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 ABSTRACT 

 The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is responsive 

to many exogenous and endogenous ligands. AHR is of particular interest in cancer, and has been shown 

to play roles in tumor progression. As such, it has received growing attention as a possible 

chemotherapeutic target. Obesity increases the risk of breast cancer, complicates treatment of breast 

cancer, and stimulates the growth of larger, more aggressive mammary tumors. Many breast tumors in 

obese women are estrogen receptor (ER)-positive and, while targeting hormone receptors like ER is 

beneficial, many obese women see a recurrence of their cancer after standard chemotherapy regimens. 

Breast tumors also highly express AHR, which has made AHR targeting compounds (both agonists and 

antagonists) the subject of intense research in breast cancer models over the last decade. Our laboratory 

has uncovered several novel aspects of AHR signaling in response to cytokines, growth factors, and 

environmental toxicants, specifically the prototypical AHR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) which underlie its role in tumorigenesis and tumor progression. We found that silencing AHR 

expression in breast tumor cells can block the growth response to adipokines (adipocyte-secreted 

factors), which are secreted into the breast tumor microenvironment by adipocytes. We have also shown 

AHR recruitment to the cyclin D1 (CCND1) gene promoter to increase the expression of this important 

oncogene involved in cell cycle progression upon insulin-like growth factor (IGF)-2 stimulus. AHR was 

also found to be necessary for basal and tumor necrosis factor (TNF) induced expression of superoxide 

dismutase 2 (SOD2), which encodes manganese superoxide dismutase (MnSOD), a crucial protein in the 

oxidative stress pathway. Finally, we have shown AHR is needed for the expression of solute carrier 

family 7 (amino acid transporter light chain, L system) member 5 (SLC7A5), which encodes L-type 

amino acid transporter 1 (LAT1) in breast tumor cells. The findings presented in this dissertation suggest 
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targeting the AHR with antagonists to treat breast cancer would be the most beneficial strategy, as AHR 

has been implicated in several aspects of tumor initiation and progression. 
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CHAPTER I: THE ARYL HYDROCARBON RECEPTOR (AHR): A MULTI-FACETED 

TRANSCRIPTION FACTOR. 

1.1. INTRODUCTION AND BRIEF HISTORY OF AHR BIOLOGY. 

Over the past 50 years, several advances in understanding the role of the aryl hydrocarbon 

receptor (AHR) in cancerous and normal tissues have been made. The goal of this introductory section is 

to provide some history of AHR research, before delving further into its complexity. During the 

industrial revolution, the twentieth century experienced rapid growth which led to increased risk of 

exposure to potentially hazardous environmental pollutants/toxicants. Chemical spills and accidental 

exposure to halogenated or polycyclic aromatic hydrocarbons (HAH or PAHs) has unveiled a wide array 

of detrimental health effects, which have been studied extensively by researchers [1]. Workers in 

chemical factories face a particularly high risk for occupational exposure. One of the earliest PAH/HAH 

chemical spills occurred in 1949 in Nitro, WV, not far from Marshall University, where workers were 

exposed to toxic levels of the hallmark AHR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 

TCDD is a toxic industrial byproduct found in herbicides like Agent Orange used during the Vietnam 

War, as well as a byproduct of the paper bleaching process [2, 3]. Exposure to TCDD resulted in 

chloracne, liver disease, leukemia, ischemic heart disease, and even death of some of the workers [4, 5]. 

However, the exact mechanism by which TCDD causes toxicity in humans is still unclear. 

Some of the earliest research with PAHs resulted in the discovery of benzpyrene hydroxylase, an 

enzyme named due to its ability to form hydroxylated products of 3,4-benzpyrene, but which would 

quickly be renamed aryl hydrocarbon hydroxylase (AHH), as several PAHs induced its activity [6-8]. 

By the 1970s, numerous studies made it clear there was a direct correlation between induction of AHH 

activity and increased cytochrome P450 1A1 (CYP1A1) activity, and that this response varied between 

different mouse strains, specifically C57BL/6 and DBA/2 mice [9]. C57BL/6 mice were much more 
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responsive to 3-methylcholanthrene (3-MC)-stimulated increases in AHH activity than DBA/2 mice 

[10]. Researchers pondered whether diminished AHH activity in DBA/2 mice in response to 3-MC was 

due to these mice having a genetic defect, or whether they express a PAH/HAH receptor with reduced 

binding affinity [10]. Utilizing [3H] TCDD, researchers found TCDD accumulated highly in the liver of 

C57BL/6 mice where it bound a receptor leading to induction of AHH activity [11]. In DBA/2 mice, the 

levels of radio-labeled TCDD in liver extracts were much lower, supporting the previous theory that 

they express a receptor with reduced binding affinity [11]. With these radio-labeled TCDD experiments, 

the Nebert lab christened this newly identified receptor, AHR [12]. During this time period, it was also 

determined that AHH and CYP1A1 were one and the same [13], and CYP1A1 will be used henceforth 

to refer to this important enzyme.  

The hypothesis that DBA/2 mice expressed an altered AHR, while still speculation in the 1970’s, 

was shown to be valid when the AHR was cloned in 1992 by the Bradfield group [14]. These studies 

revealed that reduced AHR ligand affinity was due to an altered AHR ligand-binding domain in these 

rodents [14]. Other studies found that mutations in the AHR ligand-binding domain were the reason for 

reduced AHR affinity for ligands in DBA/2 mice compared with C57BL/6 mice. When AHR coding 

sequences from the two strains were compared, two critical alterations were noted: 1) AHR had 

undergone a substitution (valine in place of alanine) at position 375 and 2) a T to C mutation in the stop 

codon was observed in the DBA/2 mouse strain [15]. The altered stop codon causes a lengthening of the 

carboxy-terminus in mature AHR protein in DBA/2 mice resulting in a ligand-binding domain with 

lowered ligand affinity [15]. The main advances in AHR biology after these initial findings were made 

in the uncovering of the canonical AHR signaling pathway, discussed in the next section.  
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1.2. CANONICAL AHR SIGNALING. 

When bound by agonists such as TCDD, the AHR becomes an active transcription factor, 

moving into the nucleus to regulate expression of target genes. This section will go step by step through 

this well characterized process (summarized in Figure 1). In the cytoplasm, AHR is kept in an inactive 

state bound with two heat shock protein-90 (HSP90) proteins, which function as chaperone proteins for 

steroid hormone receptors as well (Figure 1) [16, 17]. While it was known that there was a third protein 

bound to AHR in its inactive state, its identity remained a mystery for some time. Practically 

simultaneously, three different research laboratories identified that this third protein that bound AHR in 

the cytoplasm was hepatitis B virus X-associated protein 2 (XAP2), however, its function still remains a 

mystery [18-20]. Later, p23 was also found to be a part of the cytoplasmic inactive AHR complex, and 

helps maintain AHR protein stability [21]. This complex keeps the nuclear localization signal of AHR 

concealed, preventing AHR from entering the nucleus in the absence of ligand [22, 23]. Upon TCDD 

binding, a conformational change occurs resulting in exposure of the nuclear localization signal and 

translocation of the now active complex into the nucleus (Figure 1). Once inside, XAP and p23 are 

released, and AHR binds via its basic helix-loop-helix (bHLH) motif to the aryl hydrocarbon nuclear 

translocator (ARNT), which is responsible for retaining the AHR in the nucleus (Figure 1) [24, 25]. 

Binding of ARNT results in the loss of HSP90 proteins [25], and this TCDD-AHR-ARNT complex can 

now actively drive transcription of genes. 

Classically, the AHR mediates the expression of genes involved in phase I and phase II drug 

metabolism. These genes include those encoding monooxygenase enzymes such as the cytochrome 

P450s CYP1A1 and CYP1B1 [26]. This enzyme family is important for “first pass” metabolism in the 

liver, where a large portion of drugs and xenobiotics (meaning “foreign to the body”) are bio-

transformed [27]. CYP enzymes hydroxylate xenobiotics to aid in their elimination and excretion [27].  
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Figure 1. The canonical AHR signaling pathway. (A) Binding of agonist results in nuclear 
translocation of AHR. (B) Shedding of cytoplasmic chaperones and binding of ARNT occurs. (C) 
Active transcriptional complex binds at response elements to increase the expression of primary 
TCDD/AHR gene targets including CYP1A1 and CYP1B1. AHR = aryl hydrocarbon receptor, XAP = 
hepatitis B virus X-associated protein 2, HSP90 = heat-shock protein 90, ARNT = aryl hydrocarbon 
nuclear translocator, DRE/XRE = dioxin/xenobiotic response element, CYP1A1, CYP1B1 = 
cytochrome P450s 1A1 and 1B1. This figure created in Microsoft Powerpoint to summarize information 
found in references [16- 26]. 
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Two enzymes in the family, CYP1A1 and CYP1B1, have been highly associated with cancer. CYP1A1 

has been shown to regulate breast cancer proliferation and survival [28], in addition to cancer initiation 

via conversion of toxicants like benzo(α)pyrene (B(a)P) into genotoxic agents [29]. Silencing of 

CYP1A1 resulted in decreased colony formation, decreased proliferation, reductions in cyclin D1, and 

cell cycle arrest with increased apoptosis [28]. CYP1B1 has been touted as a “universal tumor marker,” 

given its overexpression has been detected in many tumors, including lung, breast, and colorectal tumors 

[30]. CYP1B1 has been shown to convert estrogen into genotoxic metabolites like 4-hydroxyestradiol 

[31], one way it can initiate tumor formation. Glutathione-S-transferases (GSTs) are phase II enzymes 

whose expression is also induced by TCDD via AHR [32]. GSTs catalyze the conjugation of reduced 

glutathione (GSH) to xenobiotics to aid in detoxification [33]. Polymorphisms in the GST enzyme 

superfamily results in isozymes of various activity, which have been linked to chemotherapy resistance 

in tumors [34]. 

AHR and ARNT bind to specific regions in the DNA of target genes. These regions are termed 

AHR response elements (AHR-RE), often referred to in the literature as dioxin-response elements 

(DRE) or xenobiotic-response elements (XRE). The specific consensus DNA sequence for TCDD-AHR 

complex binding (5’-TGCGTGA-3’) was first found in the CYP1A1 gene promoter [35], and lies 

upstream and proximal to the transcriptional start site (TSS) [35]. This site is recognized with high 

affinity by AHR-ARNT and confers transcriptional activity to TCDD-AHR target genes. The TCDD-

AHR-ARNT complex recruits other co-activators of transcription such as the histone acetyltransferase 

p300, CREB-binding protein (CBP), and nuclear receptor co-activator 1 (NCOA-1) [36, 37]. CBP, 

NCOA-1, and p300 all activate transcription by acetylating histones. CBP and p300 interact, and when 

bound together, induce global acetylation of all sites on histones H2A and H2B, but preferentially 

acetylate lysines 14 and 18 of histone H3 and lysines 5 and 8 of histone H4 [38]. NCOA-1 preferentially 
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targets histones H3 and H4 for acetylation [39]. These proteins are followed by binding of the 

chromatin-modifying protein, brahma-related gene 1 (BRG-1), a member of the ATP-dependent 

SWI/SNF (SWItch/Sucrose Non-Fermentable)-like complex family, which utilizes ATP to facilitate 

chromatin remodeling and the subsequent recruitment of basal transcriptional machinery to drive 

expression of AHR target genes [40].  

