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Abstract
• Results in developing two new methods to 

improve the accuracy of waveform extraction 
using characteristic evolution. 

• Numerical method: circular boundaries, with 
angular dissipation in the characteristic code.

• Geometric method: computation of Weyl 
tensor component Ψ4 at null infinity, in a 
conformally compactified treatment.

• Comparison and calibration in tests problems 
based upon linearized waves.



Introduction
• The artificial finite outer boundary present in 

Cauchy codes introduce two sources of error:
• The outer boundary condition, 
• Waveform extraction at an inner worldtube.
• The problem of proper boundary condition for 

a radiating system can be solved only by 
extension to Ι4 (conformal compactification).

• Cauchy Characteristic Extraction (CCE) offers 
a means to avoid these errors.



Introduction
• The CCE code extends the solution to Ι+ by 

matching the interior Cauchy evolution to an 
exterior characteristic evolution.

• The code uses the data on a worldtube 
provided by binary black hole spacetimes 
obtained with any Cauchy evolution codes, 
and computes the gravitational radiation 
reaching infinity in terms of the supplied 
boundary data.



Sources of Error
• Perturbative regime tests compares 

favorably CCE with Zerilli extraction, 
and show CCE advantage at small radii.

• Nonlinear tests show CCE stable, but 
plagued by numerical error in the 
numerical postprocesing at null infinity.

• Two ways: numeric and geometric, to 
improve the accuracy of the waveform.



Ways to improve accuracy
• Geometrical: computation of the asymptotic  

of part of Ψ4 and comparison with the news 
N.

• Numerical: improvement of intergrid 
interpolations between the patches smoothly 
covering the sphere. Comparison between:

• The circular stereographic patching, 
• The cubed-sphere patching.
• Alternatives: higher order finite difference 

approximations, adaptive mesh refinement.



Characteristic Formulation
• Based on a family of outgoing null hypersurfaces, 

from the worldtube to infinity, in Bondi-Sachs metric:

• The Einstein equations Gµν=0 decompose into 
hypersurface, evolution and conservation equations. 
The evolution equation takes the form:

• The code implements this as a second order finite 
difference scheme, all angular derivatives first order.

 

ds2 = − e2β V
r

− r2hABU AU B 
 
 

 
 
 du2 − 2e2β dudr − 2r2hABU B dudxA + r2hAB dxA dxB

 

2 rJ( ), ur − r −1V rJ( ), r( ), r
= −r −1 r 2∂ U( )r

+ 2r −1eβ∂ 2eβ − r −1V( ), r
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1
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1
2

qAq B + q AqB( )



Angular dissipation
• Numerical dissipation is necessary to:

– stabilize the intergrid interpolation error,
– suppress the circular boundary high frequency error

• The evolution equation takes the form:

• We introduce angular dissipation in the retarded time u
and radial r evolutions:

• We dissipate also the hypersurface equations.

 

∂u 1− x( )Φ,x + Φ( )= S, x = r R + r( ), Φ = xJ,

 

∂u 1− x( )Φ,x + Φ( )→ ∂u 1− x( )Φ,x + Φ( )+ εuh
3∂ 2W∂ 2∂u 1− x( )Φ,x + Φ( )

 

∂u 1− x( )Φ,x + Φ( )→ ∂u 1− x( )Φ,x + Φ( )+ εxh
3∂ 2W∂ 2Φ,u



Waveforms at null infinity
• Conformal Penrose compactification of Bondi metric:

• Future null infinity I+ is at l=0. The Bondi mass (total 
energy), news N and Ψ4

0 (radiation power), are 
constructing from expansion of metric in powers of l.

• H, HAB, cAB and LA are expansion coefficients.
• One can require the Bondi coordinate to be inertial 

(Minkowsky) at I+ but it is not assumed: the waveform 
characteristic extraction is done in null coordinates. 

 

ˆ g µν dxµdxν = − e2βVl3 − hABU AU B( )du2 + 2e2β dudl − 2hABU B dudxA + hAB dxA dxB

 

l =1 r, ˆ g µν = l2gµν

 

2HC (A DB )L
C + ∂uHAB − HAB DC LC = O(l)



Calculation of the News
• In an inertial conformal Bondi frame the News are :

• where:

• An explicit calculation leads to:

• In inertial Bondi coordinates:
• The general form is used, which is challenging 

because of second order angular derivatives of ω.

 

˜ g µν = Ω2gµν = ω 2 ˆ g µν , Ω = ωl, QAB := ˜ g ab I + = ω 2HAB

 

N = lim
Ω→0

1
2Ω

QαQβ ˜ ∇ α ˜ ∇ βΩ

 

N =
1
4

e−2iδω−2e−2 H FαF β ∂u + L L( )cAB −
1
2

cAB DC LC + 2ωDA ω−1DB ωe2 H( )[ ] 
 
 

 
 
  

H AB = F A F B + F A F B( )/2 F A = qA K +1
2

− q A J 1
2 K +1( )

, Qβ = e− iδω−1F β + λ ˜ n β

 

N =
1
4

QAQB∂ucAB



Calculation of Weyl tensor
• Weyl tensor vanishes at I+ (asymptotic flatness)

• The inertial radiation field in terms of code variables:

• involves lengthy algebra. In inertial Bondi coordinates

• However, general form is used, which is challenging 
because of third order angular derivatives of ω.

