2.3 A), the radius of the critical cross-section is the sum of a1 and a2. 

However, the critical cross-sectional area is reduced in the presence of interparticle 

interactions (Figure 2.3 B) due to the repulsive effects from hydrodynamics, and the EDL 

interaction. The collision efficiency function (αDs) is equal to the ratio of the critical 

cross-sectional area in the presence of interparticle interactions to the critical cross-

sectional area in the absence of those interparticle interactions.  
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Figure 2.3 Critical areas in the absence (A) and presence (B) of interparticle interactions. 

2.4.3 Fluid Shear 

Adler presented the global capture efficiencies for collisions of two unequal-sized 

particles in a linear shear fluid (1981a, 1981b, 1981c, 1981d) by improving van de Ven 

and Mason’s derivation (1976a, 1976b). To calculate the collision efficiency functions 

for particles in a linear shear flow, Adler’s trajectory analysis was performed in this 

research under traditional interparticle interactions (hydrodynamics and the vdW and 

EDL energies). The relative trajectory of two particles moving at different velocities due 

to a linear shear flow in polar coordinates is schematized in Figure 2.4. 
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Figure 2.4 Schematic representation of two particles in a linear shear flow 

The origin of the polar coordinate is at the center of Particle 2. The angle between 

Particle 1 and the z-axis is θ, the angle between the projection of Particle 1 on the xy-

plane and the y-axis is ϕ, and the center-to-center distance between the two particles is 

defined as r. Adler used three first order differential equations to describe the changes in 

r, θ, and ϕ with respect to time, t; as follows: 

 

 
dr

dt
= Gr(1 − A) sin2 θ sin ϕ cos ϕ + Fr (2.11) 

 r
dθ

dt
= (1 − B) sin θ cos θ sin ϕ cos ϕ + Fθ (2.12) 

 r sin θ
dϕ

dt
= Gr sin θ (cos2 ϕ −

B

2
cos 2ϕ) sin θ + Fϕ (2.13) 

 

where G is a linear velocity gradient, A and B are dimensionless hydrodynamic 

correction factors which are functions of the ratio of the two particle radii and the 

distance between them (they are similar to the L, G, M functions in Equation (2.10)), and 

F is the total interparticle force (i.e., the first derivative of DLVO energy with respect to 

separation distance). The hydrodynamic correction factors are detailed in Adler’s papers 
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(1981b, 1981c). Tandon and Diamond (1997) devised simpler hydrodynamic fitting 

functions that yield less than 2% error from the exact values of Adler (1981a) and 

Batchelor and Green (1972). In this research, the Tandon and Diamond simplified 

hydrodynamic functions were utilized instead of Adler’s exact hydrodynamic correction 

function to reduce the computational burden. 

2.5 SUMMARY 

 Flocculation is a critical process in water treatment. By changing the particle size 

distribution, flocculation allows subsequent particle separation processes such as 

sedimentation, granular filtration, or membrane treatment to be more effective. Yet, 

significant gaps in fundamental understanding still exist at the nanoscale. If nano-sized 

particles can become large sized particles (micro-scale) due to conventional particle 

destabilization, nano-sized particles are expected to well removed from water by 

subsequent particle separation processes. The motivation of the present research stemmed 

from the previous research of Han and Lawler (1992) and Li (1996). Han and Lawler 

developed the first flocculation model that considered short-rage interactions between 

particles and Li verified the mathematical model by comparing it against experimental 

results. However, the evolution of the particle size distribution in flocculation at the 

nanoscale cannot be predicted by their work. The mathematical model does not account 

for the collision efficiency functions for nano-sized particles. Additional motivation for 

the present research comes from the development of new analytical technologies that 

enable particle characterization at the nanoscale.  

The primary goal of this research is to improve quantitative understanding of 

flocculation at the nanoscale by comparing the experimental results acquired from 

laboratory-scale flocculation under various conditions to an extended flocculation model.  
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Chapter 3: Experimental Methods 

3.1 INTRODUCTION 

To obtain a quantitative understanding of the destabilization and flocculation of 

nanoparticles, the evolution of particle size distributions for silver nanoparticles (AgNPs) 

was studied under various laboratory scale experimental conditions. Experimental data 

were then systematically evaluated in comparison to each other or against predictions 

made from the mathematical flocculation model described in Chapter 2. In this Chapter, 

experimental designs and methods, analytical instruments, and interpretation of collected 

data are described.  

3.2 EXPERIMENTAL DESIGN 

Laboratory scale batch flocculation experiments were designed for engineered 

AgNPs. It is well known that the use of engineered nanoparticles in consumer products 

has increased over the last few decades and silver is one of the most popular 

nanomaterials due to its versatility (Lawler et al., 2013). Because engineered 

nanoparticles such as AgNPs can be released to surrounding environments from 

consumer products, several scholars have suggested that life-cycle pathways of 

nanoparticles in water treatment processes must be investigated (Wiesner et al., 2006). In 

particular, some of the transport processes in water treatment might be significantly 

different for such small and dense particles like AgNPs. For this reason, silver was 

selected as the target particle for this study. The size and shape of commercially available 

AgNPs are well defined (Kim, 2014). In addition, silver has a relatively high refractive 

index number; therefore, it is relatively easy to measure its sizes with analytical 

instruments that utilize laser-illumination techniques (Lawler et al., 2015).  
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3.2.1 Silver Nanoparticles (AgNPs) 

Three distinct sizes of spherical AgNPs (NanoXact) stabilized by citrate capping 

layers (diameters are 30, 50, and 100 nm) were purchased from Nanocomposix (San 

Diego, CA). Citrate is the most common stabilizing agent for nanoparticles in research 

settings (Tolymat et al., 2010). The primary stabilizing mechanism of citrate capped 

AgNPs is electrostatic and the surface charge at natural water conditions (pH 7-9) is 

negative (Mikelonis, 2015). The hydrodynamic size and zeta potential of AgNPs were 

confirmed by a NanoSight (LM10, Malvern) and ZetaCompact (Zetameter, CAD 

instrument), respectively. The measured particle sizes for the three types of AgNPs are 

shown in Figure 3.1.  
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Figure 3.1 Particle number distributions of purchased citrate stabilized AgNPs 
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The initial zeta potentials measured by ZetaCompact are between -50 and -45 mV at pH 7 

for the three purchased AgNPs which agreed with the value reported by the manufacturer. 

Because the three types of purchased AgNPs differ from each other only in diameters 

while their zeta potentials were almost identical to each other, direct comparisons 

between these AgNPs under the same experimental conditions is intended to reveal the 

effect of particle sizes on nanoparticle flocculation.  

3.2.2 Experimental Conditions  

Along with the size of AgNPs, the influences of other independent variables 

(ionic strengths, valencies of the background electrolytes, initial concentrations, and the 

presence of natural organic matters) were systematically investigated. The experimental 

conditions during each flocculation experiment are tabulated in Table 3.1. 
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Table 3.1 Experimental conditions for laboratory-scale flocculation 

 
Particle size 

(nm) 

Ionic Strength 

(mM) 
Valency 

Initial Particle 

Concentration 

(#/mL) 

NOM* 

1 100 30 1 1.3E+09 X 

2 100 50 1 1.1E+09 X 

3 100 30 2 1.2E+09 X 

4 100 30 3 1.2E+09 X 

5 100 30 1 1.9E+09 X 

6 100 50 1 1.1E+09 O 

7 100 30 2 1.3E+09 O 

8 30 30 1 1.1E+09 X 

9 30 10 1 1.0E+09 X 

10 30 3 1 1.1E+09 X 

11 30 3 2 1.2E+09 X 

12 30 3 1 2.5E+09 X 

13 50 3 1 1.2E+09 X 

14 50 3 2 1.2E+09 X 

15 50 10 1 1.1E+09 X 

16 30 & 100 10 1 1.3E+09 X 

17 30 & 100 30 1 1.0E+09 X 

18 30 & 100 3 2 1.0E+09 X 

*NOM = Natural Organic Matter, X = the absence of NOM, and O = the presence of NOM 
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3.3 LABORATORY-SCALE BATCH FLOCCULATION 

3.3.1 Preparation of Materials 

To reflect the importance of background electrolytes on nanoparticle flocculation, 

two different salts were chosen: calcium nitrate (Ca(NO3)2), and sodium nitrate (NaNO3). 

It is known that the primary destabilizing mechanisms of calcium nitrate and sodium 

nitrate on citrate capped AgNPs are charge neutralization and compression of the diffuse 

layer, respectively (Lawler et al., 2013). By comparing these two types of salts, the 

destabilization and flocculation of AgNPs could be systematically studied. To prevent 

any potential reactions with silver, nitrate salts were selected rather than chloride salts 

(Linnert et al., 1990; Li et al., 2010). The specific ionic strengths in flocculation 

experiments were determined based on preliminary experimental results. As it was 

explained earlier in Chapter 2, according to DLVO theory, a higher ionic strength forms a 

thin diffuse layer which favors particle collisions, while a lower ionic strength fosters an 

extended diffuse layer that hinders particle collisions. Throughout each flocculation 

experiment, the pH was kept constant at 7.0 (±0.3) via sodium bicarbonate (0.1 meq/L 

NaHCO3) to avoid calcium carbonate precipitation and other adverse effects. In addition, 

to emulate surface water conditions, some suspensions included Suwannee River natural 

organic matter (NOM) at a concentration of 3.5 mg/L as DOC. The reference NOM 

powder was purchased from the International Humic Substances Society. The NOM 

stock solution was prepared by dissolving the NOM powder into Millipore water (18 

Ohm) and filtering through membranes with a pore size of 0.45 μm to filter any unwanted 

particles. The dissolved carbon content of the NOM stock solution was quantified by a 

TOC-L analyzer (Shimadzu, Japan). Millipore water was used in all experiments. 

Laboratory glassware, stir-bars, and pipette tips were cleaned by soaking in 10% nitric 

acid overnight and kept in a particle-free room prior to each experiment. 
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3.3.2 Experimental Procedure 

For each flocculation experiment, the stock suspensions of AgNPs (0.02 mg/mL) 

were diluted to desired number concentrations with Millipore water; for different types of 

experiments, different silver concentrations were used as indicated in Table 3.1. If NOM 

was to be added, it was added next and allowed to interact with the AgNPs for 24 hours 

to give sufficient time for adsorption of NOM onto the particle surface. AgNPs could 

undergo dissolution (Liu and Hurt, 2010; Zhang et al., 2015), aggregation (Li and 

Lenhart, 2012), or sulfidation (Kim et al., 2010; Levard et al., 2011). To protect the 

change of particle property, the prepared solutions were stored at 4 °C protected from 

light. The stock solutions of nitrate and calcium salts were made at a high concentration 

so that the desired final concentrations could be obtained with a dilution factor of 33.3 

(i.e., by adding 30 μL of the salt stock per 970 μL of AgNPs solution to have 1000 μL of 

the final suspension). The NaNO3 or Ca(NO3)2 stock solutions were added at time 0 to 

achieve desired ionic strengths and rapidly mixed for 30 seconds. Samples were collected 

at various times and particle size distributions were measured immediately. Throughout 

each flocculation experiment, gentle mixing (with G values estimated as 10s-1) was 

applied via a combined rocking and rolling motion in enclosed jars to avoid particle 

settling. Flocculation experiments were performed by controlling five different 

independent variables while other environmental conditions were fixed. In addition, 

heterodisperse samples were produced by adding two sizes of AgNPs together (30 nm & 

100 nm) and evaluated.  
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3.4 CHARACTERIZATION METHODS 

3.4.1 Nanoparticle Tracking Analysis (NTA) 

In the present study, the particle size distributions of AgNPs were measured 

exclusively using NanoSight LM10 HS equipped with software version NTA 3.0. This 

instrument uses laser illuminated microscopy to record the Brownian motion of 

nanoparticles in suspension. NTA 3.0 is a computer program that tracks each particle 

from the recorded videos, calculates the particles’ mean squared displacements, and from 

that information and the Stokes-Einstein equation, the particles’ diffusion coefficients 

and sphere-equivalent radius. The Stokes-Einstein equation is  

 

 D =
kBT

6πμa
 (3.1) 

 

where D is the diffusion coefficient, kB is Boltzmann’s constant, T is the temperature in 

Kelvin, μ is the viscosity of water, and a is the particle’s radius.   

The method and theory of NTA are described by Malloy & Carr (2006). The 

lower size limit of detection depends on the refractive index of nanoparticles which, for 

colloidal silver, is approximately 10 nm (Carr et al., 2008; Filipe et al., 2010). For this 

research, each measurement was taken for 30 s and run in triplicate. The average values 

of three measurements were used for the analysis. Although the software allows fitting 

the data to a log-normal distribution, the raw data were used in the data analysis. The 

absolute, and not just relative, size distributions reflect the changes brought about by 

flocculation more precisely; these processes promote heterodispersity in the distribution, 

and a log-normal model fitting would distort the actual data. Therefore, the raw data were 

used to produce particle size distributions with equally spaced size increments on a 

logarithmic scale. 
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The desired number concentrations for the flocculation experiments were chosen 

based on the optimum number concentration range of NanoSight. The operation manual 

for NanoSight recommends all samples to be diluted to a particle number concentration 

greater than 10E7 and lower than 5E9 particles per milliliter. Varying dilution factors to 

the AgNPs stock solution, it was confirmed that the mass concentration is proportional to 

number concentrations measured within the suggested operation ranges of NanoSight as 

shown in Figure 3.2.  
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Figure 3.2 Number vs. Mass Concentration for A) 30 nm and B) 50 nm AgNPs 

These quantitative measurements could be very difficult to obtain at first, and the 

optimum configuration of the instrument for particular nanoparticles can only be 

determined by arduous trial-and-error. Due to its high refractive index number, AgNPs 

are less challenging than other inorganic nanoparticles to quantify number concentrations 

using NTA. However, the measured particle number concentrations in the early stage of 

the present research often differed from the expected number concentrations (e.g., NTA 

gave higher number concentrations than the estimated number concentrations by the 

manufacturer of AgNPs). The standard configuration of the instrument will not likely 

deliver precise number concentrations. The measured number concentrations of 

NanoSight are strongly influenced by laser intensity during the measurement process and 

threshold configuration during data acquisitions. These two properties must be carefully 

controlled during each measurement and cross referenced between each sample.  
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Prior research was used to evaluate the precision of particle number 

concentrations measured by NanoSight. Results of AgNPs removed during granular 

filtration (Lawler et al., 2015) that were measured on a number basis using NanoSight 

were compared with results of mass measurements that were measured by inductively 

coupled plasma optical emission spectrometry (ICP-OES); these measurements are 

compared in Figure 3.3. 
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Figure 3.3 Comparison of particle fraction remaining between NTA and ICP-OES from 

AgNPs removed by granular media filtration in Lawler et al., 2015 

In most cases, results from the two measurements were quite consistent. This agreement 

again indicates that NTA is a promising method to characterize nanoparticles during 

water treatment processes both qualitatively and quantitatively. 
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3.4.2 Dynamic Light Scattering (DLS) 

 DLS measures the scattered light that is created by Brownian motion of 

nanoparticles in a liquid solvent. Fitting the frequency of light fluctuation into different 

time intervals, diffusion coefficient values of nanoparticles are found (Pecora, 2013). 

Then, the hydrodynamic diameters are calculated from the obtained diffusion coefficient 

by using the Stokes-Einstein equation. Amongst the various analytical methods available 

for measuring particle size, dynamic light scattering (DLS) has been used most frequently 

for characterization of nanoparticles (Malloy and Carr, 2006; Carr et al., 2008). However, 

after extensive preliminary studies, DLS is determined to be an unsuitable technique for 

the present research. DLS only gives relative concentration measurements (i.e., the 

intensity of light scattering) and creates a Gaussian distribution to fit the ensemble light 

scattering detected; the objectives of this research require absolute (not relative) size 

distributions and cannot be constrained by a Gaussian fit.  

A set of flocculation data obtained by NTA and DLS (Malvern Zetasizer) is 

shown in Figure 3.4. For this flocculation experiment, the stock suspension of 50 nm 

AgNPs with citrate capping was prepared at a concentration of 500 µg/L. The Ca(NO3)2 

stock solution was added at time 0 to achieve the desired ionic strength of 10 mM, and 

the suspension was rapidly mixed for 30 seconds. Samples were collected at various 

times thereafter and particle size distributions were measured immediately by NTA and 

DLS.  
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Figure 3.4 Flocculation results from NTA (top) and DLS (bottom) 
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The NTA result in Figure 3.4. shows the changes in the particle size distributions of 

destabilized AgNPs with time. The peak of the number distribution shifted to larger 

particles, both the height of the peak number concentration and the area of the figure 

(total particle concentration) lowered with time, and the creation of larger flocs is clearly 

indicated. This result is clear evidence of flocculation and is qualitatively consistent with 

the Smoluchowski theory of flocculation (i.e., many small particles aggregated to form 

fewer larger particles). The limitation of DLS measurements is clear when compared with 

NTA results from the same experiment as shown in the bottom of Figure 3.4. Although 

DLS also indicated flocculation by the shift to larger sizes, it only shows relative size 

measurements as a normal distribution; this result is not consistent with Smoluchowski 

principles.  

3.4.3 Tunable Resistive Pulse Sensing (TRPS) 

The feasibility of utilizing TRPS technique of qNano (iZon Science) for 

nanoparticle size measurements was also contemplated for the present research. TRPS is 

an impedance based technique that employs the Coulter principle at the nanoscale (Kozak 

et al., 2012). TRPS measures the magnitude of electrical currents across a nano-sized 

pore of a membrane in a background suspension. Because the background suspension is a 

salty electrolyte, a constant voltage can be maintained across the pore by the instrument. 

When a particle passes through the pore, the particle (assumed to be non-conductive in 

comparison to the electrolyte) alters the resistance between the nano-sized pore of the 

membrane. Due to the relationship between voltage, current and resistance (V=I*R), if 

the voltage is constant, a sudden electrical pulse in the currents will be created as the 

particle passes through. The peak and duration of that pulse are proportional to the 

volume and the velocity of the particle, respectively (Garza-Licudine et al., 2010). This 
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technique can be a powerful nano-characterization tool because TRPS technique directly 

measures the absolute physical volume of each particle rather the hydrodynamic 

diameter, as DLS and NTA do. The hydrodynamic diameter includes a hydration layer of 

fluid and capping or other surrounding ions that travel with particles in solutions. The 

hydrodynamic diameter depends on the properties of the solutions such as ionic strength 

or pH. According to the operation manual of the qNano, TRPS measurements agree well 

with transmission electron microscopy (TEM) because they are both independent of 

electrolyte properties. The NanoSight utilizes laser, and the quality of measurements 

relies on the refractive index of particle materials whereas TRPS does not have such 

limitations. In addition, numerical flocculation modeling is based on the absolute volume 

of particles, not the hydrodynamic diameter. The absolute particle volume that is 

measured by the qNano would correspond to numerical modeling prediction better.  

Despite all these positive aspects, the qNano failed to yield the particle size 

distributions of the purchased AgNPs for a few reasons. To maintain a constant electric 

voltage across the membrane pore, the background electrolyte requires relatively high 

salinity. The standard background electrolyte solution, iZon Tris buffer, provided by the 

manufacturer has 100 mM of KCl, equivalent to ionic strength of 100 mM. In such ionic 

strength, the purchased citrate capped AgNPs are highly destabilized and extremely rapid 

flocculation takes place. Because flocculation is a second order reaction with respect to 

the particle number concentration, the number concentration of AgNPs decreases 

dramatically within a few minutes of sampling periods. By the time, the samples are 

ready to be measured in the instrument, the number concentration falls below the 

minimum particle count required by the qNano. In addition, due to rapid flocculation, the 

size of AgNP flocs becomes larger than the size of the membrane pore. Although it is 

possible to substitute the membrane of the qNano with a larger pore sized membrane, this 
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procedure requires cleaning and replacement time. Practically speaking the qNano was 

not able to keep up with the dynamic nature of AgNPs flocculation on a real-time basis. 

To prevent rapid flocculation of AgNPs, a laboratory synthesized electrolyte that had a 

lower salinity of 50mM of KNO3 was attempted for qNano measurements instead of the 

standard background electrolyte. However, the electric current was not stable at that low 

of a salinity condition so severe electrical background noise resulted. Ultimately, the 

TRPS system was determined not suitable for the purchased citrate capped AgNPs. 

Alternatively, when latex particles (Duke Scientific Corporation, CA) with a 

diameter of170 nm were used during a similarly designed flocculation experiment, the 

qNano was able to deliver the evolution of particle size distributions in laboratory scale 

flocculation as shown in Figure 3.5.  
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Figure 3.5 Flocculation of latex particles induced by I = 400 mM of KCl from qNano 



 43 

 

Latex particles (polystyrene) have a lower Hamaker constant value compared to silver 

(Israelachvili, 2011); as a result, the vdW attraction of latex is weaker than the purchased 

AgNPs. In addition, the electrical surface potential of latex particles is estimated to be 

higher than the citrate capped AgNPs; the EDL repulsion of latex is stronger than AgNPs. 

