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1. Abstract 
 
Chemosignaling – passing information by means of chemical compounds that can be detected 

by members of the same species – is a very important form of communication for most 

mammals.  Flying fox males have odiferous marking secretions on their neck-ruffs that 

include a combination of secretion from the neck gland and from the urogenital tract; males 

use this substance to establish territory, especially during the mating season.  The secretions 

of flying fox males from three Australian species – spectacled (Pteropus conspicillatus), 

grey-headed (P. poliocephalus), and black (P. alecto) – were compared using high pressure 

liquid chromatography (HPLC); two spectacled females were also examined to compare 

secretion content without the addition of urogenital components, as female neck-ruff 

secretions originate solely from the neck glands.  Male secretions showed five to six major 

components, and each species demonstrated a unique chemical profile.  Further, female 

secretions revealed a greater volume of components than expected, though male secretions 

contained more major components that were generally at greater concentrations.  It was found 

that spectacled, grey-headed, and black flying fox secretions had many shared components, 

which may be related to the ability of black flying foxes to interbreed with the other two 

species.  Further examination is needed to determine the component identities, though this 

study hypothesizes them to be alcohols, esters, hydrocarbons, or ketones based on these 

compounds’ unique odors and common abundance in mammalian secretions. 

 
Key words: flying foxes, marking secretions, high pressure liquid chromatography, neck 

gland, urogenital  
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4. Introduction 

4.1. Flying foxes 

4.1.1. Megachiroptera 

Bats are flying nocturnal mammals in the order Chiroptera, which includes the sub-

orders Megachiroptera (megabats) and Microchiroptera (microbats) (Hall and Richards 

2000).  Pteropodidae – with an Australasian and African distribution – is the sole family of 

the megabats, while microbats encompass seventeen families and are found on every 

continent except Antarctica.  The similarity in wing structure between these two groups is a 

case of convergent evolution, as this outer form is most efficient for flying mammals.  These 

bats are greatly separated evolutionarily; the microbats most recently shared a common 

ancestor with shrews, while megabats are most closely related to Madagascar lemurs and are 

actually considered primates (Hall and Richards 2000).  Consequently, these sub-orders have 

very different characteristics.  Microchiroptera are primarily carnivorous and insectivorous 

bats, often with poor eyesight, that rely primarily on echolocation to navigate.  In contrast, 

Megachiroptera are frugivorous (fruit-eating), nectivorous (nectar-eating), and pollen-eating 

bats that navigate by means of their acute vision and highly developed sense of smell.  In 

general, megabats are larger than microbats, although this is not true in all cases. 

4.1.2. Australian Species and Distribution 

Australia has seven species of megabats in the genus Pteropus (Hall and Richards 

2000).  These bats are known as flying foxes because their large size and pointed muzzles 

give the bat’s head a fox-like shape.  The four most common species in Australia are P. 

conspicillatus (spectacled flying fox), P. poliocephalus (grey-headed), P. alecto (black), and 

P. scapulatus (little red) – all found in the eastern, northern and western forested edges of the 

Australian continent (Figure 1).  The other three flying fox species are limited to individual 
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islands off the Australian coast.  Pteropus inhabit coastal tropical to temperate forests, mainly 

in rainforests but also including mangroves, swamps, and tall open forests, though always 

within a few kilometers proximity to rainforest (Churchill 1998).  Spectacled flying foxes, 

named for the rings of light-colored fur around their eyes, have the smallest range of the 

continental Australian species, from Cadwell to Cooktown with a disjunct population in the 

Cape York Peninsula Iron Range (Fox et al. 2008).  The grey-headed flying foxes, found 

from Maryborough in Southern Queensland to Melbourne, are the only species with fur 

extending all the way down to the toes (Churchill 1998).  The largest of the Australian 

species is the black flying fox, one of the biggest bats in the world with a wingspan up to 1.5 

meters.  Blacks also have the largest distribution in Australia, from northern New South Wales, 

up the eastern part of Queensland, across the top of the Northern Territory and Western 

Australia, and down to Carnarvan.  Little reds are the smallest of these four Pteropus species, 

but have the greatest range.  They extend from Melbourne northeast across northern Australia 

and down to Carnarvan, as well as extending furthest inland of all the continental species.  

 
Figure 1: Distribution Map of Australia’s Flying Foxes 
Map of the distribution of Australia’s four mainland species of flying foxes.  Created using 
Churchill 1998, Fox et al. 2008, and Hall and Richards 2000 as references. 



 

4.1.3. General Life History 

Though flying foxes are considered nocturnal, they are also active for short periods 

throughout the day, alternating between napping and socializing within their roost camps 

(Hall and Richards 2000).  The camps can be extensive, with thousands of bats hanging from 

the branches of mature rainforest trees.  At dusk, they leave the camps to feed, returning in 

early dawn; the preferred food for flying foxes is blossoms (nectar and pollen), followed by 

rainforest fruits and occasionally leaves.  During feeding times they typically cover between 

4 and 30 kilometers, but often up to 50 kilometers, in a single night (Churchill 1998).  Flying 

foxes play a critical role in Australian forest ecosystems as pollinators and as one of the 

primary seed distributors for a significant number of rainforest fruits (Hall and Richards 

2000).  

