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Abstract:  
 Seagrass meadows are extremely valuable and dynamic ecosystems currently 

facing pressure from anthropogenic disturbances. Seagrass ecosystems are declining 

globally because of direct and indirect threats that shift environmental conditions 

controlling seagrass distribution. Seagrass species responses to disturbances vary based 

on a number of factors including life history strategy. The goal of this study was to map 

and analyze patterns of dominant seagrass species change at Cairns and Gladstone from 

2005-2014 and Townsville from 2007-2014. This compilation data set was symbolized 

according to the life history strategy of the species. The major disturbances during this 

time period were physical damage from cyclones and the associated above average 

rainfall and river flow, which caused large losses in the percent of sites surveyed where 

seagrass was found. These disturbances shaped the successional patterns observed. Most 

of the enduring meadows in these ports were composed of the colonizing/opportunistic 

species, Z. capricorni and H. uninervis. Opportunistic and persistent species, such as C. 

serrulata and T. hemprichii, were both seen less frequently in these ports. The colonizing 

species, H. ovalis and H. decipiens, were frequently observed colonizing spaced cleared 

during disturbance. The patterns of succession observed around Cairns, Townsville, and 

Gladstone support the life-history classifications of the species. 
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4. Introduction: 
Seagrass meadows are an incredibly valuable ecosystem in the Great Barrier Reef 

World Heritage Area (GBRWHA). Seagrass enhances regional biodiversity, carbon 

sequestration and export, the cycle of nutrients including mitigation of eutrophication, 

and functions as a nursery or food source for important fauna (Orth et al., 2006). Dugong 

and green sea turtles are vulnerable (Marsh and Sobtzick, 2015) and endangered species 

(Seminoff et al., 2004) respectively that rely on seagrass ecosystems in the GBRWHA 

(Hughes et al., 2009). These highly productive habitats are ecologically linked with 

similarly valuable coral reefs and mangroves (Grech et al. 2008). The presence of each of 

these ecosystems benefits the others; for example, seagrass stabilize sediments that could 

otherwise bury reefs (Orth et al., 2006) and reefs dissipate incoming waves reducing 

wave energy and turbidity for sheltered seagrass beds (Lowe et al., 2005). 

Seagrass meadows are currently declining around the world (Short et al., 2011). 

These valuable ecosystems face both direct and indirect anthropogenic threats, including 

eutrophication, sediment run-off, dredging, climate change, aquaculture, and some 

fishing practices (Orth et al., 2006). These valuable ecosystems are especially susceptible 

to reduced water clarity because of their high light requirements (Denison et al., 1993). 

Within the GBRWHA, Grech et al. (2011) used expert knowledge to weight the 

importance of threats to seagrass meadows. From most to least important, the threats 

were agricultural run-off, urban/industrial run-off, urban/port infrastructure development, 

dredging, shipping accidents, trawling, recreational boat damage, commercial boat 

damage, and netting (Grech et al., 2011). Understanding the relative importance of 

various threats is important for more efficiently directing management actions. 
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Seagrass meadows have been described as “coastal canaries” because of their 

dynamic responses to this diverse slew of influences and disturbances (Orth et al., 2006). 

The importance of disturbance in shaping community dynamics was identified long ago 

(Clements, 1916). Disturbance regimes can be either acute (short term with high 

intensity) or chronic (long term with low intensity) (Tewfik et al., 2007). Coles et al. 

(2007) presented a similar classification system, but added long-term acute impacts as 

opposed to just short-term acute impacts. Examples of short-term acute disturbances 

relevant to the GBRWHA are tropical cyclones and oil spills (Coles et al., 2007). Some 

long-term acute disturbances are routine dredging operations and frequent boat damage 

on small scales (Coles et al., 2007). Chronic effects are slow climate change and shifts in 

outputs of nutrients or herbicides from river systems (Coles et al., 2007). Chronic effects 

are generally associated with large-scale effects on the dominant composition of 

meadows, and acute effects may clear space for secondary succession (Tewfik et al., 

2007). 