For this reason, in the standard background solution of the qNano, latex particles do not 

form flocs. Flocculation of latex particles were induced by the ionic strength of 400 mM 

of KCl. The samples were then diluted with standard background solution and particle 

size distributions were measured at various times. The qNano could be a powerful tool to 

characterize nanoparticles only if the stability of the target particles is not affected by the 

high salinity of background electrolytes. 

3.4.4 Electrophoretic Mobility 

The magnitude of surface charges of particles in water is commonly estimated 

experimentally by electrokinetic techniques (Elimelech et al., 1998). Among several 

existing electrokinetic techniques, electrophoretic mobility is most popular for suspended 

colloidal particles (i.e., velocities of particles over electrical field strengths). Estimated 

electrophoretic mobility can then be converted to zeta potential. Zeta potential (also 

known as electrokinetic potential) is defined as the electric potential at the shear plane of 

the diffuse layer (Kim et al., 2006). Due to the correlation between the zeta potential and 

the surface potential, the surface potential and the particle stability can be analyzed 

through measurements of the zeta potential. The zeta potential is a critical parameter for 

prediction of particle stability in solutions. 

In the present study, the zeta potentials of AgNPs were obtained from 

electrophoretic mobility measurements made with a Zetameter ZetaCompact (CAD, 
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France). The Zetameter ZetaCompact is a laser illuminated microscopic instrument that 

utilizes a computer video processing program to track moving particles under various 

electrical field strengths. In natural conditions, most particles have a heterogeneous 

distribution of zeta potentials because of the complexity of crystal structure and chemical 

compositions of the particle surfaces (Kim and Lawler, 2005). This heterogeneous nature 

of zeta potentials must be carefully taken into account. To have statistically significant 

data, each measurement must contain the number of tracked particles between 80 and 120 

(Kim et al., 2008).  

Kim and Yoon (2002) reported the relationships between measured 

electrophoretic mobility and zeta potentials for deformed spherical particles. However, 

the effect of non-spherical particles on electrophoretic mobility was not considered in the 

present study because TEM images confirmed the spherical shape of the purchased 

AgNPs as shown in Figure 3.6. Similar TEM images from the manufacturer for the other 

particles confirm the sphericity and small variation in size for those other particles. In 

addition, the standard deviations in the zeta potential distributions from ZetaCompact can 

account such variations (Kim et al., 2008).  
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Figure 3.6 TEM image of the purchased 50 nm citrate capped AgNPs 

Using the Gouy-Chapman model with a known distance (0.5 nm) between the particle 

surface and the shear plane (van Oss et al., 1990), the surface potential was estimated 

from experimentally measured zeta potentials though out the present research. 

3.5 INTERPRETATION OF PARTICLE SIZE DISTRIBUTION DATA 

 Raw data from the NanoSight contains the number of particle tracked in each 

particle size bin (or channel). Users of the NanoSight can specify whether particle size 

bins to be spread equivalently either in an arithmetic scale or a logarithmic scale. Using 

an arithmetic scale squeezes the data at small particle sizes and disseminates the data for 

large particle sizes. For instance, the distinctions in transport behavior of nanoparticles 

between 10 and 50 nm (diameter) particles are relatively more important than the 

distinctions in transport behavior between 1.01 and 1.05 μm sized particles. However, the 

arithmetic scale assumes that they have the equal importance. To avoid this scale issue, it 

is conventional to use a logarithmic scale for the abscissa (particle diameter) in size 

distributions for particles in a suspension (Benjamin and Lawler, 2013). On the 
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logarithmic scale, nanoparticles of 1 and 5 nm are as equally spaced out as 100 and 500 

nm particles; therefore, the relative importance between different sized particles is 

adjusted.  

3.5.1 Presentation of Size Distributions of Nanoparticles 

 Several different methods of expressing size distributions of particles in a 

suspension exist and Benjamin and Lawler (2013) thoroughly discussed these methods. 

In this research, the definition for particle size distributions described by Benjamin and 

Lawler is used hereafter. The particle size distribution function is defined as follows:  

  

 n(dp) =
∆N(dp)

∆(dp)
 (3.2) 

where, dp is a mean particle diameter of each particle size bin, and N(dp) is a cumulative 

number density function. Hence, n(dp) is the differential form of the number distribution 

(i.e., number of particles in each size bin). Along with the abscissa, the logarithmic scale 

is commonly used for the ordinate in particle size distribution function because the 

numbers of measured particle in each bin vary over a few orders of magnitude in a 

sample. Figure 3.7 shows the particle size distribution function from the purchased AgNP 

stock solution for 100 nm.  
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Figure 3.7 Particle size distribution function for the purchased citrate-AgNPs 

Particle diameters are reported as micrometers. The logarithmic value of -1 with base 10 

corresponds to 0.1 μm (i.e., 100 nm); therefore, the peak of the particle size distribution 

for the 100 nm sized AgNP stock suspension is approximately at -1 of the logarithmic of 

the particle diameter. Although the particle size distribution function is a popular method 

to deliver particle distribution information, it does not work very well with data from 

NanoSight. NanoSight often measures no particles for a certain size bin. In turn, this 

results in a zero number concentration for that particular size bin (i.e., ΔN(dp) = 0). 

Because the logarithmic of 0 is undefined, particle size distributions cannot be generated 

with measured data from the NanoSight. To circumvent this issue, the number 

distribution (ΔN/Δlog dp) was used throughout the present study. Figure 3.8 shows 

number distribution for the same AgNP stock solution to Figure 3.7.  
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Figure 3.8 Particle number distribution for the purchased citrate-AgNPs as measured 

using NanoSight 

The particular usefulness of this plot is that the total number concentration within a 

particular size range is given by the integral (area under the curve) of the number 

distribution over that size range. The particle number distribution functions are somewhat 

analogous to probability density functions in statistics. According to the Oxford English 

Dictionary, the probability density function is “a function of a random variable, whose 

integral across an interval gives the probability that the value of the variable lies within 

the same interval.” Similarly, a number distribution is a function of the particle diameter, 

whose integral across an interval gives the number concentration that the value of the 

particle size lays within the same interval. Throughout the present study, number 

distribution functions were used as a primary method to visualize size distributions of 

AgNPs in flocculation experiments and mathematical modeling.   
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3.5.2 Data Manipulation 

The output summary files from NanoSight include information of sample and 

instrumental settings. The width of each bin (Δlog dp) was set at 0.033 to generate one 

hundred individual particle size bins that are equally spread out in a logarithmic scale 

from 1 nm to 2000 nm. Although NanoSight allows fitting the data to a log-normal 

distribution, the raw data were used in the analysis. The absolute, and not just relative, 

size distributions reflect the changes brought about by flocculation and filtration more 

precisely; these processes promote heterodispersity in the distribution, and a log-normal 

model fit would distort the actual data. The raw data from NanoSight are the number 

concentration (ΔN) for each size bin. Normalizing the number concentration (ΔN) by the 

bin width (Δlog dp), the number distribution is then generated. Each size measurement 

measured on NanoSight was run in triplicate. The average values of three measurements 

were used for the mathematical modeling and further analysis. 

3.5.3 Quantifying Flocculation 

 As shown in Equation 2.3, flocculation is a second-order reaction with respect to 

the particle number concentration. Even though examining all the number distributions 

over an entire flocculation experiment could give some general idea about flocculation 

kinetics, the influence of different experimental conditions on flocculation kinetics can be 

more readily seen by comparing some characteristic changes in the number distributions 

among flocculation experiments. Figure 3.9 shows changes in the number fraction (i.e., 

the ratio of the number concentration of particles in particular diameter ranges to the total 

number concentration) of 30 nm AgNPs in 10 mM ionic strength at NaNO3.  
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Figure 3.9 Particle number fraction during flocculation of 30 nm AgNPs at I = 10 mM 

Two arbitrary particle diameter ranges, equally spaced logarithmically, were 

chosen as the ‘smaller particle range’ and ‘larger particle range’. The smaller particle 

range represents particle that include the first 70% of the total particle number 

concentration in the size distribution and the larger particle range includes the remaining 

30% of the distribution. During flocculation, the fraction of smaller particles decreased 

while the fraction of the larger particles increased. At time 0, the smaller and larger 

particle accounted for 70% and 30%, respectively. After an hour of flocculation, the 

fraction of smaller particles decreased to 55% while the fraction of larger particles 

increased to 45%. By comparing number fractions between flocculation experiments, the 

effects of experimental conditions are better understood. 
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Chapter 4: Experimental Results 

4.1 INTRODUCTION 

The main objective of the experimental portion of this research was to examine 

the evolution of AgNP size distributions under various water chemistry conditions. 

Through the experimental results of AgNP flocculation, theories of particle 

destabilization and flocculation processes in water treatment that were initially developed 

for micron-sized particle can be validated for nano-sized particles. The experimental 

results would bridge the gap between applications and theory for water treatment in the 

nanoscale. The work was performed at the laboratory scale using batch flocculation 

experiments. Independent variables included ionic strength (I), type of electrolytes, 

presence or absence of natural organic matter (NOM), initial particle number 

concentration, and initial particle size. These experimental variables were selected on the 

basis of their fundamental and established influence during flocculation processes in 

conventional water treatment. This work specifically focuses on their effects on 

nanoparticle flocculation, an area of research that is not well understood. The 

experimental procedures for monodisperse suspensions are first discussed in this section, 

followed by the discussion of heterodisperse suspensions. The particle number 

distributions obtained from each experimental condition (Table 3.1) are provided in 

Appendix A. In addition, the reproducibility of the evolution of particle size distributions 

for the AgNP flocculation experiments was verified. Experimental results from different 

iterations of the same experimental conditions were compared side by side as shown in 

Appendix D. 
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4.2 ANALYSIS OF A TYPICAL LABORATORY SCALE FLOCCULATION EXPERIMENT 

Flocculation takes into account both liquid and solid phases. Batch flocculation 

experiments measured routine liquid properties such as pH and ionic strength, while 

cutting edge characterization techniques were developed for the solid phase, since 

incorporating the nano size range is novel to this type of research. This section provides 

representative figures that illustrate results obtained from each flocculation experiment.  

Experiments #1 and #2 from Table 3.1 (flocculation experiments of the 100 nm 

AgNPs brought about by I = 30 and 50 mM as NaNO3, respectively, in the absence of 

NOM) were selected to demonstrate analyzed raw data from NanoSight. Figure 4.1 

delineates the changes in size and number of AgNPs in Experiment #1 and #2 over sixty 

minutes of flocculation. As shown in Figures 4.1A and B, the peak of the number 

distributions at time zero was located approximately at log dp = -0.9 (dp = 0.126 μm). 

Because the NanoSight measures the hydrodynamic diameter, the measured diameters are 

always slightly greater than the actual diameter of AgNPs reported by the manufacturer. 

The number distribution of AgNPs initially showed a normal distribution around its peak. 

Once flocculation was induced by increasing the ionic strength to 30 and 50 mM with 

NaNO3, the number distributions were measured by NanoSight at various times to 

scrutinize the evolution of particle number distributions during flocculation.  

Poor flocculation would show minimal or no change in the number distributions 

with time. In Figure 4.1A, the peaks of the number distributions did not appear to be 

moved at all whereas the height of the peak was slightly reduced during sixty minutes of 

flocculation. This result is an indication of poor or limited flocculation. On the other 

hand, successful flocculation transforms a large number of smaller particles into a fewer 

number of larger particles. This trend could be readily seen in the number distributions of 

many experiments in this research; in that case, the peak of the number distribution 
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shifted to larger particles, and both the height of the peak and the area under the curve are 

lowered with time as shown in Figure 4.1B. In addition, the creation of larger flocs is 

clearly indicated in Figure 4.1B. 

Because the area under the number distributions represents the total number 

concentration of AgNPs in the system, the effectiveness of flocculation becomes apparent 

by looking at the changes of the area under the number distribution (i.e., the total particle 

number concentration) as a function of time. The total particle concentrations of AgNPs 

versus experimental duration were acquired from the number distributions as shown in 

Figure 4.1C and D. The total number concentrations during Experiments #1 and #2 were 

reduced approximately from 1.3E9 #/mL to 1.0E9 #/mL and 1.1E9 #/mL to 5.0E8 #/mL, 

respectively. Because flocculation is a second-order reaction with respect to the number 

concentration of particles, the particle number concentration decreases quickly in the 

beginning of flocculation; however, the rate slows down with time by developing a 

plateau in the later stage of flocculation. By comparing the rate of changes in the total 

number concentrations of AgNPs with respect to time among each experimental 

condition, the intensity of flocculation is elucidated. 

Figure 4.1E and F represent the changes in the particle number fraction in 

different parts of the size range during Experiments #1 and #2. The principles behind 

particle number fraction graphs are discussed in detail in Section 3.5.3. In short, the first 

70% of the total particle number concentration in the size distribution is designated as the 

smaller particle and the remaining 30% of the distribution is classified as the larger 

particle. Minimal changes in the number fractions of small and large size particles were 

observed during Experiment #1 as shown in Figure 4.1E. The number fraction of small 

sized particles was lowered from 70% to 65%, while the fraction of large sized particles 

was shifted from 30% to 35%. This negligible shift is another confirmation that the ionic 
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strength of 30 mM as NaNO3 did not induce vigorous flocculation for 100 nm sized 

citrated capped AgNPs. For Experiment #2, substantial changes in the number fractions 

occurred as shown in Figure 4.1F. The number fraction of small sized particles went 

down from 75% to 35%, whereas the fraction of large sized particles soared from 25% to 

65%. This dramatic shift is a clear evidence that the ionic strength of 50 mM of NaNO3 

induced vigorous flocculation. It can be deduced from all parts of Figure 4.1 that 

flocculation was somewhat limited under the conditions of Experiment #1 while far more 

robust flocculation took place in Experiment #2. 
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Figure 4.1 A) and B) Number distributions C) and D) Total particle concentrations, and 

E) and F) Number Fraction for 100 nm sized AgNPs under I = 30 and 50 

mM achieved by NaNO3, respectively 

Along with the changes in particle sizes, the zeta potentials of AgNPs during 

flocculation experiments were evaluated as shown in Figure 4.2. Prior to the ionic 

strength adjustment in Experiment #1, the initial zeta potential of AgNPs was -50 mV. 

Due to the increased ionic strength, compression of the diffuse layer of AgNPs was 

achieved; therefore, the absolute value of the measured zeta potential was reduced to 

approximately -25 mV.  
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Figure 4.2 Zeta potential measurements from Electrophoresis measurements 

(ZetaCompact, France) performed during Experiment #1 

Because of the difficulty of simultaneous measurements of particle sizes and zeta 

potentials, and the observation that zeta potential values stabilized during flocculation, 

only the initial and final zeta potentials of AgNPs were analyzed and reported for the 

other experiments. The measured zeta potentials are tabulated in Appendix E. 

Throughout the remainder of Chapter 4, identical data analysis and interpretation 

techniques were applied to examine the changes in the distribution of particle sizes and 

the zeta potential for each AgNP flocculation experiment.  
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4.3 FLOCCULATION EXPERIMENTS OF MONODISPERSE SOLUTIONS 

4.3.1 Effects of Ionic Strengths of Destabilizing Agents 

Because compression of the double layer due to increased ionic strengths is 

mathematically well understood, this mechanism is widespread in research setting for the 

field of particle separation processes (Benjamin and Lawler, 2013). By changing the 

concentration of destabilizing agents in suspensions, which is directly related to the ionic 

strength, scholars have quantified the critical coagulation concentration (CCC) and the 

stability of nanoparticles (Li et al., 2011; Zhang et al., 2011; Nason et al., 2012; El 

Badawy et al., 2012). While these cited works mainly focused on the growth of the mean 

hydrodynamic particle size as a function of the concentration (or the ionic strength) of the 

background electrolyte, the present work pinpointed the changes in the absolute particle 

size distributions under varying ionic strength conditions with respect to time. 

Figure 4.3 shows the changes in the particle number distribution of the 30 nm 

sized citrate stabilized AgNPs over an hour of batch flocculation achieved by the 

different ionic strengths of NaNO3 (Experiments #8, 9, and 10) while all other conditions 

remained constant. 
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Figure 4.3 Changes in the particle number distributions during flocculation for the 30 nm 

AgNPs with A) I = 3 mM B) 10 mM and C) 30 mM of NaNO3 which are from 

Experiment #8, Experiment #9, and Experiment #10, respectively 

Different degrees of flocculation between each experiment can be manifested 

from Figure 4.3. As discussed in Chapter 3, however, it is easier to discern the 

effectiveness of flocculation by examining the changes in the total number concentrations 

under each experimental condition. Figure 4.4 displays the changes in the total number 

concentrations for the three flocculation results for the 30 nm sized AgNPs. As shown in 

Figure 4.4, the total particle number concentrations of the 30 nm AgNPs fell to various 

degrees under the three ionic strengths (I = 3, 10, and 30 mM). The particle number 
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concentrations under I = 10 and 30 mM were lowered almost one order of magnitude 

from their initial concentrations (from 1.1E9 to 2E8 #/mL) whereas the total number 

concentrations for of AgNPs with I = 3 mM declined only slightly.  
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Figure 4.4 Total number concentrations of the 30 nm AgNPs under various ionic 

strengths 

These results agreed well with the theoretical understanding of compression of the 

diffuse layer reviewed in Chapter 2. The diffuse layer is more compressed under 

increased ionic strengths; therefore, weakened repulsive interaction led to an effective 

destabilization and better flocculation of AgNPs. Examining the interaction energy of two 

particles provides clear confirmation of this result. The interaction energy of two equal-

sized AgNPs as a function of their separation distance (i.e., DLVO curves) was calculated 

and plotted for the given condition as shown in Figure 4.5.  
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Figure 4.5 DLVO energy between two 30 nm sized AgNPs with a zeta potential of -25.7 

mV (AH was assumed to be 10E20 J) 

In Figure 4.5, each line represents the overall interaction energy of AgNPs at the 

different ionic strengths. The height of energy barrier is inversely related to the 

magnitude of the ionic strengths (i.e., the energy barrier diminishes with increasing ionic 

strengths). The energy barrier of 5 kBT was found at a separation distance of 2 nm when 

the ionic strength was 3 mM. However, the height of the energy barrier was reduced to 0 

kBT when ionic strength increased to 10 mM. Once the ionic strength was raised to 30 

mM, not only the energy barrier, but also the majority of the graph was shifted downward 

and located in the negative side of interaction energy. Under this condition, AgNPs are 

attracted to each other over the entire separation distance. These DLVO energy graphs 

demonstrate that the required momentum in the course of collisions of AgNPs to 

overcome the energy barrier and reach the primary minimum is reduced with increased 

ionic strength of the background electrolyte.  
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The measured number concentrations from the experiments (Figure 4.4) 

qualitatively agreed with the results of theoretical calculations (Figure 4.5). According to 

the DLVO calculation (Figure 4.5), superior flocculation should take place with 

increasing ionic strength. This trend was clearly observed for experimental results at I = 

3, 10, and 30 mM when compared to 10 or 30 mM. However, the total number 

concentrations at I = 30 and 10 mM were quite similar to one another, contrary to the 

expectations based on the DLVO calculations.  

Differences in the extent of flocculation between I = 10 and 30 mM are better 

demonstrated by the fractional changes in the particle sizes during flocculation, as shown 

Figure 4.6. Figure 4.6A illustrates the fractional changes in particle sizes under I = 3 mM 

condition. The fractions of the small and large sized particles maintained their initial 

fractions of 70% and 30%, respectively. After an hour of flocculation for I = 10 mM 

(Figure 4.6B), the small and large sized particles represented 55% and 45% of the total 

particle population detected, respectively. When the ionic strength was set at 30 mM 

(Figure 4.6C), remarkable fractional changes in the particle size occurred. The fraction of 

the small sized particles decreased rapidly while the fraction of the large size particles 

soared. At the end of the flocculation experiment, the large sized particles were 

approximately 97% whereas the small sized particles were only 3%. This result proves 

more effective flocculation occurred at the ionic strength of 30 mM than 10 mM. 
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Figure 4.6 Particle Number Fractions during flocculation for the 30 nm AgNPs with A) I 

= 3 mM B) 10 mM and C) 30 mM of NaNO3 

Comparably designed flocculation experiments for the 50 nm (Experiments #13 and #15) 

and 100 nm (Experiments #1 and #2) sized AgNPs demonstrated consistent outcomes 

(The evolution of the particle size distributions for these experiments are exhibited in 

Appendix A). Figure 4.7 represents the changes in the total number concentrations of the 

50 nm and 100 nm sized AgNPs under varying ionic strengths. For both 50 nm and 100 

nm sized AgNPs, more successful flocculation was acquired by higher ionic strengths. 
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Figure 4.7 Total number concentrations of A) 50 nm and B) 100 nm of AgNPs under 

different ionic strengths. 

With the identical assumptions used for Figure 4.5 for zeta potential, calculated DLVO 

energy at given ionic strengths for the 50 and 100 nm sized AgNPs are plotted in Figure 

4.8. Comparable to the previous calculation of the 30 nm sized AgNPs, the height of the 

energy barrier is distinctly lower as ionic strength is increased.  
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Figure 4.8 DLVO Energy calculations for AgNPs of A) 50 nm and B) 100 nm 
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The effects of the ionic strength of the destabilizing agents on various sized citrate 

capped AgNPs were consistent with theoretical understanding of particle destabilization. 

