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A binary sequence was constructed from 1.7�107 polarization measurements of single photons from a spon-
taneous parametric downconversion source, under pumping conditions similar to those used in optical quan-
tum cryptography. To search for correlations in the polarization measurement outcomes, we subjected the se-
quence to a suite of tests developed at the National Institute of Standards and Technology (NIST) for the
assessment of algorithmic random-number generators. The bias of the sequence was low enough to allow all
fifteen tests to be applied directly to the polarization outcomes without using any numerical unbiasing proce-
dures. No statistically significant deviations from randomness were observed, other than those related to this
small uncorrected bias. © 2010 Optical Society of America

OCIS codes: 270.0270, 270.5568, 270.5290.

1. INTRODUCTION
Over the past few decades, single photons have been used
to investigate the most nonclassical features of quantum
theory [1]. Quantum interference and entanglement [2,3],
in particular, have been vigorously explored in optical sys-
tems, not only because of their relevance to the founda-
tions of quantum mechanics, but also because of their
practical value as resources for quantum information pro-
cessing schemes such as quantum key distribution [4,5]
and quantum computation [6,7].

However, another central feature of quantum mechan-
ics has received less attention: the randomness of mea-
surement outcomes from superposition states. The non-
deterministic character of these outcomes—the inability
to predict what the next one will be, given knowledge of
all previous outcomes from the same state—is usually as-
sumed in order to give meaning to the probabilistic inter-
pretation of the quantum state [8]. The lack of correla-
tions between successive measurement outcomes is also
important for quantum key distribution schemes, in
which the results of a sequence of quantum measure-
ments on superposition states are used to generate a se-
cret key, or “one-time pad,” that enables secure communi-
cation between two parties [4,5].

But as pointed out by Erber [8] some years ago, the
randomness of quantum phenomena might well be con-
sidered as a physical assumption that is testable in its
own right, independent of the other foundational aspects
of quantum theory. In recent years, experimental tests of
randomness have been performed on time-binned se-
quences of radioactive decays [9–11], and on implementa-
tions of “quantum optical random number generators.”
The latter use photon detection times [12–15] or polariza-

tions [16] or both [17] to generate random number se-
quences; both degrees of freedom are commonly used as
the basis for quantum key distribution schemes [4,5].

Here we report on a comprehensive set of tests of the
randomness of single-photon polarization measurement
outcomes, using pairs of photons generated by spontane-
ous parametric downconversion, under conditions similar
to those of many quantum cryptographic schemes. One
member of each pair was used as a detection trigger,
while the other was put into a superposition state of hori-
zontal (H) and vertical (V) polarization, and then mea-
sured in the H–V basis. The time sequence of H and V
outcomes was subjected to a suite of tests developed at
the National Institute of Standards and Technology
(NIST) to assess the quality of computer-based random-
number generators [18]. Several of the tests require many
distinct low-bias sequences of at least 106 bits in order to
be meaningful; to our knowledge, this is the first direct
application of these tests to sequences of two-level quan-
tum events.

2. SINGLE-PHOTON POLARIZATION
MEASUREMENTS
The single-photon polarization measurements were con-
ducted as shown in Fig. 1. Continuous-wave light from a
diode “pump” laser at 405 nm was incident on a 3.0 mm
BBO crystal serving as a parametric downconverter
(PDC) [19]. The crystal was cut and oriented for Type-I
downconversion, with an output angle of 3 degrees for the
frequency-degenerate downconverted light at 810 nm.
Each downconverted light beam (signal and idler) was
launched into an optical fiber via a lens and sent to a
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single-photon counting module (SPCM) for detection.
Background counts were reduced by long-pass filters (LP)
inserted into each optical channel, which absorbed light
with wavelengths shorter than 780 nm. These filters were
inserted further down the fiber path to allow a 5 mW,
785 nm diode laser (not shown) to be coupled into the de-
tection system at various points for alignment.

