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Cardiac progenitor cells including c-kit+ cells and cardiosphere-derived cells (CDCs) play important roles in car-
diac repair and regeneration. CDCs were reported to contain only small subpopulations of c-kit+ cells and recent
publications suggested that depletion of the c-kit+ subpopulation of cells has no effect on regenerative properties
of CDCs. However, our current study showed that the vastmajority of CDCs frommurine heart actually express c-
kit, albeit, in an intracellular and non-glycosylated form. Immunostaining and flow cytometry showed that the
fluorescent signal indicative of c-kit immunostaining significantly increased when cell membranes were perme-
abilized. Western blots further demonstrated that glycosylation of c-kit was increased during endothelial differ-
entiation in a time dependent manner. Glycosylation inhibition by 1-deoxymannojirimycin hydrochloride (1-
DMM) blocked c-kit glycosylation and reduced expression of endothelial cell markers such as Flk-1 and CD31
during differentiation. Pretreatment of these cells with a c-kit kinase inhibitor (imatinibmesylate) also attenuat-
ed Flk-1 and CD31 expression. These results suggest that c-kit glycosylation and its kinase activity are likely need-
ed for these cells to differentiate into an endothelial lineage. In vivo, we found that intracellular c-kit expressing
cells are located in the wall of cardiac blood vessels in mice subjected to myocardial infarction. In summary, our
work demonstrated for the first time that c-kit is not only expressed in CDCs but may also directly participate in
CDC differentiation into an endothelial lineage.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Studies have shown that progenitor cells exist in adult hearts, in-
cluding aged and diseased hearts (Mercola et al., 2011; Olson and
Schneider, 2003). Different types of cardiac progenitor cells were dis-
covered including c-kit+, Sca-1+, Islet-1+, SSEA-1+ cells, as well as
side population and cardiosphere-derived cells (CDCs) (Nigro et al.,
2015). Animal and clinical studies have shown that c-kit+ cells and
CDCs play important roles in cardiac repair and regeneration (Leri
et al., 2015; Marban and Cingolani, 2012; Ellison et al., 2013;
Hariharan et al., 2015; Fransioli et al., 2008). C-kit+ progenitor cells
were first identified in rat cardiac tissues (Beltrami et al., 2003). Despite
debate on the role of c-kit+ cells in myogenesis (Leri et al., 2015;
Goldstein et al., 2015; van Berlo et al., 2014), c-kit protein expression
is themost recognized progenitor cellmarker. CDCswere initially isolat-
ed from human and murine cardiac tissue (Messina et al., 2004) and

were introduced as a candidate progenitor cell for regenerative therapy
after myocardial infarction (MI) (Smith et al., 2007). Clinical trials such
as CADUCEUS (Makkar et al., 2012) demonstrated that injection of CDCs
improved cardiac function and increased viable tissue in patients with
MI. Finally, it was reported that CDCs contain a small subpopulation of
c-kit+ cells, ranging from ~1% to ~25% (Messina et al., 2004; Smith
et al., 2007; Cheng et al., 2014).

C-kit protein, first identified as a virus proto-oncogene, v-kit (Besmer
et al., 1986), is a tyrosine kinase and a receptor for stem cell factor (SCF),
containing nine N-glycosylation sites in its sequence (Nigro et al., 2015;
Yarden et al., 1987). It is known that c-kit undergoes N-linked glycosyla-
tion in the endoplasmic reticulum (ER) before being transported to the
Golgi apparatus where it is modified by further complex glycosylations
and subsequently transported to the cell surface (Aebi, 2013). Two
forms of c-kit protein, a non-glycosylated form (~100–120 kDa) and a
glycosylated form (~140 kDa), were detected previously in cancer cells
(Blume-Jensen et al., 1991; Rubin et al., 2001; Schmidt-Arras et al.,
2005). In studies of cardiac progenitor cells, cellular distribution and gly-
cosylation of c-kit have not been evaluated.

Increased c-kit+ cell number was observed in different disease
states, and conditional knockout of c-kit was found to abolish cardiac
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regeneration in experimental heart failure (Ellison et al., 2013; Ellison
et al., 2007). Our previous study also showed that c-kit+ cells were in-
creased in cardiac tissue frommice with chronic kidney disease, partic-
ularly in transgenic mice with reduced Na/K-ATPase-Src mediated
signaling capability (Drummond et al., 2014). However, the specific
role of c-kit protein and its regulatory mechanism in these progenitor
cells remain elusive. The current work studied c-kit expression and its
potential role in cardiac progenitor cell differentiation into an endothe-
lial lineage.

2. Materials and methods

2.1. Animals

Animal experimentswere conducted in accordancewith theNation-
al Institutes of Health, Guide for the Care and Use of Laboratory Animals
under protocols approved by the Institutional Animal Care and Use
Committee at the University of Toledo. Mice from an inbred C57BL6/J
strain (Moseley et al., 2004) were maintained at the University of Tole-
do. Adult malemicewhichwere twomonths of agewere used for isola-
tion of cardiosphere-derived progenitor cells and for myocardial
infarction experiments.

2.2. Isolation of cardiac progenitor cells

Cardiosphere-derived cells (CDCs) were obtained following proce-
dures previously described (Messina et al., 2004; Smith et al., 2007)
with minor modifications. Briefly, gross connective tissue was removed
byblunt dissection to obtain puremouseheartmuscle tissue,whichwas
then cut into small explants (~1 mm in dimension). The explants were
washed and partially digested enzymatically with 0.025% Trypsin/0.01%
ethylenediaminetetraacetic acid (EDTA. Gibco Inc., Grand Island, NY,
Cat. No.: R001-100) for 10 min. The explants were then cultured on
dishes coated with fibronectin (Santa Cruz Inc., Santa Cruz, CA, Cat.
No.: sc-29011) in complete explant medium (CEM), which contains:
500 mL Iscove's Modified Dulbecco's Medium (IMDM, Gibco Inc., Cat.
No.: 12440), 125 mL Fetal bovine serum (FBS) (Gibco Inc., Cat. No.:
10437), 1% penicillin–streptomycin (Mediatech Inc., Manassas, VA,
Cat. No.: 30-002-Cl), 1 mmol/L L-glutamine (Gibco Inc., Cat. No.:
25030), and 1 mmol/L 2-mercaptoethanol (Sigma-Aldrich, St. Louis,
MO, Cat. No.: M6250). After 14 days, a layer of stromal-like cells grew
out of adherent explants, over which small, round, phase-bright cells
migrated. These phase-bright cells were harvested by sequential
Versene (Gibco Inc., Cat. No.: 15040) and 0.025% Trypsin-0.01%EDTA di-
gestion and seeded on poly-D-lysine coated (Sigma-Aldrich, Cat. No.:
P6407) dishes in cardiosphere growth medium (CGM) that contains:
175 mL IMDM, 325 mL DMEM/F12 (Gibco Inc., Cat. No.: 11330), 3.5%
FBS, 1% penicillin–streptomycin, 1 mmol/L L-glutamine, 2% B27 supple-
ment (Gibco Inc., Cat. No.: 17504), 1 mmol/L 2-mercaptoethanol,
80 ng/mL basic Fibroblast growth factor (bFGF, PeproTech Inc., Rocky
Hill, NJ, Cat. No.: AF-450-33), 25 ng/mL epidermal growth factor (EGF,
PeproTech Inc., Cat. No.: 315-09), 4 ng/mL cardiotrophin-1 (PeproTech
Inc., Cat. No.: 250-25), 1 unit/mL α-Thrombin (Haemtech Inc., Essex
Junction, VT, Cat. No.: HCT-0020). The seeded cells formed
cardiospheres on poly-D-lysine coated dishes following 7 to 21 days.
Subsequently, the cardiosphere forming cells were collected and plated
on fibronectin-coated dishes in CGMwhere they expand asmonolayers.
CDCs were expanded and stocks were collected and stored in liquid ni-
trogen for later experiments.