4.3.2 Effect of Destabilizing Mechanisms 

Calcium ions have a higher affinity than sodium ions to form complexes with 

citrate ions (Morel and Hering, 1993); therefore, the surface charge of citrate stabilized 

AgNPs is expected to be more effectively neutralized by Ca(NO3)2 than NaNO3. That is, 

Ca(NO3)2 would destabilize citrate capped AgNPs by adsorption and charge 

neutralization as well as by compression of the double layer, whereas NaNO3 would only 

use the latter mechanism. Many previous scholars have experimentally investigated 

destabilization and flocculation of citrate stabilized AgNPs using different background 

electrolytes (El Badawy et al., 2009; Cumberland and Lead, 2009; Huynh and Chen, 

2011; Baalousha et al., 2013). These cited studies have tried to illuminate the role of 

capping layers of AgNPs on particle stability with respect to various destabilizing ions 

such as sodium, calcium, and magnesium. Calcium and magnesium ions were found to be 

far more effective than sodium ions in reducing the stability of citrate-capped AgNPs; the 

authors hypothesized that calcium and magnesium complexed with citrate capping layers 

which led to charge neutralization. In addition, Huynh and Chen (2011) presented 

experimental results that citrate AgNPs was better destabilized by calcium than 

magnesium ions because the stability constant of monodentate calcium citrate complexes 

was higher than that of monodentate magnesium citrate complexes. When AgNPs had 

poly-vinylpyrrolidone (PVP) capping instead of citrate capping, charge neutralization 

effects of calcium or magnesium on AgNPs were not observed because there was no 

complexation between the capping and the destabilizing ions in that scenario. A 
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preliminary study of our research group verified such relationship between citrate 

capping layers of AgNPs and sodium and calcium ions (Lawler et al., 2013).  

Based on the changes in the mean hydrodynamic diameters of citrated capped 

AgNPs under the two different electrolytes, theoretical understanding of the 

destabilization mechanisms between calcium and sodium ions was verified.  

In the present study, effects of the destabilization mechanisms of these two 

electrolytes (sodium and calcium) were studied from the absolute changes in the particle 

number distributions obtained from NTA instead of the relative size measurements of 

DLS. The three sets of the flocculation results (Experiments #1-3-4, #10-11, and #13-14) 

visualized the role of the destabilizing agents on flocculation dynamics of the three sizes 

of citrate capped AgNPs. Figures 4.9A and B show the evolution of the particle size 

distributions of the 30 nm sized AgNPs under the ionic strength of 3 mM achieved by 

NaNO3 and Ca(NO3)2, respectively. The evolution of the particle size distributions for the 

50 and 100 nm sized AgNPs are exhibited in Appendix A. 
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Figure 4.9 The evolution of the particle size distribution of the 30 nm sized AgNPs at I = 

3 mM A) of NaNO3 and B) Ca(NO3)2 
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Figure 4.10 A-C display reductions in the total particle number concentrations for the 

three sized AgNPs. For each size of AgNPs, the identical ionic strengths were tested with 

both NaNO3 and Ca(NO3)2. The target ionic strengths for the 30, 50 and 100 nm sized 

AgNPs were 3, 3, and 30 mM, respectively. Regardless of the initial size of AgNPs, more 

significant reductions in the total number concentration of AgNPs were observed under 

calcium destabilization than sodium destabilization. These results concurred with the 

conclusions suggested by previous scholars that calcium ions are a better destabilizing 

agent than sodium ions for citrate capped AgNPs.  

Along with NaNO3 and Ca(NO3)2, Na3C6H5O7 (trisodium citrate) was additionally 

used for a 100 nm AgNPs flocculation experiment. Trisodium citrate dissolves in water 

into sodium and citrate ions. The pKa1, pKa2, and pKa3 values for citric acid (C6H8O7) are 

3.13, 4.72, and 6.33, respectively (Benjamin, 2002). Citric acid maintains the least 

protonated state of -3 (citrate ion) at the experimental pH condition (pH ~ 7.1). The effect 

of the trivalent ion as a destabilizing agent on flocculation of AgNPs was conducted at an 

ionic strength of 30 mM of trisodium citrate. Because there should be no complexes 

formed between the citrate capping layer and background ions of sodium and citrate, the 

destabilizing mechanism of trisodium citrate was also predicted to be compression of the 

double layer. Figure 4.10C shows that the flocculation result in the trisodium citrate 

electrolyte was almost identical to the result in the sodium nitrate electrolyte.  
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Figure 4.10 Changes in the total number concentrations with different destabilizing 

agents for the A) 30, B) 50, and C) 100 nm sized AgNPs 

The distinction between the two destabilizing mechanisms in AgNP flocculation 

becomes more prominent when analyzing the changes in the particle number fractions of 

each experiment. Figure 4.11 shows the changes in the particle fraction for the 30 nm 

AgNPs when flocculation was induced by NaNO3 and Ca(NO3)2 at an identical ionic 

strength of 3 mM. The fractional ratio between small and large size particles did not show 

much change when NaNO3 was used. However, the percentage of the small particles 

decreased from 70% to 20% after an hour of flocculation brought about by Ca(NO3)2. 

Much more effective flocculation occurred when citrate capped AgNPs were destabilized 

by Ca(NO3)2. Consistent results were obtained for the 50 and 100 nm AgNPs (not 

shown).  
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Figure 4.11 Particle fraction for Experiment #10 and #11 

The zeta potential measurements from electrophoretic mobility also support the 

argument that calcium ions destabilize citrate capped AgNPs by charge neutralization (or 

near neutralization) rather than by compression of the double layer with sodium ions. For 

example, at an ionic strength of 30 mM, NaNO3 weakened the initial zeta potential for the 

100 nm AgNPs from -50.9 mV to -27.5 mV whereas the zeta potential changed to -8.94 

mV for Ca(NO3)2. Figure 4.12 illustrates the calculated DLVO energy of the measured 

zeta potentials for 100 nm sized AgNPs. The reduced surface charge (ergo, zeta 

potentials) for the calcium ion condition lowered the energy barrier of interaction 

between AgNPs. Under the calcium destabilization, citrate stabilized AgNPs are expected 

to be favorable to form flocs as demonstrated by having its entire energy curve lie below 

zero. 
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Figure 4.12 Calculated interaction energy for the 100 nm sized AgNPs under two zeta 

potential conditions. I = 0.1 mM for both conditions. 

4.3.3 Effect of the Initial Concentration of Nanoparticles 

 As discussed in Chapter 2, flocculation is a second-order reaction with respect to 

the particle number concentration. For this reason, the initial concentration of particles 

dictates reaction kinetics in flocculation (Benjamin and Lawler, 2013). To comprehend 

how the dynamics of nanoparticle flocculation were impacted by different initial 

concentrations of AgNPs, the absolute size and number concentrations during 

flocculation must be simultaneously acquired. Because DLS only gives the relative value 

such as the intensity of scattered light (not the actual number concentration of 

nanoparticles), DLS is not suitable to provide the information required for the present 

study. The effects of initial concentration of AgNPs on flocculation kinetics were 

scrutinized based on the real-time measurements of the size and number concentration of 

AgNPs made by NTA. One of the advantages of employing NTA is that the technique 

provides the absolute number counts and size measurements at the same time. This is also 
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the major distinction of this work from other scholar’s previous nanoparticle aggregation 

studies which were mainly based on relative measurements (e.g., investigation on 

changes of mean hydrodynamic sizes of nanoparticles over time).  

 Figure 4.13 A and B display the evolutions of the particle size distributions of the 

100 nm sized AgNPs during flocculation experiments with two different initial number 

concentration conditions (Experiments #1 and #5).  

 

0

2 10
9

4 10
9

6 10
9

8 10
9

1 10
10

-2 -1.5 -1 -0.5 0

t = 0 (min)
t = 8
t = 15
t = 30
t = 45
t = 60

N
u

m
b

e
r 

d
is

tr
ib

u
ti

o
n

, 


N
/(


lo
g

 d
p
) 

(#
/m

L
)

Log of particle diameter (d
p
 in m)

A) Initial concentration of 1.3E9 #/mL

0

2 10
9

4 10
9

6 10
9

8 10
9

1 10
10

-2 -1.5 -1 -0.5 0

t = 0 (min)
t = 10
t = 15
t = 30
t = 40
t = 60

B) Initial concentration of 1.9E9 #/mL

N
u

m
b

e
r 

d
is

tr
ib

u
ti

o
n

, 


N
/(


lo
g

 d
p
) 

(#
/m

L
)

Log of particle diameter (d
p
 in m)

 

Figure 4.13 The particle size distributions of the 100 nm sized AgNPs for the initial 

number concentration of A) 1.3E9 #/mL and B) 1.9E9#/mL 
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Once again, the particle size distributions were converted to the total number 

concentration for systematic examinations. Figure 4.14A shows the declines in the total 

number concentration of the 100 nm sized AgNPs with two different initial number 

concentration conditions (Experiments #1 and #5). Flocculation was achieved by an 

addition of I = 30 mM of NaNO3. Over an hour of flocculation, the initial concentration 

of 1.3E9 #/mL was reduced to 1.0E9 #/mL (77% of its initial value) for Experiment #1 

whereas the initial concentration of 1.9E9 #/mL was lowered to 5.0E8 #/mL (only 23% of 

the initial concentration) for Experiment #5. More robust flocculation took place in with 

the higher initial particle number concentration even though all other experimental 

conditions were identical for the two experiments.  

Similar results were observed when flocculation of the 30 nm sized AgNPs was 

induced by 3 mM of NaNO3 as shown in Figure 4.14B (The particle size distributions are 

shown in Appendix A). When the initial particle concentration was set at 1.1E9 #/mL for 

Experiment #10, the final number concentration (9E8 #/mL) was approximately 82% of 

its initial concentration. However, the increased initial particle concentration of 2.5E9 

#/mL under the exact same experimental conditions (Experiment #12) showed a 

substantial reduction in the total number concentration. The final number concentration 

was 9E8 #/mL, which was only 36% of its initial particle number concentration. For both 

30 and 100 nm sized AgNPs, more effective flocculation was resulted with the increased 

initial particle number concentrations.   
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Figure 4.14 The changes of the total number concentration of A) the 100 nm sized and B) 

the 30 nm sized AgNPs 

The influences of the initial concentration on flocculation kinetics can be also 

readily seen by examining changeovers in the number fraction of the small and large 

particles during flocculation experiments. Figure 4.15 show the fractional changes of 

Experiments #1 and #5 (Figure 4.14A) where flocculation of 100 nm sized AgNPs was 

induced by 30 mM of NaNO3 at two different initial particle number concentration. The 

fractional ratio between small and large particles was barely altered in Experiment #1 

whereas a reversal in the fractional ratio was detected in Experiment #5. 
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Figure 4.15 The fractional changes during the flocculation experiments of the 100 nm 

sized AgNPs brought about by I = 30 mM of NaNO3 with initial number 

concentrations of A) 1.3E9 and B) 1.9E9 #/mL 

Although these results are consistent with the Smoluchowski principle that flocculation 

kinetics depend on the initial number concentration of particles, this result may seem 

counterintuitive knowing that the interaction energies (DLVO) are exactly the same for 

AgNPs regardless of the particle concentration when destabilization conditions and 

particle size are identical. However, recall that in the short-range model proposed by Han 

and Lawler (1992), described in Chapter 2, flocculation is a function of the number of 

particles in the system and the collision frequency and efficiency correction functions. 

The particle destabilization determines the probability of a floc being formed from each 

collision between particles (i.e., collision efficiency). If destabilization is achieved by an 

identical mechanism for two systems, the likelihood of creating a new floc from each 

collision is also identical for the two systems (i.e., the same collision efficiency). If one 

system contains a higher number of particles, there will be a greater chance for each 

particle to collide with other particles compared to a system that has lower particle 

numbers while the probability of forming flocs from each collision is the same. For this 
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reason, greater flocculation is always expected in a system that has a higher initial 

particle concentration if all other physiochemical conditions are the same.  

4.3.4 Effect of Natural Organic Matter  

 Particles in engineered systems and natural waters are generally coated with 

natural organic matter (NOM). NOM originates from various sources including the 

activity and decay of plants, bacteria, or animals in water. In water treatment, the 

presence of NOM has been of particular concern for several reasons. First, the reaction 

between NOM and oxidants (disinfectants) in water treatment causes the formations of 

disinfection by-products (DBPs) that have negative health impacts. Secondly, the 

adsorption of NOM onto the surface of particle alters their stability and impacts the fate 

and transport of the particles in water treatment processes (O’Melia et al., 1999). Lastly, 

the presence of NOM lowers the treatment efficiency by adsorbing onto filtration media 

or forming foulants in membrane systems in water and wastewater treatment (Benjamin 

and Lawler, 2013). A substantial amount of research has been conducted to comprehend 

the role of NOM in water and wastewater treatment process (Siddiqui et al., 1997; 

Edzwald and Tobiason, 1999; Craun et al., 2001; Roalson et al., 2003; Sharp et al., 2006; 

Zularisam et al., 2006; Bull, 2006).  

In spite of the extensive research, virtually no study has been conducted for the 

evolution of the absolute particle size distributions of nanoparticles in the presence of 

NOM during flocculation in water treatment. The interaction between stabilizing agents 

of engineered nanoparticles, coagulants, and NOM would modify the stability of 

nanoparticles; therefore, the fate and transport of nanoparticles in the presence of NOM 

might be significantly different from the ideal condition where no NOM is present. The 

aim of this study was to investigate the effect that the presence of Suwannee River 
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aquatic NOM had on the evolution of the absolute particle size distributions during 

laboratory scale batch flocculation experiments. 

Figure 4.16 shows the evolutions of the particle size distributions during the 

flocculation experiments of the 100 nm sized citrate stabilized AgNPs that had I = 50 

mM of NaNO3 in the presence and absence of NOM (Experiments #2 and #6).  
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Figure 4.16 The particle size distributions for the 100 nm sized AgNPs in A) the absence 

of NOM and B) the presence of NOM 

Along with the evolution of the particle size distributions, the total number 

concentrations and fractional changes during the flocculation were plotted as shown in 

Figures 4.17 and 4.18, respectively. Comparable declining trends were found in the total 

number concentration graph under the given condition whether NOM was present or not 

in the system (Figure 4.17). The almost identical initial (1.1E9 #/mL) and final number 

concentrations (5.0E8 #/mL) were obtained with minor deviations in between. Fractional 

changes, Figure 4.18, shows the particle size growth of AgNPs appeared to be faster in 

the presence of NOM (3.5 mg/L as DOC) even though the initial and final fractional 

ratios were similar regardless of the NOM conditions. The percentages of small and large 
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particles intersected within the first ten minutes of flocculation when NOM was present 

whereas the fractional turnover occurred in the last fifteen minutes in the absence of 

NOM. As mentioned earlier, the compression of the diffuse layer is suggested as the main 

destabilizing mechanism of the NaNO3 electrolyte on citrate stabilized AgNPs in the 

absence of NOM. This result (rapid size growth of AgNPs) suggests that in the presence 

of NOM, there might be additional destabilizing effects along with the compression of 

the diffuse layer by NaNO3. 
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Figure 4.17 The changes in the total number concentration of the 100 nm sized AgNPs in 

the presence and absence of NOM when flocculation was induced by I = 50 

mM of NaNO3 
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Figure 4.18 The fractional changes during flocculation by NaNO3 for the 100 nm sized 

AgNPs in A) the presence of NOM and B) absence of NOM 

Figures 4.19 and 4.20 display the changes in the total particle number 

concentration and number fractions, respectively, in the flocculation experiments that 

were attained by an ionic strength of 30 mM as Ca(NO3)2 with and without NOM 

(Experiments #3 and #7). The particle number distributions are attached in Appendix A. 

The NTA results of both the number concentration and the fractional ratios were 

indistinguishable whether NOM was present or not. When NOM was absent, citrate 

AgNPs were likely destabilized through adsorption and charge neutralization and the 

compression of the diffuse layer by the addition of Ca(NO3)2. The presence of NOM in 

the system seemed irrelevant to flocculation dynamics of citrate stabilized AgNPs under 

calcium destabilization.  
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Figure 4.19 The changes in the total number concentration of the 100 nm sized AgNPs in 

the presence and absence of NOM when flocculation was induced by I = 30 

mM of Ca(NO3)2 
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Figure 4.20 The fractional changes during flocculation by I = 30 mM of Ca(NO3)2 for the 

100 nm sized AgNPs in A) the presence of NOM (3.5 mg/L as DOC) and B) 

absence of NOM 
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According to the International Humic Substances Society, major components of 

NOM in water include humic acids, fulvic acids, and humin fractions. Previous scholars 

agreed that the stability of citrate stabilized nanoparticles is strongly influenced by water 

chemistry such as pH, hardness and ionic strength as well as different types and 

concentrations of these NOM substances. Many scholars have studied the relation 

between the adsorption of NOM and the stability of citrate stabilized nanoparticles 

(Cumberland and Lead, 2009; Stankus et al, 2010; Thio et al., 2011; Chinnapongse et al., 

2011; Furman et al., 2013; Kim 2014). 

Humic acid has received the most attention among these NOM components due to 

its effects on the stability of citrate capped AgNPs. Huynh and Chen (2011) suggested 

that the presence of humic acids caused electrosteric hindrance for sodium and calcium 

(low ionic strengths) destabilization. A preliminary study of our research group 

confirmed that humic acids improve the stability of citrate AgNPs under calcium 

destabilization while fulvic acids do not (Lawler et al., 2015). Interestingly, at high 

concentrations of calcium in the presence of humic acids, enhanced flocculation has been 

observed and that enhancement has been ascribed to interparticle bridging effects. It is 

currently widely accepted that calcium ions cause the bridging between humic acids and 

nanomaterials including AgNPs, fullerene, gold, and silica (Chen and Elimelech, 2007; 

Huynh and Chen, 2011; Stankus et al, 2010; Liu et al., 2011). 

However, this effect was not observed in the present experiments. Slightly 

enhanced flocculation was observed with sodium destabilization in the presence of NOM 

while no substantial change in stability was noted with calcium destabilization in the 

presence of NOM. One possible explanation is that the NOM used for the current study 

was Suwannee river aquatic NOM that contains not only humic acids but also fulvic acids 

and humin fractions. The bridging phenomenon is dependent on the ratio between humic 
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and fulvic acids and the type and structure of the NOM (Baalousha et al., 2013). For this 

reason, the results obtained here might be dissimilar to experimental results reported by 

other scholars. 

In addition, the diffuse layer would be well compressed under I = 50 mM of 

NaNO3 and the characteristic length of the diffuse layer (i.e., Debye length, κ-1) will only 

be 1.36 nm which is a size of glucose molecule. Under this condition, the effect of the 

adsorbed layers of NOM would be more significant than the diffuse layer due to the 

macromolecular structure of NOM. Further investigation is required to fully understand 

the destabilization of citrate capped AgNPs in the presence of NOM with various 

destabilizing mechanisms. The main focus of the present study was to emulate more 

realistic natural water conditions that have various components of NOM and Suwannee 

River aquatic NOM was suitable for the present research. 

4.3.5 Effect of Particle Size 

 Destabilized particles in water form flocs through collisions that are caused by a 

combination of the three main transport mechanisms: Brownian motion, fluid shear, and 

differential sedimentation. As the colliding particles’ size gets smaller, the influences of 

gravity (sedimentation) and linear shear flow (fluid shear) decrease while the diffusion 

coefficient (Brownian motion) increases; hence, Brownian motion is the most dominant 

transport mechanism in collisions of nano-sized particles in water (Han and Lawler, 

1991). To scrutinize the effects of particle size on flocculation kinetics at the nanoscale, 

laboratory batch flocculation experiments for the 30, 50 and 100 nm sized AgNPs were 

examined under identical experimental conditions. 

 Figure 4.21 shows the reduction in the total number concentration of the 30 and 

100 nm sized citrate stabilized AgNPs during flocculation that was induced by 30 mM of 
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NaNO3 (Experiments #1 and #8). The graph clearly indicates that flocculation was 

achieved more successfully with the 30 nm sized AgNPs then the 100 nm sized particles. 

The initial particle number concentration of the 30 nm AgNPs was reduced almost an 

order of magnitude (from 1.1E9 to 2.0E8 #/mL) whereas the 100 nm sized AgNPs had 

only a slight reduction of number concentration from 1.3E9 to 1.0E9 #/mL.  
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Figure 4.21 The changes in the total number concentrations of the 100 and 30 nm sized 

AgNPs under I = 30 mM by NaNO3 (Experiments #1 and #8) 

At least qualitatively, the result was consistent with theories of particle 

destabilization and flocculation (A more quantitative explanation is provided in Chapter 

5). According to the Stokes-Einstein equation (Equation 3.1), the diffusion coefficient is 

inversely proportional to the particle diameter. The 30 nm sized AgNPs have a higher 

diffusion coefficient value than the 100 nm sized particles if all other conditions are 
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identical. The diffusion coefficient represents the ratio of the mean square displacement 

to time (Einstein, 1905). The 30 nm sized AgNPs, with their higher diffusion coefficient, 

would travel further than the 100 nm sized AgNPs with their lower diffusion coefficient, 

if an identical time is given. Therefore, particles with higher diffusion coefficients will 

have more opportunities to collide with other particles because they move intensely.  