A female flying fox gives birth to a single offspring per year and does not reach 

sexual maturity until age two (Hall and Richards 2000).  Female flying foxes carry their 

offspring for about three weeks, after which the young are too heavy to carry and are left in 

crèches within the colony trees during the mothers’ nighttime forages.  Maternal care 

continues for about four to five months, during which time the juveniles learn to fly and then 

begin to explore and forage.  The average lifespan of wild flying foxes is six years (Fox et al. 

2008). 

4.2. Previous Research 

4.2.1. Male Reproductive Anatomy and Territoriality  

Some of the major features of the male reproductive system include two testes 

(Appendix A, Figure A1), the penis (Appendix A, Figure A2), and a small prostate gland 

(Hall and Richards 2000).   Flying foxes also possess pairs of highly specialized sebaceous 

(oily) glands located on the neck-shoulder region (Spencer and Flick 1995, Wood et al. 

2005).  Other gland sites are thought to vary in location among species and may include the 
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base of the ear toward the mouth and the junction of the wing-membrane against the body 

(Hall and Richards 2000), although not all gland locations have been definitively identified 

(Spencer pers. comm.).  Male flying foxes are not able to breed until two and a half years of 

age (Hall and Richards 2000).  However, observations made during the present study indicate 

that males can begin secreting marking compounds well before they reach breeding age; the 

youngest male sample received was from a ten month old flying fox in Sydney.  The grey-

headed flying fox’s neck glands are androgen-sensitive and enlarge in response to elevated 

hormone levels corresponding to the breeding season, beginning in January and maintained 

until April; this gland augmentation pattern is suspected to occur for other species and 

possibly other glands as well (Welbergen 2004).   

Additional secretions produced in the male urogenital tract are rubbed onto the neck-

ruff from the penis, where they mix with the neck gland secretions (Appendix A, Figure A3) 

in a process called anointing (Appendix A, Figure A4); anointing behavior has been observed 

in spectacled, grey-headed, black, and little red flying foxes (Spencer and Flick 1995). 

Anointing occurs year-round, though with a much greater frequency during mating season.  

Males mark their territory, an approximately 3.5 body-length segment of a branch in the roost 

site, during the breeding season by rubbing their shoulders and muzzle along the branch, 

leaving behind a marking secretion trail (Welbergen 2004).  Though similar in most other 

respects, the little red reproductive cycle varies by six months from the other three mainland 

species; their peak mating time is November to December (Hall and Richards 2000). 

4.2.2. Marking Compounds  

Chemosignaling – passing information by means of chemical compounds that can be 

detected by conspecifics (members of the same species) – is a very important form of 

communication for most mammals (Burger 2005).  Scent marking compounds are designed 

to be long-lasting, in order that an individual’s territory or reproductive status can continue to 
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be displayed over days or even months (Maruani 1988).  Aldehydes, alcohols, hydrocarbons, 

esters, fatty acids, ketones, lipids, and organic acids are some of the chemical classes that 

have been most commonly found in mammalian gland secretions (Stander et al. 2002, Burger 

2005, Lee et al. 2007).  These chemicals are generally volatile and aromatic, and evaporate 

relatively quickly (Cram and Hammond 1964).  Compounds such as squalene and cholesterol 

are common in the secretions of many land-dwelling mammals and serve as fixatives to 

further extend the life of the volatile compounds (Wood et al. 2005, Scordato et al. 2007).   

Several studies have examined Microchiroptera secretions.  A study using gas 

chromatography in combination with mass spectrometry (GC-MS) found that the secretions 

on the backs of two species of long-nosed microbat males (Leptonycteris curasoae, L. 

yerbabuenae) included fatty acid, cholestane, and cholesterol compounds (Nassar et al. 

2008).  Due to the appearance of this marking patch only during times of breeding, the 

authors hypothesized that the patch is related to mating behavior.  Compounds from the 

wing-sac glands of microbats have been studied most thoroughly among the Chiroptera.  

Brooke and Decker (1996) found a wide variety of glycolipids and nonpolar lipids beneath 

the wings of the fishing bat (Noctilio leporinus) using GC-MS.  

Research on ringtailed lemur (Lemur catta) scent markings (Scordato et al. 2007) is 

especially relevant to this current study, as lemurs are actually the closest related animals to 

Megachiroptera (Hall and Richards 2000).  Scordato et al. examined secretions from several 

locations and found genital secretions have a link to the time of year (breeding or non-

breeding season), while other (wrist) secretions were independent.  Male scrotal (genital) 

secretions contained primarily organic acids and esters.   

Wood et al. (2005) examined four Indian and Indonesian Pteropus species for the 

compounds within the shoulder gland secretions of males.  Compounds were commonly 

found in the classes alcohols, aldehydes, amides, carboxylic acids, esters, hydrocarbons, and 
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ketones.  They found large differences among the species’ marking compounds even at the 

level of chemical classes.  Spencer and Flick (1995) analyzed male spectacled flying fox 

marking secretions using GC; in contrast to the urogenital secretions of other Australian 

flying fox species, which are straw-colored, the secretion of the spectacled is cranberry-red.  

A single major component in the secretion was found, suspected to be a long chain fatty acid, 

which also appears to be the cause of the distinctive smell of male Pteropus.  The secretions 

were thought to originate in the prostate gland then mix with urine in the bladder before being 

secreted, though this could not be directly determined. 