2.3. Inducing endothelial lineage differentiation of CDCs

CDCs at the 5th–15th passages were used for endothelial differenti-
ation. CDCs were seeded on matrigel-coated dishes or glass coverslips.
For Western blotting, CDCs grew in CGM for three days at which time
they reached 80% confluence. Then media was changed to complete

mouse endothelial cell culture medium (MECM, Cell Biologics Inc., Chi-
cago, IL, Cat. No.: M1168) to start endothelial differentiation. For immu-
nostaining, CDCswere allowed to attach to coverslips in CGMovernight,
atwhich point themediawas changed toMECM to start endothelial dif-
ferentiation. MECM was changed every two days during differentiation
until cells were collected for Western blot or immunostaining. Follow-
ing the start of endothelial differentiation cells were collected on days
1, 3, 7, 10, 14, 21, and 28.

For inhibition of N-glycosylation in CDCs, 1-deoxymannojirimycin
hydrochloride (1-DMM, Sigma-Aldrich, Cat. No.: D9160), an inhibitor
of N-linked glycosylation, was added toMECM at 5, 50 and 500 μMcon-
centrations during induction of endothelial differentiation. CDCs in
MECM without 1-DMM were used as control. The induction media
was changed every two days. Cells were collected on day 7 and 14 for
Western blot.

Specific inhibition of c-kit kinase activity was achieved through the
use of the c-kit tyrosine kinase inhibitor imatinib mesylate
(Selleckchem, Cat. No.: S1026) which was was added to MECM at 0.1,
0.2, 0.5, 1, 2, 5, and 10 μM concentrations during the 14 day endothelial
differentiation induction period. Cells treatedwithMECMalonewithout
imatinib mesylate were used as controls. The induction media was
changed every two days. Cells were collected on day 14 for Western
blot.

2.4. Immunocytochemistry

Cells were fixed in 3% paraformaldehyde. Following fixation, cells
were washed with 1× Dulbecco's phosphate buffered saline (DPBS;
Gibco, Cat. No: 14190-144) three times and were then blocked with
2% Bovine Serum Albumin (BSA; Sigma-Aldrich Inc., Cat. No: A4503)
in DPBS containing 0.3% Triton X-100 (DPBS-Tr) for 1 h at room temper-
ature. Subsequently, cells were incubated with primary antibodies di-
luted in blocking buffer in a humidified chamber overnight at 4 °C.
The next day, cells were washed three times with DPBS-Tr. Cells were
then incubated with secondary antibodies diluted in blocking buffer at
room temperature for 1.5 h. Following incubation with secondary anti-
body, the cells were washed with DPBS-Tr one time. Cells were then in-
cubated with 4′,6-diamidino-2-phenylindole (DAPI, Life Technologies
Inc., Cat. No.: D1306) solution for 5 min and were washed three times
in DPBS-Tr. The coverslips were then mounted with Prolong Gold
anti-fade reagent (Life Technologies Inc., Cat. No.: 36,930). Immunoflu-
orescence was visualized on a confocal microscope (TCS SP5 LCSM,
Leica, Buffalo Grove, IL).

The primary antibodies used in immunostaining include: anti-c-kit-
FITC antibody, 1:100 dilution (Abcam Inc., Cambridge, MA, Cat. No.:
ab24870); rabbit anti-CD31, 1:20 dilution (Abcam Inc., Cat. No.:
ab28364); mouse anti-Flk-1, 1:50 dilution (Santa Cruz Inc., Cat. No.:
sc-6251); rat anti-CD90, 1:100 dilution (Abcam Inc., Cat. No.: ab3105);
rat anti-mouse CD105, 1:50 dilution (R&D Systems, Minneapolis, MN,
Cat. No.: MAB1320); rabbit anti-Oct3/4, 1:200 dilution (Santa Cruz
Inc., Cat. No.: sc-9081); rabbit anti-Nanog, 1:200 dilution (Santa Cruz
Inc., Cat. No.: sc-33760); rabbit anti-Nkx2.5, 1:400 dilution (Abcam
Inc., Cat. No.: ab22611); rabbit anti-GATA4, 1:200 dilution (Santa Cruz
Inc., Cat. No.: sc-9053); mouse anti-α-actinin, 1:1000 dilution (Sigma-
Aldrich Inc., Cat. No.: A7811); rabbit anti-cardiac troponin I, 1:100 dilu-
tion (Abcam Inc., Cat. No.: ab47003); rabbit anti-α-smooth muscle
actin, 1:500 dilution (Abcam Inc., Cat. No.: ab5694); chicken anti-
vimentin, 1:200 dilution (Abcam Inc., Cat. No.: ab24525); rat anti-
mouse CD31, 1:100 dilution (AbD Serotec Inc., Cat. No.: MCA2388GA).
The secondary antibodies included: goat anti-rabbit IgG (H + L),
Alexa Fluor 594 conjugate (Life Technologies Inc., Cat. No.: A-11012);
goat anti-mouse IgG (H+ L), Alexa Fluor 594 conjugate (Life Technolo-
gies Inc., Cat. No.: A-11005); goat anti-mouse IgG (H + L), Alexa Fluor
488 conjugate (Life Technologies Inc., Cat. No.: A-11001); goat anti-rat
IgG (H + L), Alexa Fluor 488 conjugate (Life Technologies Inc., Cat.
No.: A-11006); goat anti-chicken IgG (H+L), Alexa Fluor 647 conjugate
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(Life Technologies Inc., Cat. No.: A-21449). Secondary antibodies were
all used at 1:600–1:800 dilutions.