The discovery of AHR-RE/XRE was a landmark in AHR biology, and allowed for the 

identification of other genes regulated by TCDD, such as ATP-binding cassette sub-family G member 2 

(ABCG2) [41], which is involved in efflux drug transport in tumor cells, and aldehyde dehydrogenase 

1A3 (ALDH1A3) [42], whose expression has been shown to be particularly high in breast cancer stem 

cells (CSCs) [43]. Collectively, genes regulated by the canonical AHR pathway are highly associated 

with tumors of various types, implicating AHR as an important transcription factor of merit when 

studying any cancer, not just breast cancer. We identified and published ~140 TCDD regulated genes in 

MCF-7 breast cancer cells (BCCs) using next generation RNA-sequencing (RNA-seq), which included 

known TCDD targets CYP1A1, CYP1B1, ABCG2 and ALDH1A3 [44]. Using RNA-seq and comparing 

our results with a previously published TCDD-AHR chromatin immunoprecipitation sequencing (ChIP-

seq) set, we identified and characterized for the first time TCDD/AHR regulation of solute carrier family 

7 (amino acid transporter light chain, L system) member 5 (SLC7A5), which encodes L-type amino acid 

transporter 1 (LAT1) in MCF-7 and MDA-MB-231 BCCs [44]. 

1.3. NON-CANONICAL AHR SIGNALING. 

The AHR canonical signaling pathway, while very important, is only one way by which AHR 

can alter gene expression. AHR can also “cross-talk” with other transcription factors. One of the earliest 

reports suggesting AHR could interact with other proteins showed TCDD and epidermal growth factor 

(EGF) worked cooperatively to suppress PPARγ activation and modulate focal adhesion complex 



7 
 

formation during adipogenesis [45]. In AHR-null mice, these effects on PPARγ and adipogenesis were 

reversed, revealing that TCDD inhibits triglyceride synthesis and adipocyte differentiation through an 

AHR-dependent mechanism [45]. Finding that Vietnam War veterans exhibited defects in thyroid 

function suggested that TCDD may also target the thyroid and its associated endocrine signaling [46]. 

AHR has also been shown to cross-talk with several transcription factors that regulate gene expression 

including the estrogen receptor (ER), androgen receptor (AR) and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) [47-49]. This section will summarize the ways in which AHR 

cross-talks with these important transcription factors. 

Perhaps the most extensively studied of all is AHR-ER cross-talk (Figure 2). Experiments 

looking at long-term TCDD exposure in female Sprague Dawley rats were the first to suggest AHR and 

ER cross-talk, as TCDD inhibited the growth of estrogen-responsive mammary and uterine tumors [50]. 

Other reports established that TCDD inhibited 17β-estradiol (E2)-stimulated increases in the expression 

of ER target genes [51], however, the anti-estrogenic effects of AHR activation was not well understood 

for some time. The first hypothesis suggested that upon its induction by TCDD, CYP1A1 promoted the 

metabolism of E2 [52]. More recent reports have identified that TCDD-activated AHR can also induce 

the degradation of ER [53]and secondly, AHR can bind to inhibitory XREs found in ER target genes 

that are capable of suppressing gene expression [54]. Finally, TCDD and ER share common 

transcriptional coactivators, and TCDD, by stimulating AHR to bind such coactivators, induces a 

concomitant reduction in their binding to ER [55]. AHR also interacts with AR, and can play an 

important role in prostate development, as TCDD exposure either in utero or via breast milk has been 

shown to cause abnormal prostate growth [56].   

AHR and NF-κB cross-talk has also been noted. In this regard, the expression of AHR is 

stimulated by NF-κB in dendritic cells treated with lipopolysaccharide (LPS) [49]. This study suggests  
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Figure 2. Mechanisms of AHR-ER crosstalk. (A) AHR upregulation of P450 enzymes leads to 
metabolism of estrogen, blunting its effects. (B) Agonist-bound AHR-ARNT complexes can bind to 
inhibitory response elements in ER target genes to silence expression. (C) Agonist-bound AHR targets 
ER for proteasomal degradation. (D) Activation of AHR squelches co-activator proteins preventing 
them from binding with ER transcriptional complexes. ERα = estrogen receptor alpha, AHR = aryl 
hydrocarbon receptor, ARNT = aryl hydrocarbon nuclear translocator, XRE = xenobiotic response 
element, ERE = estrogen response element, iXRE = inhibitory xenobiotic response element, CYP1A1, 
1B1 = cytochrome P450s 1A1 and 1B1. This figure created in Microsoft Powerpoint summarizing 
information found in references [50-55].  
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inflammatory cytokines that activate NF-κB can induce AHR expression during immune cell activation 

and differentiation. TCDD and NF-κB interact to promote robust increases in the expression of 

interleukin (IL)-6 in MCF-7 breast cancer cells [57]. TCDD, in combination with IL-1β or phorbol 12-

myristate 13-acetate (PMA) treatment, resulted in synergistic increases in IL-6, which were decreased 

by silencing either AHR or NF-κB with short interfering RNAs [57]. In another study, co-

immunoprecipitation (co-IP) experiments revealed AHR binds the RELA subunit of NF-κB [58]. TCDD 

suppressed the binding of NF-κB to cognate NF-κB response elements in response to tumor necrosis 

factor (TNF) and blocked NF-κB translocation to the nucleus in dendritic cells, with these effects 

attributed to TCDD-induced AHR degradation (discussed in section 1.4) [58]. Our own data revealed 

that AHR and NF-κB interact to regulate both basal and TNF-induced expression of superoxide 

dismutase 2 (SOD2), which encodes manganese superoxide dismutase (MnSOD) in MCF-7 BCCs [59]. 

The importance of MnSOD in cancer is discussed in Chapter II. These results suggest an extensive 

relationship between AHR and NF-κB, important for regulating the immune response as well as the 

cytotoxic effects of TNF in tumor cells.  

1.4. ATTENUATING AHR SIGNALING: TWO MECHANISMS. 

 This section will discuss the two main ways to “turn off” AHR signaling: 1) degrading AHR 

through the ubiquitin-proteasome pathway (Figure 3) or 2) through transcriptional repression via the 

AHR repressor (AHRR) (Figure 4). Several reports have demonstrated that TCDD-activated AHR 

promotes the degradation of specific proteins, such as ER, by functioning as an E3 ubiquitin ligase [60, 

61]. Consistent with its role as a ligand-activated E3 ubiquitin ligase, AHR becomes ubiquitinated [62], 

and its levels are decreased in response to agonists like 3-MC and TCDD, via a proteasome-mediated 

pathway (Figure 3) [60]. Once inside the nucleus, the ligand-activated AHR-ARNT complex interacts 

with the ubiquitin ligase, cullin 4B (CUL4B) [61, 63]. Knockdown of CUL4B revealed that degradation  
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Figure 3. Degradation of agonist-bound AHR by proteasomes. (A) Agonist-bound AHR binds 
ARNT and co-activators forming an active transcriptional complex. (B) To shut off AHR signaling, 
CUL4B and other ubiquitinating enzymes poly-ubiquitinate AHR targeting it for degradation by 
proteasomes. AHR = aryl hydrocarbon receptor, ARNT = aryl hydrocarbon nuclear translocator, RBX1 
= ring box-1, DDB1 = damaged DNA binding protein-1, Ub = ubiquitin, and CUL4B = cullin 4B. This 
figure created in Microsoft Powerpoint summarizing information found in references [60-65]. 
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Figure 4. AHRR shuts down AHR signaling. (A) Agonist-bound AHR binds ARNT and co-activators 
to regulate expression of target genes such as CYP1A1 and CYP1B1. (B) Agonist-activated AHR also 
induces expression of AHRR. (C) AHRR protein competes with ARNT for binding AHR, which 
prevents active AHR complex formation and blocks binding at XREs to regulate gene expression. AHR 
= aryl hydrocarbon receptor, ARNT = aryl hydrocarbon nuclear translocator, XRE = xenobiotic 
response element, CYP1A1, 1B1 = cytochrome P450s 1A1 and 1B1, AHRR = AHR repressor. This 
figure created in Microsoft Powerpoint summarizing information found in references [66-69]. 
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of AHR required expression of this critical enzyme, as it is needed for the recruitment of other enzymes, 

such as ring box-1 (RBX1) and damaged DNA binding protein-1 (DDB1), involved in the ubiquitination 

process [60]. The collective findings of three reports demonstrated that:1) immunoprecipitated AHR  

complex exhibits ubiquitinating activity [53, 64], 2) the binding of TCDD induces AHR to bind ER or 

AR, stimulating AHR, ER, and AR degradation (another example of AHR’s anti-estrogenic and anti-

androgenic properties) [53, 60], and 3) TCDD-bound AHR becomes ubiquitinated and is then degraded 

by proteasomes, as illustrated in Figure 3 [62, 65].  

 AHRR exhibits homology with AHR in the N-terminal domain, which coincidentally houses the 

already described bHLH motif critical for ARNT binding [66, 67]. Yet, the C-terminal domain of AHRR 

is quite unique [66, 67]. Two hypotheses were proposed to explain how AHRR inhibits AHR 

transcriptional activity. First, AHRR-ARNT heterodimers were speculated to interact with AHR-ARNT 

heterodimers to suppress AHR-ARNT transcription at gene promoters, and second, that AHRR 

competed for binding at XRE sites to silence AHR target gene expression [68, 69]. One seminal report 

by Evans et al. set out to determine which hypothesis was valid. 

In this report, overexpression of ARNT failed to reverse AHRR inhibition of AHR signaling, 

which suggested squelching of ARNT was not the mechanism of AHRR induced repression [68]. An 

AHRR-mutant, which lacked ability to bind DNA, was still able to suppress AHR signaling, suggesting 

AHRR-ARNT heterodimers were not competing with AHR-ARNT heterodimers for binding at XRE 

sites to block AHR signaling [68]. Other experiments in this report found mutating AHRR C-terminal 

domain had no effect on repression either [68]. These results helped solidify the now accepted 

hypothesis of AHRR functioning, that AHRR binding to AHR via its N-terminal domain displaces 

ARNT from AHR which blunts AHR signaling. Our own RNA-seq data set found that AHR induced 

AHRR levels in MCF-7 BCCs [44], lending further credence to this model by which AHRR in response 
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to TCDD prevents excessive TCDD-AHR signaling by antagonizing AHR activity. Specifically, 

upregulation of AHRR expression results in higher AHRR levels which would then bind AHR protein to 

block its signaling via this negative-feedback mechanism (Figure 4).  