 Results demonstrating this phenomenon were also obtained when similar 

flocculation experiments were designed for the 30 and 50 nm sized AgNPs (Experiment 

#11 and #14). Flocculation was brought about by 3 mM of Ca(NO3)2. Even though the 

difference in the size of AgNPs was not great as in the previous case, the effect of particle 

size between 30 and 50 nm on flocculation was also clearly observed (Figure 4.22).  
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Figure 4.22 The changes in the total number concentrations of the 100 and 30 nm sized 

AgNPs under I = 3 mM by Ca(NO3)2 (Experiments #11 and #14) 
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Because the 30 nm AgNPs have a higher diffusion coefficient than the 50 nm AgNPs, 

more robust flocculation was found with the 30 nm sized AgNPs. The initial number 

concentrations were 1.2E9 #/mL for both the 30 and 50 nm AgNPs. The final number 

concentrations were lowered to 2E8 #/mL, and 6E8 #/mL, respectively.  

4.4 FLOCCULATION EXPERIMENTS OF HETERODISPERSE SOLUTIONS 

In addition to flocculation of (nearly) monodispersed AgNPs samples, the 

evolution of the particle size distributions for heterodispersed AgNPs were also 

investigated. Equal-number mixtures of the 30 and 100 nm sized AgNPs were prepared 

(e.g., 1:1 particle number ratio between the 30 and 100 nm sized particles) and their 

flocculation dynamics were evaluated by NTA under the same experimental conditions (I 

= 10 and 30 mM of NaNO3 and I = 3 mM of Ca(NO3)2) that were previously used for the 

monodispersed AgNPs samples. Figure 4.23 shows the evolution of the particle size 

distributions of the heterodispersed sample during an hour of flocculation at the two 

different ionic strengths of NaNO3. 
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Figure 4.23 The particle size distribution of heterodispersed AgNPs at A) I =10 mM and 

B) 30 mM of NaNO3 
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In addition, Figure 4.24 shows the changes in the total number concentrations AgNPs 

when particles were destabilized by the addition of NaNO3. When the ionic strength was 

10 mM, the total number concentration of the heterodispersed sample reduced to 85% of 

its initial values (i.e., from 1.3E9 #/mL to 1.1E9 #/mL). More dramatic reduction of the 

initial particle number concentration was observed under the ionic strength of 30 mM of 

NaNO3. The total number concentration became 27% of the initially value (changed from 

1.1E9 to 3.0E8 #/mL) in an hour of flocculation in I = 30 mM condition. 
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Figure 4.24 The changes in the total number concentrations of the heterodispersed 

AgNPs with two ionic strengths of 10 and 30 mM by NaNO3 

As destabilization of monodisperse AgNPs were consistent with DLVO theory, 

destabilization of heterodispersed samples also corresponds to DLVO theory. Figure 4.25 

shows the interaction energy of the 30 and 100 nm sized AgNPs for two ionic strengths 
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of 10 (Figure 4.25A) and 30 mM of NaNO3 (Figure 4.25B), respectively. Under I = 10 

mM condition, the 30 nm sized AgNPs are attracted to each other at any separation 

distance while the 100 nm sized AgNPs has an energy barrier at the separation distance 

of 3 nm. Therefore, the 30 nm sized AgNPs are favorable for flocculation while the 100 

nm sized AgNPs are not fully destabilized. For I = 30 mM, both the 30 and 100 nm sized 

AgNPs are attractive and favorable for flocculation regardless of the separation distance. 
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Figure 4.25 The interaction energy calculations for the 30 and 100 nm sized AgNPs when 

the ionic strengths were A) 10 and B) 30 mM by NaNO3 

It can be deduced from the interaction energy calculations that the limited flocculation 

was resulted under the I = 10 mM condition because only the 30 nm sized AgNPs in the 

heterodispersed solution form flocs. More successful flocculation took place under the 

ionic strength of 30 mM by NaNO3 where both 30 and 100 nm sized particles were 

destabilized to create flocs. 

 In addition to NaNO3, flocculation of the heterodispersed AgNPs was induced by 

the ionic strength to 3 mM of Ca(NO3)2. Figures 4.26 and 4.27 present the particle 
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distributions and the total number concentration of the heterodispersed AgNPs at the 

ionic strength of 3 mM by Ca(NO3)2, respectively. The total number concentration of the 

mixture of the 30 and 100 nm sized AgNPs showed almost an identical reduction trend as 

the flocculation result of the 30 nm AgNPs under the I = 3 mM of Ca(NO3)2 condition 

(Experiment #10). Compared to the previous experimental condition for the 

heterodispersed sample (I = 10 mM of NaNO3), a more significant particle number 

reduction (better flocculation) is observed with the ionic strength of 3 mM of Ca(NO3)2. 

As already discussed earlier, calcium ions are a better destabilizing agent than sodium for 

citrate capped AgNPs because calcium ions form complexes with citrate capping ions. 

Calcium ions destabilize citrate capped AgNPs more effectively by adsorption and charge 

neutralization. For this reason, the ionic strength of calcium (3 mM) induced greater 

flocculation of the heterodispersed AgNPs that the sodium ions at I=10 mM.  
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Figure 4.26 The evolution of the particle size distribution of the heterodispersed AgNPs 

at the ionic strength of 3 mM of Ca(NO3)2 
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Figure 4.27 The changes in the total number concentrations of the heterodispersed 

AgNPs with two ionic strengths of 3 mM by Ca(NO3)2 

4.5 SUMMARY 

In previous research done by the Lawler research group, the flocculation 

dynamics for micro-sized particles were quantitatively explained and modelled by the 

short-range force model. The experimental investigations presented in this Chapter were 

designed to improve the understanding of how the evolution of particle number 

distributions changes at the nanoscale during well-controlled laboratory scale flocculation 

of AgNPs. The main focus was to identify the effects of operative variables on the 

nanoparticle flocculation rates. The findings from the experimental results have allowed 

further development of the mathematical model (Chapter 6).  



 90 

The experimental data showed more successful flocculation of AgNPs in the 

electrolyte of Ca(NO3)2 than NaNO3. It is thought that, due to the complexation of 

calcium with the citrate capping layer of AgNPs, two destabilizing mechanisms (charge 

neutralization and compression of the double layer) were simultaneously applied to 

AgNPs with Ca(NO3)2. In addition, as the ionic strength of destabilizing agents increased, 

more effective destabilization by compression of the double layer occurred, and 

therefore, successful flocculation occurred regardless of their initial particle sizes.  

When Suwannee River aquatic NOM was added to the system, the flocculation 

dynamics of AgNPs altered to some extent. The destabilization of NaNO3 seemed more 

efficient for citrate capped AgNPs in the presence of NOM than in the absence of NOM, 

whereas the effect of NOM was not noticeable in the destabilization of Ca(NO3)2. It 

appears that NOM is an important factor to consider for the fate and transport of AgNPs.   

Because flocculation is a second-order reaction with respect to particle number 

concentration, the flocculation rate was strongly influenced by the initial number 

concentration of AgNPs. More robust flocculation took place in a sample of a higher 

particle number concentration.  

The experimental data also revealed the relationship between the initial particle 

size and the flocculation dynamics. If all other conditions are identical, flocculation was 

more vigorous with the 30 nm sized AgNPs than the 50 nm or 100 nm particles. Even, 

when the mixtures of the 30 and 100 nm sized AgNPs were tested, the reductions of the 

30 nm sized occurred before the 100 nm. 

The qualitative results of this Chapter are broadly applicable to water treatment 

processes: nanoparticles can be expected to be flocculated into much larger sizes in 

conventional water treatment plants regardless of their initial sizes if they are properly 

destabilized.  
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Chapter 5: Results of Numerical Computation and Trajectory Analysis 

5.1 INTRODUCTION 

For the short-range force model to accurately predict the flocculation process in 

water treatment, the collision efficiency function, α for the three collision mechanisms 

(Brownian motion (Br), fluid shear (Sh), and differential sedimentation (Ds)) must be 

quantified carefully. However, calculating the α values is rather demanding due to the 

complexity of hydrodynamic and interparticle forces between two interacting particles 

(Benjamin and Lawler, 2013). Han and Lawler (1991, 1992) performed numerical 

analysis to calculate the collision efficiency functions for Brownian motion and 

differential sedimentation (αBr, and αDs, respectively) when the larger particle in the two-

particle collision was one micrometer or larger. They also reported the collision 

efficiency function for fluid shear, αSh based on Adler’s global capture efficiency 

(1981b). Han and Lawler published third order polynomial fits to the numerical solutions 

of the αBr, αDs, and αSh values. Since then, by using the polynomial equations, the α 

values can be easily quantified without performing arduous numerical analysis. Later, it 

was confirmed that the predictions of particle collisions made from the αBr, αDs, and αSh 

values from the polynomial fits were in close agreement with experimental results (Li, 

1996; Lawler and Nason, 2005; Nason, 2006). 

The main objective of the present study is to extend the α values to correspond for 

collisions between nano-sized particles or nano- and micro- sized particles. Because 

nano-sized particles were not initially included in Han and Lawler’s work, it is necessary 

to execute numerical analysis to acquire the αBr, αDs, and αSh values at the nanoscale. The 

mathematical derivation and solutions for numerical calculation and trajectory analysis 

for collision efficiency function (α) at the nanoscale are detailed here.  
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5.2 MATHEMATICAL FRAMEWORK 

First of all, to precisely emulate particle collisions in water through the three 

principal transport mechanisms, the movement of the fluid around the two interacting 

particles must be taken into account during the course of collisions. In addition to 

hydrodynamics, the interparticle potential energy between the two interacting particles 

must be incorporated. In this Chapter, detailed mathematical derivations for the 

hydrodynamics and potential energy of interacting particles are given first. These 

fundamentals underlie the numerical computations and trajectory analysis that follow. 

The mathematical derivations closely follow pioneering works of previous scholars. For 

example, the derivations for collision efficiency functions of Brownian motion and 

differential sedimentation stems from Han and Lawler’s original work (1991, 1992) and 

the deductions of the collision efficiency functions for fluid shear come from Adler 

(1981b) and Tandon and Diamond’s works (1997). 

5.2.1 Governing Equations for Two Particle Movement 

The famous Navier-Stokes equations explain the dynamics of an incompressible 

Newtonian fluid. Creeping motion of an incompressible fluid around moving bodies far 

from containing boundaries at low Reynolds number can be represented by simplified 

Navier-Stokes equations. Leaving out the time dependence and the advective terms in the 

original Navier-Stokes equations, the simplified equations can be derived, which are 

called Stokes flow, as follows (Lautrup, 2011): 

 

 ∇2𝐯 =  
1

μ
∇p  (5.1) 

 ∇ ∙ 𝐯 = 0 (5.2) 
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where v is fluid velocity, p is dynamic pressure, and μ is dynamic viscosity. The fluid 

movements around a spherical particle in an incompressible fluid can be obtained by 

solving Equations (5.1) and (5.2). 

Since the development of the Navier-Stokes equations, many scholars have 

expanded the theory for the hydrodynamic of a single spherical particle to the theory for 

the hydrodynamics of two spherical particles. Jeffery (1915) first derived the solutions to 

hydrodynamics for two equal-sized rotating spheres. The hydrodynamic solutions were 

then extended by other scholars to more complex conditions such as unequal-size 

particles, both rotational and translational motions, and both far and near fields (Stimson 

and Jeffrey, 1923; Goldman et al., 1966; Majumdar, 1967; Cooley and O’Neill, 1969; 

Davis, 1969, O’Neill, 1969; O’Neill and Majumdar, 1970; Spielman, 1970; Nir and 

Acrivors, 1973; Jeffery, 1982; Jeffrey and Onishi, 1984). However, the numerical 

solutions (in series forms) to Equations (5.1) and (5.2) yields very poor convergence at 

the small separation distance of the two particles because the near-field solution was 

initially derived (Brenner 1966; Goldman et al., 1966) for the boundary condition where 

a sphere approaches a wall. To avoid this shortcoming, Jeffery and Onishi (1984) took an 

innovative method that utilized the concepts of resistance and mobility tensors to 

represent the torque vector (force) and spin vector (velocity). They summarized all the 

reported hydrodynamic solutions as the elements of these tensors. Although some 

solutions at near field did not produce completely explicit solution forms, Jeffrey and 

Onishi’s hydrodynamic solutions are useful because their solutions are a superset of all 

the previously known solutions prior to them. Batchelor’s method (1982) is used to relate 

Jeffrey and Onishi’s mobility tensor to the velocities. 
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5.2.2 Velocities of Two Particles 

Consider a system of two spheres that have radii of a1 and a2 with their centers 

located at x1 and x2, respectively. The velocity field of each particle is the summation of 

velocities caused by external forces such as gravity, interparticle forces, or Brownian 

motion: 

 𝐔 =  𝐔𝐠𝐫𝐚𝐯𝐢𝐭𝐲 + 𝐔𝐢𝐧𝐭𝐞𝐫𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞 𝐟𝐨𝐫𝐜𝐞 + 𝐔𝐁𝐫𝐨𝐰𝐧𝐢𝐚𝐧 𝐦𝐨𝐭𝐢𝐨𝐧 (5.3) 

Because of a symmetrical configuration about the center-to-center direction r, mobility 

tensors are written as: 

 𝐛ij =
1

3πμ(ai+aj)
{Aij

𝐫𝐫

r2 + Bij (𝐈 −
𝐫𝐫

r2)} (5.4) 

where i and j refer to the two spherical particles (i, j = 1 or 2), bij is a component of a 

mobility tensor describing sphere i’s motion due to a force applied to sphere j, (bii or bjj 

expresses the particle’s own response to an external force), r=|r|, I is the second rank unit 

tensor, and Aij and Bij are the mobility functions. The properties and details of these 

mobility functions can be found in the published works of Jeffrey and Onishi (1984) and 

Batchelor (1982). The mobility functions (Aij and Bij) are the dimensionless scalar 

coefficients for the movements of the two spherical particles and they are the functions of 

the dimensionless separation distance s and size ratio of the two particles (smaller to 

larger) λ.  

Once the mobility tensors are known, the velocities of the two particles at a single 

point in time and space in the presence of an external force F can be written as:  

 𝐔𝟏 = 𝐛𝟏𝟏𝐅𝟏 + 𝐛𝟏𝟐𝐅𝟐 (5.5a) 

 𝐔𝟐 = 𝐛𝟐𝟏𝐅𝟏 + 𝐛𝟐𝟐𝐅𝟐 (5.5b) 



 96 

5.2.2.1 Velocity of Particles Under Influence of Gravity 

When two spherical particles, sphere 1 and 2, are at infinite separation, the 

hydrodynamic effects for the two particles are negligible. The relative velocity of two 

spheres under the influence of gravity at infinite separation is then: 

 𝐕𝟏𝟐
∞ (𝐫) = 𝐔𝟐

∞ − 𝐔𝟏
∞ = (λ2γ − 1)𝐔𝟏

∞ (5.6) 

where U1
∞ and U2

∞
 are the velocity fields of a single particle at the infinite separation and 

γ is the reduced density ratio of the two spherical particles, 

 γ =  
(ρ1−ρL)

(ρ2−ρL)
 (5.7) 

where ρ1 and ρ2 are densities of sphere 1 and 2, respectively, and ρL is the density of the 

fluid.  

The hydrodynamic effects for the two particles must be considered if they are not at 

infinite separation. In that case, the relative velocity of sphere 2 with respect to sphere 1 

under the influence of gravity can be derived from Equations (5.5) as follows: 

 𝐕𝟏𝟐(𝐫) =  𝐔𝟐 − 𝐔𝟏 = 6πμa1𝐔𝟏
(𝟎)(𝐛𝟐𝟏 − 𝐛𝟏𝟏) + 6πμa2𝐔𝟐

(𝟎)(𝐛𝟐𝟐 − 𝐛𝟏𝟐) (5.8) 

The final expression for V12 was further deduced from plugging the mobility tensors of 

Equation (5.4) into Equation (5.8) as follows: 

 𝐕𝟏𝟐(𝐫) = 𝐕𝟏𝟐
∞ {

𝐫𝐫

r2 L(s, λ) + (𝐈 −
𝐫𝐫

r2) M(s, λ)} (5.9) 

where: 

 L(s, λ) =
λ2γA22−A11

λ2γ−1
+

2(1−λ3γ)A12

(1+λ)(λ2γ−1)
 (5.10) 

 M(s, λ) =
λ2γB22−B11

λ2γ−1
+

2(1−λ3γ)B12

(1+λ)(λ2γ−1)
 (5.11) 

Equation (5.9) using the hydrodynamic mobility coefficients describes the relative 

velocity between two spherical settling particles under the influence of gravity in 

arbitrary location. For the ease of tensor computation, Han and Lawler (1991) resolved 
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V12 into velocities in the two-dimensional polar coordinate or the Cartesian coordinate 

systems. 

5.2.2.2 Velocity of Particles under Interparticle Potential Energy 

 The net potential energy acting on two spherical interacting particles is equal in 

the opposite direction, r (center-to-center). The negative gradient of the interparticle 

potential energy with respect to the separation distance is the net interparticle force acting 

on each particle and it can be written as shown below: 

 −𝛁𝚽𝟏𝟐 = 𝐅𝟏 = −𝐅𝟐 (5.12) 

The relative velocity of the two particles under the influence of this interparticle force is 

then derived by Han (1989) as follows: 

 𝐕𝟏𝟐(𝐫) = 𝐔𝟐 − 𝐔𝟏 = −(𝐛𝟏𝟏 + 𝐛𝟐𝟐 − 𝐛𝟏𝟐 − 𝐛𝟐𝟏)∇𝚽𝟏𝟐  

 = −
1

6πμ
(

1

a1
+

1

a2
) {

𝐫𝐫

r2 G(s, λ) + (𝐈 −
𝐫𝐫

r2) H(s, λ)} 𝚽𝟏𝟐 (5.13) 

where: 

 G(s, λ) =
λA11+A22

1+λ
−

4λA12

(1+λ)2 (5.14) 

 H(s, λ) =
λB11+B22

1+λ
−

4λB12

(1+λ)2  (5.15) 

The DLVO energy, which is the sum of van der Waals attraction and electric repulsion 

energies, was used to calculate interparticle potential, Φ12, between the two particles; the 

calculation of DLVO energy is explained in Chapter 2. 

5.2.2.3 Velocity of Particles under Brownian Motion 

 Han (1989) also derived the relative velocity of the two spherical particles under 

the influence of Brownian motion. Using the pair distribution function, P12, the net forces 

acting on each particle due to Brownian motion are written as: 

 𝐅𝟏 = −𝐅𝟐 = kBT∇ log 𝐏𝟏𝟐(𝐫) (5.16) 
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where P12(r) is the pair distribution function that indicates the probability of finding 

particle 2 at the separation distance r from particle 1 with the center of particle 1 taken as 

the origin of coordinates. When the monodispersed particles are in a mechanical 

equilibrium, this system can be represented by the Boltzmann distribution. The relative 

velocity between particle 1 and 2 due to Brownian motion becomes: 

 𝐕𝟏𝟐(𝐫) = 𝐔𝟐 − 𝐔𝟏 = −kBT(𝐛𝟏𝟏 + 𝐛𝟐𝟐 − 𝐛𝟏𝟐 − 𝐛𝟐𝟏)∇ log 𝐏𝟏𝟐(𝐫)  

 = −𝐃(𝐫)∇ log 𝐏𝟏𝟐(𝐫) (5.17) 

The relative diffusivity tensor D(r) is defined as: 

 𝐃(𝐫) = D12 {
𝐫𝐫

r2 G(s, λ) + (𝐈 −
𝐫𝐫

r2) H(s, λ)} (5.18) 

where D12 is the relative diffusion coefficient that is from the assumption that the relative 

motion of the two spherical particles is the sum of the individual diffusion coefficients as: 

 D12 =
kBT

6πμ
(

1

a1
+

1

a2
) (5.19) 

5.2.3 The Collision Efficiency Functions 

As mentioned earlier, the short-range force model is more realistic than the long-

range force model due to the inclusion of the hydrodynamics and interparticle potential 

energy through the collision efficiency functions, α. The collision efficiency functions are 

obtained from solving Equation 2.9 - 2.13 numerically. The relative velocity tensors 

derived in Chapter 5.2.2. are embedded in the deduction of Equation 2.9 - 2.13. Here, the 

derivation of Equations 2.9- 2.13 is detailed. The material presented in this section is, in 

fact, reproduced in brief from Han’s dissertation (1989). 