The “coastal canary” status implies the state of seagrass meadows is often 

reflective of the health of marine systems. Seagrass monitoring programs are therefore 

important for understanding the overall health of marine systems. However, seagrass 

species have different strategies for growth, survival, recovery, and colonization (Coles et 

al., 2007). The variation in strategies utilized may influence individuals and meadows 

responses to natural and anthropogenic disturbance (Coles et al., 2007). Different species 

have different tolerance ranges for any number of environmental factors such as light, 

salinity, turbidity, and nutrient levels (Grice et al., 1996, Björk et al., 1999, Longstaff and 

Dennison, 1999, and Koch et al., 2007). Threats to seagrass have the potential to 
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influence the distribution of seagrass species and therefore, have complex effects on the 

seagrass community structure (Tewfik et al., 2007). 

Seagrass monitoring and management is challenging because of the dynamic 

nature of seagrass meadows. Kilminster et al. (2015) synthesized a basic classification 

system for seagrass species to aid managers making decisions with limited resources. 

Seagrass meadows are either transitory or enduring with enduring meadows existing for 

five or more years under standard conditions (Kilminster et al., 2015). Seagrasses were 

grouped into three overarching life-history strategies: colonizing, opportunistic, and 

persistent (Figure 1) (Kilminster et al, 2015). Colonizing species were named for their 

fast recovery in the face of disturbance, but they are physically not the best at 

withstanding disturbance (Kilminster et al, 2015). Persistent species have the opposite 

traits with high resistance and slow recovery (Kilminster et al, 2015). Opportunistic 

species have some of the characteristics of both colonizing and persistent species 

(Kilminster et al, 2015). Colonizing and opportunistic species can form transient or 

enduring meadows if the conditions are appropriate, but persistent species will mostly 

form enduring meadows (Kilminster et al., 2015). These seagrass categories are rooted in 

the trade-off between colonization and competition abilities central to plant ecology 

(Tewfik et al., 2007). 
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Figure 1: Seagrass genera on the scale from colonizing to persistent and the biological 
factors that shape the classification. Figure from Kilminster et al. (2015). 
 

This study examines seagrass community change from 2005 to 2014 in Cairns, 

Townsville, and Gladstone with the goal of analyzing these changes in relation to the 

seagrasses’ life history strategies. These three ports are high-risk zones for seagrass, so 

disturbances have the potential to occur more frequently there. Each region experienced a 

period of major seagrass loss within the range of 2009 to 2012. These losses were all 

connected to a chronic disturbance of above average rainfall and increased river flow 

(Chartrand et al., 2011, Rasheed et al., 2013, McKenna and Rasheed, 2012). This above 

average rainfall was associated with a series of tropical cyclones that occurred during this 

time period: Hamish in 2009, Ului in 2010, Anthony in 2011, and Yasi in 2011 (Carter et 

al., 2015). These conditions can physically harm seagrasses and their seed banks (Preen 

et al., 1995). The increased river flow can also influence some of the environmental 

conditions that affect the ability of seagrass to grow including light, nutrient, and salinity 
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levels (Denison et al., 1993, Orth et al., 2006, and Ralph et al., 2007). Major seagrass 

losses leave substrate available for secondary succession.  

These cyclone and flood related disturbances allow for the examination of 

succession in seagrass communities following disturbance. Understanding the timescale 

and patterns of seagrass recovery allows for a better management planning following a 

disturbance event. The trends in seagrass community change around Cairns, Townsville, 

and Gladstone should reflect the seagrasses’ life history strategies and be shaped by the 

level and types of disturbance that actually occurred from 2005-2014. 

 
5. Methods: 
 
5.1 Study Site 
 The GBRWHA spans 348,000 square kilometers of coastal waters from Cape 

York to just north of Bundaberg (GBRMPA, “About the Reef”). This region was listed as 

a World Heritage Area, because it is a major biodiversity hotspot. Fifteen seagrass 

species are found in this region due to the complexity of its coastal habitats (Grech et al., 

2008). 

 
5.2 Data Collection Methods 
 This study uses two GIS data layers on the scale of the GBRWHA. This spatial 

data is currently not publicly available and permissions to use these layers were granted 

by the authors A. Carter and A. Grech (Carter et al., 2016, and Grech et al., 2011). 