1.5. TCDD AND AHR ROLES IN DEVELOPMENT, REPRODUCTION, AND IMMUNITY. 

 In the 1990’s, three separate groups developed AHR-null (Ahr-/-) mice. This was carried out 

through deletion of either exon 1 or exon 2 of the AHR gene [70-72]. With these mice, endogenous roles 

for the AHR were uncovered, including roles in immunity, proper organ development, and reproduction. 

AHR-null mice exhibit decreased accumulation of lymphocytes in the spleen and lymph nodes, but not 

in the thymus, compared to wild-type, suggesting a role for the AHR in innate immunity [70]. This 

observation was built upon years later by others who uncovered that immune responses are modulated 

by AHR and the outcome is dependent on the AHR ligand. As an example, T regulatory cells (Tregs), 

which suppress excessive immune responses, are stimulated to differentiate in response to TCDD or 

kynurenine (kyn), leading to enhanced immunosuppression [73, 74]. Kyn is an endogenous tumor 

promoting ligand and product of tryptophan catabolism [75], as is 6-formylindolo [3,2-b] carbazole 

(FICZ) [76]. In contrast to TCDD or Kyn, FICZ enhances the differentiation of naïve T cells into 

proinflammatory T helper 17 (Th17) cells [77]. The dietary AHR ligands indolo [3,2-b] carbazole (ICZ) 

and 3,3-diidolylmethane (DIM) have been shown to play a role in the immune response as well. 

Cruciferous vegetable-derived indole-3-carbinol (I3C) is converted by stomach acid to the products, ICZ 

and DIM, which are high-affinity AHR ligands in the gut [78]. ICZ/DIM-activated AHR aids in the 

maintenance of gut microbiota, intraepithelial lymphocytes, IL-22 expression, and Th17 activity [78]. 

These studies helped establish that developmental and functional immunity is AHR-dependent. 

 The liver expresses higher levels of AHR than all other tissues [79]. Proper liver development 

has been shown to be AHR-dependent in rodents [71]. AHR-null mice exhibit smaller liver size as well 
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as thickening and fibrosis of the portal vein [71]. These mice also had moderate inflammatory changes 

in the bile ducts (cholangitis), which was postulated as a reason for their slowed and diminished growth 

compared to wild-type mice [80]. Indeed, in addition to growth, a role for AHR in the developing fetus 

has also been established, as AHR mediates the teratogenic effects of TCDD. Female Holtzman rats 

exposed to TCDD exhibited dramatic reductions in ovarian follicle number and size, revealing AHR 

activation effects follicle maturation [81]. Another report revealed TCDD exposure altered estrous 

cycling and blocked ovulation [82, 83]. TCDD has also been shown to induce the atypical release of 

follicle stimulating hormone (FSH) and luteinizing hormone (LH) in female Sprague Dawley rats [84]. 

TCDD exposure to pregnant rodents also induces cleft palate and kidney deficiencies in offspring [85]. 

When wild-type and AHR-null mice were gavaged with TCDD during pregnancy, only offspring from 

wild-type mice developed cleft palate and hydronephrosis [85].  

Mouse studies have revealed roles for AHR in mammary development and function also, 

including pregnancy associated changes in the mouse mammary gland, and in utero mammary gland 

development. In this regard, detectable levels of AHR occur as early as day ten in the gestational period 

[86]. In addition to previously mentioned liver deficits, AHR-null mice have improper development of 

the mammary gland as well. Deletion of the AHR gene in mice leads to reductions in mammary gland 

size and fewer mammary gland terminal end buds, which are the proliferative structures found at the tips 

of ducts, compared with wild-type mice [87]. In utero TCDD exposure to normal mice caused defects in 

their mammary development, including altered lactogenesis, but this effect was variable and suggested 

critical periods of exposure during pregnancy [87, 88]. Mice exposed to TCDD during pregnancy also 

had reduced circulating levels of several hormones, including prolactin and E2, when compared to 

control mice [89]. Collectively, these reports underline an importance for AHR and its activation in 
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proper organ development, proper functioning of the reproductive system, and regulation of the immune 

system. 

1.6. AHR AND CANCER.  

AHR and cancer have been linked by numerous reports. One study found that after exposure to 

7,12-dimethylbenz[a]anthracene (DMBA), a potent tumor promoter, AHR levels were dramatically 

higher in breast tumors relative to normal breast tissue in rats [90]. Aberrant high AHR expression and 

constitutively active AHR is common in many cancers including breast and prostate, even in the absence 

of exogenous AHR ligands, and contributes to increased invasiveness and metastasis [91-93]. AHRR 

has been shown to be a tumor suppressor in breast models [94], further linking AHR to development and 

progression of breast cancer. Endogenous AHR ligands like kyn and kynurenic acid have recently been 

established to promote tumor survival of breast tumors and gliomas while also suppressing the immune 

response through both autocrine and paracrine mechanisms [75, 95]. The Cancer Cell Line Encyclopedia 

has uncovered aberrantly high AHR expression in a number of malignant cell lines, including the 

neuroblastoma line CHP-212 and the endometrial cancer line HEC-151 [96]. Overexpressing AHR in a 

normal human mammary epithelial line caused these cells to exhibit traits of malignancy such as 

increased epithelial-to-mesenchymal transition (EMT), a process where cells lose cell-cell adhesion 

proteins and gain migratory properties leading to increased cell migration and invasion [97]. This report 

found that overexpressed AHR is sufficient to drive the transition from a normal breast epithelial cell to 

a malignant phenotype. The classic AHR gene target, CYP1B1, has also been found to be highly 

expressed in many malignant tumors, while the surrounding healthy tissue has minimal to no CYP1B1 

expression [30, 98]. High CYP1B1 expression has been noted in cancers of the lung, colon, prostate and 

breast [30]. As mentioned previously, CYP1B1 metabolism of E2 to genotoxic metabolites like 4-

hydroxyestradiol also promote cancer, independent of ER activation [31]. Elevated levels of CYP1B1 in 
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tumors is also believed to play a role in chemotherapeutic resistance. For instance, elevated CYP1B1 has 

been linked to docetaxel treatment failure, as the enzyme metabolizes the active drug to inactive 

metabolites and reduces docetaxel efficacy [99]. 

AHR promotes cancer via transcriptional mechanisms and by functioning as a scaffold protein 

for cell cycle promoting proteins. In regards to transcriptional mechanisms, TCDD-activated AHR 

regulates the expression of Slug, an important transcription factor that is one of the main drivers of EMT 

[100]. ChIP analysis revealed AHR binds to XRE in the Slug gene promoter to regulate expression 

[100]. Slug then regulates the expression of E-cadherin, with loss of E-cadherin a classic mark of EMT, 

as cadherin loss results in less cell-cell adhesion and promotes metastasis [101]. In this regard, DMBA 

and TCDD have also been shown to suppress the transcription of T-cadherin via AHR [102]. AHR 

activation also increases the levels of matrix metalloproteinase (MMP)-9 and MMP-1 which aid in 

degradation of extracellular matrix and are crucial enzymes for metastasis to occur [103, 104]. AHR can 

also function as a scaffold protein for regulating the phosphorylation of retinoblastoma protein (Rb), a 

key player in cell cycle progression in tumor cells [105]. When Rb is hypophosphorylated, it prevents 

expression of G1 to S phase target genes regulated by E2F transcription factor 4 (E2F4) by binding and 

sequestering E2F4 [106]. AHR was revealed to be needed for the hyperphosphorylation of Rb and 

subsequent release of E2F4 to occur in BCCs [105].  

Two important papers from the Eltom lab have characterized AHR levels in the increased 

aggressiveness of triple-negative breast cancer (TNBC). One report utilizing the TNBC model cell line, 

MDA-MB-231, illustrated that knockdown of AHR resulted in reduced expression of many important 

genes relevant in cancer, including ABCG2, mucin-1 (MUC1) and IL-8, which are associated with 

chemotherapy resistance, tumor survival and poor prognosis in patients [107]. Another report showed 

AHR knockdown in TNBC cells reduced anchorage-independent growth, as well as growth of 
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xenografts and lung metastasis in mice, again using MDA-MB-231 cells [108]. An important recent 

study has linked the kyn-AHR pathway in TNBC cells to play a role in anoikis resistance [109]. Anoikis 

is a form of programmed cell death which normal epithelial cells undergo if detached from the basement 

membrane [110]. Inhibition or silencing of AHR or tryptophan dioxygenase 2 (TDO2), the enzyme 

which produces kyn, decreased anchorage-independent growth and made SUM-159pt cells more 

sensitive to anoikis [109]. Recently, we have published that knockdown of AHR and AHR regulation of 

SLC7A5 expression was important for MDA-MB-231 BCC growth also [44]. Collectively, researchers 

have linked AHR to tumor initiation, tumor invasion, metastasis, and EMT, revealing the complexity by 

which AHR functions in tumors (Table 1). 

Our laboratory has been focused over the past four years in further uncovering tumor promoting 

roles for AHR (Figure 5). We found that AHR is necessary for the proliferative response to adipocyte-

secreted factors (termed adipokines) in breast tumor cells (Chapter IV) [111]. This growth response is 

especially important in the context of obesity, where obese women have a greater incidence for breast 

cancer, are more resistant to cancer therapy, and have a higher rate of breast cancer recurrence than lean 

women with breast cancer [112, 113]. We also found that induction of cyclin D1 (CCND1) by the 

adipokine insulin-like growth factor (IGF)-2 is mediated by AHR (Chapter V) [114]. CCND1 is an 

important cell-cycle regulator important for actively dividing tumor cells to move through G1-S phase of 

cell division [106]. CCND1 is also an oncogene that is overexpressed in breast tumors compared with 

normal breast tissue [115]. Thus, our finding that AHR increases CCND1 expression in BCCs could 

have important clinical implications. We then found that regulation of SOD2 by TNF also required AHR 

(Chapter VI) [59]. Considering that SOD2 encodes manganese superoxide dismutase (MnSOD), a 

mitochondrial protein that reduces reactive oxygen species (ROS) [116], our findings suggest a novel 

mechanism by which AHR, by increasing MnSOD, lowers ROS in breast cancer cells stimulated 
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      AHR in Cancer 
Processes Specific Role References 

Cell Cycle 
Progression 

Functions as scaffold protein for 
regulating Rb phosphorylation 

[105] 

Epithelial to  
Mesenchymal 
Transition 

Regulates transcription of Slug,  
Downregulates cadherins 

[100-102] 

Metastasis Regulates expression of matrix  
metalloproteinases (MMPs) 

[103,104] 

Anoikis Endogenous AHR ligands linked to 
resistance to anoikis in triple-
negative breast cancer 

[109] 

Table 1. Characterized roles for the AHR in cancer. 
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Figure 5. New roles for AHR in breast cancer. (A) Adipokines, including IGF-2, increase the 
proliferation of breast tumor cells, which we found to be AHR-dependent. (B) IGF-2 increases of AHR, 
which then binds to the promoter of CCND1 at two sites to induce CCND1 expression. (C) TNF 
regulation of SOD2, which encodes MnSOD, requires interactions between AHR and NF-κB. (D) 
TCDD and endogenous signaling stimulates AHR regulation of LAT1. AHR = aryl hydrocarbon 
receptor, IGF-2 = insulin-like growth factor 2, TNF = tumor necrosis factor, NF-κB = nuclear factor 
kappa-light-chain-enhancer of activated B cells, MnSOD = manganese superoxide dismutase, TCDD = 
2,3,7,8-tetrachlorodibenzo-p-dioxin, LAT1 = L-type amino acid transporter 1. This figure summarizes 
the important findings of my research and was made in Microsoft Powerpoint.  
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with TNF. Indeed, we demonstrated that AHR knockdown BCCs are more sensitive to TNF-induced cell 

death compared with AHR expressing BCCs [59]. This is an important finding as it is suggests a role for 

AHR in reactive oxygen species maintenance and TNF-induced tumor cell death. Finally, we have 

shown that AHR is needed for regulation of solute carrier family 7 (amino acid transporter light chain, L 

system) member 5 (SLC7A5) which encodes L-type amino acid transporter 1 (LAT1) (Chapter VII) 

[44]. LAT1 is an important transporter which brings in amino acids such as leucine and tryptophan to 

drive protein synthesis in tumor cells, helping to maintain tumor proliferation [117]. To better 

understand these findings, the next chapter summarizes the roles of each of these important genes in 

cancer, as well as the effects of various secreted factors by adipose tissue important in obesity-driven 

cancers. 
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CHAPTER II: OBESITY, ADIPOKINES, AND GENES OF INTEREST IN BREAST CANCER. 