Using a single-mode (monochromatic) approximation
for the signal and idler beams, the PDC source produces a
quantum state whose leading terms are [20]

��� = M�vac� + ��H�s�H�i, �1�

where M is a normalization constant and � is a small
number characterizing the size of the PDC’s perturbation
on the initial vacuum state of the signal and idler modes s
and i. The second term represents a product state of one
signal and one idler photon, each horizontally polarized
as they emerge from the PDC. Before entering the collec-
tion fiber, each idler photon passed through a zero-order
half-wave plate �� /2�, oriented to rotate its polarization
state from �H� to �D�=1/�2��H�i+ �V�i�. The idler then im-
pinged onto a polarizing beamsplitter (PBS), which trans-
mitted H-polarized photons and reflected V-polarized pho-
tons to separate lens-fiber collection channels.

The state (1) reflects the fact that the signal and idler
photons must be created together to conserve energy and
momentum in the PDC process. Therefore the detection of
a signal photon can be used as a trigger, allowing another
detector to look for an idler photon only during a brief in-
terval afterward, creating a close approximation to a lo-
calized one-photon state for the idler [21]. To implement
this “heralded” single-photon source [1], the 5-volt TTL
pulse from detector A was sent to one input of an elec-
tronic AND gate, while the pulse from an idler detector (B
or B�) was sent to the other input. The AND gate pro-
duced a TTL output only when both of its inputs were at
5 volts simultaneously, and this “coincidence count” was
used to register the polarization outcome for each idler
photon. Thus, a coincidence count AB between detectors A
and B represented a horizontal polarization outcome for
the idler photon, while a coincidence event AB� repre-
sented a vertical outcome. The durations of the signal and
idler TTL pulses were adjusted to be 10 ns before coming
to the AND gate, so that the gate would only produce a
coincidence count when the signal and idler inputs over-
lapped within a 10 ns “coincidence window” [22].

The data collection rate was 10 kHz. In each consecu-
tive time interval of duration 0.1 ms, the number of coin-
cidence counts AB and AB� was recorded. Data were col-
lected over a period of 1.87 h, or 6.72�107 bins. A
histogram of the number of coincidence counts collected
per bin is shown in Fig. 2. Because the spontaneous down-
conversion process from the cw laser did not occur at
regular time intervals, it was possible for two or more co-
incidence events to occur within a given time bin. The
time-ordering of these multiple-count events could not be
determined, and so they were discarded (see Appendix A).
To reduce the probability of these unwanted multiple-
events, the pump laser power was adjusted to make the
average number of photon pairs per time bin, �, much
less than 1. A fit of the occupation numbers in Fig. 2 to a
Poisson distribution (as expected from integrating the
output of a multi-mode parametric downconversion
source over many coherence times [20]) yielded a mean
number of coincidence events per time bin of �
=0.364±0.002, with a reduced �2 of 1.16 for 6 degrees of
freedom. The probability of a larger �2 value arising by
chance is 32.5%.

A binary sequence was then constructed from just those
time bins in which exactly one coincidence event
occurred—about one fourth of the bins, as shown in Fig. 2,
giving a net random bit rate of 2.5 kHz. The coincidence
event AB (see Fig. 1), indicating a horizontal polarization
outcome for the idler photon, was designated as “0” in the
sequence, while the event AB�, indicating a vertical idler
polarization outcome, was designated as “1.” The result-
ing sequence contained 1.7�107 bits, with a bias of 0.04%
toward the value “0.” To apply the NIST suite of tests, the
sequence was divided into sub-sequences of either 105 or
106 bits as required.

3. RANDOMNESS TESTS
Each of the fifteen tests comprising the NIST Statistical
Test Suite [18] analyzed the polarization sequence for a
particular statistical facet of randomness, according to
the same general procedure: first, some numerical char-
acteristic of the sequence, such as the sum of all its digits,
was obtained. Next, the probability p that a truly random
source could produce this value of the characteristic, or
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Fig. 1. Experimental arrangement for measuring single-photon
polarizations. Signal and idler photon pairs are created in the
PDC and counted in coincidence either at detectors AB or AB�,
depending on the measurement outcome for the diagonally polar-
ized idler photon in the H–V basis. A binary sequence is created
by assigning “0” to the coincidence events AB and “1” to the
events AB�.
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one that is even farther away from the ideal, was com-
puted. This probability, the “p-value,” represents the de-
gree of randomness of the string with regard to the char-
acteristic being tested. A high p-value means that the
string appears random, while a low p-value suggests that
it is unlikely that a truly random source could produce
this value of the chosen characteristic through chance
alone.