4.2.3. Australian Flying Fox Inter-species Breeding 

The large distribution of the black flying fox means its territory overlaps with the 

spectacled in the north and the grey-headed in the south; because their breeding seasons also 

correspond, cases have been recorded of interbreeding between these species (Martin 1999).  

Although the little red’s territory overlaps with all three of these other species, the six month 

off-set of its mating cycle prevents hybridization.  Black and grey-headed flying foxes have 

been found to be able to interbreed and produce fertile hybrid offspring, while black and 

spectacled interbreeding produces offspring that resemble only the spectacled parent (Webb 

and Tidemann 1995).  No cases of spectacled and grey-headed flying fox interbreeding have 

been recorded, as their home ranges do not connect. 

4.3. Rationale and Aims 

In order to fully appreciate the influence of chemical signaling on community and 

ecosystem processes, a thorough knowledge of the mechanisms of chemical information 

conveyance from the gene to the individual is needed (Takken and Dicke 2006).  Therefore, 

the highly multidisciplinary approach of modern chemical ecology is likely to make an 

important contribution to biology in the 21st century.  The nature of chemical information 

transfer mandates further understanding of interactions based upon knowledge of the 
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chemicals involved, which can range from highly volatile to non-volatile compounds. 

Organisms can produce a vast diversity of chemicals, often in minute amounts.  Modern 

analytical technology allows for their identification by standard methodology, usually GC-

MS or high pressure liquid chromatography (HPLC). 

Flying fox populations are currently experiencing drastic declines from habitat loss, 

culling by fruit farmers, tick paralysis, electrocution on powerlines, and becoming trapped on 

barbed wires fences, combined with a slow population growth rate (Fox et al. 2008).  

Consequently, the spectacled and grey-headed flying foxes are currently considered 

vulnerable (Department of Sustainability and the Environment 2008).  Furthermore, bats play 

important ecological roles across the globe as either dispersers and pollinators or controllers 

of insect populations.  A better understanding of Pteropus communication can lend insights 

into their social and reproductive behaviors, and thereby assist in the conservation of flying 

foxes and other bat species.  

Although most Chiroptera, including megabats, are social animals that roost and raise 

their young in colonies, only a very few studies have examined communication (vocal and 

non-vocal) in bats.  Little is known about communication between group members in bat 

societies (Dechmann and Kamran 2005); minimal research has been conducted on 

Microchiroptera, and even less on Megachiroptera.  Therefore, almost nothing has been 

systematically studied about megabat marking secretions.  To begin resolving this 

Megachiroptera knowledge gap, this study aims to examine three species of flying foxes in 

Australia for similarities and differences in the neck-ruff marking secretions, which are 

composed of a mix of contributions from the urogenital track and neck glands.  Further, this 

study aims to see if the secretions of spectacled, grey-headed, and black flying foxes are 

relatively similar, given that interbreeding can occur, but still distinct, given that they are 

considered different species. 
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5. Methodology 

5.1. Sample Collection and Preparation  

The study was conducted at the Cape Tribulation Tropical Research Station, located 

in the Daintree Rainforest of North Queensland, Australia.  This station houses four adult 

male and two adult female, non-releasable spectacled flying foxes.  To collect samples from 

these bats, a small piece of clean paper tissue was rubbed vigorously against the neck of the 

animal until the tissue was thoroughly wet with marking secretion; the tissue was then sealed 

into a clean plastic bag.  Outside facilities from southern Queensland to southern New South 

Wales, with colonies of grey-headed and black flying foxes, were contacted to send in 

samples.  Personnel at the offsite facilities were instructed to collect secretion specimens in 

the same manner as the spectacled flying fox samples.  Flying fox ages of sampled animals 

ranged from ten months to twenty years.  Comparison samples from a male spectacled flying 

fox of overnight-fermented neck secretion and fresh, newly anointed secretion were run; no 

obvious differences occurred in content or relative amounts of components, so the time of 

anointing prior to sample collection was not a variable examined. 

Collected samples were prepared for HPLC runs by solvent extraction, a technique 

used when the compounds being tested are soluble in organic solvents – methanol in this 

case.  A 0.25 centimeter square piece of paper tissue, saturated with the sample, was removed 

from the main collection tissue and placed into a small vial.  For most samples used in pre-

testing, a concentrated solution was made by adding 0.5 mL of methanol and then diluted 

1:20 by placing 10 μL of concentrated sample and 0.2 mL of methanol into a new vial.  For 

samples used in the ultimate pre-testing stages and in final analysis, 3.0 mL of methanol was 

added directly to the vial with the 0.25 cm piece of sample tissue.  Original collection tissues 

and concentrated sample vials were stored in a freezer (-8°C).  All other samples were stored 

at room temperature (30°C). 
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5.2. HPLC  

5.2.1. Background 

Secretion samples were analyzed with HPLC by adsorption chromatography.  A 

sample was injected into the HPLC column where a layer of sample molecules (the solute) 

coated the surface of silica (the adsorbent) that filled the inside of the column.  The sample 

compounds became adsorbed onto the column while the eluting solution (running solution), 

flowing continuously through the column, caused the sample components to differentially 

separate.  Separation is based on the varying degrees of bonding to the column, depending on 

the components’ chemical properties.  All runs were conducted isocratically (uniform 

composition of the running solution), so no elutant gradients were used.  As the compounds 

left the column, they were detected as changes in UV absorbance by a spectrophotometer.  