2.5. Flow cytometry

CDCswere grown in afibronectin-coated 75 cm2 flask. Once the cells
reached 80% confluence they were collected and prepared for flow cy-
tometry, briefly as follows: CDCs were washed with DPBS twice, then
incubated with 5mL Versene at 37 °C with 5% CO2 for 10min. Detached
cells were suspended in CGM and centrifuged at 2000 ×g for 5 min.
Pelleted cells werewashed oncewith 12mL FACS buffer (DPBS contain-
ing 2% BSA).Washed cells were then suspended in 3mL of 1.5% parafor-
maldehyde solution and rotated at room temperature for 10 min for
fixation. Following fixation cells were washed once with 12 mL FACS
buffer and suspended in fresh FACS buffer. For membrane perme-
abilization, fixed cells were incubated with FACS buffer containing
0.1% Triton X-100 for 5 min. Anti-c-kit-FITC antibody (Abcam Inc., Cat.
No.: ab24870), 1:200 dilution, was then added to the cell suspension
and incubated on ice for 30 min in the dark. Non-permeabilized cells
were directly incubated with antibody without Triton X-100. After anti-
body incubation, cells were washed twice with FACS buffer and re-
suspend in 1 mL FACS buffer. Flow cytometry was performed on a
Becton-Dickinson FACSCalibur Flow Cytometer (Becton-Dickinson, San
Jose, CA). Cells that were not permeabilized and not incubated with an-
tibody were used as negative control.

2.6. RNA isolation and reverse transcription-quantitative polymerase chain
reaction (RT-qPCR)

CDCs were collected in 350 μL of lysis buffer RLT to begin isolation
of total RNA using the RNeasy mini kit (Qiagen Inc., Carol Stream, IL,
Cat. No.: 217004), according to the instructions provided by the man-
ufacturer. Immediately following RNA isolation, cDNA was synthesized
for mRNA briefly as follows: cDNA was synthesized using the RT2 First
Strand cDNA Synthesis Kit from Qiagen according to the
manufacturer's protocol using 1 μg total RNA as input (Qiagen Inc.,
Cat. No.: 330404). Following reverse transcription cDNA was diluted
according to the manufacturer's protocol for storage at −20 °C and
later use in qPCR.

To determine the level of c-kit gene expression, Gapdh was used as
an internal control. We also compared the expression of c-kit with Na/
K-ATPase α1 gene (Atp1a1), a ubiquitously expressed gene in all mam-
malian cells. RT2 qPCR primer assays for mouse c-kit (Cat. No.:
PPM05195A-200), Atp1a1 (Cat. No.: PPM04163A-200, and Gapdh
(Cat. No.: PPM02946E-200) were purchased from Qiagen Inc. and
were used in the RT2 SYBR Green qPCR reaction mix (Qiagen Inc., Cat.
No.: 330529) according to the manufacturer's protocol. Reactions
were carried out on an ABI 7500 Fast platform (Life Technologies, Bos-
ton, MA) using the following cycling program: 10 min incubation at
95 °C, [95 °C for 15 s, 60 °C for 1 min (Fluorescence detection per-
formed)] repeated 40 times. A determination of mRNA expression was
conducted by comparing the relative change in cycle threshold value
(ΔCt) from the internal control, GAPDH.

2.7. Western blot analysis

Western blots were carried out as described previously
(Drummond et al., 2014; Elkareh et al., 2007; Li et al., 2011). Cell ly-
sates were collected in radio-immunoprecipitation assay (RIPA) buffer
(Santa Cruz Inc., Cat. No.: sc-24948) containing protease inhibitors and
phosphatase inhibitors. Electrophoretic separation of protein was per-
formed on 8% Tris/glycine SDS-polyacrylamide gels and separated pro-
teins were then transferred to 0.45 μm nitrocellulose blotting
membrane. Membranes were blocked with 5% non-fat dry milk or 5%
BSA for 1 h at room temperature. Membranes were then incubated
with specific primary antibodies suspended in blocking buffer

overnight at 4 °C. After washing, membranes were incubated with
appropriate secondary antibodies. Clarity Western ECL substrate (Bio-
Rad Inc., Cat. No.: 170-5060) was used for chemiluminescence detec-
tion on an Omega Lum™ G imaging system (Aplegen Inc., San
Francisco, CA).

The primary antibodies used in Western blot analyses were: rabbit
anti-c-kit antibody, 1:500 dilution (Abcam Inc., Cat. No.: ab5506); rat
anti-mouse CD31, 1:1000 dilution (AbD Serotec Inc., Raleigh, NC, Cat.
No.: MCA2388GA); mouse anti-Flk-1, 1:1000 dilution (Santa Cruz Inc.,
Cat. No.: sc-6251); rabbit anti-glucose transporter GLUT3 antibody,
1:10,000 dilution (Abcam Inc., Cat. No.: ab191071); rabbit anti-c-kit
(phospho Y568 + Y570) antibody 1:10,000 dilution (Abcam Inc., Cat.
No.: ab5616); rabbit anti-c-kit (phospho Y730) antibody 1:5000 dilu-
tion (Abcam Inc., Cat. No.: ab5633); goat anti-β-actin antibody,
1:1000 dilution (Santa Cruz Inc., Cat. No.: sc-1616); rabbit anti-
GAPDH antibody, 1:1000 dilution (Santa Cruz Inc., Cat. No.: sc-
25778). Secondary antibodies included goat anti-rabbit IgG-HRP
(Santa Cruz Inc., Cat. No.: sc-2030); goat anti-mouse IgG-HRP (Santz
Cruz Inc., Cat. No.: sc-2031); donkey anti-goat IgG-HRP (Santa Cruz
Inc., Cat. No.: sc-2020); chicken anti-rat IgG-HRP (Santa Cruz Inc., Cat.
No.: sc-2956). Secondary antibodies were used at a concentration
which was half the concentration of the specific primary antibody
being used.

2.8. Myocardial infarction (MI)

Acute MI was induced as previously described (Virag and Lust,
2011). Briefly, mice were anesthetized with 2% isoflurane, intubated
endotracheally with a 22 gauge intravenous catheter and placed in a su-
pine position on the warming surgery platform. Mice were ventilated
using a mouse ventilator (Minivent Type845, Hugo Sachs Elektronik,
Germany) to control respiration with tidal volume setting at 0.25 mL
at a rate of 150 strokes/min. Prior to surgery hair was removed and
the surgical area cleaned and sterilized. Subsequently, a thoracotomy
was performed in the fourth intercostal space through an incision
made in the left side of the chest. After displacing the pericardium, a
permanent ligation of the left anterior descending artery (LAD) was
conducted 2 mm below the left atrium with a 6-0 silk suture (Cat. No.:
Coviden S-1750-K; esutures.com,Mokena, IL) under a dissectingmicro-
scope (Olympus SZX-7; B&BMicroscopes Ltd., Pittsburgh, PA). Success-
ful MI was verified via epicardial blanching. Following successful
surgery mice were kept for 3 weeks before euthanization and organ
collection.