However, a single low p-value is not conclusive evi-
dence that a string is non-random. For an ideal random
number generator, the p-values for each test are expected
to be distributed uniformly on the interval 0�p�1, so
that one in every 100 sequences will have p�0.01, and
one in every ten will have p�0.1. Thus, on average one in
100 sequences from an ideal random source will fail each
test, by chance, at the “confidence threshold” of 0.01,
while one in ten will fail at the confidence threshold of
0.1. The appropriate confidence threshold for a given test
is therefore determined by the number of sequences avail-
able to be tested. For example, if more than 100 se-
quences are available, a confidence threshold of 0.01 can
be meaningfully tested; if more than 1% of the sequences
fail at this threshold, then the randomness is suspect.

No test can prove definitively that a sequence is ran-
dom, but if many sequences are tested, a poor random-
number generator may be revealed by greater incidence of
failure of a particular test than is expected for a particu-
lar confidence threshold. For example, if five sequences
out of 100 have p�0.01, then the source almost certainly
fails the test at the 1% threshold. But if only nine of these
sequences have p�0.1, then the source would still pass at
the 10% level.

Ten of the NIST tests require sequences of up to
105 bits as their inputs, while the other five require at
least 106 bits per sequence. Therefore, the first ten tests
(our order differs from that of [18]) were run using 170
sub-sequences of 105 bits, enabling a meaningful confi-
dence threshold of 0.01, while the five more stringent
tests were run on 17 sequences of 106 bits, allowing a
meaningful confidence threshold of only 0.1.

A. Bias (Frequency) Test
The first test checks the bias of the sequence toward the
outcome “0” or “1.” This is the simplest test, and passing
it is a prerequisite for many of the other tests in the NIST
suite. Given many sample sequences from a truly random
source, the number of bits in excess of a completely unbi-
ased sequence of either outcome follows a known distribu-
tion, explained in more detail in Appendix A. For a given
confidence threshold, the acceptable number of excess 1’s
or 0’s grows as the square of the length of the sequence.
Figure 3 shows a histogram of the results of the Bias Test
for the 170 sub-sequences of 105 polarization measure-
ments. The higher-than-expected number of failures
(shown in white) revealed the bias in the source. Collec-
tively, the p-values from this test fit the expected uniform
distribution with a reduced �2 of 1.397, giving a probabil-
ity of 18% of obtaining a worse fit by chance alone.

B. Bias (Frequency) Within a Block Test
The second test checks the bias of “blocks,” or subse-
quences of the main sequence, of lengths up to 104 bits.

The results are shown in Fig. 4. The p-values from this
test fit the expected uniform distribution with a reduced
�2 of 1.327 and a probability of 22% of obtaining a worse
fit by chance alone. Because only shorter blocks are used,
this test is not as sensitive to the overall source bias as
the first test, and no significant bias was detected among
the blocks.

C. Number of Runs Test
This test determines whether there is an appropriate
number of uninterrupted repetitions of 1 or 0 of various
lengths within the sequence. The results of this test are
shown in Fig. 5. The p-values from this test fit the ex-
pected uniform distribution with a reduced �2 of 0.444, for
a probability of 91% of obtaining a worse fit by chance
alone.

D. Longest Run of Ones in a Block Test
For subsequences, or “blocks,” of various lengths M, this
test finds the lengths of the longest uninterrupted runs of
“1” outcomes, and compares their actual occurrences to an
expected distribution [23]. The results are shown in Fig.
6. The p-values from this test fit the expected uniform dis-
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tribution with a reduced �2 of 0.588 and a probability of
81% of obtaining a worse fit by chance alone.