The resulting peaks indicated the sample components that show absorbance in the UV 

spectrum; more than one compound may be represented within a single peak, depending on 

the resolution (peak separation) created by the choice of column type, running solution, and 

other running settings. 

5.2.2. Settings 

The HPLC (ISCO Inc., Model 2350) had an elutant flow rate of 1.00 mL/min and an 

operating pressure ranging between 2000-3000 psi.  Injections were made using a gas-tight 

syringe, capable of injecting 1.0 to 10.0 μL volumes.  The Liquid Chromatography UV 

Spectrophotometer (Waters-Millipore, Lambda-Max Model 481) was set to measure 

absorbance at a detection wavelength of 254 nm, which is commonly used for organic 

substances that often strongly absorb (Skoog and Leary 1992).  Data was recorded on a chart 

recorder (LKB Bromma, 2210 2-Channel Recorder) that plotted the peaks on paper as a 

function of time.  Settings for the recorder were a paper speed of 0.2 mm/sec, 0.5 mm/sec, 10 

mm/sec, or 10 mm/min (depending on other parameters) and a sensitivity of 20 mV or 50mV 
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(depending on how concentrated the samples were). 

Prior to running samples each day, the performance of each column was tested and 

compared to a standard that had been made upon the purchase of each column, using the 

same running conditions and test mix solution.  The test mix used was the Supleco HPLC 

Isocratic Systems Diagnostics Mix (Sigma-Aldrich, 48270-U) that contained four compounds 

(ethyl, methyl, propyl, and butyl 4-hydrobenzoate), each generating a distinct peak.  Eight 

microliters of running solution were drawn up into the syringe, followed by 2 μL of test mix 

for each injection; the initial addition of eluting solution provided a “wash-out” of the injector 

port and tubing, to prevent carry-over of components into later runs. 

5.2.3. Pre-testing 

Before beginning the actual sample analysis, the ideal running conditions had to be 

found that maximally separated the components of the secretions.  This preparation process 

occurred over 25 days and involved testing various running conditions – four different 

columns (SunFire C18, 5 μm silica coating, 4.6 mm inner diameter x 150 mm length, Waters; 

μBondapax C18, 5 μm, 3.9 mm x 300 mm, Waters-Millipore; Zorbax SB-C18, 5μm, 4.6 mm 

x 150 mm, Agilent; Luna C8(2), 5 μm, 4.6 mm x 150 mm, Phenomenex) and 11 running 

solutions (100% methanol; 90% methanol:10% water; 80% methanol:20% water; 70% 

methanol:30% water; 60% methanol:40% water; 50% methanol:50% water; 10% 

methanol:90% water; 100% water; 60% acetonitrile:40% water; 40% 50 mM potassium di-

hydrogen phosphate:60% methanol; 70% ethanol:30% water) were examined.  Running 

solutions were degassed prior to use, to prevent introducing air bubbles into the column and 

causing false peaks to appear on the readout.  The conditions yielding the best peak resolution 

were the SunFire C18 column with 60% methanol:40% water, and this configuration was 

subsequently used in all sample runs.  Additionally, running solution flow rates of 1.00 

mL/minute and 0.250 mL/minute were both examined; the former was found to be more 
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efficient while yielding equivalent resolution and was therefore used throughout most of the 

experiment. 

The secretion samples used during this testing process to find the best running 

conditions were dissolved in methanol solvent and were collected from two spectacled 

(“Jasper” and “Pushkin”), two grey-headed (“Koda” and “Boris”), and one black (“Bear”) 

flying foxes.  Two solvents had been experimented with for getting the secretions into 

solution: the first, 60% methanol:40% water, as a solvent was found to result in hydrolysis; 

therefore, pure methanol was chosen for use throughout the study.  Most injections during 

pre-testing involved a 5 μL running solution “wash” drawn up prior to the 5 μL of sample; 

injections used in the ultimate pre-testing stages and in final analysis involved an 8 μL 

running solution “wash” drawn up prior to the 2 μL of sample. 

5.3. Sample Analysis

The running conditions determined by the pre-testing included a SunFire C18 column, 

methanol solvent, 60% methanol:40% water eluting solution, 1.00 mL/minute flow rate, 

joint-wash injection including 8 μL running solution and 2 μL sample, 20 mV recorder 

sensitivity, and 0.5 mm/sec paper speed; these were held constant for all runs.  Three types of 

blanks were first injected: 10 µL 60% methanol:40% water, 8 µL 60% methanol:40% water 

with 2 µL pure methanol, and 8 µL 60% methanol:40% water with 2 µL sample blank (0.25 

cm of clean tissue in 1.0 mL methanol).  The species and individual for each sample were 

also recorded for every run.  Species and genders of flying foxes analyzed included 

spectacled males, grey-headed males, black males, and spectacled females.  Each individual 

sample was tested successively; once all runs had been completed, a repeat was conducted for 

all blanks and samples.  All final sample analyses were completed over the course of one day 

to reduce the number of possible confounds. 