5.2.3.1 Collision Efficiency Functions for Brownian Motion (αBr) 

The rate of the Brownian collision between two spherical particles 1 and 2 is 

explained by Smoluchowski (1917) through the diffusion equation as shown below:  
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∂n2

∂r
=

1

r2

∂

∂r
r2 (D12

∂n2

∂r
) (5.20) 

where D12 is the relative diffusion coefficient as defined in Equation 5.19, and n2 is the 

number distribution of sphere 2 in the vicinity of sphere 1. To calculate the rate of the 

Brownian collision under the influence of interparticle interactions, Fuchs (1937) 

expanded Smoluchowski’s diffusion equation by incorporating the net interparticle 

energy between the two particles as follows: 

 
∂n2

∂r
=

1

r2

∂

∂r
r2 (D12

∂n2

∂r
+

D12n2

kBT

dVT

dr
) (5.21) 

where VT is the net interparticle energy acting on the two interacting particles. 

By definition, a stability ratio (W) is the ratio of the aggregation rate in the 

absence of colloidal interactions to the aggregation rate in the presence of interparticle 

energy between the particles (Elimelech et al., 1998). From the definition, the collision 

efficiency functions for Brownian motion is the inverse of the stability ratio (αBr = 1/W). 

When attraction between the interacting particles is more significant, the Brownian 

collision can be expected to be more frequent than Smoluchowski’s estimation (W < 1.0 

or αBr > 1.0). If repulsion is more important, then the collision can be expected to be less 

frequent than Smoluchowski’s prediction (W > 1.0 or αBr < 1). The stability ratio (W) is 

then calculated as shown: 

 W =
1

αBr
= (1 +

a2

a1
) ∫

exp(
VT

kBT
)

s2 ds
∞

2
 (5.22) 

where s is the dimensionless separation distance defined by normalizing the absolute 

separation distance by the average radii of the two particles.  

 Spielman (1970) discovered that the hydrodynamic effect is not negligible in a 

Brownian collision, and he introduced the hydrodynamic interaction between the 

particles into the stability calculation. Spielman indicated that the diffusivity is a function 

of particle size and the size ratio of two colliding particles rather than the sum of the 
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diffusivities of the two individual particles. Therefore, Spielman redefined the stability 

ratio (Whydrodynamic) as the ratio of Smoluchowski’s diffusion equation to the Spielman’s 

diffusion equation which considers two particle hydrodynamics. Spielman’s stability 

equation is given as Equation 2.9 and the boundary conditions are shown as: 

 n2 = 0 and VT = −∞ when r = a1 + a2  

 n2 = n2
∞ and VT = 0 when r = ∞ (5.23) 

The hydrodynamic coefficient function in the center-to-center direction, G(s,λ) is already 

derived for any particle size ratio and separation distance using Jeffrey and Onishi’s 

tensor solution in Equation 5.14. Equation 2.9 is further deduced as follows: 

 Whydrodynamic = (1 +
a2

a1
) ∫

1

G(s,λ)

exp(
VT

kBT
)

s2 ds
∞

2
=

1

αBr
 (5.24) 

Solving Equation 5.24 numerically, the stability and the collision efficiency functions for 

the two interacting particles under the effect of Brownian motion is obtained. 

5.2.3.2 Collision Efficiency Functions for Differential Sedimentation (αDs) 

 An illustrative diagram for the relative trajectory of two non-Brownian settling 

particles that have radii of a1 and a2 was given in Figure 2.2. The center of the larger 

particle (a1) is the origin of the polar coordinate system. The separation distance, r is the 

absolute distance between the two centers of the particles and the angle between them is 

θ. In order to calculate the relative settling velocity, gravity and interparticle forces must 

be considered along with hydrodynamic effects between the two particles. The relative 

settling velocity can be obtained from the sum of the gravity (Equation 5.9) and 

interparticle velocity (Equation 5.13) vectors. The equation is formulated for the relative 

trajectory of the smaller particle (a2) with respect to the large particle (Han and Lawler, 

1991). First, the relative velocity into r and θ direction can be written as following: 
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In r direction: 

 Vr = Vr,gravity + Vr,interparticle (5.25) 

 = −cosθL(s, λ)U12 − D12G(s, λ)F(s, λ)   

In θ direction 

 Vθ = Vθ,gravity + Vθ,interparticle (5.26) 

 = sinθM(s, λ)U12 + 0   

Then the two equations (5.25) and (5.26) can be combined to yield equation (2.10): 

 
dr

dθ
= r

Vr

Vθ
= r

[−cosθL(s,λ)U12−D12G(s,λ)F(s,λ)]

sinθM(s,λ)U12
  (2.10) 

where all variables are defined in Chapter 2. U12 represents relative settling velocity of 

the two particles as shown in the following equation: 

 U12 =
2g(ρp−ρf)a1

2(1−λ2)

9μ
  (5.27) 

where, ρp and ρf are densities of the particles and fluid, respectively, a1 is the radius of the 

larger particle, λ is the size ratio between the two particles, and µ is viscosity of the fluid. 

 Solving the first order non-linear differential equation (2.10) with various initial 

values (e.g., different locations of the smaller particle, a2 with respect to the center of the 

larger particle, a1), different trajectories can be found. Depending on the initial location of 

the smaller particle, some trajectory simulations end up with collisions of the two 

particles (i.e., closed trajectory) and others end up with separations of the two particles 

(i.e., open trajectory) as shown in Figure 2.3. In the numerical calculations, the initial 

separation distance between the two particles in the y-direction was set as s = 20 

(dimensionless distance), which is far enough that the initial interaction between the two 

particles is negligible. The critical distance in the x-direction which determines the open 

and closed trajectory was found by trial-and-error method. By changing the initial x 

coordinates from x = 0, the critical distance in the x direction is obtained. The collision 
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efficiency function is defined as the ratio of the circular area determined by a radius of 

the critical distance to the circular area defined by the sum of two settling particles as 

shown in Figure 2.3. The numerical computation was made using ODE Solvers in 

MATLAB.  

5.2.3.3 Collision Efficiency Functions for Fluid Shear (αSh) 

When the sizes of two spherical particles moving in a linear shear flow are 

sufficiently small, they have low Reynolds numbers and inertia forces are insignificant. 

In this case, the hydrodynamic problem is linear and the solutions can be obtained by the 

standard methods (Brenner and O’Neill, 1972). Figure 2.4 illustrates the relative position 

of two spherical particles that move in a linear flow where the origin of the polar 

coordinate is at the center of Particle 2. The velocity of the fluid (Vx) is assumed to be 

linearly proportional to the separation distance in the y-direction (G*y), where G is a 

velocity gradient. The equations of relative particle location were derived by Adler 

(1981b and c) as shown in Chapter 2.  

 
dr

dt
= Gr(1 − A) sin2 θ sin ϕ cos ϕ + Fr (2.11) 

 r
dθ

dt
= (1 − B) sin θ cos θ sin ϕ cos ϕ + Fθ (2.12) 

 r sin θ
dϕ

dt
= Gr sin θ (cos2 ϕ −

B

2
cos 2ϕ) sin θ + Fϕ (2.13) 

A and B are dimensionless mobility functions that describe the hydrodynamic interaction 

between the particles (Batchelor and Green, 1972). A and B are functions of the radii of 

the two particles and the separation distance between them and they are fully explained 

by Adler (1981b and c). To reduce the computational burden, Tandon and Diamond 

(1997) developed matching hydrodynamic functions at the intermediate separation that 

yield less than 2% errors from the detailed hydrodynamic calculations of Batchelor and 
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Green (1972) and Adler (1981a). Tandon and Diamond’s simpler hydrodynamic 

functions can account for a wide range of λ values (0.03 ≤ λ ≤ 1), which are suitable to 

generate extreme cases of particle size ratios. However, as Adler (1981b) mentioned, the 

precision of hydrodynamic solutions at small λ values (λ < 0.1) can be low even if they 

are numerically calculated because the number of equations that need to be considered 

dramatically increases at short separation distances between two interacting particles. The 

simpler hydrodynamic functions inherited this shortcoming as well; therefore, 

hydrodynamic functions for smaller λ values (λ < 0.1) need to be used with caution.  

The relative trajectories of the two spherical particles in a linear shear flow were 

simulated by numerical integration of these equations (Equations 2.11-13) in MATLAB 

using ODE Solvers. Similar to the numerical computation results of differential 

sedimentation, the results of trajectories in fluid shear are either open or closed. The 

critical trajectories which separates the open and closed trajectories are found through 

trial-and-error method. The global capture efficiency is defined from the limiting 

trajectories and the global capture efficiency is converted to the collision efficiency 

functions. 

5.3 SOLUTIONS OF COLLISION EFFICIENCY FUNCTIONS  

5.3.1 In the Absence of Surface Potential 

5.3.1.1 Brownian Motion 

First, α was calculated under the assumption of the complete particle 

destabilization where the EDL repulsive forces are negligible. Using two different 

Hamaker constant (AH) values (10 and 50 kBT, which are equivalent to 4.11E-20 and 

2.06E-19 J, respectively), the collision efficiency functions under Brownian motion (αBr) 

for various particle sizes were calculated as shown in Figure 5.1. The computed 
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Brownian collision efficiencies for AH of 10 kBT (Figure 5.1A) are consistent with the 

previously reported values (Han 1989), except for the two additional lines for a1 = 0.5 

and 5 nm which are the new results of this study. When AH was raised to 50 kBT, the 

lines in the graph shifted upward (Figure 5.1B). Particle collisions are expected to be 

more favorable in short-range transport with a higher Hamaker constant value because of 

the stronger vdW attraction force between the two colliding particles. In this figure (and 

in all subsequent figures), the points shown were calculated directly from the numerical 

analysis, but the lines represent polynomial fits of those points. The polynomial fitting 

equations for each figure are tabulated in Appendix B: Table B.1-7. 

Intriguingly, αBr increased as the size of the smaller particle (a2) in the two-

particle collision decreased while the size of the bigger particle (a1) was fixed (i.e., the 

particle size ratio λ decreased). This result is due to a higher diffusivity of the smaller 

particle which causes more chances of particle collisions. For a similar reason, αBr surged 

as a1 decreased when a2 was maintained constant. However, αBr values never exceeded or 

became unity at any particle sizes or size ratios. This result shows that the hydrodynamic 

(viscous) forces acting against collisions are more significant than the vdW force that 

promotes collisions under the given Brownian conditions. 
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Figure 5.1 The collision efficiency functions in Brownian motion under two different 

Hamaker constant values of A) 10 kBT and B) 50 kBT. 
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5.3.1.2 Differential Sedimentation 

The calculated collision efficiency functions of differential sedimentation (αDs) in 

the absence of the EDL repulsion is presented in Figure 5.2. Traditionally, a 

dimensionless number, Ng is used to incorporate all of the influencing variables in 

differential sedimentation transport (Han and Lawler, 1992). This number is defined as 

follows: 

 Ng =
3AH

π(ρP−ρL)ga1
4 (5.28) 

where g is the gravitational constant, and ρP and ρL are the densities of the particles and 

fluid, respectively. Various Ng values were selected by changing the radius of the larger 

particle in the collision while all the other variables remained constant. Figure 5.2 shows 

αDs for log(Ng) values from -6 to 6. When αDs values were first reported by Han, 

trajectory analysis was performed only up to log(Ng) = 1, which was enough to deal with 

the relevant particle sizes at the time of study. At that time, it was thought that the upper 

limit of αDs was unity when log(Ng) > 1. However, Figure 5.2 shows that αDs gradually 

ascended as log(Ng) increased and eventually exceeded unity. This result reveals that 

short-range transport processes could be more significant than the long-range transport 

process in differential sedimentation. That is, as a larger particle falls, a smaller particle 

below can be drawn toward and collide with the larger particle, even if the smaller 

particle starts outside the area associated with the critical trajectory in the long-range 

model depicted in Figure 2.3. Because Ng is inversely proportional to the fourth power of 

the size of the larger particle (a1) in the collision, log(Ng) goes up dramatically with 

smaller values of a1. Therefore, this behavior more likely occurs in the collisions of 

submicron-sized particles where log(Ng) values are greater than 2. 
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Figure 5.2 The collision efficiency functions in differential sedimentation. (The 

calculations were made with AH = 10 kBT, ρP = 2.6 g/cm3, and ρL = 1 g/cm3 

and the larger particle radius varied as shown in the legend but any 

combination of values that leads to the same Ng value leads to the same 

result.) 

5.3.1.3 Fluid Shear 

The calculated collision efficiency values in a linear shear flow (αSh) in the 

absence of the EDL repulsion are presented in Figure 5.3. Similar to differential 

sedimentation, a dimensionless number, HA, is used to integrate all of the controlling 

variables in fluid shear transport (Adler, 1981a). HA is defined as follows: 

 HA =
AH

144πμa1
3G

 (5.29) 
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where G is the velocity gradient and μ is the absolute viscosity of the fluid. In Figure 5.3, 

the values of log(HA) were varied from -5 to 1 by changing the radius of the larger 

particle (a1) in the collision while all the other variables were fixed.  

Figure 5.3 shows slightly different αSh values than those reported by Han and Lawler 

(1992) although they are from exactly the same trajectory analysis. Han and Lawler 

obtained the collision efficiency functions for fluid shear by interpolation and 

extrapolation of Adler’s global capture efficiency results (1981a). Because Adler’s global 

capture efficiency was generated under narrow computational conditions, Han and 

Lawler’s work inherited this limitation. For this research, Adler’s trajectory analysis for 

global capture efficiency was performed with a wider range of computational conditions 

and the results were converted to αSh values. The discrepancies between Han and Lawler 

values and the recalculated αSh values shown here are very small. In fact, the general 

trends and the actual values are similar, except that, as HA and λ increase, αSh values 

became greater than 1 in the same manner as shown above for differential sedimentation; 

that is, the vdW attraction dominates at the submicron-scale in short-range transport. At 

the other extreme (i.e., when log(HA) <= -4), the result confirms Han and Lawler’s 

conclusion that collisions with particles that are much smaller (λ < 0.4) rarely occur. 
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Figure 5.3 The collision efficiency functions in fluid shear (The calculations were made 

with AH = 10 kBT, G = 20 s-1, and μ = 0.01 g/cm-s and the larger particle 

radius varied as shown in the legend but any combination of values that 

leads to the same HA value leads to the same result.) 

5.3.2 In the Presence of Surface Potential 

5.3.2.1 Brownian Motion 

When a constant surface potential of -25 mV in the ionic strength of 1 mM was 

integrated into the identical condition of Figure 5.1A (where AH was 10 kBT), αBr was 

lowered substantially by the presence of the EDL repulsion, as shown in Figure 5.4. 

Interestingly, the degree of αBr reduction due to the EDL repulsion varies dramatically 

with the size of the larger particle (a1) in the collision. The EDL repulsion reduces αBr 

more significantly as a1 increases. For any particle with a radius greater than 50 nm, αBr 

was negligible in the presence of the constant surface potential of -25 mV. It is known 
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that the heights of interaction energy barriers (i.e., DLVO energy barrier) due to the EDL 

repulsion are strongly influenced by the sizes of two interacting particles even under the 

identical surface potential and electrolyte conditions (Benjamin and Lawler, 2013). When 

the size of the larger particle (a1) in the collision gets larger, particle diffusion 

coefficients decrease while the DLVO energy barrier rises. Conversely, if a1 gets smaller, 

diffusion coefficients increase while the DLVO energy barrier falls. For this reason, 

collisions between smaller particles through short-range transport were less hindered by 

the presence of the EDL repulsion. 
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Figure 5.4 αBr in the presence/absence of the constant surface potential of |25 mV| 

 

The influence of surface potentials and the ionic strength of electrolytes on collision 

efficiency functions were also studied while a1 was fixed at 5 nm as shown in Figure 5.5. 
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The results in Figures 5.5A and 5.5B confirmed that αBr is a function of the magnitude of 

the surface potential and the ionic strength of the electrolytes. In the presence of the EDL, 

αBr is a function of the ionic strength, the surface potential, and the colliding particle 

sizes. 
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Figure 5.5 αBr with A) various ionic strength and B) surface potential for a1 = 5 nm 
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5.3.2.2 Differential Sedimentation 

With the constant surface potential of -25 mV, particle trajectories in differential 

sedimentation were simulated for four distinct a1 values (a1 = 5 nm, 500 nm, 5 µm, and 50 

µm, which are equivalent to log(Ng) = 5.6, 1.6, -2.4, and -6.4, respectively, under the 

identical conditions that were assumed in producing Figure 5.2). As expected, the 

presence of the EDL repulsion reduces αDs. When a1 was smaller than or equal to 5 μm 

with any size of a2, no collisions were predicted to occur (i.e., αDs = 0). That is, below 

some size particle, two approaching particles never collide in differential sedimentation 

in the presence of the EDL repulsion. More interestingly, at the nano/submicron-scale (a1 

< 0.5 µm), simulated trajectories showed that two settling particles never collide in the 

course of settling, but particles orbit each other with a fixed separation distance. This 

phenomenon, the formation of so-called “secondary doublets,” has been discussed by 

other scholars, particularly for particle collisions in a linear shear flow (Adler, 1981b; 

Van de Ven, 1989), but secondary doublets have not been noted in differential 

sedimentation before. The results of this trajectory analysis suggest that the interparticle 

forces dictate the transport behavior more significantly than the settling forces for 

submicron-sized particles. The separation distance of the two particles in doublets is 

found to be at the secondary minimum of DLVO energy curve. An example of a 

simulated trajectory of secondary doublets in differential sedimentation is depicted from 

the Lagrangian view on the large particles (a1) in Figure 5.6. 
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Figure 5.6 Simulated trajectory result from MATLAB (the size of the gray colored 

particle (a1) was 100 nm, and the size of the small clear particle (a2) was 25 

nm, the dotted line is the pathway of the center of the small particle, and the 

calculations were made with the surface potential of |25| mV when log(Ng) 

= 5.3) 

The explanation for secondary doublets in differential sedimentation is that, as a1 

decreases, the settling force rapidly drops and becomes negligible compared to the 

interparticle forces. The interparticle forces (vdW and EDL) are linearly proportional to 

the particle radius while Stokes’ settling force due to gravity is directly proportional to 

the third order of the particle radius. At the submicron-scale, the differential settling force 

is simply not sufficient enough to overcome the DLVO energy barrier.  

Some could argue that, if the two particles are settling together at the same 

velocity in a secondary doublet, they should be considered as one entity (e.g., a floc or an 

aggregate); however, in trajectory analysis for this work, secondary doublets were not 

considered as permanent flocs. Van de Ven and Mason (1976a-b) calculated the lifespan 

of secondary doublets. Their experimental results showed that the orbital period of 
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secondary doublets in a linear shear flow was shorter than the theoretically calculated 

values. Van de Ven and Mason thought that the imbalance in the surface charge 

distribution causes particles to break apart. Similar to this argument, the instability of 

secondary doublets in differential settling was observed in trajectory analysis and an 

illustrating figure is depicted in Appendix B: Figure B.1. For this reason, in this study, 

secondary doublets are considered as reversible products and not as flocs.  

When a1 was greater than 50 μm, direct particle collisions were observed 

occasionally even in the presence of the constant surface potential of -25 mV. The 

settling force (or momentum) at these particles sizes was large enough to overcome the 

DLVO energy barriers. When the direct collisions occurred at these particle sizes, αDs 

was substantially lowered in comparison to the non-EDL case and the maximum values 

of αDs were estimated to be on the order of 10-4.  

However, it was not feasible to create a generalized graph of αDs with polynomial 

fittings in the presence of a constant surface potential. Several influencing variables that 

control αDs values in numerical trajectory analysis are not incorporated into the 

dimensionless number, Ng; those variables include ionic strength, valency of background 

electrolyte, magnitude of surface charge, and boundary conditions of surface charge. To 

get an accurate value of αDs, each specific physical and chemical condition requires 

separate runs of numerical calculation. 

5.3.2.3 Fluid Shear 

Because Adler (1981a) already presented the influence of the EDL repulsion on 

global capture efficiencies regarding micro-sized particles, the main focus of this work is 

αSh of submicron-sized particles under the influence of the EDL. When the surface 

potential of -25 mV was included in the trajectory analysis, the critical cross-sectional 
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area that can result in particle collisions is effectively minimized. At the nano/submicron-

scale, the external shear force acting on the particles is insignificant to overcome the 

DLVO energy barrier, and particle transport is primarily governed by the interparticle 

forces. Similar to αDs, particle doublets are frequently observed due to the DLVO energy 

barrier. To provide a qualitative explanation, two hypothetical collision scenarios of two 

large particles (a1 = a2) and two small particles (a1’ = a2’) in a linear shear flow in the xy-

plane are plotted in Figure 5.7. In trajectory analysis, the separation distance between two 

particles is normalized by the average of the two particle radii (i.e., s = 2*r/(a1+a2)). In 

Figure 5.7, the component of that separation distance that is perpendicular to the flow 

direction is depicted as δ for two pairs of possible colliding particles with the distance of 

2δ in the x direction from each other. For equivalent values of the dimensionless δ, the 

smaller particles (a1’ and a2’) have a lower differential shear velocity than the larger 

particles (a1 and a2) because of the shorter (actual) separation distance. As a result, the 

presence of the EDL hinders particle collision in short-range transport to a greater extent 

for submicron-sized particles than micro-sized particles. Just as for αDs in the presence of 

the EDL, the polynomial fits for αSh as a function of the sizes and the size ratio of the two 

colliding particles could not be easily generated in the presence of the EDL. The 

dimensionless number, HA does not include factors that affect αSh. For each specific 

physiochemical condition, individual trajectory analysis needs to be performed. 
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Figure 5.7 Difference in shear velocities for large particles and small particles 

5.3.3 Summary 

To visualize the relative importance of the three transport mechanisms in 

flocculation for a submicron-sized particle with a wide range of particle sizes, the 

calculated collision efficiency functions (α) are combined with the collision frequency 

functions (β) and illustrated in Figure 5.8. Figure 5.8A displays the total collision 

frequency values (γ = α*β) of two-particle collisions considering well-destabilized (no 

EDL) silver particles (AH = 50 kBT, density = 10.49 g/cm3, and G = 32 s-1). The 

diameter of the first particle in the collision (a1) was fixed at 200 nm while the size of the 

second particle in the collision (a2) was varied. Brownian motion is the dominant 

transport mechanism where the diameter of the second particle is smaller than 

approximately 1 μm. However, fluid shear and differential sedimentation becomes the 

most significant mechanism when the size of the second particle becomes larger than 1 

and 2 μm, respectively.  