E. Binary Matrix Rank Test
This test examines the number of linearly independent
rows and columns (the rank) of square matrices made
from successive bits of the original sequence. Deviation
from the expected distribution of ranks would indicate a
level of periodicity in the sequence that is lower or higher
than expected for a random sequence. The results are
shown in Fig. 7. The p-values from this test fit the ex-
pected uniform distribution with a reduced �2 of 1.12 and
a probability of 34% of obtaining a worse fit by chance
alone.

F. Discrete Fourier Transform Test
This test analyzes the distribution of peak heights in the
discrete Fourier transform of the sequence. Too many
large peaks would indicate a cyclic process in the genera-
tion of the sequence. The results are shown in Fig. 8. The
p-values from this test fit the expected uniform distribu-
tion with a reduced �2 of 0.797 and a probability of 61% of
obtaining a worse fit by chance alone.

Although there was an error in this test as formulated
in the original NIST publication, the Mathematica pro-
gram used to generate the results in Fig. 8 included a cor-
rection to the reference distribution [24,25]. This correc-

tion has also been incorporated into the most recent
version of the NIST Statistical Test Suite [18].

G. Approximate Entropy Test
This test determines how often patterns of different
lengths overlap, revealing whether there is too much or
too little regularity in the sequence associated with
groups of patterns. The results are shown in Fig. 9. The
p-values from this test fit the expected uniform distribu-

��������
��������
��������
��������
��������

0

10

20

30

40

50

60

70

80

90

100

O
c
c
u
rr
e
n
c
e
s

P-Value

Longest Run of Ones in a Block

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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tion with a reduced �2 of 0.784 and a probability of 63% of
obtaining a worse fit by chance alone.

H. Serial Patterns Test
This test examines the number of occurrences of all pos-
sible patterns of up to three bits in length. Deviations
from the expected rates of occurrence of these patterns
would indicate non-randomness. The results are shown in
Fig. 10. The p-values from this test fit the expected uni-
form distribution with a reduced �2 of 1.130 and a prob-
ability of 34% of obtaining a worse fit by chance alone.

I. Cumulative Sums Test
This test examines the cumulative sum of the sequence,
with every “0” replaced by “−1,” from the first bit to each
subsequent bit in the sequence. This partial cumulative
sum, Sk, represents the total “distance” from the starting
point, at each position in the sequence. The largest value
that Sk should take is directly related to the length n of
the complete sequence [26]. Failures of this test indicate
uneven weights of zeros or ones in some part of the se-
quence. The sums were evaluated going forward from the
first bit, and also in reverse order from the last bit, gen-
erating two independent p-values for each sequence. The
results are shown in Fig. 11. The p-values from this test

fit the expected uniform distribution with a reduced �2 of
0.796 and a probability of 62% of obtaining a worse fit by
chance alone.

There were 12 failures of this test at the 0.01 level, sig-
nificantly more than the 3 or 4 expected. The failure of
this test is related to the bias in the source, as observed
after data were collected (Section 2), and as detected by
the Bias Test (Subsection 3.A).

J. Non-Overlapping Template Match Test
This test checks for the occurrence of a specified “tem-
plate” pattern, with a focus on aperiodic patterns. The
template pattern {0,1,0,1,1,0,0,0,1} was used here, but
any would do. The information in the distribution of tem-
plate occurrences throughout the sub-sequences depends
on the template chosen; for the pattern chosen here, too
many or too few occurrences would not indicate any prob-
lem with bias, for example, but would indicate some un-
known process taking place during collection that favors
this pattern. The results are shown in Fig. 12. The
p-values from this test fit the expected uniform distribu-
tion with a reduced �2 of 0.980 and a probability of 45% of
obtaining a worse fit by chance alone.

The remaining tests (Subsections 3.K–3.O) were per-
formed on 17 sequences of 106 bits.

K. Random Excursions Test
Like the Cumulative Sums Test (Subsection 3.I), this test
concerns the distance of the cumulative sum from the
starting point. The test examines the number of times dif-
ferent partial cumulative sums are attained within a
single excursion from the starting point, i.e., until the
sum reaches zero again. Distances between −4 and 4 were
checked. The results are shown in Fig. 13. The p-values
from this test fit the expected uniform distribution with a
reduced �2 of 1.425 and a probability of 17% of obtaining a
worse fit by chance alone.