2.1. OBESITY AND BREAST CANCER.  

Epidemiological data has revealed that the prevalence of obesity has steadily increased over the 

past 25 years [118], continuing to be a major health concern in the United States. Adipose tissue is a 

potent endocrine gland and larger amounts of adipose tissue contributes to the chronic low grade 

inflammation seen in obese patients compared with lean patients [119]. Adipose tissue secretes a variety 

of peptide hormones, termed adipokines [120]. This cocktail of factors can influence multiple processes, 

including regulation of energy homeostasis (leptin, adiponectin, resistin), insulin sensitivity 

(adiponectin), vascular growth (vascular endothelial growth factor (VEGF)), and the immune response 

(interleukin (IL)-6 and tumor necrosis factor (TNF)) [120]. In the literature, there is evidence that 

obesity is a risk factor for certain cancers, including post-menopausal breast cancer [112, 113]. In pre-

menopausal women, the ovaries are the primary source of circulating estrogen [121]. In contrast, 

adipose tissue, not the ovaries, is the major source of estrogen in obese post-menopausal women [122]. 

Estrogen can cause tumor formation, and supports the growth of established ER-positive breast tumors 

[121]. Estrogen production by adipose tissue after menopause, via aromatization of androstenedione in 

adipose tissue to estrone and estradiol, is speculated to be a main component of obesity-driven increases 

in post-menopausal breast cancer [122]. While estrogen is certainly a dominant factor, it was postulated 

that the lower levels of adiponectin coupled with higher levels of leptin seen in obese women could 

increase breast cancer incidence and stimulate the growth of larger, more aggressive breast tumors in 

obese women compared with lean women [123]. In addition to high levels of leptin, additional 

adipokines that stimulate proliferation of ER-positive breast cancer include collagen VI, VEGF, insulin-

like growth factor (IGF)-1, and IGF-2 [124-126]. In the following sections, the effects and mechanisms 

of these cancer promoting adipokines will be discussed (Figure 6). 
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Figure 6. Important secreted adipokines and their roles in the body. Adiponectin, leptin, and resistin 
play roles in regulating energy homeostasis. Vascular endothelial growth factor (VEGF) is important in 
angiogenesis. Collagen VI is an extracellular matrix protein also important for proper angiogenesis to 
occur. Estrogen and insulin-like growth factors (IGFs)-1 and 2 are potent endocrine signaling proteins 
important in growth and changing gene expression in target tissues. Tumor necrosis factor (TNF) and 
interleukin (IL)-6 are involved in maintaining proper immune system responses.  
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2.2. ADIPONECTIN AND CANCER. 

Adiponectin plays roles in cancer, vascularization, and maintains insulin sensitivity [127]. 

Adiponectin, often referred to as ACPR30, exists in serum in three forms: as a trimer, a hexamer, and as 

a high molecular weight isoform [128]. Epidemiological studies have revealed that low circulating levels 

of adiponectin are associated with increases in breast cancer risk [129]. For instance, low serum 

adiponectin concentrations were associated with larger, more aggressive breast tumors [129]. 

Adiponectin suppresses the growth of MDA-MB-231 and MCF-7 BCCs, an effect mediated by binding 

cognate adiponectin receptors AdipoR1 and AdipoR2 [130, 131]. These two receptors exert different 

effects upon binding, as determined from in vivo studies. AdipoR1- and AdipoR2-deficient mice were 

bred and used to distinguish important aspects of these two receptors [132, 133]. Strikingly, AdipoR1-

deficient mice exhibited severe metabolic dysfunction and diet-induced weight gain compared to wild-

type mice, whereas AdipoR2-deficient mice were protected from perturbations in metabolism, 

suggesting AdipoR1 activation suppresses metabolic dysfunction in the context of a high fat diet [132, 

133]. AdipoR2 was shown to be more important in mediating revascularization effects of adiponectin 

[133]. Adiponectin is anti-angiogenic as well, inducing apoptosis of endothelial cells in vivo [134]. 

Adiponectin also promotes insulin signaling, through binding its cognate receptors and activating the 

adenosine monophosphate dependent kinase (AMPK) pathway [135]. AMPK activation by adiponectin 

is the main driver of its insulin sensitizing effects [135]. The diabetes drug, metformin, has also been 

shown to activate AMPK which explains its insulin sensitizing properties as well [136]. Low serum 

adiponectin levels result in chronic insulin resistance, and subsequent hyperinsulinemia [137]. Breast 

tumors express the insulin receptor (IR), and insulin binding to IR on BCCs stimulates their proliferation 

and inhibits apoptosis [138, 139]. Thus, hyperinsulinemia in obesity is postulated to promote the growth 

of larger, more aggressive breast tumors in obese women compared with lean women. Therefore, there 
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are three ways that low adiponectin levels in obesity can contribute to cancer growth: less adiponectin to 

bind its cognate receptors to inhibit cancer proliferation [130, 131], hyperinsulinemia which can drive 

tumor growth [138], and increases in angiogenesis [134]. 

2.3. LEPTIN AND CANCER. 

The obesity-associated increases in leptin have been attributed to the increased number of 

adipocytes and increased leptin expression by adipose tissue in obese women compared with lean 

women [140]. Leptin binds its cognate receptor, leptin receptor (LEPR), which activates the Janus 

kinase (JAK)/signal transducer and activator of transcription (STAT) pathway to elicit changes in the 

expression of genes that are important in cancer including the important cell cycle regulator CCND1, 

discussed in depth in section 2.9 [141]. The action of leptin is not limited to breast cancer, as it also 

regulates thermogenesis, inhibits appetite, and stimulates the metabolism of fat to maintain a normal 

body weight [142]. In obesity, studies suggest high serum leptin enables it to act as a potent breast tumor 

signaling hormone, as breast tumor cells express LEPR [143]. Case-control studies have provided 

evidence for this, as high serum leptin levels correlated with increased breast cancer incidence in several 

reports [144-146]. Dramatic evidence for leptin in breast cancer was provided by studies performed in 

obese mice with defects in the leptin receptor isoform B (LEPR-b), considered the major active isoform 

of LEPR [147]. Mice with non-functional LEPR-b were crossbred with transforming growth factor alpha 

(TGFα) oncogene-expressing mice (MMTV-TGFα mice) [147]. Female offspring with non-functional 

LEPR-b did not develop oncogene-driven breast tumors, even with circulating leptin levels 12-20-fold 

higher than in lean mice, whereas female offspring with functional LEPR-b had an 80% incidence rate 

[147]. Leptin triggers LEPR-positive cancer stem cell (CSC) self-renewal through JAK/STAT pathway 

activation [148]. CSCs are cells within a tumor that have a high capacity to initiate tumor formation 

[149]. Importantly, silencing LEPR in MDA-MB-231 BCCs inhibited the expression of stem cell self-
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renewal transcription factors NANOG, SOX2, and OCT4, due to loss of JAK/STAT activation [150]. 

LEPR-null MDA-MB-231 cells also lost many of their metastatic properties and underwent a 

mesenchymal-to-epithelial transition, with a gain of E-cadherin, an adhesion protein needed for cell-cell 

interactions, and loss of vimentin, an intermediate filament protein highly expressed in mesenchymal 

cells which helps anchor organelles [150].  

2.4. RESISTIN AND CANCER.  

 Resistin is secreted from monocytes and adipocytes and is known to play roles in 

atherosclerosis, stroke, and many cancers [151-153]. These cancers include colorectal, endometrial, and 

prostatic cancers, in addition to breast cancer [154-158]. One case-control study found that serum 

resistin levels were much higher in women with breast cancer when compared with women without 

breast cancer [156]. Another study found that breast tumors express resistin, and that resistin expression 

was correlated with a poor prognosis [159]. Resistin expression in breast tumors is likely mediated by 

estrogen, as a prior report noted estrogen induced resistin expression in 3T3-L1 adipocytes, which 

required ER and extracellular regulated kinase (ERK) activation [160]. Resistin secretion by adipocytes 

in the obese state could also be due to higher circulating levels of estrogen noted in obese patients [161]. 

Resistin also likely contributes to the pro-inflammatory environment noted in obesity, as numerous 

reports have linked resistin to inflammatory processes [162-164]. 

2.5. IGFS, INSULIN, AND CANCER. 

We found that adipocytes in cell culture secrete high levels of IGF-1 and IGF-2 [111]. The 

insulin and IGF family of proteins have been linked extensively to cancer, and exert their effects through 

binding IR-A, IR-B, the IGF-1 receptor (IGF1-R), or the hybrid IGF1-R/IR receptor, resulting in 

activation of various signaling cascades (Figure 7) [165, 166]. IGF1-R can be activated by both IGF-1  
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Figure 7. The insulin and IGF family signaling pathways. Insulin, insulin-like growth factor (IGF)-1, 
and IGF-2 can activate various receptors. IGF-1 can activate its cognate receptor, the IGF-1 receptor 
(IGF1-R) or the hybrid IGF1-R/insulin receptor (IR) receptor. Insulin can activate IR-A, IR-B, or the 
hybrid IGF-1/IR receptor. IGF-2 can bind its own cognate receptor, the IGF-2 receptor (IGF-2R), IGF1-
R, IGF1-R/IR, or IR-A. IGF-2R has no kinase activity, yet activation of the other receptors leads to 
activation of downstream signaling cascades as noted in the figure. PI3K = phosphatidylinositol-3-
kinase, AKT = protein kinase B, mTOR = mammalian target of rapamycin, S6K = ribosomal S6 kinase, 
MEK = mitogen activated protein kinase kinase, ERK = extracellular regulated kinase. This figure made 
in Microsoft Powerpoint to summarize information in references [165, 166]. 
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and IGF-2, with IGF-1 having higher affinity [166]. IGF1-R/IR preferentially binds IGF-1 and IGF-2, 

with lower affinity for insulin [166]. IR exists in two isoforms: IR-B, which are the traditional receptors 

which insulin binds, and IR-A, a fetal form of IR expressed on certain tumors, including breast tumors, 

which preferentially binds IGF-2 [166]. IGF-2R is a non-signaling receptor with no kinase activity, and 

acts to internalize and degrade circulating IGF-2 [166].  