The Carter et al. (2016) layer is a compilation of the TropWATER Seagrass 

Ecology Group’s surveys from 1984 to 2014 and a CSIRO team’s similar surveys from 

2003 to 2005 (Pitcher et al., 2007, Carter et al., 2016). This ~66,000-point data set 

includes information such as location, month and year, depth, whether it was growing or 

senescent season, survey method, Natural Resource Management region, seagrass 
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presence or absence, dominant seagrass species, and seagrass species present from twelve 

species across three families (Carter et al., 2016). The thirteen species surveyed were 

Cymodocea rotundata, Cymodocea serrulata, Enhalus acoroides, Halophila capricorni, 

Halophila decipiens, Halophila ovalis, Halophila spinulosa, Halophila tricostata, 

Halodule uninervis, Syringodium isoetifolium, Thalassodendron ciliatum, Thalassia 

hemprichii, and Zostera muelleri subspecies capricorni (abbreviated in this report to Z. 

capricorni). Seagrass assessments were made by boat (video transects, camera drops, free 

divers, SCUBA divers and van Veen grabs), and from randomly placed quadrats during 

surveys conducted on foot or from hovering helicopters (Carter et al., 2016). Pitcher et al. 

(2007) collected seagrass data for a larger seabed biodiversity survey across the 

GBRWHA. Pitcher et al. (2007) used epibenthic sleds to collect samples and towed video 

cameras. Carter et al.’s (2016) GIS layer was mapped with symbology showing seagrass 

presence and absence with color graded to show the age of the data (Figure 2). 
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Figure 2: Seagrass presence and absence at survey sites from 1984 to 2014 within the 
GBRWHA. Seagrass layer courtesy of Carter et al. (2016). 
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Grech et al. (2011) developed the risk layer used in this study using information 

gathered in an online survey of seagrass experts. Halpern et al. (2007) designed the 

survey approach used to determine expert consensus on the comparative impacts of 

threats to marine systems. The method uses a standardized ranking system for five 

vulnerability factors including frequency, functional impact, resistance, recovery time, 

and certainty (Halpern et al., 2007). Grech et al. (2011) gave the vulnerability factors 

equal weight and combined them into an average vulnerability score. Grech et al. (2011) 

multiplied these vulnerability scores by zero, a half, or one at specific regions to reflect 

the amount of the threat occurring in each region. Multiplying by zero means that the 

threat does not occur there, and multiplying by one means that the threat occurs there at a 

high level. The locations assigned half of the initial vulnerability score had a moderate 

level of the threat occurring. The risk layer was created by combining the cumulative 

threat map with a map predicting where seagrass will occur in the same region (Grech 

and Coles, 2010). Approximately 10 percent of this coastal region was designated high 

risk (Grech et al, 2011) (Figure 3). 
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Figure 3: Predicted seagrass risk levels for coastal waters (<15m) within the GBRWHA. 
Risk layer courtesy of Grech et al. (2011). 
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5.3 Spatial Analysis Methods 
 Environmental Systems Research Institute’s (ESRI) ArcMap 10.1 was used for all 

analysis and map creation in this report. The base map used is courtesy of ESRI.  

The seagrass layer was clipped to the risk layer’s extent and converted from a 

point feature to a raster feature. This raster was created using the seagrass 

presence/absence variable converted to a binary numerical form. The values of the 

seagrass raster layer were reclassified for the purposes of adding it to the risk layer with 

the raster calculator tool. The resulting compilation raster had one value for high-risk 

regions where no seagrass data was collected (Figure 4). This compilation raster was 

mapped with symbology to reflect the extent of seagrass data collection relative to the 

location of high-risk areas. 