2.9. Immunohistochemistry

Left ventricle sections were immediately fixed in 4% formaldehyde
buffer solution (pH 7.2) after dissection, and paraffin embedded after
48 h of fixation. The tissues were then cut to a thickness of 4 μm and
mounted ontomicroscopy slides. Slides were subjected to immunofluo-
rescence staining for c-kit and CD31 in a manner similar to previous ex-
periments (Drummond et al., 2014). The mounted paraffin embedded
tissue sections were first deparaffinized with xylene and rehydrated
by sequential incubations in ethanol and water. Following rehydration,
antigen retrieval, blocking and antibody incubationwere performed se-
quentially. Slides were then mounted with anti-fade gold from Life
Technologies Inc. Immunofluorescence was visualized under a using
confocal microscopy.

2.10. Statistical analysis

Data were presented asMean± SEM. Oneway ANOVA or t-test was
used for analysis of significance.
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3. Results

3.1. Intracellular expression of c-kit protein in isolated CDCs

We isolated CDCs from mice with a C57BL6/J background and char-
acterized the cells based on previous publications (Smith et al., 2007;
Cheng et al., 2014). Representative images of cardiac explant migration,
cardiosphere formation, and amplified CDCs are shown in Fig. 1A. To
further characterize the isolated CDCs, immunostaining was performed
using antibodies against progenitor cell markers and different lineage
markers. As shown in Fig. 1B, CDCs are positive for progenitor cell

markers such as NKx2.5, GATA4, Oct3/4 and Nanog. These cells are
also CD105 positive but CD90 negative, which is consistent with pub-
lished data on these cells (Smith et al., 2007; Cheng et al., 2014). In con-
trast, as shown in Fig. 1C, markers for endothelial cells, smooth muscle
cells, and cardiomyocytes viz., CD31,α-SMA,α-actinin, and cardiac tro-
ponin I, were negative. However, CDCs were positive for the cardiac fi-
broblast marker, vimentin. The immunostaining in Fig. 1A was done
after cell membrane permeabilization.

To check if these cells express c-kit and its cellular location, we used
an anti-c-kit-FITC antibody from Abcam under conditions with or with-
out membrane permeabilization. As shown in Fig. 2A, the fluorescent

Fig. 1. Characterization of murine cardiosphere-derived cells (CDCs). (A): Shows the process of CDC isolation from 2-month old adult male mouse hearts. Cardiac muscle explants (1 mm
dimension) were plated on fibronectin-coated petri dishes. Bright-phase cells migrating out of the explants were collected and seeded on poly-D-lysine coated dishes to form
cardiospheres. Cardiospheres were then collected and seeded on fibronectin-coated dishes to grow as a monolayer. (B): Shows the expression of progenitor cell markers: Nkx2.5,
GATA4, Oct3/4, and Nanog; CDC markers reported from literature: CD90 and CD105; and different lineage markers: CD31, α-SMA, α-actinin, cardiac troponin I (cTnI), and vimentin in
isolated CDCs. DAPI was used to for nuclear staining in these cells.

798 H. Shi et al. / Stem Cell Research 16 (2016) 795–806

Image of Fig. 1


Fig. 2. Intracellular expression of c-kit in CDCs. (A): Immunostaining of c-kit in CDCswas performed using anti-c-kit-FITC antibody (the same antibody as flow cytometry). Cultured CDCs
were fixed with 3% paraformaldehyde and then incubated with anti-c-kit-FITC antibody with or without membrane permeabilization. Cells which were not permeabilized and not
incubated with antibody were used as negative control. Fluorescent images were taken under a Leica Confocal microscope using a 20× or a 63× lens. DAPI (purple) was used for
nuclear staining; (B): Flow cytometry of CDCs indicates that a majority of c-kit expression in CDCs is intracellular. CDCs were fixed with 1.5% paraformaldehyde and stained with anti-
c-kit-FITC antibody under conditions of non-permeabilization (blue curve in the merged figure) or permeabilization with 0.1% Triton X-100 (orange curve). Cells with fixation only
were used as negative control (red curve); (C): Western blot of c-kit expression in CDCs in different passages. Cell lysate of CDCs were collected in RIPA buffer and probed for c-kit
using Western blot. A porcine epithelial cell line, LLC-PK1, was used as negative control; (D): c-kit gene expression and Na/K-ATPase α1 gene (Atp1a1) expression measured by qPCR,
Gapdh was used as internal control. ΔCTc-kit = CTc-kit − CTGAPDH and ΔCTATP1A1 = CTATP1A1 − CTGAPDH. Higher ΔCT means lower expression level of the gene.
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signal obtained by immunostaining using this antibody was very weak
in cells without membrane permeabilization, but became much stron-
ger when cell membranes were permeabilized. Using a 63× oil lens,
our results clearly show that c-kit staining was mainly intracellular
(Fig. 2A). We also compared c-kit labeling using flow cytometry with
or without membrane permeabilization. As shown in Fig. 2B, a popula-
tion of c-kit+ cells with a weak fluorescent signal (peak value at 102 ar-
bitrary units) was observed when cells were labeled without cell
membrane permeabilization. However, if c-kit labeling was performed
followingmembrane permeabilization, the fluorescent signal indicating
positive c-kit staining was about 10 times higher (peak value at 103 ar-
bitrary units) than that in non-permeabilized cells, indicating that a vast
majority of the c-kit protein was expressed intracellularly in these cells.

We also collected cell lysates from different generations of CDCs and
probed for c-kit using Western blotting. A porcine proximal tubule so-
matic cell line (LLC-PK1) was used as negative control. As shown in
Fig. 2C, CDCs express c-kit protein up to at least the 20th generation,
while the negative control LLC-PK1 cells do not express c-kit protein.
This result confirms that CDCs do express c-kit protein. However, the
observed c-kit protein was mainly found at ~100 kDa, corresponding
to a non-glycosylated form according to previous reports
(Blume-Jensen et al., 1991; Rubin et al., 2001).

To further confirm the expression of c-kit in CDCs, we also per-
formed qPCR using Gapdh as an internal control in addition to compar-
ison with the Na/K-ATPaseα1 gene (Atp1a1), a ubiquitously expressed
gene. As shown in Fig. 2D, c-kit gene expression was detected in CDCs,
though at relatively low levels. This measurement, together with the
immunostaining, flow cytometry, and Western blot data, clearly indi-
cate that c-kit protein is expressed in isolated CDCs.