 



 

5.4. Data Analysis

Peak distances were calculated by measuring the distances between the start of a run 

and the very top of a peak, for all major (greater than 5 mm above baseline) sample peaks; 

measurements were rounded to the nearest 0.25 mm.  For less distinct, but still discernable, 

peaks, a ruler was used to locate the point at which the slope changed, indicating the meeting 

of two major compounds.  Differences in peak height indicate variation in compound 

absorbance, while peak widths indicate the volume of substance.  Values are presented as the 

mean ± standard deviation unless otherwise indicated.   

6. Results 
 
 The secretions collected from the neck-ruffs of spectacled males (N = 4), grey-headed 

males (N = 4), black males (N = 3), and spectacled females (N = 2) were analyzed in this 

study.  Among these species, a total of six unique, major peaks were discernable and have 

been arbitrarily labeled Components A-F (Table 1, Figure 2).  Not all species and sexes 

possessed all of these components; only black males had Component D, and spectacled 

females did not show Component F (Table 1, Figure 3).  Little variation was present between 

groups for the peak distances (Figure 3, Figure 4), indicating that the same compounds were 

present among most groups.  Differences did occur between groups in the relative amounts of 

many secretion components (Figure 4). 

  Mean Peak Distances (mm) ± SD of Major Components 
Species/Sex A B C D E F 
Spectacled Male 49.2 ± 0.2 57.6 ± 1.1 60.3 ± 1.3 - 70.7 ± 1.7 77.6 ± 2.8 
Grey-headed Male 48.9 ± 0.3 57.6 ± 0.5 60.7 ± 0.8 - 71.6 ± 1.1 76.8 ± 1.6 
Black Male 49.0 ± 0.2 58.4 ± 0.7 61.8 ± 0.5 64.2 ± 0.6 71.8 ± 1.0 77.7 ± 2.7 
Spectacled Female 48.7 ± 0.2 58.2 ± 0.6 61.1 ± 0.7 - 72.0 ± 1.1 - 
              

All 49.0 ± 0.3 57.9 ± 0.8 60.9 ± 1.0 64.2 ± 0.6 71.4 ± 1.3 77.3 ± 2.3 

Table 1: Mean Peak Distances of Major Components by Species and Sex 

Among the discernable HPLC peaks, spectacled and grey-headed males possessed 
Components A, B C, E, and F; black males had all components; and spectacled females had 
Components A, B, C, and E.
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Mean Peak Distances for the Six Major Components
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Figure 2: Mean Peak Distances of Major Components 
Six major peaks (Components A-F) were able to be differentiated from the HPLC readouts.  
All peaks are considered distinct from each other, as none of the standard deviations overlap 
between compounds.  Error bars are given as ± one standard deviation. 
 

Mean Peak Distances between Flying Fox Groups for the Six Major 
Components
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Figure 3: Mean Peak Distances Among Flying Fox Groups 
Little variation is present between the four flying fox groups for each of the major 
components, which indicates that the peaks are the same between the species and sexes 
examined.  Spectacled males (N = 4) and grey-headed males (N = 4) possessed compounds 
A, B C, E, and F; black males (N = 3) had all components; and spectacled females (N = 2) 
had components A, B, C, and E.  Error bars are given as ± one standard deviation. 
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      A   BCD  E  F 

 

Spectacled Female 

Black Male 

Grey-headed Male 

Spectacled Male 

Figure 4: Stacked HPLC Plots from Example Individuals  
This figure illustrates the six major compound peaks for the spectacled male, grey-headed male, 
black male, and spectacled female flying foxes, using representative individuals from the first 
round of result runs.  The small lines on the far left indicate the injection point (start of each 
run).  The colored lines show the relationship between the major compound peaks among the 
four flying fox sample groups.  Component A is labeled with a red line, B is orange, C is green, 
D is pale blue, E is dark blue, and F is purple.  Component D is present only for black males; 
Component F is absent for spectacled females. 
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7. Discussion 
 
7.1. Interpretation of Results  

Data indicated that the males possessed a unique neck-urogenital secretion chemical 

profile for each species examined, though they did contain many similar components (Figure 

3, Figure 4).  Spectacled and grey-headed male flying foxes appeared to differ only in the 

relative amounts of the major components (Figure 4), while black males had one more major 

component than either of the other two species (Figure 3).  Female secretions contained one 

fewer major component than the secretions of the males, though still sharing four of the five 

major compounds found for the males of all three species (Figure 3). 

It is important to note that the definition of “major component” here is determined by 

the resolution ability of the equipment used during the present study.  It is possible that more 

than one actual component is contained within one visible peak, but the analytical conditions 

used were not able to adequately separate these components; most other minor components 

would be unable to be detected.  Therefore, the observed differences among the species are 

“indicative,” rather than definitive. 

Definite differences were observed between individuals of the same species; though 

the individuals’ secretions retained the overall pattern of relative component amounts for the 

species, there were slight variations within these general trends (Appendix C, Figures C4-

C16).  Lemurs have also been observed to have individual scent profiles in previous research 

studies (Scordato et al. 2007). 