Figure 5.8B shows the total collision frequency values in the presence of the 

constant surface potential of -25 mV while all the other settings are maintained identical 
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as in Figure 5.8A. The total collision frequency was lower than in conditions without 

EDL repulsion for all three transport mechanisms, as expected. Brownian motion is still 

the most significant mechanism when the diameter of the second particle is below 200 

nm. The importance of fluid shear became more noticeable when the diameter of the 

second particle is between 200 nm and 10 µm. Differential sedimentation is important 

when the second particle is larger than 10 µm. The three transport mechanisms displayed 

a varying degree of their importance in flocculation in the presence of the EDL. The 

Hamaker constant value (AH = 50 kBT) that was used in the numerical computation 

contributed to these interesting results. The repulsive energy from the constant surface 

potential of -25 mV is well compromised by the attractive energy caused by the relatively 

high Hamaker constant. 
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Figure 5.8 Total collision correction function: A) in the absence and B) in the presence of 

constant surface potential of -25 mV (the calculated values are indicated 

with points and the smooth curves fitting was generated between the points) 



 119 

The numerical calculation results of two extreme cases were presented in this 

Chapter: no surface potential at all and the surface potential of -25 mV. For the accurate 

quantification of transport mechanisms in flocculation, the numerical analysis must be 

performed at the corresponding particle/solution conditions. At the nanoscale, Brownian 

motion is the most important transport mechanism, as expected. However, differential 

sedimentation and fluid shear mechanisms could also be as important as Brownian 

motion transport in some cases. For submicron-sized particles, more caution is necessary 

not to overlook differential sedimentation or fluid shear mechanisms over Brownian 

motion. The presence of the EDL repulsion reduces the collision efficiency functions (α) 

for the three fundamental transport mechanisms.  

Temporary secondary doublets are frequently observed at the nano/submicron-

scale in the presence of the EDL. As the sizes of the two colliding particles decrease, the 

settling force and shear force diminish more than the interparticle forces (vdW and EDL). 

Secondary doublets are formed when the particle separation is at the secondary minimum 

of DLVO energy curve. 

The results presented in this Chapter extend the ranges of size and surface charge 

for which the changes in particle size distributions during flocculation in water treatment 

can be modeled quantitatively. Evaluating the mechanisms of particle transport and 

attachment at the nanoscale will be a cornerstone of flocculation modeling as those 

particle physics in flocculation have not been explained previously. The identified trends 

in the results of trajectory analyses allowed further development of the mathematical 

model of flocculation at the nanoscale (Chapter 6). 

  



 120 

Chapter 6: Flocculation Modeling and Results 

6.1 INTRODUCTION 

The mathematical flocculation model described in Chapter 2 is capable of 

predicting the evolution of particle size distributions brought about by flocculation for 

micro-sized particles (Han, 1989; Li, 1996; Nason, 2006). This Chapter focuses on 

comparing experimental results from laboratory-scale AgNP flocculation tests with 

model predictions derived from the updated short-range force model described in the 

previous Chapters. The hypothesis is that the established mathematical theory of 

flocculation for micro-sized particles could be applied to nano-sized particles as well. It 

was assumed that updating the collision efficiency functions, α, for short-range transport 

mechanisms (i.e., the term that captures the physics of particle collisions and is described 

in Chapter 5) would successfully forecast the evolution of particle number distributions at 

the nanoscale. The objective of this Chapter is to illuminate aspects of flocculation at the 

nanoscale that are and are not quantitatively well understood through systematic 

comparisons of experimental data with the model predictions.  

6.2 FLOCCULATION MODEL 

 As introduced in Chapter 2, the most advanced flocculation model is the short-

rage force model, which considers interparticle interactions, including the hydrodynamic 

and DLVO energy experienced between colliding particles. The short-range force model 

is as follows: 

 

 rk
Short−range

=
dnk

dt
=

1

2
αemp ∑ γij

totninjall i and j
Vi+Vj=Vk

− αempnk ∑ γij
totniall i  (2.8) 

 

 γij
tot = αij

Brβij
Br + αij

Shβij
Sh + αij

Dsβij
Ds 
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where, i, j and k are size classes of particles; ni is the number concentration of i-sized 

particles (L-3), Vi is the volume of a size i particle (L3), βij is the collision frequency 

function for particles of size i and j (L3/T), αemp is the empirical collision efficiency 

factor, and αij is the (theoretically calculated) collision efficiency function for particle 

size i and j.  

Equation 2.8 evaluates the rate at which the number concentration of k-sized 

particles changes with respect to time. As discussed in Chapter 3, for this research, the 

NanoSight particle size analyzer was set to generate one hundred individual particle size 

bins (N = 100) that were equally spaced on a logarithmic scale. Equation 2.8 applies to 

each particle size bin in a continuous particle size distribution. For each time increment 

(Δt = 10s), Equation 2.8 is integrated by Heun’s method for each bin (i.e., computing one 

hundred integrals for every ten second increment). The collision frequency functions, β, 

can be analytically calculated using the equations tabulated in Table 2.1. The collision 

efficiency functions, α, for the three transport mechanisms at the nanoscale were obtained 

in Chapter 5. To minimize the computational burden (time), AgNPs are assumed to be 

completely destabilized (i.e., without surface charge); therefore, the values of the 

collision efficiency functions (αBr, αDS, and αSh) are as shown in Figures 5.1, 5.2, and 5.3, 

respectively, rather than calculated anew. This choice means that any DLVO energy 

barrier and all chemical aspects of flocculation such as the degree of destabilization of 

AgNPs were accounted for by the empirical collision efficiency factor (αemp) in the short-

range force model.  

6.2.1 Inputs for the Model 

 The short-range force model requires various physical parameters including 

temperature, density of particles, mixing intensity, and the initial particle number 
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distribution. Collision frequency functions for Brownian Motion (βBr) and the viscosity of 

water are influenced by the temperature of water. A constant room temperature of 298.25 

K (25 Celsius) was applied throughout this modeling. In addition, the collision frequency 

function for fluid shear (βSh) is controlled by the mixing intensity, G. Throughout each 

flocculation experiment, gentle mixing (with G values estimated by Camp’s method 

(1955) as 10 s-1) was applied. The densities of particles and flocs affect the collision 

frequency for differential sedimentation (βDS). However, the density of Ag-flocs is not 

easy to measure because Ag-flocs consist of both water and silver and their composition 

and porosities may vary. Although applying the actual density for Ag-flocs for the model 

would produce more realistic and accurate results, the bulk density of silver (10.5 g/cm3) 

was used for both AgNPs and Ag-flocs. The short-range force model inherited the 

coalescence assumption that was made by Smoluchowski (i.e., particle volume is 

conserved during particle collisions) and, for this reason, the use of the bulk density of 

silver is more consistent with the flocculation model. Lastly, the particle number 

distributions that were measured by NanoSight at time zero were used as the model input. 

NanoSight allows users to specify the number and size of each bin on a logarithmic scale. 

It was manually set so that data from NanoSight had one hundred bins for sizes ranging 

from 1 nm to 2000 nm.  

6.2.2 Model Performance 

 The original computer code for flocculation was developed by Lawler (1979) in 

PL/1 to study the evolution of particle size distributions in thickening processes. Since 

then, the computer code has been used and improved by his successors. The existing 

short-range force model was written in C Language by Nason (2005), which is a 

modified version of the first short-range force model developed by Han (1989). For this 
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research, Nason’s model was rewritten in MATLAB modernizing outdated functions in C 

Language.  

 For each model run, the mathematical calculations at four selected times (t = 15, 

30, 45, and 60 minutes) were obtained based on the initial number distribution of AgNPs 

that had been measured by NanoSight (i.e., inputs for the model). The model predictions 

were plotted against experimental data at the four times to examine if model predictions 

agreed with measured number distributions. By adjusting the empirical fitting parameter 

(αemp), the short-range force model was tuned to produce the best-fit number distribution 

curves.  

Figure 6.1 shows the predictions made by the short-range force model against 

NanoSight data from Experiment #14. Although the model slightly deviated from 

experimental data at 60 minutes, the predictions of the flocculation model (αemp= 0.06) 

agreed with experimental data generally well by showing the decreasing number of 

smaller size particles and the increasing number of larger size particles. Consistent with 

the experimental results, the peak of the model in the number distribution shifted to larger 

size particles while both the height of the peak and the area under the curve (total particle 

concentration) lowered with time. By looking at the four different times from Figure 

6.1A through 6.1D, the creation of larger flocs is also indicated in the model. This result 

is evidence that the model predictions are consistent with the experimental data and that 

flocculation of AgNPs can be explained by the Smoluchowski theory of flocculation. 
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Figure 6.1. Flocculation model (αemp = 0.06) vs. experimental data (EXP #14: 50 nm, 

Ca(NO3)2, I = 3 mM, and 1.2E9 #/mL) at t= A) 15, B) 30, C) 45, and D) 60 

minutes 

6.2.3 Collision Efficiency Factor (αemp)  

 The short-range force model takes particle transport (the physical aspects) into 

account through the collision frequency and efficiency functions (β and α) with the 

assumption that all particles are well-destabilized and do not have repulsive interaction. 

In practice, however, complete destabilization is not always achieved and particles are 
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left with some surface potential. In this case, particle collisions do not guarantee the 

formation of flocs due to incomplete destabilization. For this reason, an empirical fitting 

parameter was incorporated into the short-range force model that is known as the 

empirical collision efficiency factor (αemp). The collision efficiency factor (αemp) is mainly 

regarded as a chemical correction factor that accounts for the fraction of predicted 

collisions that result in flocs. 

In this research, a maximum likelihood estimator that measures the agreement 

between the model predictions and the experimental results was used to determine αemp. 

The least square estimator is a standard regression analysis and small values of the sum 

of squared error (SSE) represent close agreement. The following equation was used to 

quantify the goodness of fit: 

 

 SSE =  
∑ (𝐸𝑖−𝑀𝑖)2𝑁

𝑖=1

𝑁
  (6.1) 

where, Ei is the experimental data (i.e., the measured number concentration of i-sized 

particles), Mi is the model predictions (i.e., the predicted number concentration of i-sized 

particles), and N is the total number of size bins (N= 100).  

A minimum value of SSE for the four selected times (t= 15, 30, 45, and 60 

minutes) was sought through trial-and-error, and αemp was correspondingly adjusted to 

yield best-fit number distributions. Because αemp depends mainly on chemical conditions, 

in theory, an identical value of αemp should be obtained for all experiments with the same 

chemical condition. By comparing αemp values between experimental results that have the 

same chemical conditions, the validity of the flocculation model for nanoparticles was 

investigated. In addition to SSE, the goodness of fit was also checked by comparing total 

particle numbers in the model predictions to the data; however, the model fits were not 

nearly good as the estimations from SSE method. 
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6.2.4 Sensitivity to αemp 

 To check the sensitivity of the flocculation model to αemp, the short-range force 

model was tested at several different collision efficiency factors (αemp = 0.01, 0.05, 0.1, 

and 0.2) using the identical particle number distribution functions as input data and 

keeping all other parameters identical. Figure 6.2 shows various predictions made by the 

short-range force model with different αemp values for 50 nm sized AgNPs under I = 3 

mM of Ca(NO3)2 and flocculation times of 15 and 60 minutes (identical conditions as 

Figure 6.1). Higher αemp values in the short-range force model predicted greater 

flocculation at both 15 and 60 minutes. Interestingly, the lower αemp value (0.01) differed 

from experimental data to a larger degree at the later time (t = 60 minutes) whereas the 

two larger αemp values (0. 1 and 0.2) differed more at 15 minutes.  
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Figure 6.2 Sensitivity of the short-range force model to αemp at = A) 15 and B) 60 minutes 
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The short-range force model is sensitive to the collision efficiency factor because the 

predicted rate of successful collisions is directly proportional to its value within the 

second order flocculation rate expression.  

6.3 MODEL PREDICTIONS FOR THE EXPERIMENTAL RESULTS 

 To inspect the validity of the flocculation model at the nanoscale under various 

conditions, the short-range force model was tested against all of the laboratory scale 

flocculation data obtained from NanoSight in Chapter 4. The collision efficiency factor, 

αemp, for each experiment was obtained using the least square estimator method to find 

the best-fit number distributions for the four selected time points during each experiment. 

The values of αemp are tabulated as presented in Table 6.1; in subsequent sections of this 

Chapter, it is shown that some experiments are better fit with two values of αemp, one for 

the first time period and the other for later times.  
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Table 6.1 The collision efficiency factors for each experiment 

 
Particle size 

(nm) 

Ionic Strength 

(mM) 
Valency 

Initial Particle 

Concentration 

(#/mL) 

NOM* αemp 

1 100 30 1 1.3E+09 X 0.02 

2 100 50 1 1.1E+09 X 0.06 

3 100 30 2 1.2E+09 X 0.14 

4 100 30 3 1.2E+09 X 0.02 

5 100 30 1 1.9E+09 X 0.12 

6 100 50 1 1.1E+09 O 0.15 

7 100 30 2 1.3E+09 O 0.16 

8 30 30 1 1.1E+09 X 0.25 

9 30 10 1 1.0E+09 X 0.07 

10 30 3 1 1.1E+09 X 0.01 

11 30 3 2 1.2E+09 X 0.13 

12 30 3 1 2.5E+09 X 0.06 

13 50 3 1 1.2E+09 X 0.005 

14 50 3 2 1.2E+09 X 0.06 

15 50 10 1 1.1E+09 X 0.15 

16 30 & 100 10 1 1.3E+09 X 0.01 

17 30 & 100 30 1 1.0E+09 X 0.27 

18 30 & 100 3 2 1.0E+09 X 0.12 

*NOM = Natural Organic Matter, X= the absence of NOM, and O= the presence of NOM 

6.3.1 Model Predictions for Different Ionic Strength of Destabilizing Agents 

 Figure 6.3 shows the modeling results for flocculation of the 100 nm sized AgNPs 

at an ionic strength of 30 mM of NaNO3 at the four chosen times (t= 15, 30, 45, and 60 

minutes, Experiment #1). The best-fit curves were found when the collision efficiency 

factor (αemp) was 0.02. The model predictions matched the experimental data fairly well 
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for the four selected times, with the height and location (log dp value) of the peaks and 

the widths of the number distributions nearly identical to the measured data. However, 

the model seems to consistently underestimate smaller size particles and overestimate 

larger size particles. 

 

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.02)

N
u

m
b

e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

A) T = 15 mins

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.02)

Particle Size (log(d
p
))

N
u

m
b

e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

B) T = 30 mins

 

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.02)

N
u

m
b

e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

C) T = 45 mins

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.02)

D) T = 60 mins

N
u

m
b

e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

 

Figure 6.3 Flocculation model (αemp = 0.02) vs. experimental data (EXP #1: 100 nm 

NaNO3, I = 30 mM 1.3E9 #/mL) 
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Running the short-range force model with a lowered αemp value could fix the issue 

of under and overestimating for smaller and larger size particles. For example, using the 

αemp value of 0.005 instead of 0.02, the short-range force model estimated weaker 

flocculation, and the best-fit curves for the number distributions were shifted to smaller 

size particles as shown in Figure 6.4. However, the lowered αemp also produced higher 

estimations for the number concentrations due to weaker flocculation (i.e., the heights of 

each bet-fit curve were more elevated with αemp = 0.005 than 0.02). The benefits of not 

having under/overestimating on each tail with the lowered αemp value was overpowered 

by the greater sum of squared error from the higher peak number concentrations. Hence, 

the best-fit αemp values was determined to be 0.02. 
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Figure 6.4 Flocculation model (αemp = 0.005) vs. experimental data (EXP #1: 100 nm 

NaNO3, I = 30 mM 1.3E9 #/mL) 

When the model was executed against the data from Experiment #2, where the 

ionic strength was set to 50 mM instead of 30 mM of NaNO3, the αemp value was found to 

be 0.06 as shown in Figure 6.5. Again, the model showed the peaks and heights that are 

comparable to the experimental results for the selected times. Minor deviations between 
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the model and the experimental data were observed at larger size particles and the 

discrepancy became more apparent with time. 
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Figure 6.5 Flocculation model vs. experimental data (EXP #2: 100 nm NaNO3, I = 50 

mM 1.1E9 #/mL) 

The comparisons between the model predictions and the two experiments above 

confirmed that the collision efficiency factors were affected mainly by the chemical 

conditions. As the ionic strength was raised from 30 mM to 50 mM of NaNO3, the αemp 



 133 

value was adjusted from 0.02 to 0.06 to generate the best-fit curves. Under these two 

conditions, as discussed in Chapter 4, the higher ionic strength of sodium ions produced a 

higher degree of destabilization due to compression of the double layer, so that this trend 

of increasing value of αemp with increasing ionic strength was expected from theory. 

When AgNPs were better destabilized, the fraction of collisions that resulted in 

attachment was also greater, reflected in the higher values of αemp. This trend was 

observed regardless of the initial size of AgNPs. When flocculation of the 30 and 50 nm 

sized AgNPs was induced by only varying ionic strength, the αemp values grew with 

increased ionic strength (Experiments #8, 9, and 10 for the 30 nm sized AgNPs; 

Experiments # 13 and 15 for the 50 nm sized AgNPs). The model predictions for the 30 

and 50 nm sized AgNPs are exhibited in Appendix C. 

6.3.2 Model Predictions for Different Destabilizing Mechanisms 

 Along with ionic strength, the ability of the short-range force model to predict the 

evolution of particle size distributions brought about by different destabilizing 

mechanisms was evaluated in this research. As discussed in Chapter 4, when the identical 

ionic strength of NaNO3 and Ca(NO3)2 was applied to citrate capped AgNPs, more robust 

flocculation was induced under the Ca(NO3)2 condition. This occurred because calcium 

ions and the citrate capping layer form complexes. As a result, Ca(NO3)2 can destabilize 

AgNPs by adsorption and charge neutralization as well as by compression of the double 

layer, whereas NaNO3 only utilizes the mechanism of compression of the double layer.  

Because Experiment #1 and #3 were designed so that AgNPs were subjected to 

identical chemical conditions except for the destabilizing agent, the capability of the 

model to forecast flocculation dynamics with different destabilizing mechanisms can be 

manifested by comparing αemp values between the two experiments. Figure 6.6 displays 
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the model predictions for the 100 nm sized AgNPs at an ionic strength of 30 mM as 

Ca(NO3)2 (Experiment #3). The short-range force model generated the best-fit curves 

when the αemp value was 0.14 with some overestimations for smaller size particles and 

underestimations for larger size particles. This αemp value of 0.14 is substantially greater 

than the αemp value of 0.02 that was attained in Figure 6.3 (Experiment #1). This result 

agreed with the experimental observations that more successful flocculation took place in 

under the calcium destabilization and agrees with particle destabilization theory; calcium 

ions are a better destabilizer than sodium ions for citrate capped AgNPs.  

As was expected, the model results for the 30 and 50 nm sized AgNPs showed 

consistent results (Experiments #10 with sodium and #11 with calcium for the 30 nm 

sized AgNPs; Experiments # 13 with sodium and #14 with calcium for the 50 nm sized 

AgNPs). The αemp values were always greater with calcium than sodium ions irrespective 

of the size of AgNPs if the same ionic strength was applied. The model predictions that 

are plotted for the 30 and 50 nm sized AgNPs are included in Appendix C.  
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Figure 6.6 Flocculation model vs. experimental data (EXP #3: 100 nm Ca(NO3)2, I = 30 

mM 1.2E9 #/mL) 
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6.3.3 Model Predictions for the Presence of NOM 

The effect of NOM on flocculation dynamics of citrate capped AgNPs was 

experimentally investigated in Chapter 4. The experimental results suggested that more 

rapid flocculation occurred in the presence of NOM when I = 50 mM of NaNO3 was used 

as a destabilizing salt (Experiment #6). The presence of NOM seemed irrelevant to 

flocculation dynamics when the destabilization of AgNPs was achieved by I = 30 mM of 

Ca(NO3)2 (Experiment #7). Although these results seemed contradictory to widely 

accepted theory that calcium causes interparticle bridging with humic acids, Suwannee 

River aquatic NOM that was used in the present experiments include fulvic acids and 

humin fractions; therefore, their behavior can differ from humic acids.  