Among insulin/IGF receptors, IGF1-R has received the greatest attention in cancer [165]. Some 

of the earliest reports linking IGF1-R to cancer found that transformation of mouse embryo fibroblasts 

(MEFs) by oncogenes such as SV40 large T antigen and c-Src required an intact, functional IGF1-R 

gene [167, 168]. Overexpression of the oncogene K-Ras in mouse mammary glands stimulated 

formation and growth of IGF1-R-overexpressing mammary tumors [169]. These tumors resembled 

human basal-like breast tumors, which are resistant to current cancer treatment options [169]. K-Ras 

overexpressing mammary tumors in these mice were shown to require IGF1-R for growth, as gene 

deletion experiments targeting the IGF1-R gene delayed the growth of these tumors [169]. Treatment 

with the IGF1-R inhibitor picropodophyllin (PPP) slowed the growth of K-Ras overexpressing 

mammary tumors, as well as MDA-MB-231 breast cancer xenografts in mice [169]. Other prior reports 

identified that breast tumors grew faster in wild-type mice than in IGF-1-deficient mice [170]. 

Exogenous IGF-1 administered to mice increased the growth and metastasis of colon cancer [171]. 

Acromegaly, a condition characterized by growth hormone excess, is associated with higher incidence 

of colon cancer, attributed to overproduction of IGF-1 [172]. In contrast, Laron-type dwarfism is 

associated with low serum IGF-1 levels and less risk for developing tumors [173]. Collectively, these 

reports have revealed that the IGF signaling axis promotes both the transformation and the progression 

of many cancers in both rodents and humans.  
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As noted, insulin resistance and subsequent hyperinsulinemia occurs frequently in obesity [112, 

113]. Breast tumors are responsive to the mitogenic and anti-apoptotic effects of insulin, as breast 

tumors express IR [138, 139]. Researchers have worked extensively to uncover the role of insulin and IR 

in cancer, with the majority of this work done by the LeRoith group. They developed a transgenic mouse 

model which expresses a dominant-negative IGF1-R specifically in skeletal muscle [174]. The 

formation of hybrid receptors between the mutant and endogenous IGF1-R and IR occurred, resulting in 

ligands failing to bind and activate these receptors [174]. These mice, called MRK mice, therefore 

developed insulin resistance and hyperinsulinemia [174]. Breast tumor cells grafted into the mammary 

fat pad of MRK mice grew faster than in wild-type mice, attributed to higher circulating insulin in MRK 

mice [139]. Breast tumors from MRK mice exhibited higher levels of IR signaling activation than 

control mice, including the AKT and mammalian target of rapamycin (mTOR) pathways [175]. The 

PI3K/AKT/mTOR pathway is a crucial signaling node in tumor cells, and 70% of breast tumors exhibit 

hyperactivation of this pathway [176]. Dosing with the PI3K inhibitor NVP-BKM120 or the dual 

PI3K/mTOR inhibitor BEZ235 reduced breast tumor size in MRK mice [175]. High levels of insulin in 

these mice specifically activated IR on tumor cells, not IGF1-R [175]. When mice were given the insulin 

analog AspB10, which selectively targets IR, they developed larger mammary tumors than mice 

administered vehicle control [175]. In all, these reports reveal hyperinsulinemia is sufficient to drive 

breast tumor growth.  

2.6. TNF, IL-6, AND CANCER. 

 There is now a sufficient body of evidence that chronic inflammation is conducive to tumor 

development and tumor progression [177, 178]. Two important cytokines involved in inflammation and 

the immune response, TNF and IL-6, are also secreted by adipocytes and will be reviewed in this section 

[179, 180]. TNF is a complex cytokine that regulates cancer and high serum TNF levels have been 
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shown in cancer patients [181]. Unlike normal tissue, it has been revealed that tumors of various types, 

including those of skin, ovarian, and pancreatic cancers, produce TNF [182]. In ovarian cancer, TNF has 

been shown to promote angiogenesis and leukocyte infiltration in the ovarian cancer microenvironment 

[183]. In a lung cancer model, TNF produced by malignant cells contributed to increased permeability 

of the vasculature leading to malignant pleural effusion (MPE), where fluid buildup occurs between the 

thin layers of tissue lining the outer lung and chest cavity [184]. TNF promoted the adhesion and 

migration of MDA-MB-231 BCCs through induction of lectin-like oxidized-lowdensity lipoprotein 

(oxLDL) receptor-1 (LOX-1) in endothelial cells, which promotes metastasis [185]. Blocking TNF in a 

mouse model was shown to reduce the development of colorectal cancer resulting from chronic colitis 

[186]. Macrophage-derived TNF in the microenvironment was shown to activate Wnt signaling in 

gastric cancer as well [187]. Indeed, given adipocytes secrete TNF into the microenvironment [188]; 

adipocyte-derived TNF illustrates another way obesity can contribute to cancer growth.  

High serum IL-6 levels have been shown to be a good prognostic marker, as patients with 

endometrial, ovarian, and hormone-refractory prostate cancers exhibit increased IL-6 levels [189-191]. 

In breast tumors, IL-6 mRNA levels were found to correlate with the aggressiveness of the cancer, as 

highest IL-6 mRNA was noted in the highly aggressive and metastatic basal-like subtype [192]. Another 

study linked human epidermal growth factor 2 receptor (HER2) signaling with IL-6 expression in breast 

cancer [193]. HER2 is an oncogene upregulated in a subset of breast tumors, and HER2 signaling 

through PI3K/AKT/mTOR and ERK pathway activation contributes to tumor proliferation [194]. This 

study found that HER2 overexpression was associated with increased IL-6 production and secretion 

which then acted on breast tumor cells to activate STAT3 through an autocrine loop, forming a HER2-

IL-6-STAT3 axis [193]. In pancreatic cancer patients, high IL-6 levels were linked with advanced 

cancer stage as well as development of cachexia [195]. Another clinical study found that high IL-6 
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levels correlated with a diminished response to chemo and hormone-based cancer therapies in metastatic 

breast cancer patients [196]. Lastly, IL-6 was shown to increase expression of VEGF and promote 

angiogenesis in gastric tumors, another way it can contribute to cancer growth [197]. Collectively, these 

reports reveal a role for TNF and IL-6 in tumor progression, independent of their actions on the immune 

system.  

2.7. COLLAGEN VI AND CANCER. 

 Collagen VI is an extracellular matrix protein highly expressed in cancer [198]. Collagen VI is 

typically found in the tumor stroma, near blood vessels, and helps facilitate the process of angiogenesis 

[198]. Collagen VI, by activating the NG2/chondroitin sulfate proteoglycan (CSP) receptor, activates β-

catenin signaling [124]. Upon its activation, β-catenin translocates from the cell membrane to the 

nucleus, promoting its binding to T-cell factor (TCF) transcription factors that stimulate the expression 

of genes important in cancer, like CCND1 [199]. Collagen VI induced CCND1 expression in MCF-7 

BCCs via NG2/CSP receptor binding, stimulating proliferation [124]. Collagen VI also induced 

expression of IL-8 and VEG-F in MCF-7 BCCs, further evidence of its tumor promoting effects [124]. 

Collagen VI production by macrophages facilitates their recruitment and adhesion at the tumor site 

resulting in increased inflammation in the tumor microenvironment [200]. While correlated with tumor 

invasiveness in breast cancer, high collagen VI expression has also been noted in ovarian cancer, 

melanoma, and glioblastomas [198]. Upregulation of metallothioneins by collagen VI has been shown 

[124] which could contribute to chemotherapy resistance in tumors, as these small trace metal and free 

radical scavenging proteins have been linked to cisplatin treatment failure [201]. One of the lesser 

researched adipokines, uncovering the mechanisms of collagen VI in cancer is still a growing area. 
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2.8. VEGF AND CANCER. 

 The role of VEGF in vascular permeability and angiogenesis has been well characterized [202]. 

Tumor cells also express VEGF receptors (VEGFRs) VEGFR1, VEGFR2, and VEGFR3, and are VEGF 

responsive [203]. VEGFRs are receptor tyrosine kinases [202] and belong to the same receptor class as 

IR and IGF1-R. Neuropilins (NRPs) are transmembrane proteins which function as co-receptors for 

other receptor classes, including VEGFRs [204]. NRPs complex with VEGFRs to increase VEGF 

affinity, in addition to functioning as VEGF receptors themselves [203, 204]. VEGF can modulate 

various steps in tumorigenesis, including tumor initiation and progression as well as modulating CSC 

functioning. VEGFR1 activation has been shown to increase invasion and migration of colorectal cancer 

through ERK activation and translocation of the RELA subunit of NF-κB into the nucleus to activate 

target gene expression [205]. Other reports have characterized the ability of NRP-mediated VEGF 

signaling to promote breast tumor survival via AKT pathway activation [206]. In terms of CSCs, two 

reports have shown VEGFR2 and NRPs appear to help sustain stem cell proliferation in both skin and 

brain tumors [207, 208]. Targeting VEGF has received continued interest, due to promising work done 

with the anti-VEGF antibody, bevacizumab. In patients with advanced stage breast cancer, bevacizumab 

treatment increased apoptosis of breast tumor cells [209]. In conclusion, the role of VEGF in cancer is 

more complex than initially thought, as not only does it facilitate increased blood supply to the tumor, it 

also acts directly on tumor cells to promote their proliferation and survival.  