The collection of female neck secretions aimed to differentiate which male secretion 

components originated from the neck gland and which originated in the male urogenital tract, 

since females are anatomically incapable of producing urogenital secretions.  It was assumed 

that the female secretion components would reveal which compounds were neck gland 

related, and from there, extrapolations could be made to determine what the urogenital 
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secretions must be.  However, because male flying foxes often rub against females, it is not 

possible to definitively determine whether the samples collected from the female spectacled 

flying foxes contained only the female’s own neck gland secretion or whether samples had 

been contaminated by interaction with a male, and therefore the male’s combined 

contribution of urogenital and neck secretions.  Based on the volume of sample collected 

from one spectacled female (“Sunshine”), it is likely she received at least some male neck 

secretion through physical contact with a male.  To resolve the problem of differentiating 

male and female secretions, future studies should examine the secretions of females without 

the possibility of physical contact with males.  The females should, however, remain in close 

proximity to the males – having a simple separation such as a wire divider between two 

enclosures – to prevent any glandular changes associated with lack of male pheromones or 

presence.  Additionally, the components of the neck gland secretions of males and females 

are likely to differ, so it should not be assumed that contents not found in female neck gland 

secretions are from the male urogenital track.  

Age differences in glandular secretions have been suspected in some species, such as 

weasels and deer, while other species, such as mice, do not show any age-related variation in 

secretions (Burger 2005).  The spectacled males examined in the present study were all 

fifteen to sixteen years of age, while most of the grey-headed males were less than three years 

old.  Additionally, both female spectacled flying foxes were quite old – eighteen to twenty 

years – which may have caused them to secrete substances of different composition or 

concentration than younger females would.  The twenty year old (“Seraphina”) had almost no 

neck secretion at all, which may to be due to her age; most flying foxes in captivity do not 

live much more than twenty years (Fox et al. 2008).  Therefore, differences in secretions due 

to age may have occurred in this study, but as no mammal studies have definitely shown 

differences in the composition of glandular secretions due to age, no research precedent exists 
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for this interpretation. 

7.1.1. Possible Secretion Compound Identities  

A major previous study (Spencer and Flick 1995) was a precursor to this current 

investigation.  The study began to investigate the composition of spectacled flying fox 

glandular secretions.  Their experiment was based on the assumption that fatty acids were the 

principal component of the secretions.  In the 1995 study, a procedure for breaking down 

fatty acids, to produce a derivative of the major secretion component, was carried out.  The 

product of this methylation derivitization was then analyzed using gas chromatography. 

Spencer and Flick’s procedure is now thought to have not worked as anticipated 

(Spencer pers. comm.).  One indication of unexpected results was due to the derivative’s 

properties.  Normally, a chemical is altered during derivitization, and the derivative lacks the 

parent compound’s features.  In the 1995 study, as the substance that produced the largest 

chromatographic peak emerged from the column (Appendix B, Figure B1), the strong smell 

of the spectacled flying fox was distinguishable (with the detector temporarily disconnected); 

this indicated that this component was still active and probably was present in unmodified 

form.  The derivitization process had been designed for fatty acid materials, so the compound 

is now thought to not be a fatty acid.  Additionally, fatty acids are not soluble in water, and 

the compound being examined has been determined to be water-soluble.  This further 

supports the hypothesis that the substance is not a fatty acid, but belongs to an entirely 

different chemical category. 

The compounds are now suspected to be alcohols, hydrocarbons, esters, or ketones 

based on the findings of Wood et al. (2005).  The aforementioned chemical classes are the 

groups that made up the greatest portions of the neck secretions for at least one of the four 

flying fox species that Wood et al. examined.  The other categories – which contributed only 

minor components – included aldehydes and amines; though fatty acids (carboxylic acids) 
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were also major components, they were not considered here due to the previous findings of 

Spencer and Flick (1995).  All of these major chemical groups can be biologically produced 

by organisms and usually contain many odiferous members (Cram and Hammond 1964); 

these results are consistent with the findings of Spencer and Flick (1995) that the major 

secretion component carries the flying fox odor.  

The GC trace (Appendix B, Figure B1, Spencer and Flick 1995) additionally shows at 

least one of the major components to be of low molecular weight, since it was eluted as one 

of the first compounds in the secretion and lighter molecules progress through the column 

faster.  Because the secretion compound containing the odor is also separated early in the 

HPLC, further support is provided that the odor-containing compound is of low molecular 

weight. 

The methanol blank and clean tissue blank runs both included a peak with a distance 

that was not significantly different from Component A (Appendix C, Figure C2-C3).  In the 

blank runs, the peak must be caused by the additional methanol present (relative to the 

running solution); it can further be inferred that the samples contained a component that may 

be similar in structure to methanol – an alcohol – due to the similarity in peak distances.  

However, the sample Peak A’s cannot be entirely caused by the methanol solvent, due to the 

much greater size of these sample peaks in comparison to the blanks, though methanol is 

likely to be a masked peak within Component A if the secretions themselves do not contain 

methanol. 

7.2. Limitations and Future Studies 

 Measurements of peak distances were made by hand, rather than being automatically 

calculated by a computer; therefore, slightly imprecise readings may have arisen from the 

hand calculations.  Additionally, injections were performed by hand, rather than being auto-
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injected by the machine; the manual injections create another possibility for small variations 

in the results, but should have relatively little effect on the timing of peak distances. 