To gain quantitative understanding, the model predictions were generated to 

simulate these experimental results for the four selected times (t= 15, 30, 45, and 60). 

Figure 6.7 shows the model predictions for flocculation induced by I = 50 mM of NaNO3 

in the presence of NOM (Experiment #6). The αemp value for the best-fit curves was 0.15 

which was 2.5 times the αemp value under the identical experimental condition without 

NOM (Experiment #2). This result is consistent with the qualitative analysis of 

experimental data given earlier; NaNO3 destabilized citrate capped AgNPs to a greater 

extent in the presence of NOM.  

On the other hand, the presence of NOM did not affect the degree of 

destabilization of citrate capped AgNPs when Ca(NO3)2 was used as a destabilizing 

agent. The αemp value was 0.16 in the presence of NOM (Experiment #7) as shown in 

Figure 6.8. Previously, the αemp value for the identical condition without NOM was found 

0.14 (Experiment #3). The αemp values from the model agreed with the experimentally 

observed phenomenon that NOM had a limited influence on flocculation of citrate capped 

AgNPs under the calcium destabilization condition.  



 137 

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.15)

A) T = 15 mins
N

u
m

b
e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.15)

B) T = 30 mins

N
u

m
b

e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

 

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.15)

C) T = 45 mins

N
u

m
b

e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-1.5 -1.0 -0.5 0.0

Experiment
Model (

emp
= 0.15)

D) T = 60 mins
N

u
m

b
e
r 

D
is

tr
ib

u
ti

o
n

 (


N
/

lo
g

d
p
) 

(#
/m

L
)

Particle Size (log(d
p
))

 

Figure 6.7 Flocculation model vs. experimental data (EXP #6: 100 nm NaNO3, I = 50 

mM 1.1E9 #/mL in the presence of NOM) 
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Figure 6.8 Flocculation model vs. experimental data (EXP #7: 100 nm Ca(NO3)2, I = 30 

mM 1.3E9 #/mL in the presence of NOM) 
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Interestingly, in the presence of NOM, the model predictions started to deviate 

from the experimental data around t = 30 minutes. Although the model showed fairly 

good estimations at t=15 minutes, the discrepancy between the model and the data 

became more severe with time for both destabilizing agents (Figures 6.7 and 6.8). At t = 

60 minutes, the heights of the peaks of experimental data were almost twice high as the 

peaks of the model predictions.  

The escalating deviations with time between the experimental data and the model 

indicated that the evolution of the particle number distributions for the flocculation 

experiments in the presence of NOM actually slowed down at some point while the 

flocculation model continuously progressed. For further analysis, a two-step modeling 

approach was performed for the flocculation experiment under I= 50 mM of NaNO3 in 

the presence of NOM (Experiment #6). The two-step modeling had two separate time 

periods for modeling. The first period used the initial number distribution measured at 

time zero as input for the model to predict the first 15 minutes of flocculation. Then, the 

number distribution at t = 15 minutes that was experimentally obtained was used as input 

for the model to predict the number distributions at 30, 45, and 60 minutes.  

Figure 6.9 shows the two-step modeling result for Experiment #6 (comparable to 

Figure 6.7). During the first 15 minutes of flocculation, the best-fit curve was generated 

by an αemp value of 0.22. The model then found the αemp value of 0.06 for 30, 45, and 60 

minutes. The two-step modeling procedure produced results that matched the 

experimental data far better; the results do not have the escalating deviation that was 

initially observed in Figure 6.7. Taking the αemp value as an indicator of the degree of 

destabilization, flocculation in the presence NOM appears to be more robust in the first 

15 minutes than the last 45 minutes. 
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Figure 6.9 Flocculation model vs. experimental data with varying αemp (EXP #6: 100 nm 

NaNO3, I = 50 mM 1.1E9 #/mL in the presence of NOM)  

Further experimentation is required to fully understand why flocculation 

dynamics changes in the presence of NOM. Along with the experiments in the presence 

of NOM (Experiments #6 and #7), there were also a few other experiments that could be 

modelled only (or far better) by the two-step modeling approach (Experiments #8 and 

#17). Intriguingly, AgNPs were highly destabilized in those experiments because they 
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were under relatively high ionic strengths (I > 30 mM), and more rapid flocculation took 

place in them compared to the other experimental conditions that were tested. Although 

the fundamental reasons for this apparent two-step flocculation rate were not clear, two 

conjectures are suggested here. 

First, the rapid growth in sizes could have increased the height of the energy 

barrier for flocs, which allowed flocs to restabilize in the system. In those experiments, 

the mean particle size of AgNPs became 2 or 3 times its initial mean size within the first 

15 minutes of flocculation. As already shown in Chapter 4, larger sized particles have a 

greater energy barrier in DLVO interactions than smaller sized particles in the identical 

conditions. Figure 6.10 shows the energy barrier of DLVO curves for the 100 nm sized 

pristine AgNPs and the 300 nm and 500 nm sized AgNP flocs (with the coalescence 

assumption, meaning flocs are perfectly spherical). The DLVO calculation suggested that 

the energy barrier between AgNPs and Ag-flocs will increase as the floc size gets larger 

during flocculation process. For this reason, for the last 45 minutes in the rapid 

flocculation experiments, values of αemp needed to be readjusted to account for the 

changes in the particle interaction energy due to the size growth.  
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Figure 6.10 The DLVO energy curves for three different sizes of AgNPs in the identical 

condition (with the assumptions that the surface potential -25.7 mV, the 

ionic strength of 1 mM, and Hamaker constant of 20 kBT) 

Secondly, floc breakup might have become more significant in the last 45 minutes 

during the rapid flocculation experiments. In the current flocculation model, flocs are 

considered as an irreversible product (i.e., no flocs break up). While this assumption 

helps to simplify a mathematical derivation, it clearly incorporates errors that could be 

critical in predicting the evolution of particle number distributions at the nanoscale. Due 

to its complexity, floc breakup is not incorporated in the current flocculation modeling. 

Floc breakup would need to be included for future research to improve quantitative 

understanding of nanoparticle flocculation. 
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6.3.4 Model Predictions for Different Initial Particle Concentrations  

Because flocculation is a second-order reaction with respect to the particle 

number concentration, particle concentration dictates the rate of flocculation. In Chapter 

4, the influence of the initial number concentration on flocculation rate was investigated 

by comparing some characteristic changes in the number distributions among the 

experiments that varied the initial number concentrations while all other conditions were 

fixed (Experiments #1 and #5 and Experiments #10 and #12).  

In this Chapter, the short-range force model was tested to predict the evolution of 

particle number distributions for the flocculation experiments that had different initial 

number concentrations. Figure 6.11 shows the model predictions for the flocculation data 

of the 100 nm sized AgNPs under I = 30 mM of NaNO3 with the initial number 

concentration of 1.9E9 #/mL (Experiment #5). The best-fit curves for the four times were 

initially found at an αemp value of 0.12 (not shown in the figure), but an escalating 

deviation between the model and the experimental data was observed with time, similar 

to the flocculation results in the presence of NOM. To solve the evolving discrepancy, the 

two-step model technique was performed for the first fifteen minutes and the last forty-

five minutes, separately. The two-step model produced improved best-fit curves with the 

αemp values of 0.16 and 0.08 for the first fifteen minutes and the last forty-five minutes, 

respectively (Figure 6.11). This result is further evidence that flocculation was more 

robust during the first fifteen minutes than the last forty-five minutes. Hence, the same 

conjecture provided earlier can be applied to this experimental result as well; that is, the 

EDL might be changing when the particles are growing dramatically bigger by 

flocculation.  
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Figure 6.11 Flocculation model vs. experimental data with varying αemp (EXP #5: 100 nm 

NaNO3, I = 30 mM 1.9E9 #/mL) 

The αemp values from the two-step model were compared to the αemp value from 

Experiment #1, which had the identical chemical conditions but a lower initial particle 

number concentration of 1.3E9 #/mL (Figure 6.3). Recall that, the αemp value was 0.02 in 

Experiment #1; the αemp values obtained from the two-step modeling with the higher 

initial concentration were 8 and 4 times the values obtained for the first fifteen and the 
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last forty-five minutes, respectively. Comparable results were obtained for the 30 nm 

sized AgNPs as well (Experiments #10 and #12). The αemp value was greater under the 

higher initial concentration of the 30 nm AgNPs (Experiment #12) than the lower initial 

concentration (Experiment #10) while all other conditions remained constant. 

Having the higher αemp value with the higher initial number concentration might 

seem reasonable because more successful flocculation occurred with the higher initial 

number concentration; however, this statement is rather contradictory to the underlying 

theory of the flocculation model. The αemp value in the short-range force model is a 

correction factor for chemical aspects of flocculation while physical aspects (particle 

transport) are (theoretically) fully accounted for by collision frequency and efficiency 

functions. Therefore, the αemp value should be identical for two systems regardless of 

their initial particle number concentrations if the same chemical conditions are applied. 

This result could possibly indicate that the physics of particle collisions for higher 

number concentrations were not perfectly incorporated in the flocculation model. Hence, 

the αemp value was adjusted to accommodate physical aspects of flocculation.  

One possible source of inaccuracy in the current flocculation model is that the 

physical behavior of particles was simulated based on the two-particle system. Classical 

flocculation research for micron-sized particles were typically performed in the range of 

the particle number concentration of 1E5 #/cm3. Taking the inverse of that particle 

concentration shows that there is one particle per 1E-5 cm3 of water. This volume of 

water can be translated into a cube with sides that are roughly 215 µm, which becomes 

the average distance between particles in water.  

However, typical measurements of nanoparticles (e.g., NanoSight or DLS, or 

TEM) require number concentrations greater than 1E9 #/mL. For example, in Experiment 

#12, the initial number concentration of 2.5E9 #/mL of AgNPs was used. This number 
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concentration is converted into the average distance of 7.4 µm between AgNPs. It can be 

shown with a quick approximation using characteristic diffusion time (t = x2/D, where x 

is the mean distance, and D is the diffusion coefficient), that it takes only ten seconds for 

AgNPs to travel 7.4 µm. Therefore, in such high particle concentrations, nanoparticles 

might already be under the influence of more than two particles nearby at the same time, 

suggesting a two-particle system might not fully explain the physical behavior of 

nanoparticles. It will be difficult to incorporate the three-particle problem into 

flocculation modeling because it has been shown by many scholars and physicists that 

most three body-problem in quantum mechanics are not solvable. Further experiment is 

required to pinpoint how the αemp changes with various initial number concentrations.  

6.3.6 Model Predictions for Heterodisperse Samples 

The efficacy of the short-range force model for flocculation of heterodispersed 

AgNPs was also studied. Figure 6.12 shows the model results for the heterodispersed 

sample that consisted of the 30 and 100 nm sized citrate capped AgNPs. Flocculation was 

induced by I = 3 mM of Ca(NO3)2 in the absence of NOM. The model prediction 

corresponded with the experimental data fairly well with an αemp value of 0.12. The best-

fit curves were established without the two-step modeling approach. In the first thirty 

minutes, the model closely predicted the reduction of the 30 nm peak in the particle 

number distributions. For the last thirty minutes of flocculation, the decrease of the 100 

nm peak and the creation of larger size particles were predicted well by the model. This 

result is promising in indicating that the short-range force model could successfully 

predict the evolution of particle number distributions for the heterodisperse sample. More 

results of the model predictions for the heterodispersed AgNP sample are included in 

Appendix C. 
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Figure 6.12 Flocculation model vs. experimental data (EXP #18: 30+100 nm Ca(NO3)2 3 

mM 1.3E9 #/mL) 

Lastly, to check the compatibility of the αemp values for different particle 

distributions, the αemp values that were obtained from monodisperse experiments were 

used to predict flocculation of heterodisperse samples. Under I = 30 mM of NaNO3 for 

the 30 and 100 nm sized monodisperse samples, the αemp values were 0.25 and 0.02, 
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respectively (Experiments # 8 and #1). Figure 6.13 shows the model predictions for 

flocculation of heterodisperse AgNPs under the identical operative conditions. 

(Experiment #17: I = 30 mM of NaNO3 for the mixture of the 30 & 100 nm AgNPs). 

While the αemp value of 0.02 underestimated flocculation, the αemp value of 0.25 showed 

somewhat close predictions to the experimental results. In fact, the best-fit curves were 

found with the αemp value of 0.27. This result suggested that the flocculation dynamics of 

the mixture of the 30 and 100 nm sized AgNPs were more closely represented by the 30 

nm sized AgNPs. The 30 nm sized AgNPs will control flocculation rate because the 30 

nm sized AgNPs were better destabilized compared to the 100 nm sized AgNPs under the 

identical destabilization. However, the better fitting curve can be found using two-step 

modeling approach. 
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Figure 6.13 Flocculation model predictions for heterodisperse AgNPs (EXP #17: 30+100 

nm NaNO3 30 mM 1.0E9 #/mL) with the αemp values obtained from 

monodisperse experiments  
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6.4 DISCUSSION AND CONCLUSIONS 

The predictions made by the short-range force model were tested for the 

flocculation experiments of citrate capped AgNPs. Having the short-range force model 

tested under various operating conditions, the initial hypothesis of the present research 

was verified. Comparisons of the short-range model with the experimental data from 

NanoSight disclosed the areas of the flocculation process at the nanoscale that are well 

understood, and some that require further investigation.  

Generally, the short-range force model with the updated collision efficiency 

functions does an excellent job of predicting the evolution of particle number 

distributions at the nanoscale. Successful accounting of AgNPs during laboratory-scale 

batch flocculation experiments shows that the updated collision efficiency functions are 

effective. Updating collision efficiency functions for nanoparticles was a critical 

improvement to the existing flocculation model because, previously, there was no way to 

account for physics of collisions of nano-sized particles in the flocculation process. 

In terms of the agreements between the model predictions and the experimental 

data, modeling results can be separated into two scenarios. First, the short-range force 

model agreed well with the experiment results with just one αemp value for the entire sixty 

minutes of flocculation, suggesting that flocculation rate or the degree of destabilization 

did not change during the flocculation experiments for both monodispersed and 

heterodispersed AgNP samples. 

The second scenario is that the experimental data could be predicted better by the 

two-step modeling, having two different αemp values for two separate periods, indicating 

that flocculation rate or the degree of destabilization had changed during the flocculation 

experiments. These experiments are listed following: 
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• the 30 nm AgNPs (1.1E09 #/mL) with I = 30 mM of NaNO3 without NOM 

(Experiment #8) 

• the 100 nm AgNPs (1.1E09 #/mL) with I = 50 mM of NaNO3 with NOM 

(Experiment #6) 

• the 100 nm AgNPs (1.3E09 #/mL) with I = 30 mM of Ca(NO3)2 with NOM 

(Experiment #7) 

• the 100 nm AgNPs (1.9E09 #/mL) with I = 30 mM of NaNO3 without NOM 

(Experiment #5) 

• the 30 and 100 nm AgNPs with I = 30 mM of NaNO3 without NOM (Experiment 

#17) 

Although fundamental relationships were not clear, these experiments had relatively high 

ionic strengths of the destabilizing agents compared to other experiments. These results 

suggest that the degree of destabilization of AgNPs can change during the sixty minutes 

of flocculation when flocculation is induced by such a high ionic strength (I > 30 mM). 

Further examination is necessary to delineate the cause and effect for the changes of the 

degree of the destabilization during flocculation of AgNPs. One suggestion in 

interpreting these results is that the increasing size of the particles during flocculation 

could increase the electrostatic repulsion and the consequent energy barrier, and that this 

would be much more obvious in the rapid flocculation experiments than in those with 

slower flocculation. 

The current mathematic modeling effort advanced the quantitative understanding 

of flocculation at the nanoscale. Although there were some minor deviations, very good 

agreement between the measured and predicted particle size distributions was observed. 

From these results, it can be concluded that flocculation of nanoparticles can be 

quantitatively explained using standard theory that was originally developed for micro-
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sized particles. From a water treatment point of view, this conclusion is optimistic: 

nanoparticles can be effectively removed in typical water treatment as long as 

nanoparticles are well destabilized to reduce surface potential. 

 

  



 153 

Chapter 7: Conclusions 

7.1. CONCLUSIONS  

The main objective of this research was to improve the quantitative understanding 

of how nanoparticle size distributions change during flocculation. Both experimental 

examination and mathematical modeling were performed. Well controlled laboratory 

scale batch flocculation experiments with citrate capped AgNPs were performed under a 

variety of physiochemical conditions to evaluate the impacts of controlling variables, 

such as initial particle size, initial particle number concentration, ionic strength, 

destabilizing mechanism, and inclusion of natural organic matter on the measured 

nanoparticle size distributions.  

Mathematical modeling consisted of two parts. First, mathematical expressions of 

particle collisions for the three main transport mechanisms at the nanoscale were 

developed by numerical trajectory analysis. The results of trajectory analysis were 

reported in terms of collision efficiency functions for two extreme cases: no repulsive 

energy between particles and the surface potential of -25 mV. As expected, Brownian 

motion is the most significant transport mechanism for the nano-sized particles. In some 

cases, however, differential sedimentation and fluid shear could be as important as 

Brownian motion at the nanoscale; therefore, caution is required not to underestimate 

differential sedimentation and fluid shear transport during flocculation at the nanoscale.  

The second part of mathematical modeling was to verify the proposed hypothesis: 

the well-known mathematical theory of flocculation for micro-sized particles can be 

applied to nano-sized particles. The Smoluchowski theory for particle collisions and the 

updated collision efficiency functions were used together to predict the evolution of 

particle number distributions at various time during flocculation of nanoparticles. 

Comparisons between the model predictions and the experimental data revealed the areas 
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of the flocculation process for nanoparticles that are quantitatively well understood, and 

some that require further study. Overall, the short-range force model with the updated 

collision efficiency functions was able to consistently match the measured particle 

number distributions at various times. 

Based on the results of the experimental investigation, mathematical modeling, 

and iterative comparison between the data and the model, the following conclusions can 

be drawn: 

1. Calcium ions are more effective than sodium ions as a destabilizing agent for 

citrate capped AgNPs regardless of their initial particle sizes. If the same ionic 

strength of calcium and sodium ions is applied to citrate capped AgNPs, calcium 

ions induce better flocculation, apparently because calcium citrate complexes are 

formed and neutralize the surface charge of the nanoparticles, whereas the sodium 

nitrate works only by compression of the electrical double layer. 

2. If all other conditions are identical, more successful flocculation will take place in 

a system with a higher particle number concentration. Because flocculation is a 

second-order reaction, the flocculation rate is strongly dependent on the particle 

number concentration. 

3. Flocculation of AgNPs brought about by NaNO3 was slightly more rapid in the 

presence of Suwannee River aquatic NOM than in the absence of it. However, 

flocculation induced by Ca(NO3)2 did not show such effect. These results 

suggested that the presence of NOM could affect particle destabilization; 

therefore, NOM is an important parameter to be understood. 

4. Due to higher diffusion coefficients, smaller sized AgNPs are more favorable to 

form flocs than larger sized AgNPs under the identical operative conditions. 
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5. The stability of both monodispersed and heterodispersed AgNPs can be estimated 

by DLVO energy curves, and their destabilization by various mechanisms was 

consistent with conventional theory. 

6. Brownian motion is the most significant transport mechanism at the nanoscale; 

however, the other two transport mechanisms (differential sedimentation and fluid 

shear) could also be as important as Brownian motion in some cases. 

7. If nanoparticles are completely destabilized, then collision efficiency functions for 

differential sedimentation and fluid shear (αDS and αSh) can be greater than 1, 

indicating the vdW attraction can become a governing force in short-range 

transport at the nanoscale. 

8. In the presence of EDL, temporary secondary doublets are frequently observed in 

trajectory analysis for differential sedimentation and fluid shear at the nanoscale.  

9. The short-range force model with the updated collision efficiency functions (αBr, 

αDS, and αSh) can accurately predict the evolution of particle number distributions 

of AgNPs, suggesting that the updated collision efficiency functions are effective 

and practical. 

10. Some flocculation experimental results of AgNPs can be predicted better by the 

model through a two-step modeling approach (a higher αemp at early times and a 

lower value later) because the dynamics of flocculation changes during the hour 

of flocculation experiments. The first fifteen minutes shows more rapid 

flocculation than the last forty-five minutes. 