 

ˆ n µ = ˆ ∇ µl, ˆ l µ∂µ = ∂l

 

ˆ Ψ := −
1
2

lim
l →0

1
l

ˆ n µ ˆ m ν ˆ n ρ ˆ m σ ˆ C µνρσ = −
1
2

Ψ 4
0,

 

Ψ =
1
2

ω−3e−2iδ ˆ n µF A F B ∂µ
ˆ Σ AB −∂A

ˆ Σ µB − ˆ Γ µB
α ˆ Σ Aα + ˆ Γ AB

α ˆ Σ µα( )
I +

 

Ψ =
1
4

QAQB∂µ
2cAB = ∂µ

2∂lJ I + = ∂uN .



Linearized Expressions
• The general nonlinear representation of Ψ in terms of 

the computational variables reduces to a simpler form 
in first order perturbations off Minkowski background.

• This provide a starting point to compare the 
advantages between computing the radiation via the 
Weyl component or the news function.

� ω propagates across patches

 

Ψ =
1
2

∂u
2∂lJ −

1
2

∂uJ −
1
2

∂ L −
1
8

∂ 2 ∂ L + ∂ L( )+ ∂u∂ 2H

 

N =
1
2

∂u∂lJ +
1
2

∂ 2 ω + 2H( )

 

2 ˆ n α∂α logω = −e−2 H DA LA .



Patching the Sphere
• The nonsingular description of smooth tensor fields 

on the sphere requires more than one coordinate 
patch.

• We consider two treatments: the stereographic, using 
2 patches, and the cubed-sphere, using 6 patches.

• In the stereographic approach, every point on the 
sphere is covered by at least one of the patches, and 
around equator, points are covered by two patches.

• We implement the circular stereographic method, 
based on the composite-mesh method, where the 
overlap is reduced to a circular region around equator.



Circular patches
• Complex stereographic coordinates cover the sphere

• Unit sphere metric in each patch:

• All boundary points of one patch are interior points of 
another patch. The overlapping of the patches is key 
to the stability of method. The discretization is:

• The active finite difference grid:
• Stability requires that the interpolation stencil for one 

patch ghosts points lies below equator in other patch.

 

ξN = qN + ipN = tan(θ /2)eiϕ , ξS =1/ξN

 

qAB dxA dxB=
4

P 2 (dq2 + dp2), P =1+ q2 + p2, qA =
P
2

(1,i), q2 + p2 =1

 

qi = −1+ (i − O −1)∆, p j = −1+ ( j − O −1)∆,1≤ i, j ≤ M +1+ 2O

 

qi
2 + p j

2 ≤1+ (O − RE )∆

 

FS (ξS =1/ξN ) = FN (ξN )(−1)se−2isϕ



The cubed sphere
• Sphere covered by 6 coordinate patches, obtained by 

by projecting 6 faces of a circumscribed cube.
• Recently applied to characteristic evolution gr-qc/0610019
• For M2 stereographic grid points, there are πM2/4 grid 

cells inside equator on each hemisphere.
• In the cubed sphere grid, with N2 points per patch, the 

entire sphere is covered by 6xN2 points. This gives:

• The tests are run with M=100,120 for the circular patch, 
which correspond to N=51,61 for cubed-sphere, t=120.

• We monitor the convergence and smoothness of error:

 

ε(Φ) = Φnumeric − Φanalytic ∞
 

N 2 ≈ π /12( )M 2



Comparison between 
circular and cubed methods
• A test of 2D wave propagation on the sphere:

• Allows direct comparison between the circular 
patches and the cubed-sphere methods, without 
characteristic evolution and Ψ4 and N computation.

• Angular dissipation, necessary for the circular case:

• Emphasis on the accuracy of the angular derivatives 
required by Ψ4 and N in the waveform extraction. 

 

−∂t
2Φ + ∂ ∂ Φ = 0, Φ = cos ωt( )Ylm, ω = l l +1( )

 

∂t
2Φ → ∂t

2Φ + ε∆3D4∂tΦ, D4Φ = P 2 /4 D+qD−q + D+ pD+ p( )( )2
Φ



Error in Φ and δ2Φ

Algrthm T=1.2 T=12 T=102 T=120

circular 2.00 1.99 1.99 2.00

cubed 1.99 1.97 1.98 1.99

Algrthm T=1.2 T=12 T=102 T=120

circular 2.02 1.95 1.99 2.01

cubed 1.95 2.02 2.00 1.97



Error in δ3Φ

Algrthm T=1.2 T=12 T=102 T=120

circular 2.28 2.03 1.99 2.01

cubed 1.11 0.88 2.01 1.96



Our choice
• For ε(Φ),  clear 2nd order convergence for both 

methods is observed. The  cubed sphere error is 
smaller than the stereographic error (1/3).