Cairns, Townsville, and Gladstone were identified as high-risk ports with high 

densities of seagrass data collection. Polygons were created from the high-risk regions 

around these ports, and these polygons were used to clip the seagrass data. Data from the 

senescent season of seagrass was removed, so that any seasonal change would not be 

misinterpreted as change over years. Dominant seagrass species at survey sites were 

mapped annually from 2005 to 2014 for Cairns and Gladstone and from 2007 to 2014 for 

Townsville (Figures 5-10). Dominant seagrass species were mapped according to the 

Kilminster et al. 2015 classification system. This system ranks seagrass species from the 

long-lived persistent species (lowest level of concern) to colonizing species (highest level 

of concern). Colonizing species can be of concern because of their role as indicators of 

disturbance when species composition switches from persistent to colonizing (Kilminster 

et al., 2015). Trends in community composition change over time were mapped using the 

time slider and analyzed visually for all three of the ports. 
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5.4 Limitation of the Data 
 The seagrass data only included information on presence and absence of different 

species. This lack of relative biomass data prevented species diversity calculations or any 

other population comparison metric.  

 
6. Results: 
 Spatially comparing the extents of the seagrass surveys with the extents of the 

high-risk regions reveals that from 2011-2014 data has been collected across about thirty 

percent of the high-risk regions identified in the Grech et al. (2011) layer (Figure 3). 

Figure 3 was used in the process of determining what locations to focus the analysis on. 
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Figure 4: Regions of recent seagrass data collection (2011-2014) relative to low, medium 
and high risk regions in the GBRWHA.  
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6.1 Seagrass Community Change around Cairns 
In Cairns from 2005-2009, meadow “A” was primarily dominated by Z. 

capricorni and meadow “B” was primarily dominated by H. uninervis; these species are 

both colonizing/opportunistic (Figure 5). H. ovalis (colonizing) dominated some of the 

survey sites along the meadow edges (Figure 5). From 2005 to 2006, Z. capricorni 

replaced H. ovalis at the southern end of meadow “B.” 

In 2009, 67% of sites surveyed had seagrass. The number of sites with seagrass 

declined to 2012 when the most dramatic absence of seagrass occurred (Figure 5 and 6). 

In 2010, 24% of sites surveyed had seagrass. In 2011, only 14% of sites surveyed had 

seagrass. By 2012, 2% of sites surveyed had seagrass. In 2012, Z. capricorni and H. 

uninervis were the only two species dominating in limited regions (Figure 6).  

Seagrass recovery and reestablishment occurred in 2013 and 2014 at some regions 

that were bare in 2012 (Figure 6). The percent of sites with seagrass increased to 9% in 

2013, and to 13% of the sites in 2014. H. uninervis and H. ovalis were the primary 

species dominating survey sites during this time of recovery (Figure 6). H. decipiens 

(colonizing) was dominant a few times throughout this period of recovery (Figure 6). T. 

hemprichii (persistent) was the dominant species for the only time within these surveys in 

2013 (Figure 6). 
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Figure 5: Dominant seagrass species composition in the Cairns region, 2005-2009. A) 
Western meadow B) Eastern meadow. 
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Figure 6: Dominant seagrass species composition in the Cairns region, 2010-2014. A) 
Western meadow B) Eastern meadow. 
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6.2 Seagrass Community Change around Townsville 
 Seagrass communities on the mainland coast near Townsville in meadow “B” 

from 2007 to 2009 consisted of slightly shifting compositions of C. serrulata 

(opportunistic), Z. capricorni (colonizing/opportunistic), H. uninervis 

(colonizing/opportunistic), and H. spinulosa (colonizing) (Figure 7). From 2007 to 2009 

in meadow “B,” C. serrulata was largely replaced by H. uninervis and H. ovalis 

(colonizing). Meadow “A” was primarily H. uninervis and H. spinulosa (Figure 7). From 

2007 to 2008, H. spinulosa was lost in the region of meadow “A” farther from the coast. 

In 2009, this region was colonized by H. uninervis and H. ovalis. 

From 2009 to 2010, fewer sites had seagrass, and H. decipiens (colonizing) 

dominant at more sites at meadows “A” and “B” (Figure 7 and 8). In 2009, 59% of sites 

had seagrass, decreasing to 38% of sites in 2010 and 28% in 2011(Figure 8). In 2011, H. 

uninervis dominated regions of both meadow “A” and “B,” and Z. capricorni dominated 

some regions of meadow “B.” 