7.2. SIGNIFICANCE 

This research contributed new knowledge of particle destabilization and 

flocculation processes in water treatment be extending ideas of previous researchers into 
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the nanoscale. The primary objective of understanding the evolution of the particle 

number distributions at the nanoscale during flocculation processes was achieved through 

both experimental investigation and mathematical modeling. From the conclusions stated 

above, it is clear that the dynamics of flocculation at the nanoscale is consistent with 

standard theories of particle destabilization and transport. Direct observations of changes 

in absolute particle number distributions from NTA and numerical trajectory analysis 

enhance both qualitative and quantitative understanding of particle separation processes 

of nanoparticles. Previously, the dynamics of flocculation at the nanoscale could not be 

modeled using available flocculation models. The product of this research, updated 

collision efficiency functions that account for the collision mechanisms of nanoparticles, 

allows prediction of the evolution of nanoparticle number distributions brought about by 

flocculation. The fact that experimentally observed flocculation results for AgNPs were 

accurately estimated by the model represents an enhancement in the quantitative 

understanding of flocculation.  

The findings of this research are relevant to design and operation of flocculation 

processes that would encounter nanoparticles. If particle destabilization is well 

performed, nano-sized particles will flocculate into larger particles rapidly. Although no 

experiments were performed with both nano- and micro-sized particles in the same 

suspension, the fact that the results of this research on nanoparticle flocculation were 

completely consistent with the well-established theory for micro-sized particles suggests 

that flocculation between nano- and micro-sized particles would work well. Therefore, 

nanoparticles can be expected to be flocculated into much larger sizes that will be well 

removed in conventional water treatment plants, as long as proper destabilization is 

achieved. 
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7.3. RECOMMENDATIONS FOR FUTURE WORK 

 This research was initiated from the concern that the increasing use of engineered 

nanomaterials would eventually reach drinking water sources and water treatment 

systems. While the present research results have improved the quantitative understanding 

of the flocculation dynamics at the nanoscale, they also have revealed areas requiring 

further study. A more fundamental understanding and an enhanced ability to predict the 

evolution of particle size distributions at the nanoscale in flocculation could be achieved 

through improvements and extensions to the present research. The following specific 

tasks are recommendations for future work: 

1. Performing flocculation experiments under more complex operational conditions 

that emulate more practical flocculation processes would help developing 

fundamental understanding at the nanoscale for engineering practice. For 

example, experiments with more practical destabilizing mechanisms, such as 

enmeshment in a precipitate (widely used in water treatment plants), can be 

performed. 

2. Expanding laboratory scale flocculation to full scale by measuring the evolution 

of particle number distributions of samples from a treatment plant would be 

beneficial to support the findings from laboratory scale experiments.  

3. More experimental research efforts are required to comprehend other 

nanomaterials. AgNPs were chosen for this research mainly because silver was 

the most popular nanomaterial being produced and used. Along with silver, other 

materials are widely used, such as carbon nanotubes, silica, and iron.  

4. The main reason of the escalating discrepancies between the model and the 

experimental results was that the flocculation rate slowed down after some time 

during laboratory scale flocculation experiments. As flocs gets larger, an 
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increasing energy barrier in DLVO interaction is expected. However, this physical 

effect is not accounted for in the current flocculation modeling. 

5. The flocculation model might be enhanced by addition of the effect of floc 

breakup and the fractal nature of flocs. The effect of floc breakup and the fractal 

nature of flocs could be investigated further and incorporated into the existing 

model. 
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Appendix A: Particle Number Distributions 

Every particle number distribution that was obtained during the laboratory scale 

flocculation experiments is displayed here. 
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Figure A.1 Particle number distribution from Experiment #1 

Experiment #1: the 100 nm sized citrate capped AgNPs under I =30 mM of NaNO3, with 

an initial number concentration of 1.3E9 #/mL in the absence of NOM. The experiment 

was performed on May 20, 2016.  
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Figure A.2 Particle number distribution from Experiment #2 

Experiment #2: the 100 nm sized citrate capped AgNPs under I =50 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. The experiment 

was performed on May 23, 2016. 
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Figure A.3 Particle number distribution from Experiment #3 

Experiment #3: the 100 nm sized citrate capped AgNPs under I =30 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. The 

experiment was performed on May 24, 2016. 
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Figure A.4 Particle number distribution from Experiment #4 

Experiment #4: the 100 nm sized citrate capped AgNPs under I =30 mM of Na3-Citrate, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. The 

experiment was performed on May 26, 2016. 
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Figure A.5 Particle number distribution from Experiment #5 

Experiment #5: the 100 nm sized citrate capped AgNPs under I =30 mM of NaNO3, with 

an initial number concentration of 1.9E9 #/mL in the absence of NOM. The experiment 

was performed on April 28, 2016. 
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Figure A.6 Particle number distribution from Experiment #6 

Experiment #6: the 100 nm sized citrate capped AgNPs under I =50 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the presence of NOM. The experiment 

was performed on Jun 1, 2016. 

  



 165 

0

1 10
9

2 10
9

3 10
9

4 10
9

5 10
9

-2 -1.5 -1 -0.5 0

t = 0
t = 7
t = 15
t = 30
t = 45
t = 60

N
u

m
b

e
r 

d
is

tr
ib

u
ti

o
n

, 


N
/(


lo
g

 d
p
) 

(#
/m

L
)

Log of particle diameter (d
p
 in m)

  

Figure A.7 Particle number distribution from Experiment #7 

Experiment #7: the 100 nm sized citrate capped AgNPs under I =30 mM of Ca(NO3)2, 

with an initial number concentration of 1.3E9 #/mL in the presence of NOM. The 

experiment was performed on May 27, 2016. 
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Figure A.8 Particle number distribution from Experiment #8 

Experiment #8: the 30 nm sized citrate capped AgNPs under I =30 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. The experiment 

was performed on Jun 9, 2016. 
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Figure A.9 Particle number distribution from Experiment #9 

Experiment #9: the 100 nm sized citrate capped AgNPs under I =10 mM of NaNO3, with 

an initial number concentration of 1.0E9 #/mL in the absence of NOM. The experiment 

was performed on Jun 15, 2016. 
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Figure A.10 Particle number distribution from Experiment #10 

Experiment #10: the 30 nm sized citrate capped AgNPs under I =3 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. The experiment 

was performed on Jun 16, 2016. 
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Figure A.11 Particle number distribution from Experiment #11 

Experiment #11: the 30 nm sized citrate capped AgNPs under I =3 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. The 

experiment was performed on Jun 17, 2016. 
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Figure A.12 Particle number distribution from Experiment #12 

Experiment #12: the 30 nm sized citrate capped AgNPs under I =3 mM of NaNO3, with 

an initial number concentration of 2.5E9 #/mL in the absence of NOM. The experiment 

was performed on Jun 22, 2016. 
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Figure A.13 Particle number distribution from Experiment #13 

Experiment #13: the 50 nm sized citrate capped AgNPs under I =3 mM of NaNO3, with 

an initial number concentration of 1.2E9 #/mL in the absence of NOM. The experiment 

was performed on Jun 29, 2016. 
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Figure A.14 Particle number distribution from Experiment #14 

Experiment #14: the 50 nm sized citrate capped AgNPs under I =3 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. The 

experiment was performed on Jun 30, 2016. 
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Figure A.15 Particle number distribution from Experiment #15 

Experiment #15: the 50 nm sized citrate capped AgNPs under I =10 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. The experiment 

was performed on Jun 23, 2016. 

  



 174 

0

5 10
8

1 10
9

1.5 10
9

2 10
9

2.5 10
9

3 10
9

3.5 10
9

-2 -1.5 -1 -0.5 0

t = 0 (min)
t = 5
t = 10
t = 15
t = 23
t = 30
t = 36
t = 42
t = 50
t = 60

N
u

m
b

e
r 

d
is

tr
ib

u
ti

o
n

, 


N
/(


lo
g

 d
p
) 

(#
/m

L
)

Log of particle diameter (d
p
 in m)

 

Figure A.16 Particle number distribution from Experiment #16 

Experiment #16: the 30 & 100 nm sized citrate capped AgNPs under I =10 mM of 

NaNO3, with an initial number concentration of 1.3E9 #/mL in the absence of NOM. The 

experiment was performed on July 18, 2016. 
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Figure A.17 Particle number distribution from Experiment #17 

Experiment #17: the 30 & 100 nm sized citrate capped AgNPs under I =30 mM of 

NaNO3, with an initial number concentration of 1.0E9 #/mL in the absence of NOM. The 

experiment was performed on July 21, 2016. 
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Figure A.18 Particle number distribution from Experiment #18 

Experiment #18: the 30 & 100 nm sized citrate capped AgNPs under I =3 mM of 

Ca(NO3)2, with an initial number concentration of 1.0E9 #/mL in the absence of NOM. 

The experiment was performed on July 19, 2016. 
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Appendix B: Results of Trajectory analysis 

Table B.1 The collision efficiency functions in Brownian motion of AH = 10 kBT (Figure 

5.1A) 

 

Radius of Large 

Particles, a1 (nm) 
a b c d 

0.5 0.94082 -0.80865 1.0576 -0.47159 

5 0.94132 -0.8492 1.0826 -0.47671 

50 0.94233 -1.0656 1.3259 -0.57494 

500 0.93739 -1.4822 1.9666 -0.88943 

5000 0.92504 -1.8764 2.6573 -1.2531 

50000 0.91010 -2.1807 3.2254 -1.5623 

 

𝛼𝐵𝑟(𝑖, 𝑗) = 𝑎 + 𝑏𝜆 + 𝑐𝜆2 + 𝑑𝜆3  

λ = size ratio (0 ≤ λ ≤ 1) 

 

Table B.2 The collision efficiency functions in Brownian motion of AH = 50 kBT (Figure 

5.1B) 

 

Radius of Large 

Particles, a1 (nm) 
a b c d 

0.5 0.96501 0.033444 -0.19822 0.13652 

5 0.96617 -0.067786 -0.13258 0.12240 

50 0.96690 -0.49374 0.37404 -0.089132 

500 0.95736 -1.1132 1.3294 -0.55783 

5000 0.94061 -1.6181 2.1913 -1.0048 

50000 0.92239 -1.9813 2.8482 -1.3558 

 

𝛼𝐵𝑟(𝑖, 𝑗) = 𝑎 + 𝑏𝜆 + 𝑐𝜆2 + 𝑑𝜆3  

λ = size ratio (0 ≤ λ ≤ 1) 
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Table B.3 The collision efficiency functions in differential sedimentation (Figure 5.2) 

Log Ng a b c d 

6 3.1159 0.88018 -3.5330 3.0808 

5 2.4554 -0.24752 -1.1716 1.5715 

4 1.7289 -0.18501 -1.4298 1.7890 

3 0.88628 -0.24523 -1.2051 1.5981 

2 0.25206 -0.16510 -1.0413 1.3472 

1 -0.32737 0.060718 -0.98325 1.1113 

0 -0.87308 0.56060 -1.3029 1.0592 

-1 -1.3799 1.2634 -1.9532 1.1915 

-2 -1.8559 2.2140 -3.2739 1.7988 

-3 -2.2849 3.4287 -5.5778 3.1605 

-4 -2.6446 4.1969 -6.3365 3.2925 

-5 -2.8613 3.6070 -5.0766 2.6243 

-6 -3.1575 4.2355 -6.7535 3.7801 

 

𝛼𝐷𝑆(𝑖, 𝑗) =  10(𝑎+𝑏𝜆+𝑐𝜆2+𝑑𝜆3)  

𝑁𝑔 =  
3 𝐴𝐻

𝜋𝑔(𝜌𝑝−𝜌𝑙)𝑎𝑖
4  

λ = size ratio (0 ≤ λ ≤ 1); ai = radius of larger particle; AH = Hamaker constant; ρp, ρL = 

density of particle and fluid, respectively; g = gravitational constant. 

Table B.4 The collision efficiency functions in fluid shear (Figure 5.3) 

Log HA a b c d 

2 0.075155 1.2549 -0.94647 0.34894 

1 -0.18053 0.62092 -0.21078 0.053507 

0 -0.62591 0.58511 -0.046965 -0.019519 

-1 -1.0801 0.84297 -0.076939 -0.072626 

-2 -1.6270 2.1801 -1.9887 0.86313 

-3 -2.4514 4.8616 -5.485 2.3666 

-4 -4.0305 12.390 -17.452 8.2989 

-5 -4.4083 12.369 -16.028 7.1154 

-6 -5.036 14.006 -17.969 7.8903 

 

𝛼𝑆ℎ(𝑖, 𝑗) =  
8

(1+𝜆)3 10(𝑎+𝑏𝜆+𝑐𝜆2+𝑑𝜆3)  

𝐻𝐴 =  
 𝐴𝐻

18𝜋μ𝑎𝑖
3𝐺

  

λ = size ratio (0 ≤ λ ≤ 1); ai = radius of larger particle; AH = Hamaker constant; µ = 

absolute viscosity; G = velocity gradient. 
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Table B.5 The collision efficiency functions in Brownian motion of AH = 10 kBT with the 

constant surface potential |25| mV (Figure 5.4) 

Radius of Large 

Particles, a1 (nm) 

Surface 

Potential (mV) 
a b c d 

0.5 0 0.94082 -0.80865 1.0576 -0.47159 

5 0 0.94132 -0.8492 1.0826 -0.47671 

50 0 0.94233 -1.0656 1.3259 -0.57494 

0.5 -25 0.87463 -1.6328 2.1504 -0.97150 

5 -25 0.82678 -2.7618 3.7793 -1.7508 

50 -25 - - - - 

* The third order polynomial curve could not fit data for the 50 nm w EDL because 

the values are near zero  

 

𝛼𝐵𝑟(𝑖, 𝑗) = 𝑎 + 𝑏𝜆 + 𝑐𝜆2 + 𝑑𝜆3  

λ = size ratio (0 ≤ λ ≤ 1) 

 

Table B.6 The collision efficiency functions in Brownian motion of AH = 10 kBT with the 

constant surface potential |25| mV and a1 is 5 nm (Figure 5.5A) 

 

Ionic Strength 

(mM) 
a b c d 

1 0.83357 -2.857 4.0562 -1.9621 

4 0.84858 -2.7161 3.7895 -1.8163 

10 0.85764 -2.5923 3.5780 -1.7050 

40 0.86818 -2.3643 3.2355 -1.5333 

90 0.87213 -2.2168 3.0422 -1.4410 

 

𝛼𝐵𝑟(𝑖, 𝑗) = 𝑎 + 𝑏𝜆 + 𝑐𝜆2 + 𝑑𝜆3  

λ = size ratio (0 ≤ λ ≤ 1) 
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Table B.7 The collision efficiency functions in Brownian motion of AH = 10 kBT with the 

constant surface potential |25| mV and a1 is 5 nm (Figure 5.5B) 

 

Surface Potential 

(mV) 
a b c d 

0 0.88461 -1.4615 2.0528 -0.97265 

-5 0.88376 -1.5110 2.1120 -0.99920 

-10 0.88108 -1.6570 2.2887 -1.0794 

-15 0.87630 -1.8942 2.5852 -1.2173 

-20 0.86882 -2.2119 3.0101 -1.4216 

-25 0.85764 -2.5923 3.5780 -1.7050 

 

𝛼𝐵𝑟(𝑖, 𝑗) = 𝑎 + 𝑏𝜆 + 𝑐𝜆2 + 𝑑𝜆3  

λ = size ratio (0 ≤ λ ≤ 1) 

 

 

Figure B.1 Simulated trajectory result (the size of the gray colored particle (a1) was 1 µm, 

and the size of the small clear particle (a2) was 500 nm, the dotted line is the 

pathway of the center of the small particle, and the calculations were made 

with the surface potential of |25| mV when log(Ng) = 3.4) 
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Appendix C: Model Estimations for Total Number Concentrations 
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Figure C.1 Model predictions for Experiment #1 

Experiment #1: the 100 nm sized citrate capped AgNPs under I =30 mM of NaNO3, with 

an initial number concentration of 1.3E9 #/mL in the absence of NOM. 
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Figure C.2 Model predictions for Experiment #2 

Experiment #2: the 100 nm sized citrate capped AgNPs under I =50 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. 
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Figure C.3 Model predictions for Experiment #3 

Experiment #3: the 100 nm sized citrate capped AgNPs under I =30 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. 
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Figure C.4 Model predictions for Experiment #4 

Experiment #4: the 100 nm sized citrate capped AgNPs under I =30 mM of Na3-Citrate, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. 
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Figure C.5 Model predictions for Experiment #5 

Experiment #5: the 100 nm sized citrate capped AgNPs under I =30 mM of NaNO3, with 

an initial number concentration of 1.9E9 #/mL in the absence of NOM. 
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Figure C.6 Model predictions for Experiment #6 

Experiment #6: the 100 nm sized citrate capped AgNPs under I =50 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the presence of NOM. 
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Figure C.7 Model predictions for Experiment #7 

Experiment #7: the 100 nm sized citrate capped AgNPs under I =30 mM of Ca(NO3)2, 

with an initial number concentration of 1.3E9 #/mL in the presence of NOM. 
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Figure C.8 Model predictions for Experiment #8 

Experiment #8: the 30 nm sized citrate capped AgNPs under I =30 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. 
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Figure C.9 Model predictions for Experiment #9 

Experiment #9: the 100 nm sized citrate capped AgNPs under I =10 mM of NaNO3, with 

an initial number concentration of 1.0E9 #/mL in the absence of NOM. 
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Figure C.10 Model predictions for Experiment #10 

Experiment #10: the 30 nm sized citrate capped AgNPs under I =3 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. 
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Figure C.11 Model predictions for Experiment #11 

Experiment #11: the 30 nm sized citrate capped AgNPs under I =3 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. 
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Figure C.12 Model predictions for Experiment #12 

Experiment #12: the 30 nm sized citrate capped AgNPs under I =3 mM of NaNO3, with 

an initial number concentration of 2.5E9 #/mL in the absence of NOM. 
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Figure C.13 Model predictions for Experiment #13 

Experiment #13: the 50 nm sized citrate capped AgNPs under I =3 mM of NaNO3, with 

an initial number concentration of 1.2E9 #/mL in the absence of NOM. 
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Figure C.14 Model predictions for Experiment #14 

Experiment #14: the 50 nm sized citrate capped AgNPs under I =3 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM. 
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Figure C.15 Model predictions for Experiment #15 

Experiment #15: the 50 nm sized citrate capped AgNPs under I =10 mM of NaNO3, with 

an initial number concentration of 1.1E9 #/mL in the absence of NOM. 
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Figure C.16 Model predictions for Experiment #16 

Experiment #16: the 30 & 100 nm sized citrate capped AgNPs under I =10 mM of 

NaNO3, with an initial number concentration of 1.3E9 #/mL in the absence of NOM. 
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Figure C.17 Model predictions for Experiment #17 

Experiment #17: the 30 & 100 nm sized citrate capped AgNPs under I =30 mM of 

NaNO3, with an initial number concentration of 1.0E9 #/mL in the absence of NOM. 
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Figure C.18 Model predictions for Experiment #18 

Experiment #18: the 30 & 100 nm sized citrate capped AgNPs under I =3 mM of 

Ca(NO3)2, with an initial number concentration of 1.0E9 #/mL in the absence of NOM. 
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Appendix D: The Reproducibility of Experimental Data  
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Figure D.1 Particle number distribution from Experiment #3 
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Figure D.2 Total Particle number concentration measured A) in Experiment #3 and B) in 

the second iteration (reproduced data from) 

Experiment #3: the 100 nm sized citrate capped AgNPs under I =30 mM of Ca(NO3)2, 

with an initial number concentration of 1.2E9 #/mL in the absence of NOM.  
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Figure D.3 Particle number distributions measured A) in Experiment #18 and B) in the 

second iteration (reproduced data from) 
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Figure D.4 Total Particle number concentration measured A) in Experiment #18 and B) 

in the second iteration (reproduced data from) 

Experiment #18: the 30 & 100 nm sized citrate capped AgNPs under I =3 mM of 

Ca(NO3)2, with an initial number concentration of 1.0E9 #/mL in the absence of NOM. 
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Appendix E: Zeta Potentials 

The measured zeta potentials at the end of each laboratory scale flocculation experiment 

are tabulated here. 

Table E.1 Measured Zeta Potentials 

 
Particle size 

(nm) 

Ionic Strength 

(mM) 
Valency 

Initial Particle 

Concentration 

(#/mL) 

NOM* 

Zeta 

Potential  

(mV) 

1 100 30 1 1.3E+09 X -27.52 

2 100 50 1 1.1E+09 X -13.01 

3 100 30 2 1.2E+09 X -8.94 

4 100 30 3 1.2E+09 X -32.30 

5 100 30 1 1.9E+09 X -25.91 

6 100 50 1 1.1E+09 O -8.36 

7 100 30 2 1.3E+09 O -7.42 

8 30 30 1 1.1E+09 X -4.31 

9 30 10 1 1.0E+09 X -15.82 

10 30 3 1 1.1E+09 X -31.98 

11 30 3 2 1.2E+09 X -12.06 

12 30 3 1 2.5E+09 X - 

13 50 3 1 1.2E+09 X -33.48 

14 50 3 2 1.2E+09 X -21.96 

15 50 10 1 1.1E+09 X -14.58 

16 30 & 100 10 1 1.3E+09 X - 

17 30 & 100 30 1 1.0E+09 X - 

18 30 & 100 3 2 1.0E+09 X - 

*NOM = Natural Organic Matter, X = the absence of NOM, and O = the presence of NOM 
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