L. Random Excursions Variant Test
Like the previous test, this test also examines the attain-
ment of distances from zero for intermediate cumulative
sums. However, it checks the distances −9 through 9, and
the occurrence of these distances across all excursions.
The results are shown in Fig. 14. The p-values from this
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test fit the expected uniform distribution with a reduced
�2 of 1.258 and a probability of 25% of obtaining a worse
fit by chance alone.

M. Overlapping Runs of Ones (Template Match) Test
This test checks for the occurrence of overlapping runs of
1’s. In this case, runs of length nine were examined. The
results are shown in Fig. 15. Because only 17 p-values
were produced (one for each sub-sequence of 106 bits),
they are shown individually and not as a histogram.

N. Maurer’s Universal Statistical Test
This test examines the numbers of bits in between match-
ing bit patterns of various lengths. This property is re-
lated to the compressibility of the sequence. It also deter-
mines an element of the cryptographic security of the
sequence, as it is related to the complexity of some deci-
phering algorithms. Failure of this test would indicate a
sequence that is too easily compressible. The p-values for
the 17 sub-sequences of 106 bits are shown in Fig. 16;
again, they are shown individually and not as a histo-
gram.

O. Linear Complexity Test
This test checks the length of the linear feedback shift
register (LFSR) of the sequence, which is also related to

compression and deciphering techniques. The sequence’s
LFSR is a complex algorithm that generates the sequence
as output. A LFSR can be used as a pseudo-random num-
ber generator, if it is sufficiently complex. This test seeks
to invert this process, generating the LFSR from the
stream and checking its complexity. The 17 resulting
p-values are shown in Fig. 17.
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Fig. 14. P-values for the Random Excursions Variant Test. This
test generated 18 p-values per sub-sequence. Seventeen of these
306 p-values, or 5.56% of them, were below 0.1.
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Fig. 15. P-values for the Overlapping Runs of Ones Test. The
average is p=0.349 (solid line) and the standard deviation is
0.197. Only the first sub-sequence has a p-value below 0.1.
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Fig. 17. P-values for the Linear Complexity Test. The average is
p=0.603 (solid line) and the standard deviation is 0.259. Only
sub-sequence 5 produced a p-value below 0.1.

D. Branning and M. Bermudez Vol. 27, No. 8 /August 2010 /J. Opt. Soc. Am. B 1599



4. ANALYSIS OF RESULTS
A. Cumulative p-Value Statistics
The entire test suite produced 4573 p-values in total. For
a given confidence threshold 	, the proportion of p-values
passing each test is expected to be [18]

f = �1 − 	� ± 3�	�1 − 	�/s, �2�

where s is the number of sequences tested. The two sets of
tests, with s=170 for the first ten and s=17 for the final
five, yielded different ranges for the expected passing pro-
portions. Figures 18 and 19 show the passing proportions
for each of the first ten tests and the final five tests, re-
spectively.

Another check can be performed by matching the com-
plete set of p-values to their expected distribution. For a
completely random process, the p-values from all of the
tests should be distributed uniformly on the interval (0,1]
with the following characteristics:

�x� =�
0

1

xp�x�dx =
1

2
, �3�

�x2� =�
0

1

x2p�x�dx =
1

3
, �4�


x = ��x2� − �x�2 = 0.289. �5�

A histogram of all 4573 p-values is shown in Fig. 20.
The p-values conform quite well to properties of Eqs. 3–5,
with an average of 0.501 and a standard deviation of
0.288. These results were also fit to a uniform distribution
with an average of 457.3 p-values in each bin (of width
�p=0.1). The comprehensive set of p-values fit this “ref-
erence” distribution with a reduced �2 of 0.967 and a
probability of 47% of obtaining a worse fit by chance
alone.