From 2012 to 2014, the percentage of sites with seagrass increased from 46% to 

58%. In 2012, H. decipiens colonized some of the regions that were bare on both 

meadows “A” and “B” during 2011 (Figure 8). In 2013, H. spinulosa replaced H. 

decipiens in most of meadow “A.” By 2014, Z. capricorni, H. uninervis, and H. spinulosa 

recovered in the region (Figure 8). 
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Figure 7: Dominant seagrass species composition in the Townsville region, 2007-2009. 
A) Western meadow B) Eastern meadow. 
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Figure 8: Dominant seagrass species composition in the Townsville region, 2010-2014. 
A) Western meadow B) Eastern meadow 
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6.3 Seagrass Community Change around Gladstone 
From 2005 to 2009 four main meadows around Gladstone maintained similar 

dominant species compositions (Figure 9). Meadows “A” and “B” were dominated by a 

shifting mix of Z. capricorni (colonizing/opportunistic), H. ovalis (colonizing), and H. 

decipiens (colonizing) (Figure 9). In 2005, there was a section of meadow “A” without 

seagrass, which was colonized by H. decipiens in 2006. Meadows “C” and “D” were 

dominated by Z. capricorni and H. uninervis (colonizing/opportunistic) respectively 

(Figure 9). In 2009, H. uninervis was largely lost in meadow “D,” but this year more 

sampling sites were added and H. uninervis was found slightly north of its original 

distribution. It is unclear whether a distribution shift occurred or whether this new section 

is a remnant of the initial larger meadow. In 2010, H. uninervis recolonized some of 

meadow “D” from this northern section. 

A general loss of seagrass occurred around 2010 in these meadows (Figure 10). In 

2009, 40% of sites surveyed had seagrass. This decreased to 25% in 2010 and 2011. Sites 

with seagrass improved in 2012 (35%), declined again in 2013 to 26%, before increasing 

in 2014 to 40%.  

From 2010 to 2014, H. ovalis dominance spread across meadows “A” and “B” 

previously dominated by Z. capricorni and H. decipiens; however, Z. capricorni persisted 

in small sections (Figure 10). The Z. capricorni dominance endured in meadow “C” with 

slightly reduced area coverage for the entire time frame (Figure 10). In 2013 and 2014, Z. 

capricorni at the southern end of meadow “C” was replaced by H. ovalis (Figure 10). In 

2013 and 2014, H. ovalis and H. decipiens colonized some of the space around the 

persistent section of H. uninervis in meadow “D” (Figure 10). 
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Figure 9: Dominant seagrass species composition in the Gladstone region, 2005-2009. 
A) Northwestern meadow B) Southwestern meadow C) Northeastern meadow D) 
Southeastern meadow. 
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Figure 10: Dominant seagrass species composition in the Gladstone region, 2010-2014. 
A) Northwestern meadow B) Southwestern meadow C) Northeastern meadow D) 
Southeastern meadow. 
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7. Discussion: 
 The patterns of seagrass community change around Cairns, Townsville, and 

Gladstone support the life history classifications made by Kilminster et al. (2015) as 

species closer to the colonizing end of the spectrum dominate following the years of 

disturbance. 

Colonizing and colonizing/opportunistic species were dominant more often than 

the opportunistic and persistent species in this study, but this may be shaped by factors 

other than the disturbance level of the ports. Firstly, there are more colonizing species 

found in tropical North Australia than persistent; there are two persistent, five 

opportunistic, and eleven colonizing species found in this region (Kilminster et al., 2015). 

Secondly, all three of these sites are estuaries. Transitory meadows are more likely to 

occur in highly variable environments like estuaries and persistent species do not often 

form transitory meadows (Kilminster et al., 2015). Estuaries have this variation because 

of the variable inflow of freshwater, which shifts the salinity, temperature, and nutrient 

and sediment levels (Kilminster et al., 2015). It is unclear to what degree long-term 

anthropogenic disturbance may have had in shifting seagrass community compositions in 

these estuaries toward the colonizing end of the scale. 