3.2. Endothelial differentiation increased c-kit expression and glycosylation
in isolated CDCs

To examine c-kit expression and glycosylation status during differ-
entiation, CDCs were cultured in endothelial differentiation medium
as described in the “Materials and methods” section for up to 28 days
while replenishing the medium every two days. Cell lysates were col-
lected at the stem cell stage as well as at days 1, 3, 7, 10, 14, 21, and
28 after induction of endothelial differentiation. As shown in Fig. 3A,
Western blot analysis showed that CDCs without differentiation induc-
tion expressmainly a non-glycosylated form of c-kit found at ~100 kDa,
whereas endothelial differentiation induced an additional ~140 kDa
band which represents glycosylated c-kit (Rubin et al., 2001;
Schmidt-Arras et al., 2005), in a time-dependent manner. The experi-
ment also showed that endothelial differentiation induces expression
of the endothelial cell markers Flk-1 and CD31 with the same pattern
as glycosylated c-kit. Since c-kit glycosylationwas increased after differ-
entiation, we also probed glucose transporters. The results showed that
CDCs express glucose transporter 3 (GLUT3) and its expression had a
trend of increase during differentiation but was not statistically signifi-
cant until 28 days after initiation of endothelial differentiation (Fig. 3A).
We also probed for GLUT 1 and 4, but did not detect any changes in their
expression during differentiation (data not shown).

Immunostaining using anti-c-kit-FITC antibody was performed on
CDCs at different time points with membrane permeabilization. As
shown in Fig. 3B, endothelial differentiation induced significant in-
creases in c-kit as well as CD31 and Flk-1 from 7 to 14 days after induc-
tion. Fig. 3C showedhigh resolution images of thesemarkers at different
time points.

3.3. Inhibition of glycosylation attenuates Flk-1 and CD31 expression during
endothelial differentiation in CDCs

To study if glycosylation is required for differentiation into endothe-
lial cells, CDCs were cultured in endothelial differentiation medium
with or without 1-deoxymannojirimycin hydrochloride (1-DMM), an

N-glycosylation inhibitor. Since the time course study showed the
most dramatic change of c-kit glycosylation started at 7 to 14 days
after differentiation induction, we chose the time point of 7 and
14 days after induction to examine the effect of 1-DMM. As shown in
Fig. 4A, 1-DMM treatment reduced glycosylation of c-kit during the dif-
ferentiation process. It also decreased the expression of endothelial cell
markers such as Flk-1 and CD31 in these cells, but it did not affect the
expression of GLUT3.

3.4. Inhibition of c-kit kinase activity by imatinibmesylate attenuated Flk-1
and CD31 expression during endothelial differentiation in CDCs

It is known that c-kit activation and phosphorylation occurs only
when it becomes glycosylated (Aebi, 2013). To further test if c-kit kinase
activity is required for CDC differentiation into an endothelial lineage,
we treated CDCs with different concentrations of imatinib mesylate (a
c-kit kinase inhibitor) during differentiation. As shown in Fig. 5, imatin-
ib mesylate at 5 to 10 μM reduced c-kit phosphorylation. Additionally,
treatment with this kinase inhibitor also reduced Flk-1 and CD31 ex-
pression during endothelial differentiation.

3.5. C-kit+ cells are involved in blood vessel formation in vivo

We have shown above that CDCs can differentiate into endothelial
cells, and have enhanced c-kit expression levels. To further test if c-kit
expressing cells participate in the formation of blood vessels in animal
models, immunostaining for c-kit and the endothelial cell marker
CD31 was performed on left ventricle tissue isolated frommice subject-
ed tomyocardial infarction (MI). As shown in Fig. 6A, MI surgery signif-
icantly induced increases in c-kit cell number in addition to CD31
positive blood vessels in the infarcted zone 3 weeks following surgery.
More interestingly it was found that in sham-operated mice, about
80% of the blood vessels were CD31 positive (red color) and c-kit nega-
tive (green color), while a few vessels had c-kit positive cells (upper
panel of Fig. 6B). However, signals for both c-kit and CD31were positive
in most of the blood vessels in the infarcted area of heart tissue follow-
ingMI inmice (lower panel of Fig. 6B), indicating that cells expressing c-
kit may participate in blood vessel formation in response toMI. In these
vessels, c-kit expression was seen outside the nuclear, while CD31 sig-
nal was most abundant in the junction area between neighboring cells.

4. Discussion and conclusion

4.1. Intracellular expression of c-kit is a unique feature of cardiac progenitor
cells

Based on the data presented in our current study,we believe that the
low abundance of membrane-associated and the immature form in
which c-kit is expressed in CDCs is not a deficiency, but rather a unique
feature of cardiac progenitor cells. However, a critical question that
arises from this is:whydoes c-kit, amembrane receptor tyrosine kinase,
express intracellularly in an “immature” form in CDCs? C-kit protein can
be bound and activated by SCF when expressed on the plasma mem-
brane (Lennartsson and Ronnstrand, 2012), and studies have shown
that SCF stimulates cell growth in erythroid progenitor cells (Amano
et al., 1993), in cerebral cortical cultures (Jin et al., 2002), and in
human glioblastoma cells (Berdel et al., 1992). In our experiments, c-
kit wasmostly expressed in the cytosol of CDCs. Thus, c-kit in these pro-
genitor cells likely does not function as a membrane receptor and cell
growth stimulator before it commits to an endothelial lineage. In es-
sence, these features of c-kit expression may be a unique mechanism
that maintains CDC quiescence, preventing precocious responses to
changes in circulating SCF. Needless to say, this hypothesis needs
more sophisticated studies to be validated.

Our study revealed that the majority of CDCs express c-kit protein,
suggesting that a larger population of c-kit expressing cells may exist
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in cardiac tissue than previously indicated (Messina et al., 2004; Smith
et al., 2007; Cheng et al., 2014). The experimental results suggest that
c-kit is not only expressed in CDCs but may also directly participate in
regulation of CDC differentiation. Previous characterization of CDCs
found only a small population of c-kit+ cells (Messina et al., 2004;

Smith et al., 2007; Cheng et al., 2014). However, since c-kit protein
was assumed to be a protein found on the cell surface, the determina-
tion of c-kit+ cell quantitywas based on themethod of magnetically ac-
tivated cell sorting and flow cytometry without permeabilizing the cell
membrane. Conversely, we used cell membrane permeabilization and