2.9. CCND1 AND CANCER. 

 The following sections will discuss genes involved in cancer that we have found to be dependent 

on AHR regulation. CCND1 was the first gene we identified whose expression was dependent on AHR 

[114]. CCND1, one of several D-type cyclins, is an important cell-cycle regulatory protein that promotes 

cellular division [115]. CCND1 exerts its effects through binding its partners, cyclin-dependent kinases 
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4 and 6 (CDK4/CDK6) [115]. The activation of these CCND1-CDK complexes phosphorylate 

retinoblastoma (Rb) protein. Increases in the phosphorylation of Rb inhibits its activity, and decreases in 

Rb activity is necessary for cell proliferation (Figure 8) [115]. CCND1 is an oncogene, and is 

overexpressed in a variety of tumor types, commonly through alterations in gene copy number [210-

212]. In breast cancer, 50-70% of all breast tumors overexpress CCND1 [213, 214]. Compounds that 

inhibit CCND1/CDK signaling have been investigated as potential anticancer agents. For instance, the 

pan-CDK inhibitor flavopiridol showed promising preclinical antitumor activity, however, its efficacy in 

clinical trials was poor [215-219]. Flavopiridol treatment failure has been attributed to dosing during the 

study which was not optimal and/or poor pharmacokinetics [215, 216]. Second generation CDK 

inhibitors, including palbociclib, abemaciclib, and ribociclib, which are specific for CDK4 and CDK6, 

have been developed and are currently in phase 3 clinical trials [220]. Other options include inhibiting 

CCND1 translation into protein or increasing CCND1 protein degradation. Translation of CCND1 

mRNA is dependent on mTOR, thus, mTOR inhibitors are being investigated in CCND1 overexpressing 

cancers, including mantle-cell lymphoma (MCL) [221]. Silencing expression of the deubiquitinating 

enzyme USP2 increased cyclin D1 degradation and inhibited the growth of tumor cells which 

overexpressed cyclin D1, but not control fibroblast cells, suggesting increasing cyclin D1 degradation 

could be a novel therapy which targets only tumor cells [222]. Based on our work showing that AHR 

induces CCND1 expression in MCF-7 BCCs [114], we postulate that AHR antagonists could be a new 

mechanism to reduce CCND1 expression in breast cancer.   

2.10. SOD2 AND CANCER. 

Superoxide dismutase 2 (SOD2), encodes manganese superoxide dismutase (MnSOD), an 

enzyme that neutralizes reactive oxygen species (ROS) [223]. By reducing ROS, MnSOD inhibits cell 

death, as high levels of ROS induce oxidative damage to cellular macromolecules in the mitochondria  
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Figure 8. Role of CCND1 in cell cycle progression. CCND1 and CDK4 interact to form a stable 
complex. This complex then phosphorylated Rb, removing its inhibitory effects on E2F4. E2F4 can then 
move into the nucleus and stimulate gene expression. CCND1 = cyclin D1, CDK4 = cyclin-dependent 
kinase 4, Rb = retinoblastoma protein, E2F4 = E2F transcription factor 4. This figure was made in 
Microsoft Powerpoint to summarize information from reference [115].  
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[223]. While two other genes (SOD1 and SOD3) also encode superoxide dismutases [224], only SOD2 

is essential for life, as knockout of SOD2 has been shown to cause embryonic and neonatal lethality in 

mouse models [225, 226]. MnSOD inactivates ROS by catalyzing the dismutation of superoxide anion 

(O2
.-) to hydrogen peroxide (H2O2), which is then further converted to less toxic water and oxygen by 

glutathione peroxidase, preventing mitochondrial damage (Figure 9) [223, 227]. The SOD2 gene is 

expressed in the nucleus and its product, MnSOD, translocates to the mitochondria via a targeting 

sequence [228]. MnSOD is a TNF target gene, and its upregulation by TNF reduces ROS production in 

cancer cells [228, 229]. Prior reports have shown that TNF-stimulated increases in SOD2 transcription 

are mediated by the transcription factor NF-κB [228]. As detailed in Chapter VI, and in our prior report 

[59], we identified that TNF regulation of MnSOD in MCF7 BCCs is mediated by AHR. AHR and NF-

κB were both recruited to NF-κB-RE in the SOD2 gene upon TNF stimulus, and knockdown of AHR 

blocked TNF-stimulated increases in MnSOD [59]. Silencing AHR also sensitized BCCs to TNF 

cytotoxicity by preventing upregulation of MnSOD [59]. Considering that our work shows AHR 

promotes MnSOD expression, and that MnSOD promotes the survival of breast tumor cells, we 

postulate that AHR antagonists may inhibit breast tumor survival by suppressing MnSOD expression. 

2.11. LAT1 AND CANCER. 

 We have most recently published that SLC7A5, which encodes the protein L-Type Amino Acid 

Transporter 1 (LAT1), is a primary AHR gene target in MCF-7 and MDA-MB-231 BCCs [44]. LAT1 

facilitates the uptake of large neutral amino acids including leucine, arginine, phenylalanine, and 

tryptophan [230-232]. LAT1 is overexpressed in a variety of tumor types, including breast, colorectal, 

and prostate, compared with surrounding normal tissue [233]. Upregulation of LAT1 is postulated to 

promote cancer growth by facilitating the uptake of leucine by tumor cells. Increases in intracellular 

leucine is necessary for the activation of mTOR signaling, specifically mTORC1 [234, 235].  
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Figure 9. Role of MnSOD in mitochondrial oxidative stress. MnSOD converts superoxide anion    
(O2

.-) radical into H2O2 + O2. H2O2 is then further converted to H2O by GPX using GSH as electron 
donor, forming GSSG in the process. GSSG is then converted back to GSH by GR using NADPH as 
electron donor to complete the cycle. MnSOD = manganese superoxide dismutase, GPX = glutathione 
peroxidase, GR = glutathione reductase, GSSG = glutathione disulfide, GSH = reduced glutathione, 
NADPH = nicotinamide adenine dinucleotide phosphate. This figure made in Microsoft Powerpoint and 
summarizes information found in references [223, 224].   
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Increases in the activity of mTORC1 promotes the phosphorylation and activation of mTORC1 

downstream targets such as ribosomal S6 kinase (p70S6K), eukaryotic initiation factor (eIF), and 4E-

binding proteins (4E-BPs) which promote protein synthesis and cell survival (Figure 10) [234]. 

Hyperactivation of mTOR and its downstream constituents have been associated with many tumor types, 

including melanoma, late-stage head and neck cancers, and ductal cell breast cancers [235, 236]. 

Importantly, prior reports have demonstrated that breast tumors that express high levels of LAT1 were 

more resistant to tamoxifen treatment than breast tumors that expressed low levels of LAT1 [237, 238]. 

We recently published the first data indicating that LAT1 is a primary AHR gene target in MCF-7 and 

MDA-MB-231 BCCs [44]. The finding that AHR promotes LAT1 expression and function, suggests 

that AHR antagonists may offer a new way to overcome tamoxifen resistance by downregulating LAT1. 

Indeed, my recent work from our laboratory has revealed that CCND1, MnSOD and LAT1 are primary 

AHR target genes in human BCCs, suggesting that the inhibition of AHR may be useful in the treatment 

of breast tumor growth and survival.   
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Figure 10. Role of LAT1 in tumor cell survival. LAT1 facilitates the uptake of amino acids like 
leucine through interactions with chaperone CD98. Leucine activates mTOR signaling which activates 
downstream targets, such as p70S6K, that are important for increasing protein synthesis and maintaining 
tumor survival. LAT1 = L-type amino acid transporter 1, CD98 = 4F2 heavy chain antigen, mTOR = 
mammalian target of rapamycin, p70S6K = ribosomal s6 kinase 1. This figure made in Microsoft 
Powerpoint to summarize information found in references [230-235]. 
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CHAPTER III: METHODS TO STUDY AHR SIGNALING. 

3.1 MATERIALS 

 The purpose of this introductory methods sections is to provide a brief overview of the 

methods that were used in this dissertation (Table 2). MCF-7, T-47D, and MDA-MB-231 breast cancer 

cells and 3T3-L1 fibroblast cells were purchased from ATCC (Manassas, Va). Dulbecco's Modified 

Eagle Medium/High glucose (DMEM) with L-glutamine and sodium pyruvate, phenol red-free DMEM, 

phosphate buffered saline (PBS), fetal bovine serum (FBS), penicillin, and streptomycin were purchased 

from Thermo Fisher Scientific (Pittsburgh, PA). Sodium dodecyl sulfate (SDS), 30 % acrylamide/bis 

solution, ammonium persulfate, Tween-20, and 2-mercaptoethanol were obtained from Bio-RAD 

(Hercules, CA). Trypsin-EDTA was purchased from Thermo Fisher Scientific (Pittsburgh, PA). DMSO, 

SU5416, CH-223191, 3-isobutyl-1-methylxanthine (IBMX), insulin, dexamethasone, L-leucine, and all 

designed mRNA and ChIP primers were purchased from Sigma Aldrich (St. Louis, MO). TCDD was 

purchased from Cambridge Isotopes Laboratory (Andover, MA). Recombinant human IGF-2, IGF-2 

blocking antibody, and recombinant human TNF were purchased from R & D Systems (Minneapolis, 

MN). All short interfering RNAs (siRNAs) were purchased from GE Dharmacon (Lafayette, CO). The 

following antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX): AHR (cat # H-211), 

NF-κB RELA (cat # sc-372), ARNT (cat # sc-17812), p300 (cat # sc-584) and control random IgG (cat # 

2027). The following antibodies were purchased from Millipore (Temecula, CA): Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (cat # MAB374) and cyclin D1 (cat # 04-1151). The following 

antibodies were purchased from Cell Signaling Technology (Santa Cruz, CA): LAT1 (cat # 5347), 

acetyl-histone H3 (K9) (cat # 9649), and acetyl-histone H3 (K14) (cat # D4B9). MnSOD antibody 

purchased from Abcam (Cambridge, UK) (cat # ab13533). 
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ChIP mRNA Western Function 
Gene Targets Gene Targets Proteins  

 AHR AHR Gene Regulation

CCND1 CCND1 CCND1 Cell Proliferation

SOD2 SOD2 MnSOD ROS Reduction

LAT1 LAT1 LAT1 Leucine Uptake

CYP1A1, 1B1 CYP1A1 Metabolism

 GAPDH GAPDH Loading Control
Table 2. Methods and targets to study AHR signaling. 
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3.2. GENE BINDING: CHROMATIN IMMUNOPRECIPITATION.  

Chromatin immunoprecipitation (ChIP) assays were conducted to investigate the binding of 

transcription factors, transcriptional coactivators and changes in histone H3 acetylation within chromatin 

corresponding to CYP1A1, CYP1B1, CCND1, SOD2 and LAT1 genes. To this end, 500,000 BCCs 

were plated into 60 mm culture plates in DMEM supplemented with 10% FBS for twenty four hours 

prior to treatment with vehicle, IGF-2 (100 ng/mL, three hr), TNF (10 ng/mL, twleve hr) or TCDD (10 

nM, forty five min). Post treatment, formaldehyde (1% final concentration) was added to cell culture 

medium for ten min, and then cells were incubated in glycine (final concentration 0.5 M) for five min in 

order to quench the crosslinking reaction. Cells were then rinsed with PBS, scraped and collected in 

PBS, and pelleted by brief low speed centrifugation (800 RPM). Cell pellets were then lysed in 300 μL 

of lysis buffer (1% SDS; 5 mM EDTA; 50 mM Tris–HCl, pH 8) per 60 mm plate plus protease 

inhibitors (Thermo Scientific) for 15 min on ice.  