B. Bias-Related Failures
Only two of the tests, the Bias Test (Subsection 3.A) and
the Cumulative Sums Test (Subsection 3.I) showed a
number of failures at the 0.01 confidence level that was
significantly higher than expected by chance alone (see
Fig. 18). The two tests are related, as a heavily biased se-

quence will result in unacceptably large (positive or nega-
tive) cumulative sums throughout.

In the apparatus, the weighting of “0” and “1” events
was controlled by the orientation angle � of the half-wave
plate used to set the diagonal polarization of the idler
photons under test. The probabilities of reflection PR and
transmission PT of a photon at the polarizing beamsplit-
ter are given by Malus’ Law:

PR = 1 − PT = cos2�2�� �6�

with the ideal setting being �= /8 for an unbiased se-
quence, PR=PT=1/2. In the neighborhood around this
ideal setting, the rate of change of PR is

dPR

d�
=

d

d�
�cos2�2��	�=/8 = − 2. �7�

Thus, to ensure a bias of less than 1%, or

�PR 
 ��
dPR

d�
� 0.01, �8�

the half-wave plate must be oriented to within ��
�0.005 radians (0.3°) of the ideal setting.

In practice, bias in the polarization measurement se-
quence also arises from inequalities in the efficiencies of
the H and V collection channels for the idler photons. Any
mismatch in the cumulative transmission and detection
efficiencies of the lenses, fibers, filters, and detectors in
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these channels will show up as a difference in the rates of
detected AB and AB� events.

Because this efficiency mismatch could not be con-
trolled in the apparatus, the setting of � was used to com-
pensate for it. With the pump laser at maximum power
�50 mW�, the setting of � that best equalized the rates of
detected AB and AB� events to within their statistical un-
certainties was chosen. The pump laser power was then
reduced to give a low time-bin occupation number �.

In this way, the bias was made low enough for the en-
tire NIST test suite to be applied, but not low enough to
pass the Bias and Cumulative Sums tests directly. In
principle, the bias could be made lower by measuring a
larger number of counts in the AB and AB� channels (us-
ing increased pump power and/or longer integration
times) and by scanning � (possibly under computer con-
trol) until they are made equal. The ultimate lower limit
of the bias would be determined by the scanning reso-
lution for �, and by the fluctuations in the larger numbers
of AB and AB� counts.

C. Comparison with Other Quantum-Optical
Randomness Tests
With the exception of the Bias Test and the Cumulative
Sums Test, the passing p-value proportions in Figs. 18
and 19 were all consistent with the hypothesis of random-
ness, and with p-values from the NIST test suite per-
formed on another recently implemented optical quantum
random-number generator (QRNG) [15]. For that source,
the random variable was constructed from the detection
times of photons incident on a high-speed gated photodi-
ode, resulting in a net random bit rate of 4 MHz, and was
submitted for testing without numerical unbiasing. The
larger number of bits obtained for testing in that case �5
�108� permitted a confidence level of 0.01 to be chosen
even for tests 11–15, while in our case a confidence level
of only 0.1 could be assigned for those tests. Another re-
cent optical QRNG based on time of arrival had net ran-
dom bit rates of 1 MHz without unbiasing [14]. Here
again a much larger number of bits �109� was submitted
to the NIST test suite (among others) and reported to
have “passed all of the tests” without reporting the confi-
dence level or the passing p-value proportions. Some
other recent QRNG’s based on photon arrival times
[12,13,17] have achieved net random bit rates of 100 kHz,
80 kHz, and 1 MHz, respectively, with numerical unbias-
ing required. The NIST test suite was not used in these
cases.

A QRNG similar to the one reported here, based on po-
larization measurements of single photons from downcon-
version, was reported in [16], with a net bit rate of
230 Hz. Although the NIST test suite was not used, sev-
eral other randomness tests were performed, and passed,
albeit with a smaller number of bits �7�105�. The bits
from that source were subjected to numerical unbiasing
procedures before being tested.

5. CONCLUSION
For all but two of the tests, the p-values exhibited failure
rates and uniform distributions that were consistent with
those expected for events from an ideal random source.