Patterns of reestablishment were likely shaped both by life history strategy and 

the light requirements of the local seagrass species. These two factors are likely linked, 

because a species would not be an effective colonizing species with exceptionally high 

light requirements. Halophila species are classified as colonizing and require only 10-

30% surface light intensity (Freeman et al., 2008). H. uninervis is classified as 

colonizing/opportunistic and also only requires around 10-30% surface light intensity 

(Freeman et al., 2008). Z. capricorni is a colonizing/opportunistic species that is closer to 
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persistent than H. uninervis, and Z. capricorni requires around 40% surface light intensity 

(Grice et al., 1996). Cymodocea species are opportunistic with a requirement of around 

40% surface light intensity (Grice et al., 1996). These trends of life history and light 

requirement appear to be at least loosely linked, and both drive the successional patterns. 

The majority of disturbance that occurred in these ports was a combination of 

short-term acute with the cyclone damage and chronic with the above average rainfall 

and increased river flow (Chartrand et al., 2011, Rasheed et al., 2013, McKenna and 

Rasheed, 2012). The two main disturbance hypotheses for seagrass ecosystems are 

therefore relevant to the successional patterns that occurred. In the patch dynamic 

hypothesis, inferior competitors remain in the community through frequent acute 

disturbance (Paine and Levin, 1981). The inferior competitors are the colonizing species, 

which are certainly maintained at all three ports. Again, it is unclear how much of this 

presence of colonizers is associated with the local disturbance regimes and how much is 

purely a product of the lower numbers of persistent species in tropical North Australia.  

In the microhabitat hypothesis, the intensity of chronic disturbance shapes the 

equilibrium between alternate climax meadow compositions (Tewfik et al., 2007). 

Discussion of the microhabitat hypothesis involves understanding what the climax 

communities are in the region studied. In other regions with seagrass like the Caribbean, 

the climax community is dominated by the most competitively superior species, which is 

the most persistent species (Tewfik et al., 2007). In these three estuarine ports, the 

persistent species are rarely the dominant species, so the term climax community may be 

irrelevant. This hypothesis could be modified to suit these port regions by replacing the 

term “climax community” with that of just “dominant species.” The chronic disturbance 
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of above average rainfall and increased river flow has a strong shaping force on the 

successional patterns observed. 

The patterns of change around Cairns supports the Kilminster et al. (2015) life-

history classification, because the colonizing/opportunistic species do not have high 

resistance to disturbance and the colonizing species are more quickly able to get 

reestablished. One specific supporting trend that occurred from 2005 to 2006 was Z. 

capricorni shifting to dominate a region previously dominated by H. ovalis. 

Colonizing/opportunistic species should be superior competitors to colonizing species 

(Kilminster et al., 2015), so in a habitat where both species types are present, the 

colonizing/opportunistic species should be able to take over the dominant position. 

Another specific trend is that H. uninervis, H. ovalis and, H. decipiens were the main 

species colonizing after the major 2012 disturbance. H. uninervis more successfully 

rebounded than Z. capricorni and is closer to the colonizing end of the scale than Z. 

capricorni. Another potential reason is that H. uninervis has lower surface light 

requirements than Z. capricorni (Grice et al., 1996, Freeman et al., 2008). 

One trend at Cairns seems contradictory to the life history categories. The 

dominance of T. hemprichii at two locations in 2013 where it was absent from 2005-2012 

and later in 2014 is puzzling, as T. hemprichii is a persistent species. There are a few 

possible explanations for this presence. T. hemprichii could have been missed in previous 

surveys and survived through the cyclone damage in 2012, but it seems unlikely that it 

would have been missed for seven years in a location that was continually sampled. T. 

hemprichii is known for having seeds with little to no dormancy capability (Inglis, 2000), 

so it seems unlikely that this species was able to reestablish from any sort of seed bank. It 

is possible that these meadows were able to reestablish from dispersion of propagules, 
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fruits, or fragments from nearby meadows that were able to withstand the disturbance in 

2012. 

Successional change in seagrass meadows around Townville from 2007-2014 

mostly functioned under the expected patterns. During periods of low seagrass presence 

at sites before and after 2011 the colonizing species, H. ovalis and H. decipiens, became 

more common. Townsville experienced faster meadow recovery in 2012 than any other 

port monitored during the loss period from 2009-2012 (Davies et al., 2013). The process 

that happened could be described as a quick successional loop, because the space without 

seagrass in 2011 was largely filled by colonizing species in 2012; by 2014, the seagrass 

community around Townsville had returned to communities similar to that from 2007-

2009 minus the C. serrulata. The colonizing/opportunistic species common to this region 

and H. spinulosa (the most persistent of the colonizing species) were able to ultimately 

outcompete H. decipiens. 