Fig. 3. Endothelial differentiation increases c-kit expression and its glycosylation in CDCs. (A): Endothelial differentiation of CDCswas initiated by changing growthmedium of CDCs from
CGM toMECM. Cell lysateswere collected at the stem cell stage and at days 1, 3, 7, 10, 14, 21, and 28 after differentiation induction. Expression of c-kit, CD31, Flk-1, and glucose transporter
3 (GLUT3) were probed using Western blot. (B): CDCs were fixed and immunostained at the stem cell stage (before changing to differentiation medium) and at 7 and 14 days after
differentiation with membrane permeabilization. Fluorescent images were taken under a Leica Confocal microscope using a 20× lens. DAPI (purple) was used for nuclear staining. (C):
Higher resolution images (63× oil lens) of c-kit, CD31, and Flk-1 at different stage of differentiation. Data is presented as Mean ± SEM, n = 3 independent determinations, * indicates
significant difference (p b 0.05) vs expression level at stem cell stage (CDCs), ** indicates p b 0.01.
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revealed that the majority of CDCs actually express intracellular c-kit
protein, which is immature and non-glycosylated, and the expression
can be increased and switches to the glycosylated formduring endothe-
lial differentiation. In addition, previous publications identified CDCs
and c-kit+ cells from cardiac tissue as two separate categories of pro-
genitor cells. Our study suggests that CDCs and c-kit+ cellsmight belong
to the same population, but represent cells at different stages of activa-
tion. An early report compared the functional benefit of unsorted CDCs
againstmagnetic bead-sorted c-kit+ cells and concluded that purified c-
kit+ cells were inferior to unsorted CDCs in infarcted hearts (Li et al.,

2012). A more recent publication further showed that depletion of c-
kit+ cells from CDCs did not affect the beneficial properties of CDCs in
cardiac regeneration (Cheng et al., 2014). Given the fact that the major-
ity of CDCs actually express intracellular c-kit protein before differenti-
ation, based on our current study, these sorted or non-sorted cellsmight
represent different stages of the same population of progenitor cells,
which have different functional effects. Even if they represent two dif-
ferent populations, our results indicate that a large number of progeni-
tor cells in cardiac tissue express c-kit protein, which can be further
regulated by stimulation of differentiation. Since these new findings

Fig. 3 (continued).
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re-characterize CDCs and re-define the population of c-kit positive cells,
we suggest to call these cells “c-kit expressing progenitor cells” to dis-
tinguish from the terms that are currently used in the literature for
CDCs and c-kit positive cells.

4.2. Glycosylation of c-kit may be a novelmechanism that regulates progen-
itor cell differentiation

C-kit has been identified as an important adult progenitor cell mark-
er that is critical for regeneration in experimental heart failure (Nigro
et al., 2015; Ellison et al., 2013). However, the exact role of c-kit in reg-
ulating progenitor cell differentiation has not been well studied. The
data presented in the current study reveals that c-kit glycosylation
and its kinase activity may be required for CDC differentiation into an
endothelial lineage. We observed that inhibition of glycosylation by 1-
DMM blocked expression of endothelial cell markers such as Flk-1 and
CD31, while inhibition of c-kit kinase by imatinib mesylate also attenu-
ates Flk-1 and CD31 expression, indicating the direct involvement of c-
kit in mediating endothelial differentiation in CDCs. However, it is not
clear what pathways are regulated during differentiation to trigger the
glycosylation process. Our experiments showed that GLUT3 expression
was increased during differentiation compared to non-differentiated
CDCs. GLUT3 is a glucose transporter with high affinity to glucose and
is important during embryonic development (Tonack et al., 2006).

However, the role of GLUT3 in CDC differentiation needs to be further
studied.

CDCs and c-kit+ cells are both known to be able to differentiate into
endothelial cells (Marban and Cingolani, 2012; Patruno et al., 2014;
Fang et al., 2012). Our current study reveals that c-kit glycosylation is
an important process during endothelial differentiation. In addition to
CD31 and Flk-1, we also examined Von Willebrand Factor (VWF), a
commonly used marker for endothelial cells, using Western blot and
immunostaining. However, it did not show any specific signal. Given
that in vitro induction of an endothelial lineage is limited in that cell dis-
play endothelial qualities andmarkers but are not fully functional endo-
thelial cells, we added the in vivo examination of c-kit expressing cells.
Indeed, we observed c-kit+ cells located within the wall of blood
vessels, especially in infarcted areas of left ventricle tissue from
mice subjected to MI surgery, indicating the involvement of c-kit in
vascularization/angiogenesis.

In summary, the current study has re-classified the majority of the
CDC population as c-kit expressing progenitor cells and demonstrated
for the first time that glycosylation is an important mechanism in regu-
lating CDC differentiation into an endothelial lineage. These results, are
critical for understanding the early stages of cardiac progenitor cell reg-
ulation, and provide important information regarding the role of c-kit in
cardiac progenitor cells. The finding of c-kit glycosylation and its kinase
activity during CDC differentiation may serve as a potential target for

Fig. 4. Inhibition of c-kit glycosylation attenuates endothelial differentiation of CDCs. CDCs were treated with the N-glycosylation inhibitor 1-deoxymannojirimycin hydrochloride (1-
DMM) at 5, 50, or 500 μM during endothelial differentiation. Cell lysates were collected 7 and 14 days following induction of endothelial differentiation to probe for c-kit, CD31, Flk-1,
and GLUT3 using Western blot. Data is presented as Mean ± SEM, n = 3 independent determinations, ** indicates significant difference (p b 0.01) vs expression level at stem cell
stage (CDC); ! indicates significant difference (p b 0.05) vs control that was not treated with 1-DMM; !! indicates significant difference (p b 0.01) vs control that was not treated with
1-DMM.
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regulating endogenous progenitor cell differentiation in disease condi-
tions. Given the fact that direct injection progenitor cells has displayed
limited potential for engrafting and low expansion efficiency in the

treatment of cardiac failure afterMI (Marban, 2014), discovery ofmech-
anisms that regulate endogenous cardiac progenitor cells are critical for
future studies.

Fig. 5. The c-kit kinase inhibitor imatinibmesylate inhibits endothelial differentiation of CDCs. CDCswere treatedwith c-kit tyrosine kinase inhibitor imatinibmesylate at 0, 0.1, 0.2, 0.5, 1,
2, 5, or 10 μM concentrations during the 14 day endothelial differentiation induction period. Cell lysates were collected 14 days following induction of endothelial differentiation to probe
for c-kit, CD31, Flk-1, phospho-c-kit (Y568 + Y570) and phospho-c-kit (Y730) using Western blot. Data is presented as Mean ± SEM, n = 3 independent determinations, ** indicates
significant difference (p b 0.01) vs expression level of 14 day control.

804 H. Shi et al. / Stem Cell Research 16 (2016) 795–806

Image of Fig. 5


Acknowledgments

This work was supported by the National Institutes of Health (HL-
105649 to JT and 1F32DK104615-01 to CAD). The cell line produced
and used in this publication is freely available upon contacting the Cor-
responding author.

References

Aebi, M., 2013. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833,
2430–2437.

Amano, Y., Koike, K., Nakahata, T., 1993. Stem cell factor enhances the growth of primitive
erythroid progenitors to a greater extent than interleukin-3 in patients with aplastic
anaemia. Br. J. Haematol. 85, 663–669.

Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H.,
Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., Anversa, P.,

2003. Adult cardiac stem cells are multipotent and support myocardial regeneration.
Cell 114, 763–776.

Berdel, W.E., de Vos, S., Maurer, J., Oberberg, D., von Marschall, Z., Schroeder, J.K., Li, J.,
Ludwig,W.D., Kreuser, E.D., Thiel, E., et al., 1992. Recombinant human stem cell factor
stimulates growth of a human glioblastoma cell line expressing c-kit protooncogene.
Cancer Res. 52, 3498–3502.

Besmer, P., Murphy, J.E., George, P.C., Qiu, F.H., Bergold, P.J., Lederman, L., Snyder Jr., H.W.,
Brodeur, D., Zuckerman, E.E., Hardy, W.D., 1986. A new acute transforming feline ret-
rovirus and relationship of its oncogene v-kit with the protein kinase gene family. Na-
ture 320, 415–421.

Blume-Jensen, P., Claesson-Welsh, L., Siegbahn, A., Zsebo, K.M., Westermark, B.,
Heldin, C.H., 1991. Activation of the human c-kit product by ligand-induced
dimerization mediates circular actin reorganization and chemotaxis. EMBO J.
10, 4121–4128.

Cheng, K., Ibrahim, A., Hensley, M.T., Shen, D., Sun, B., Middleton, R., Liu, W., Smith, R.R.,
Marban, E., 2014. Relative roles of CD90 and c-kit to the regenerative efficacy of
cardiosphere-derived cells in humans and in a mouse model of myocardial infarction.
J. Am. Heart Assoc. 3, e001260.

Drummond, C.A., Sayed, M., Evans, K.L., Shi, H., Wang, X., Haller, S.T., Liu, J., Cooper, C.J.,
Xie, Z., Shapiro, J.I., Tian, J., 2014. Reduction of Na/K-ATPase affects cardiac remodeling

Fig. 6. The c-kit expressing cells in cardiac blood vessels after myocardial infarction in mouse heart. Mouse heart was isolated and fixed with 4% formaldehyde and immunostained with
anti-c-kit-FITC antibody and anti-CD31 antibody. Fluorescence signal was visualized using a Leica Confocal microscope with 63× oil lens. (A): The immunostaining of c-kit and CD31 in
non-infarcted area versus infarcted area. (B): Co-immunostaining of c-kit and CD31 in cardiac blood vessels from sham-operated mice (upper panel) and from the infarcted area of
mice subjected to MI surgery (lower panel).

805H. Shi et al. / Stem Cell Research 16 (2016) 795–806

http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0005
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0005
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0010
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0010
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0010
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0015
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0015
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0020
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0020
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0020
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0025
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0025
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0025
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0030
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0030
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0030
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0035
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0035
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0035
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0040
Image of Fig. 6


and increases c-kit cell abundance in partial nephrectomized mice. Am. J. Physiol.
Heart Circ. Physiol. 306, H1631–H1643.

Elkareh, J., Kennedy, D.J., Yashaswi, B., Vetteth, S., Shidyak, A., Kim, E.G.R., Smaili, S.,
Periyasamy, S.M., Hariri, I.M., Fedorova, L., Liu, J., Wu, L., Kahaleh, M.B., Xie, Z.,
Malhotra, D., Fedorova, O.V., Kashkin, V.A., Bagrov, A.Y., Shapiro, J.I., 2007.
Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in ex-
perimental uremic cardiomyopathy. Hypertension 49, 215–224.

Ellison, G.M., Torella, D., Karakikes, I., Nadal-Ginard, B., 2007. Myocyte death and renewal:
modern concepts of cardiac cellular homeostasis. Nat. Clin. Pract. Cardiovasc. Med. 4
(Suppl. 1), S52–S59.

Ellison, G.M., Vicinanza, C., Smith, A.J., Aquila, I., Leone, A., Waring, C.D., Henning, B.J.,
Stirparo, G.G., Papait, R., Scarfo, M., Agosti, V., Viglietto, G., Condorelli, G., Indolfi, C.,
Ottolenghi, S., Torella, D., Nadal-Ginard, B., 2013. Adult c-kit(pos) cardiac stem cells
are necessary and sufficient for functional cardiac regeneration and repair. Cell 154,
827–842.

Fang, S., Wei, J., Pentinmikko, N., Leinonen, H., Salven, P., 2012. Generation of functional
blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol.
10, e1001407.

Fransioli, J., Bailey, B., Gude, N.A., Cottage, C.T., Muraski, J.A., Emmanuel, G., Wu, W.,
Alvarez, R., Rubio, M., Ottolenghi, S., Schaefer, E., Sussman, M.A., 2008. Evolution of
the c-kit-positive cell response to pathological challenge in the myocardium. Stem
Cells 26, 1315–1324.

Goldstein, B.J., Goss, G.M., Hatzistergos, K.E., Rangel, E.B., Seidler, B., Saur, D., Hare, J.M.,
2015. Adult c-kit(+) progenitor cells are necessary for maintenance and regenera-
tion of olfactory neurons. J. Comp. Neurol. 523, 15–31.

Hariharan, N., Quijada, P., Mohsin, S., Joyo, A., Samse, K., Monsanto, M., De La Torre, A.,
Avitabile, D., Ormachea, L., McGregor, M.J., Tsai, E.J., Sussman, M.A., 2015.
Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial
aging. J. Am. Coll. Cardiol. 65, 133–147.

Jin, K., Mao, X.O., Sun, Y., Xie, L., Greenberg, D.A., 2002. Stem cell factor stimulates
neurogenesis in vitro and in vivo. J. Clin. Invest. 110, 311–319.

Lennartsson, J., Ronnstrand, L., 2012. Stem cell factor receptor/c-kit: from basic science to
clinical implications. Physiol. Rev. 92, 1619–1649.

Leri, A., Rota, M., Pasqualini, F.S., Goichberg, P., Anversa, P., 2015. Origin of cardiomyocytes
in the adult heart. Circ. Res. 116, 150–166.

Li, Z., Zhang, Z., Xie, J.X., Li, X., Tian, J., Cai, T., Cui, H., Ding, H., Shapiro, J.I., Xie, Z., 2011. Na/
K-ATPasemimetic pNaKtide peptide inhibits the growth of human cancer cells. J. Biol.
Chem. 286, 32394–32403.

Li, T.S., Cheng, K., Malliaras, K., Smith, R.R., Zhang, Y., Sun, B., Matsushita, N., Blusztajn, A.,
Terrovitis, J., Kusuoka, H., Marban, L., Marban, E., 2012. Direct comparison of different
stem cell types and subpopulations reveals superior paracrine potency and myocar-
dial repair efficacy with cardiosphere-derived cells. J. Am. Coll. Cardiol. 59, 942–953.