Sonication (Fisher Sonic Dismembrator Model 500 at 15% amplitude) was utilized to shear 

chromatin to an average length of 500 bp. Cellular extracts containing sheared chromatin were then 

diluted 1:10 in dilution buffer (16.7 mM Tris–HCl, pH 8; 167 mM NaCl; 1.2 mM EDTA; 0.01% SDS; 

1.1% Triton X-100) and rotated overnight at 4°C with 1 μg of non-specific IgG or antibodies 

recognizing specific transcription factors, the transcriptional coactivator p300 or acetylated histone H3 

at lysine residues 9 and 14 (Table 3). Antibody-chromatin complexes were collected using 5 μL of 

magnetic protein A or G beads (Dynabeads, Invitrogen) with rotation at 4° C for 90 min. Using 

magnetic separation (Life Technologies; part # 49-2025), beads were washed sequentially with buffer 1 

(20 mM Tris–HCl, pH 8; 150 mM NaCl; 2.0 mM EDTA; 0.1% SDS), buffer 2 (20 mM Tris–HCl, pH 8; 

500 mM NaCl; 2.0 mM EDTA; 0.1% SDS), buffer 3 (10 mM Tris–HCl (pH 8); 0.25 M LiCl; 1 mM 

EDTA; 1% NP-40; 1% deoxycholate), and then 1× TE buffer for five mins each, and incubated at 
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ChIP Antibodies 
Protein Catalog # Concentration Company 

AHR H-211 1 μg  Santa Cruz Biotech

ARNT sc-17812 1 μg  Santa Cruz Biotech

p300 sc-584 1 μg  Santa Cruz Biotech

Acetyl-histone H3 (K9) 9649 1 μg  Cell Signaling

Acetyl-histone H3 (K14) D4B9 1 μg  Cell Signaling

NF-κB RELA sc-372 1 μg  Santa Cruz Biotech

Control IgG 2027 1 μg  Santa Cruz Biotech

Table 3. List of antibodies used for ChIP experiments 
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65° C for four to six hours in elution buffer (1% SDS, 0.1 M NaHCO3) containing 1 µL proteinase K (10 

mg/ml stock) per ChIP reaction to elute off beads and cleave peptide bonds to aid in DNA purification. 

DNA was purified (Qiagen; cat # 28204) and analyzed using real time quantitative PCR (detailed in 

section 3.4.). Primers spanning AHR-response elements (AHR-RE) in the promoter regions of CYP1A1, 

CYP1B1, intron 3 of the LAT1 gene, NF-κB-RE in the SOD2 gene, or the activator protein 1 (AP1)-RE 

or T-cell factor (TCF)-RE in CCND1 were used to investigate the binding of AHR, ARNT, NF-κB, 

p300 or increases in the acetylation in histone H3 in these gene targets (Table 4). ChIP data was 

expressed as % input, in which signals obtained from the ChIP are divided by signals obtained from an 

input sample. 

3.3. SHORT INTERFERING RNA: GENE KNOCKDOWN EXPERIMENTS. 

Gene specific short interfering RNAs (siRNA) were used to knockdown the expression of 

specific genes in order to evaluate their function. 200,000 cells in 1 mL of DMEM + 10% FBS were 

mixed directly with 100 nM of short interfering RNA (siRNA) that was either non-targeting (control), 

AHR targeting (AHR-siRNA), NF-κB RELA targeting, or LAT1 targeting (LAT1-siRNA) and 3 µl of 

transfection reagent (Lipofectamine RNAi Max, Life Technologies), and then plated into 35 mm tissue 

culture plates. After thirty six hours, cells were treated with vehicle, IGF-2 (100 ng/mL, three hr), TNF 

(10 ng/mL, twelve hr) or TCDD (10 nM, six hr, or sixteen hr). Treatments were removed, and total 

cellular RNA or protein was extracted with RNA-purification kits (Qiagen RNeasy) or 2× Laemmli 

sample lysis buffer, respectively. In some experiments, total RNA was isolated using TRI-reagent in 

accordance with protocols provided by the manufacturer (Sigma Aldrich). For cell growth studies, 

treatments were prolonged and are described in section 3.7. 

 



43 
 

ChIP DNA Primers for PCR 

Gene Element Forward Primer Reverse Primer 
CCND1 AP1-RE 5′-GGCAGAGGGGACTAATATTTCCAGCA-3′ 5′-GAATGGAAAGCTGAGAAACAGTGATCTCC-3′ 

CCND1 TCF-RE 5′-GCTCCCATTCTCTGCCGG-3′ 5′-CGGAGCGTGCGGACTCTG-3′ 

CYP1A1 AHR-RE 5′-ACGCAGACCTAGACCCTTTGC-3′ 5′-CGGGTGCGCGATTGAA-3′ 

CYP1B1 AHR-RE 5′-GTGCGCACGGAGGTGGCGATA-3′ 5′-GCTCCTCCCGCGCTTCTCAC-3′ 

LAT1 AHR-RE 5′-GCACGTACCTGTAGGGGTTG-3′ 5′-ATGCTCTCTCCCCGGTGATT-3′ 

SOD2 NF-κB-RE 5'-GGAAAAGGCCCCGTGATTT-3' 5'-TCCTGGTGTCAGATGTTGCC-3' 

Table 4. ChIP primers used to analyze gene regulation by transcription factors.  
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3.4. MESSENGER RNA: REAL TIME QUANTITATIVE PCR. 

 Total cellular RNA was isolated with TRI-Reagent or RNEasy Purification Kits (Qiagen) 

and quantitated by Nanodrop spectrophotometry. RNA at 100-300 ng starting concentration was reverse 

transcribed to complementary DNA (cDNA) (Verso cDNA kit; Thermo Fisher Scientific; cat # AB-

1453/B). The resulting cDNAs were subjected to quantitative real-time PCR (RT-qPCR) using gene 

specific primers (300 nM per reaction) and 40 cycles of PCR in accordance with Absolute Blue SYBR 

Green Rox Mix (Thermo Fisher Scientific; cat # AB-4162/B) protocols (Table 5 contains all mRNA 

primer sets). Relative gene expression between control and treated cells was calculated using the 

formula 2−ΔΔCT, as described by Livak and Schmittgen [239]. GAPDH mRNA levels served as the 

internal control. The Harvard Primer Bank http://pga.mgh.harvard.edu/primerbank/ and NIH primer 

blast search engines http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome 

were used to design primers. Primer specificity was verified with melt curve analysis during each real 

time PCR run.   

3.5. PROTEIN: WESTERN BLOTTING. 

To assay changes in protein levels, 200,000 cells were plated in 35 mm plates for 24 h prior to 

specific treatments. Once treatments were carried out, total cellular extract was isolated in 200 μL of 

Laemmli sample buffer and approximately 12.5 μg of protein was subjected to SDS PAGE analysis and 

transferred to polyvinylidene difluoride (PVDF) membranes (Bio-RAD; Hercules, CA). Membranes 

were blocked in PBS, .01% Tween 20 (PBS-T), 5% (wt/vol) low-fat powdered milk for one hr and 

incubated overnight with primary antibody at 4° C with gentle mixing. Primary antibodies used, their 

dilutions, and where they were obtained is provided in Table 6. Membranes were rinsed five times (five 

minutes each wash) with PBS-T and then incubated with an appropriate HRP-labeled secondary  
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mRNA Primer Sets 
Gene Targets Forward Primer Reverse Primer  

AHR 5′-ACATCACCTACGCCAGTGG-3′ 5′-CTCTATGCCGCTTGGAAGGAT-3′ 

CCND1 5′-CCGCAATGACCCCGCACGAT-3′ 5′-AGGGCAACGAAGGTCTGCGC-3′ 

SOD2 5′-GGAAGCCATCAAACGTGACTT-3′ 5′-CCCGTTCCTTATTGAAACCAAGC-3′ 

CYP1A1 5′-CTTCACCCTCATCAGTAATGGTC-3′ 5′-AGGCTGGGTCAGAGGCAAT′-3' 

CYP1B1 5′-CTGCACTCGAGTCTGCACAT-3'  5′-TATCACTGACATCTTCGGCG-3′ 

HMGCS2 5′-CAATGCCTGCTACGGTGGTA-3′ 5′-GACGGCAATGTCTCCACAGA-3′ 

OAS1 5′-CAGACGATGAGACCGACGAT-3′  5′-CCTGGAGTGTGCTGGGTCTA-3′ 

PLA2G2 5′-ACCAGACGTACCGAGAGGAG-3′  5′-CGCTGGGGATTGGTGACTG-3′ 

ABCG2 5′-ACGAACGGATTAACAGGGTCA-3′  5′-CTCCAGACACACCACGGAT-3′ 

NRF2 5′-TCCAGTCAGAAACCAGTGGAT-3′ 5′-GAATGTCTGCGCCAAAAGCTG-3′ 

ALOX5 5′-CTCAAGCAACACCGACGTAAA-3′ 5′-CCTTGTGGCATTTGGCATCG-3′ 

ALDH3A1 5′-TGTTCTCCAGCAACGACAAGG-3′  5′-AGGGCAGAGAGTGCAAGGT-3′ 

PKD1L1 5′-CGCCTCTGGATTGTGATAACAG-3′  5′-CGGTCCCAGTAGCACACAG-3′ 

PYDC1 5′-CACACGTATAGCTACCGGCG-3′ 5′-CGCGTAAGACAACAGCAGTG-3′ 

PGR 5′-TTATGGTGTCCTTACCTGTGGG-3′ 5′-GCGGATTTTATCAACGATGCAG-3′ 

MGP 5′-TCCGAGAACGCTCTAAGCCT-3′ 5′-GCAAAGTCTGTAGTCATCACAGG-3′ 

SERPIN3A 5′-TGCCAGCGCACTCTTCATC-3' 5′-TGTCGTTCAGGTTATAGTCCCTC-3′ 

CREB3L 5′-CCTCCCGAAGCCTCCTATTCT-3′ 5′-GGGGTTGATTTCCCAGCCA-3′ 

SERPIN5A 5′-ATGCCCTTTTCACCGACCTG-3′ 5′-TGCAGAGTCCCTAAAGTTGGTAG-3′ 

ADORA 5′-CCACAGACCTACTTCCACACC-3′ 5′-TACCGGAGAGGGATCTTGACC-3′ 

GAPDH 5′-CATGAGAAGTATGACAACAGCCT-3′ 5′-AGTCCTTCCACGATACCAAAGT-3′ 

LAT1 5′-CCGAGGAGAAGGAAGAGGC-3′ 5′-GAAGATGCCCGAGCCGATAA-3′ 

RELA 5′- TCCAGACCAACAACAACCCC-3′ 5′-GATCTTGAGCTCGGCAGTGT-3' 

Table 5. Primer sets for mRNA studies.  
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Western Antibodies 
Protein Cat # Conc. & Incubation Company 

AHR H-211 1 : 2000, overnight, 4C Santa Cruz Biotech 
CCND1 04-1151 1 : 20000, overnight, 4C Millipore 
GAPDH MAB374 1 : 10000, 1 h, room temp. Millipore 

LAT1 5347 1 : 2000, overnight, 4C Cell Signaling 
MnSOD ab13533 1 : 5000, overnight, 4C Abcam 

Table 6. Antibodies used for western blotting.  
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antibody (diluted 1:10,000 in PBS, .01% tween-20, 5% milk) (Thermo Scientific, Pierce) for one hr, 

followed with rinsing five times (five mins each wash) in PBS-T. Membranes were developed with 

enhanced chemiluminescent substrate (Millipore, Immobilon ECL substrate) and exposure to X-ray film 

(Midwest Scientific). GAPDH western blots were performed as a loading control for all western blot 

experiments herein to confirm equal protein loading. Normalized levels of proteins of interest were 

expressed as a ratio relative to GAPDH levels. Densitometry was calculated with ImageJ PC-based 

software (National Institute of Health). 