One occurrence against trend was that, from 2007 to 2009, the opportunistic 

species, C. serrulata, lost its dominant meadow space to H. uninervis and H. ovalis. It is 

unclear whether this is the result of loss due to disturbance or the result of being 

outcompeted. One might expect that an opportunistic species would be more resilient to 

disturbance than colonizing/opportunistic species with the same surface light 

requirement. C. serrulata and Z. capricorni have roughly the same light requirement 

(Grice et al., 1996), but Z. capricorni was more resilient in the community around Cairns 

than C. serrulata. The reason for this difference in ability to withstand disturbance is 

unclear, and may involve another physiological feature. This suggests that the ranking 

from persistent to colonizing should not be interpreted too rigidly, and the division 

between a colonizing/opportunistic and opportunistic species is not a hard line. Trends of 
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resilience and succession following disturbance can be influenced by mechanisms or 

habitat characteristics that are not immediately obvious to observers (Tewfik et al., 2007). 

 The patterns of seagrass change around Gladstone are logical in the context of the 

life histories of the seagrass species present. Z. capricorni, as a colonizing/opportunistic 

species, was the species closest to the persistent end of the life history scale present 

around Gladstone. Therefore, Z. capricorni would be the species predicted to best 

withstand disturbance. From 2005-2014, Z. capricorni did have the most consistent 

distribution. H. uninervis is also a colonizing/opportunistic species, but it is closer to 

colonizing than Z. capricorni; from 2005-2014, there were more fluctuations in the 

dominance of H. uninervis. When seagrass was lost around Gladstone, the colonizing 

species, H. ovalis and H. decipiens were most often the species to utilize the space in the 

following years. 

 One of the major limitations of this study is that there are no control sites, so 

comparisons could not be made about successional patterns in high-risk regions and low-

risk regions. Long-term seagrass monitoring has not occurred in a low risk estuarine 

region. This could help determine if direct anthropogenic effects influenced any of the 

patterns, as a majority of the large disturbances were associated with cyclones. Since the 

major disturbances were cyclones, the risk level of these regions does not really play an 

obvious role in the patterns of change as where a cyclone damages most severely is 

unrelated to the risk level. One potential sources of error is that the annual variation in the 

survey area may have caused obscured some of the visual patterns and confounded the 

comparisons of the percent of sites with seagrass for each year. 
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8. Conclusion: 
Seagrass succession around Cairns, Townsville, and Gladstone from 2005-2014 

generally followed the expected patterns with knowledge of the life history strategies. 

The primary implication of this study is that the Kilminster et al. (2015) synthesis of life-

history data is well supported and should be applied by the seagrass monitoring and 

management communities. It will be valuable to continue seagrass monitoring efforts to 

build an even better idea of how seagrass will respond to disturbance as the intensity and 

number of tropical storm systems may increase with climate change (Knutson et al., 

2010). 

One potential direction for further research would be to monitor a region likely to 

experience disturbance for both seagrass and macroalgae to get a more complete picture 

of successional patterns. Dense areas of macroalgae function as an alternate climax 

community in Caribbean macrophyte beds (Tewfik et al., 2007). The data used in this 

study includes no macroalgae information, so this piece of the puzzle is missing when 

attempting to understand successional patterns. 

As a majority of the damage to seagrass ecosystems that occurred in the examined 

time period was from tropical cyclones, the most effective way to reduce seagrass loss 

may be to manage carbon emissions. The direct management actions are still incredibly 

important if seagrass is going to have a chance at being resilient to anthropogenic climate 

change. Direct management of seagrass ecosystems involves controlling inputs into 

watersheds, preventing or minimizing impact from dredging and boats, and restricting 

development of the ports. Based on the dominant disturbance regimes around these ports 

from 2005-2014, the mitigation of climate change and laws to protect seagrass directly 

are both necessary to insure the future of this valuable ecosystem. 
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