• For ε(δ2Φ), the cubed sphere error is 2/3 the 
stereographic error. Again, 2nd order convergence.

• For ε(δ3Φ) the cubed sphere method shows poor 
convergence at early times. 

• Until t=60, the cubed-sphere method has the largest 
error, but at the end, is 4/5 the stereographic error.

• These results justify our choice of the circular 
patches stereographic method in the comparison of 
the news N and Weyl tensor Ψ4 extraction.



Comparisons of News and 
Weyl tensor extraction

• We base the test on a class of solutions in Bondi-
Sachs form to the linearized vacuum Einstein equation 
on a Minkowski background:

• Solution: well-behaved at I+ and well-defined at r>r0>0

 

J = (l −1)l(l +1)(l + 2) 2Ylm Re(Jl (r)eiνu)

 

N = Re eiνu lim
r→∞

−
l(l +1)

4
Jl −

iν
2

r2Jr,l

 
 
 

 
 
 + eiνuβl

 

 
 

 

 
 (l −1)l(l +1)(l + 2) 2Ylm

 

Ψ = N,u, NΨ = N u= 0 + Ψdu
0

u

∫

 

J2(r) =
24β0 + 3iνC1 − iν 3C2

36
+

C1

4r
−

C2

12r3 , J3(r) =
60β0 + 3iνC1 + ν 4C2

180
+

C1

10r
−

iνC2

6r3 −
C2

4r4

 

C1 = 3 ⋅10−6, C2 =10−6, β0 = i ⋅10−6



Test results for J

• Runs with circular patch, circular without dissipation, 
and the original square patch methods. The plots 
show that error increases with x and is maximum at 
I+. Also, that angular dissipation reduces the error.



Convergence for J

Vrbl circle crnods square

T=1 2.01 2.01 2.01

T=10 1.95 2.00 1.99

T=90 2.07 1.96 2.00

T=100 1.92 2.01 1.99

Vrbl circle crnods square

T=1 2.02 2.02 2.02

T=10 1.99 1.99 2.00

T=90 2.02 2.02 2.04

T=100 2.00 2.00 1.99



Surface Plots for J



Test results for the news:
N (left) and NΨ (right)

Vrbl circle crnods square

T=1 2.04 2.04 2.04

T=10 2.04 1.99 2.04

T=90 2.01 2.01 2.06

T=100 1.98 2.00 1.93

Vrbl circle crnods square

T=1 2.08 2.08 2.08

T=10 2.09 2.05 2.10

T=90 2.05 2.00 2.06

T=100 1.98 2.01 1.93



Surface Plots for N

• Effectiveness in applying dissipation. Slightly more 
jaggedness near the equator for the circular patches 
is overbalanced by the relative smallness of its error.



Surface Plots for NΨ

• The error in NΨ is slightly smaller, otherwise there is 
little difference between N and NΨ.

Vrbl circle crnods square

N 2.25x10-9 3.32x10-9 2.90x10-9

NΨ 1.71x10-9 2.75x10-9 2.32x10-9



Conclusions
• For linearized case no method is clear winner.
• The news calculated on a circular patch had 

lower error than that on a square patch (30%). 
• Weyl tensor extraction is slightly more accurate 

than news function extraction (24%).
• Very small fractional error (0.1%) in metric J.
• The corresponding averaged error in the NΨ

and N was 4% for the circular patch runs and 
the maximum error at the equator was 9%.



Conclusions
• All errors were second order convergent. 
• The  errors did not vary appreciably (30%) 

with the choice of discretization method.
• Intrinsic difficulty in extracting waveforms due 

to the delicate cancellation of leading order 
terms in the metric and connections.

• The excellent accuracy that we find for the 
metric suggests that perturbative waveform 
extraction must suffer the same difficulty.



Conclusions
• Waveforms are not easy to extract accurately.
• The convergence of the error is a positive sign 

that higher order finite difference 
approximations might supply the accuracy 
needed for realistic astrophysical applications. 

• Whether the advantages the new methods 
proposed here prove to be significant will 
depend upon the results of future application 
in the nonlinear regime.



Thanks
• Collaboration: Nigel Bishop, Bela Szilagyi, 

Jeff Winicour
• Strategies for the Characteristic Extraction 

of Gravitational Waveforms (arXiv:0808.0861)
• M. C. Babiuc, N. T. Bishop, B. Szilagyi, J. 

Winicour, submitted to Physical Review D
• Open Source CCM: we work toward making 

the characteristic extraction module available 
to the numerical relativity community.

http://arxiv.org/find/gr-qc/1/au:+Babiuc_M/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Bishop_N/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Szilagyi_B/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Winicour_J/0/1/0/all/0/1
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