The exceptions to this were the two tests that were most
sensitive to the 0.04% bias of the source: the Bias Test
and the Cumulative Sums Test. Source bias of this type is
also present in some other quantum optical random-
number generators [12,13,16,17], and computational
techniques may be used to construct a shorter unbiased
sequence from the original [27,28]. In our case, the bias of
the raw sequence was low enough to allow direct analysis
of the polarization measurements with the NIST tests,
with no unbiasing procedure required. To our knowledge,
this is the first comprehensive set of such tests performed
directly on a sequence of photon polarization measure-
ments.

A weakness of these results stems from the relatively
high value of the average time-bin occupation number, �
=0.36, of the source. Optimally, quantum cryptographic
schemes operate with a � of 0.1 or less, to reduce the like-
lihood of two or more photons occupying the same time
bin [4,5]. For the data set reported here, approximately
one in five of the occupied time bins had to be rejected for
this reason (see Appendix A). This suggests that improve-
ments can be made in at least two ways: by lowering �
significantly, so that these double-events are made more
rare, and by applying randomness tests that go beyond
the NIST suite to explicitly incorporate the double events
that occur.

APPENDIX A: REJECTION OF DOUBLE-
COINCIDENCE EVENTS
Approximately one in five of the occupied time bins con-
tained two coincidence events, either of the “mixed” (both
an H and a V idler outcome) or “repeat” (2 H outcomes, or
2 V outcomes) varieties. For the mixed cases, since the
time ordering of the events cannot be established, it is im-
possible to assign them as “01” or “10” in the binary se-
quence. But for the repeat cases, it might be considered
possible to include them in their correct positions in the
sequence, as “00” or “11,” respectively. However, when
this was done for the 170 subsequences of length 105 bits,
it caused over half of them to fail the Bias Test, preclud-
ing any further testing within the NIST suite.

A careful examination of the Bias Test reveals why this
was so: the test starts by taking the sum s of the entire
sequence of n bits, with −1’s in place of 0’s. The bits of op-
posite value cancel each other out, so that s is the remain-
ing number of “excess bits” in either direction. For a
source with a consistent bias, s should grow with �n, so
that if s is normalized by �2n (to account for bias in either
direction), it can be used to generate a p-value according
to [18]

p = erfc� �s�

�2n
� = erfc�z�. �A1�

This form of the p-value takes into account the addition of
excess bits as the length of the sequence increases, as-
suming that they are added in a consistently biased way
due to the characteristics of the source. For a sequence
of single events from a biased source, e.g.
0,0,1,0,1,1, . . . .n�, s will grow larger as n increases,
but the normalized “source bias”
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z =
�s�

�2n
�A2�

will not change, so that the p-value expressing the bias of
a given source will remain constant for any length of se-
quence that is tested.

On the other hand, a sequence of n repeat events from
the same source will have twice the number of bits, e.g.,
00,11,11,00, . . . .2n�, and will also generate twice the
number of excess bits so that s becomes 2s. This gives an
apparent source bias of

zrepeat =
�2s�

�2�2n�
=

2

�2

�s�

�2n
= �2 · z. �A3�

That is, because each independent repeat event adds two
identical outcomes to the sequence, the number of excess
bits 2s is artificially high compared to that of a sequence
of 2n independent single events. Taken by themselves,
the repeat events do not appear to come from the same
source, but rather, from one with a normalized bias that is
larger by a factor of �2.

Therefore, unless the source is perfectly unbiased �z
=0�, the repeat events cannot be included in the sequence
without changing the outcome of the Bias Test. Any initial
source bias z�0 for the single events will be increased to-
ward �2·z as more of the repeat events are inserted.

Note that if we add n mixed double events of unknown
time order (01 or 10) to n repeat events, then the normal-
ized source bias for this sequence of 2n double events (of
total length 4n bits) becomes

zrepeat+mixed =
�2s�

�2�4n�
=

�s�

�2n
= z. �A4�

The mixed doubles add length, but by definition they can-
not add excess bits. Therefore, if all double events—mixed
and repeated—are included in the sequence, there is no
net effect on the bias of the sequence. But the mixed
doubles cannot be included here because their time order
is not known; therefore, all double events must be re-
jected.
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