Though many different running conditions were tested, given the restricted choice of 

columns and eluting solutions available, the best possible combination may not have been 

found.  So, better resolution may be possible using other columns or elutants after further 

evaluation.  Additionally, in future studies, knowing the chemical class of these compounds 

would assist in picking running solutions that would maximize separation based on the 

chemical properties of the compound. 

As the tool available at Cape Tribulation Research Station, HPLC was an effective 

method to initially access the similarities in marking secretions among Pteropus species.  

However, using GC to get better separation resolution – especially for compounds making up 

only a small percentage of the total secretion – and MS to find the exact identities of 

compounds would assist greatly in learning more about flying fox secretions.  More detailed 

resolution obtained from GC-MS or another method could serve as a useful tool for looking 

at relationships, as well as allowing better comparison with other existing studies.  Previous 

studies (Spencer and Flick 1995) indicate that GC has the potential to yield far better 

resolution of the compounds present in flying fox secretion samples (Appendix B, Figure 

B1). 

An interesting next preliminary step would be to determine which components found 

in the secretions originated from the urogenital track and which came from the neck glands.  

To determine this, some urogenital secretion could be intercepted, before coming into contact 

with the neck-ruff, and then analyzed.  This analysis would reveal the components not found 

in the urogenital secretions, which could then be assumed to originate from the neck glands.  

Studies have found multiple factors that could generate differences in secretion 

composition: analysis by gender, by seasonality, between camps or groups, and between 
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individuals.  Consequently, examining the role of these factors in flying fox secretions could 

yield interesting and more in depth findings, once appropriate analytical system conditions 

have been determined to permit exploration in these areas. 

Running analyses of the female neck secretions for the other two flying fox species – 

grey-headed and blacks – in addition to the spectacleds studied here and then comparing the 

new female secretions to male secretions could reveal two interesting possibilities.  Either 

there would be more similarities between species within genders, in which case all males 

would be more similar to each other than they are to any female and vice versa (as found by 

Brooke and Decker 1996), or more similarities within species will occur regardless of gender, 

in which case males and females of the same species would be more similar to each other 

than to any member of another species.  Data from spectacled flying foxes revealed that male 

secretions are more similar to black and grey-headed male secretions than to female 

secretions, due to differences in total component numbers (Figure 3).  Further studies could 

reveal whether this pattern holds true for the other two species as well.   

Studies of other mammals reveal another finding related to gender; though male and 

female pandas (Ailuropoda melanoleuca) were found to have similar scent mark and genital 

secretion compositions, the concentrations of the components varied greatly between sexes 

(Hagey and MacDonald 2003).   Male and female spectacled flying foxes may have a similar 

trend (Figure 4); though this has not yet been determined due to the possible contamination 

issue, it could be clarified by clean samples and improved resolution. 

 Differences have also been observed in secretions between seasons, primarily defined 

by mating or non-mating times of year.  Variation in lemur genital secretion contents and 

concentrations was found during and outside of the breeding season (Scordato et al. 2007).  

Megabats should be similarly examined cross-seasonally to see if the secretion composition 

changes or if individual components vary in amount. 



 

Brooke and Decker (1996) found that, in some cases, secretions of male fishing 

microbats (Noctilio leporinus) within a single camp were more similar to each other than to 

outside males or to any females; similarly, Bloss et al. (2002) found that big brown microbats 

(Eptesicus fuscus) could differentiate between colony mates and outsiders based solely on 

secretion scents.  Further studies to examine camp differences in Pteropus, using more sensitive 

techniques like GS-MS to pick up the minute variations, would be another area for future 

research to improve our knowledge of Megachiropteran communication.  Individual differences, 

as observed in this study, would also be more discernable using GC in later analyses. 

Once the composition of the spectacled, grey-headed, and black flying fox secretions 

has been determined, it would be interesting to compare them to little red flying foxes, which 

cannot interbreed with any of the three examined species; to other Australian 

Megachiroptera, like tube-nosed fruit bats (Nyctimene spp.) and blossom bats (Syconycteris 

and Macroglossus spp.); or to species outside of Australia, such as the four Pteropus species 

from India and Indonesia examined by Wood et al. (2005) to see whether any components are 

shared.  Additionally, more direct comparison with lemurs, the closest living relative of the 

Megachiroptera, may offer insights into their shared evolutionary heritage. 

7.3. Conclusions 

This study found that the secretions of spectacled, grey-headed, and black flying 

foxes, while still distinct from each other, are similar in components.  This finding is 

consistent with known flying fox behavior and classification, in that interbreeding is possible 

and therefore indicates that the species must still be closely related but are different enough to 

be considered three different species.   

The hybridization of black with grey-headed and spectacled flying foxes leads to 

further questions regarding what similarities these different species have that both allow them 

to recognize each other as mates and to actually produce young.  It is possible that similarities 
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in marking secretions provide chemical recognition of potential mates, which might be more 

important than the small external physical differences between species.