Makkar, R.R., Smith, R.R., Cheng, K., Malliaras, K., Thomson, L.E., Berman, D., Czer, L.S.,
Marban, L., Mendizabal, A., Johnston, P.V., Russell, S.D., Schuleri, K.H., Lardo, A.C.,
Gerstenblith, G., Marban, E., 2012. Intracoronary cardiosphere-derived cells for
heart regeneration after myocardial infarction (CADUCEUS): a prospective,
randomised phase 1 trial. Lancet 379, 895–904.

Marban, E., 2014. Breakthroughs in cell therapy for heart disease: focus on cardiosphere-
derived cells. Mayo Clin. Proc. 89, 850–858.

Marban, E., Cingolani, E., 2012. Heart to heart: cardiospheres for myocardial regeneration.
Heart Rhythm. 9, 1727–1731.

Mercola, M., Ruiz-Lozano, P., Schneider, M.D., 2011. Cardiac muscle regeneration: lessons
from development. Genes Dev. 25, 299–309.

Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio, M.,
Battaglia, M., Latronico, M.V., Coletta, M., Vivarelli, E., Frati, L., Cossu, G., Giacomello,
A., 2004. Isolation and expansion of adult cardiac stem cells from human and murine
heart. Circ. Res. 95, 911–921.

Moseley, A.E., Cougnon, M.H., Grupp, I.L., El Schultz, J., Lingrel, J.B., 2004. Attenuation of
cardiac contractility in Na,K-ATPase alpha1 isoform-deficient hearts under reduced
calcium conditions. J. Mol. Cell. Cardiol. 37, 913–919.

Nigro, P., Perrucci, G.L., Gowran, A., Zanobini, M., Capogrossi, M.C., Pompilio, G., 2015. c-
Kit(+) cells: the tell-tale heart of cardiac regeneration? Cell. Mol. Life Sci. 72,
1725–1740.

Olson, E.N., Schneider, M.D., 2003. Sizing up the heart: development redux in disease.
Genes Dev. 17, 1937–1956.

Patruno, R., Marech, I., Zizzo, N., Ammendola, M., Nardulli, P., Gadaleta, C., Introna, M.,
Capriuolo, G., Rubini, R.A., Ribatti, D., Gadaleta, C.D., Ranieri, G., 2014. c-Kit expression,
angiogenesis, and grading in canine mast cell tumour: a unique model to study c-kit
driven human malignancies. BioMed Res. Int. 2014, 730246.

Rubin, B.P., Singer, S., Tsao, C., Duensing, A., Lux, M.L., Ruiz, R., Hibbard, M.K., Chen, C.J.,
Xiao, S., Tuveson, D.A., Demetri, G.D., Fletcher, C.D., Fletcher, J.A., 2001. KIT activation
is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 61, 8118–8121.

Schmidt-Arras, D.E., Bohmer, A., Markova, B., Choudhary, C., Serve, H., Bohmer, F.D., 2005.
Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol.
Cell. Biol. 25, 3690–3703.

Smith, R.R., Barile, L., Cho, H.C., Leppo, M.K., Hare, J.M., Messina, E., Giacomello, A.,
Abraham, M.R., Marban, E., 2007. Regenerative potential of cardiosphere-derived
cells expanded from percutaneous endomyocardial biopsy specimens. Circulation
115, 896–908.

Tonack, S., Rolletschek, A., Wobus, A.M., Fischer, B., Santos, A.N., 2006. Differential expres-
sion of glucose transporter isoforms during embryonic stem cell differentiation. Dif-
ferentiation 74, 499–509.

van Berlo, J.H., Kanisicak, O., Maillet, M., Vagnozzi, R.J., Karch, J., Lin, S.C., Middleton, R.C.,
Marban, E., Molkentin, J.D., 2014. c-Kit+ cells minimally contribute cardiomyocytes
to the heart. Nature 509, 337–341.

Virag, J.A., Lust, R.M., 2011. Coronary artery ligation and intramyocardial injection in a
murine model of infarction. J. Vis. Exp.: JoVE, e2581.

Yarden, Y., Kuang, W.J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T.J., Chen, E.,
Schlessinger, J., Francke, U., Ullrich, A., 1987. Human proto-oncogene c-kit: a new
cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 6, 3341–3351.

806 H. Shi et al. / Stem Cell Research 16 (2016) 795–806

http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0040
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0040
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0050
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0050
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0055
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0055
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0055
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0060
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0060
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0060
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0065
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0065
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0065
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0065
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0070
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0070
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0070
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0075
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0075
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0080
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0080
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0085
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0085
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0090
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0090
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0095
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0095
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0100
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0100
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0100
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0105
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0105
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0105
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0110
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0110
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0110
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0115
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0115
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0120
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0120
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0125
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0125
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0130
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0130
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0135
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0135
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0135
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0140
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0140
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0140
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0145
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0145
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0150
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0150
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0150
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0155
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0155
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0160
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0160
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0165
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0165
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0165
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0170
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0170
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0170
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0175
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0175
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0175
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0180
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0180
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0185
http://refhub.elsevier.com/S1873-5061(16)30028-9/rf0185

	Marshall University
	Marshall Digital Scholar
	Spring 4-23-2016

	Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells
	Huilin Shi
	Christopher A. Drummond
	Xiaoming Fan
	Steven T. Haller
	Jiang Liu
	See next page for additional authors
	Recommended Citation
	Authors


	Hiding inside? Intracellular expression of non-�glycosylated c-�kit protein in cardiac progenitor cells
	1. Introduction
	2. Materials and methods
	2.1. Animals
	2.2. Isolation of cardiac progenitor cells
	2.3. Inducing endothelial lineage differentiation of CDCs
	2.4. Immunocytochemistry
	2.5. Flow cytometry
	2.6. RNA isolation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
	2.7. Western blot analysis
	2.8. Myocardial infarction (MI)
	2.9. Immunohistochemistry
	2.10. Statistical analysis

	3. Results
	3.1. Intracellular expression of c-kit protein in isolated CDCs
	3.2. Endothelial differentiation increased c-kit expression and glycosylation in isolated CDCs
	3.3. Inhibition of glycosylation attenuates Flk-1 and CD31 expression during endothelial differentiation in CDCs
	3.4. Inhibition of c-kit kinase activity by imatinib mesylate attenuated Flk-1 and CD31 expression during endothelial diffe...
	3.5. C-kit+ cells are involved in blood vessel formation in vivo

	4. Discussion and conclusion
	4.1. Intracellular expression of c-kit is a unique feature of cardiac progenitor cells
	4.2. Glycosylation of c-kit may be a novel mechanism that regulates progenitor cell differentiation

	Acknowledgments
	References