Each species of flying fox examined in this study had a significantly different 

characteristic odor, found primarily on the males.  The variation in odors appears to stem 

from one of the major components of the neck-urogenital secretions, as samples carry this 

distinctive scent as well.  The urogenital secretions are strongly suspected to originate from 

an internal gland or organ and then mix with urine in the bladder (urine-bathing) before being 

released (Spencer pers. comm.).  This process is hypothesized because 1) post-mortem 

bladders of male spectacled flying foxes were found to contain the cranberry colored marking 

fluid and 2) the straw-colored marking secretions of the other three species are thought to be 

due to mixing a yellow or clear marking compound with urine (Spencer and Flick 1995).  The 

gland of origin is hypothesized to be the prostate, as it is the only gland that appears large 

enough to produce the volume of secretion the males excrete; however, the urogenital 

secretion source has not yet been determined and remains an interesting topic to explore. 

With the rise in technology – especially HPLC, GC, and MS – secretions have begun 

to be studied in many organisms over the past twenty years.  However, chemical ecology is 

still a newly budding field, with many areas and species still to be examined.  Although the 

totality of chemical communication is beyond the scope of this project, studying glandular 

secretions could be extended into the areas of mate selection, bond or territorial maintenance, 

evolutionary aspects of scent communication, other functions of signaling behavior, and the 

overall social health of a colony through recognition or promotion of cooperative behaviors. 

Knowledge gained through secretion studies could also be adapted to conservations efforts, 

including the sharing of territories by different Pteropus groups as flying fox habitat 

continues to be reduced and arguments for the maintenance of appropriate amounts of habitat 

due to conflicting needs of the different species.
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8. Appendices  
 
8.1. Appendix A: Male Anatomy and Behavior 

  

Figure A 1: Spectacled Flying Fox Testes 

 

 
 

 

Figure A 2: Spectacled Flying Fox Penis 

The outer anatomy of a male spectacled flying fox at rest with penis retracted into his body 
cavity (Figure 2) and with penis exposed during an erection (Figure 3). 
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Figure A 3: Spectacled Flying Fox Marking Secretion 
The neck-shoulder gland secretions combined with urogenital secretions on the neck of the 
spectacled flying fox gives the fur a cranberry-red coloration.  The secretions for black and 
grey-headed flying foxes are straw-colored.  

 

 
Figure A 4: Spectacled Flying Fox Anointing 
A male spectacled flying fox in the process of anointing, during which he achieves an 
erection and then proceeds to wipe the tip of the penis – which is releasing the urogenital 
secretion – on either side of his neck where it combines with the neck secretion.  
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8.2. Appendix B: Gas Chromatography Trace, Spencer and Flick (1995) 

 
Figure B 1: GC Trace from Spencer and Flick (1995)  
This readout shows the GC results from a run of male spectacled flying fox neck-urogenital 
secretion after the fatty acid derivitization procedure had been carried out.  The highest peak 
is at 23.55 seconds (see arrow), and had such a great height (which indicates a large 
percentage of the secretion content) that it exceeded the top of the page and instead appears 
as a flat line for the peak top.  The area under this peak is about five times greater than the 
next largest peak, clearly indicating the 23.55-second peak is the major compound.  The 
numerous smaller peaks are minor components of the secretion. 
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8.3. Appendix C: HPLC Plots 

HPLC plots are given for the first round of final testing.  Less noticeable peaks are marked 
with an arrow.  Peaks less than 5 mm above baseline were not included. The small lines on 
the far left indicate the injection point, or the start, of each run.  The paper grid sizes are 10 
mm for each horizontal segment and 2 mm for each small vertical unit (20 mm for the larger 
vertical grid lines). 
 

8.3.1. Blanks 
 
The component of each “blank” injection is given in parentheses. 
 

  
Figure C 3: Blank 3 (Clean Tissue)Figure C 1: Blank 1 (Running Solution) 

 

 
Figure C 2: Blank 2 (Methanol) 
 



 

8.3.2. Spectacled Males 
 
Each of the four male spectacled flying foxes showed 5 major peaks – Components A, B, C, 
E, and F. 
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Figure C 4: Spectacled Male 1 (“Jasper”) 
 

 
Figure C 5: Spectacled Male 2 (“Pushkin”) 

 
Figure C 6: Spectacled Male 3 (“Rex”) 
 

 
Figure C 7: Spectacled Male 4 (“Old Boy”) 

 



 

8.3.3. Grey-headed Males 
 
Each of the four male grey-headed flying foxes showed 5 major peaks – Components A, B, 
C, E, and F. 
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Figure C 8: Grey-headed Male 1 (“Koda”) 
 

 
Figure C 9: Grey-headed Male 2 (“Boris”) 

 
Figure C 10: Grey-headed Male 3 (“Reggie”) 
 

 
Figure C 11: Grey-headed Male 4 (“Alfi”)



 

8.3.4. Black Males 
 
Each of the three male black flying foxes showed 6 major peaks – Components A, B, C, D, E, 
and F. 
 

 
Figure C 12: Black Male 1 ("Alli”) 
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Figure C 13: Black Male 2 (“Bear”) 
 

 
Figure C 14: Black Male 3 (“Cat”) 



 

8.3.5. Spectacled Females 
 
Both of the female spectacled flying foxes showed 4 major peaks – Components A, B, C, and 
E. 
 

 
Figure C 15: Spectacled Female 1 (“Sunshine”) 
 

 
Figure C 16: Spectacled Female 2 (“Seraphina”) 
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