3.6. FUNCTION: LEUCINE UPTAKE. 

Leucine uptake experiments were performed in MCF-7 cells grown to confluence on 24 well 

plates. The cells were first washed twice with Na-free buffer (130 mM TMACl, 4.7 mM KCl, 1 mM 

MgSO4, 1.25 mM CaCl2, 20 mM HEPES; pH 7.4) and incubated with the same for ten min at room 

temperature. The uptake was then initiated by incubating the cells for thirty sec with Na-HEPES buffer 

(130 mM NaCl, 4.7 mM KCl, 1 mM MgSO4, 1.25 mM CaCl2, 20mM HEPES; pH 7.4) with 10 µCi of 

3H-L-Leucine (PerkinElmer; Waltham, MA) and 10 µM L-Leucine (Sigma). The reaction was stopped 

with ice cold Na-HEPES buffer after which the cells were washed twice with the same ice-cold buffer. 

The cells were then lysed in 500 µl of 1 N NaOH followed by incubation for 20 min at 70° C. The lysed 

contents of each well was collected in a 7 ml scintillation tube and mixed with 5 ml Ecoscint A 

(National Diagnostics; Atlanta, GA). Leucine uptake experiments were conducted using chemicals 

obtained from Sigma–Aldrich. The vials were kept in the dark for forty eight hours and the radioactivity 

was determined in a Beckman 6500 scintillation counter. Data expressed as leucine uptake pmol/mg 

protein. 
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3.7. FUNCTION: CANCER PROLIFERATION. 

For cellular proliferation studies, two methods were used: manual cell counting via 

hemocytometers or commercially available colorimetric proliferation assay kits. For specific treatments, 

refer to methods and results sections found in the subsequent chapters of this document. Generally, for 

manual cell counting, breast cancer cells were seeded into six well plates at a density of 80,000 cells per 

well. Once specific treatments were applied, cells were maintained in culture for three days to observe 

discernable changes in cell number. After three days, treated cells were rinsed with PBS solution, 

subjected to trypsinization, and then suspended in complete medium (DMEM, 10% FBS, and 1% 

penicillin/streptomycin (P/S)) at a final volume of 1mL cell suspension per well. Cells were diluted 1:1 

with trypan blue to determine the number of viable cells, as dead cells take up the compound and exhibit 

a blue color and can be excluded from counts [240]. 12.5 µL of each cell suspension was loaded onto 

hemocytometers and counted. Three replicates were performed per treatment group and these numbers 

were averaged. Control untreated cells were assigned a value of 1, and fold change in cell number for 

treated cells was determined and expressed graphically.  

 Proliferation was assayed using commercially available Aqueous One Solution Cell 

Proliferation Assay kits (Promega, Madison, WI). Cells were plated into 96 well plates at a density of 

1,000 to 2,000 cells per well, depending on the cell line. After three days, cell proliferation was assayed 

in accordance with the manufacturer’s protocol.  

3.8. STATISTICAL ANALYSIS. 

Two-tailed, paired t tests with confidence intervals of 95% were used to determine statistically 

significant differences between two groups. The Student Newman–Keuls (SNK) post hoc test was used 

to determine statistically significant differences among groups following one-way analysis of variance 
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(ANOVA). “*” denotes statistical significance reached at P < 0.05, “**” denotes statistical significance 

reached at P < 0.01, and “***” denotes statistical significance reached at P < 0.001. 
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CHAPTER IV: ARYL HYDROCARBON RECEPTOR LIGANDS INHIBIT IGF-II AND 

ADIPOKINE STIMULATED BREAST CANCER CELL PROLIFERATION. 
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ABSTRACT 

Obesity increases human cancer risk and the risk for cancer recurrence. Adipocytes secrete paracrine 

factors termed adipokines that stimulate signaling in cancer cells that induce proliferation. The aryl 

hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays roles in tumorigenesis, 

is regulated by exogenous lipophilic chemicals, and has been explored as a therapeutic target for cancer 

therapy. Whether exogenous AHR ligands modulate adipokine stimulated breast cancer cell proliferation 

has not been investigated. We provide evidence that adipocytes secrete insulin-like growth factor 2 

(IGF-2) at levels that stimulate the proliferation of human estrogen receptor (ER) positive breast cancer 

cells. Using highly specific AHR ligands and AHR short interfering RNA (AHR-siRNA), we show that 

specific ligand-activated AHR inhibits adipocyte secretome and IGF-2-stimulated breast cancer cell 

proliferation. We also report that a highly specific AHR agonist significantly (P < 0.05) inhibits the 

expression of E2F1, CCND1 (known as Cyclin D1), MYB, SRC, JAK2, and JUND in breast cancer 

cells. Collectively, these data suggest that drugs that target the AHR may be useful for treating cancer in 

human obesity. 

 

Keywords: AHR, IGF-2, Adipokines, Obesity, Breast Cancer 
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4.1. INTRODUCTION 

Human obesity is common and has been linked with increases in breast cancer risk and 

breast cancer recurrence [112, 113, 241]. Although the underlying links between obesity and 

cancer are not completely clear, adipocytes themselves are postulated to play a role [112, 113, 

124, 241-246]. Adipocytes secrete multiple paracrine factors termed adipokines that stimulate 

signaling in human cancer cells that stimulate proliferation [124, 242-244, 246]. Specific 

adipokines that stimulate the proliferation of human estrogen receptor (ER) positive breast 

cancer cells are leptin, collagen VI, and members of the insulin-like growth factor (IGF) family 

of proteins [124, 242, 243, 245]. In ER positive breast cancer cells, leptin through its cognate 

membrane spanning cytokine leptin receptor activates the JAK/STAT pathway [244, 247]. 

Collagen VI by activating the NG2/chondroitin sulfate proteoglycan receptor activates AKT and 

β-catenin signaling [59, 124, 243]. IGF-1 and IGF-2 signal through specific cell surface tyrosine 

kinase receptors, IGF-1 receptor (IGF1-R) and insulin receptor isoform A (IR-A)), that are highly 

expressed on human ER expressing breast cancer cells [248, 249]. The critical pathway by which 

IGF-1 and IGF-2 stimulate breast cancer cell proliferation is the PI3K pathway that leads to 

increases in AKT activity [248, 249]. Leptin, collagen VI, and IGF proteins have all been 

reported to stimulate increases in the transcription and expression of CCND1 (also known as 

Cyclin D1) in ER expressing breast cancer cells [124, 243, 244, 249]. CCND1 is a regulatory 

protein that activates the cell cycle, increases cell proliferation, and has been implicated as a 

promoter of breast tumorigenesis [115]. New drugs and drug targets that inhibit adipokine 

stimulated breast cancer cell proliferation could be particularly relevant to reducing the higher 

rates of breast cancer risk and breast cancer recurrence that are observed in obese women 

compared to women of normal weight. However, there are currently no specific therapies for 
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reducing breast cancer risk and recurrence in obesity. 

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that has 

been explored as a therapeutic target for cancer [250, 251]. Ligand-activated AHR inhibits the 

growth of some human cancer cell lines [250, 251]. The AHR is stimulated by lipophilic 

chemicals that function as AHR agonists including the environmental toxicant 2,3,7,8 

tetrachlorodibenzo-p-dioxin (TCDD) and the experimental drug 3-(3,5-dimethyl-1H-pyrrol-2-yl 

methylene)-1,3-dihydro-indol-2-one (SU5416) [250, 252]. In the absence of an exogenous AHR 

agonist, the AHR is located in the cytoplasm bound to p23, HSP90, and XAP2 chaperon proteins 

[253]. Upon activation by an agonist, the AHR dissociates from p23, HSP90, and XAP2, 

translocates into the nucleus, and stimulates transcription by binding to sequence specific 

response elements termed AHR response elements (AHR-RE) in enhancers of genes that are 

stimulated by AHR ligands [253]. CYP1A1 is a prototypical AHR regulated gene target that has 

been used to study AHR signaling [253]. Whether specific ligand-activated AHR inhibits 

adipokine stimulated breast cancer cell proliferation and the potential mechanisms by which this 

could occur have not been investigated. 

Obese women with ER positive breast tumors have worse clinical outcomes and have a 

higher risk for breast cancer recurrence than obese women with ER negative breast tumors [254]. 

This suggests that ER positive breast cancer cells could be more sensitive to the proliferative 

effects of mitogenic adipokines than ER negative breast cancer cells. The human ER positive 

MCF-7 breast cancer cell line has been used extensively as a model to investigate mitogenic 

adipokine signaling in human breast cancer cells and MCF-7 cells, express leptin, collagen VI, 

and IGF receptors [124, 243, 244, 249]. The human T-47D breast cancer cell line expresses ER 

and IGF receptors, and fewer reports have used this cell line to investigate adipokine signaling in 
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human breast cancer cells [250]. Given these prior reports, the purpose of this study was to 

examine the possibility that specific ligand-activated AHR inhibits mitogenic adipokine signaling 

in human MCF-7 breast cancer cells and to provide preliminary insights into the mechanism by 

which this occurs. Primary findings were also validated in T-47D cells. 
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4.2. MATERIALS AND METHODS 

4.2.1. Conditioned Media 

A previously published standard adipocyte differentiation protocol was used to 

differentiate murine 3T3-L1 preadipocyte fibroblasts into fully differentiated adipocytes [243]. 

Specifically, confluent 3T3-L1 fibroblasts were treated with Dulbecco's Modified Eagle Medium 

(DMEM), 10% FBS, 160 nM insulin, 250 nM dexamethasone, and 0.5 mM 3-isobutyl-1-

methylxanthine (IBMX)) for 3 days, followed by 10% fetal bovine serum (FBS) and 160 nM 

insulin for 3 days and then DMEM 10% FBS for an additional 6 days, with a medium change 

every three days. In order to examine the effects of adipocyte secreted adipokines in the absence 

of confounding factors in FBS, medium was removed from fully differentiated adipocytes, 

followed by rinsing twice with phosphate buffered saline (PBS), and adipocytes were then 

incubated in phenol red-free, serum-free DMEM for an additional 24 hr. This serum-free 

adipocyte conditioned medium (adipo-CM) was centrifuged and stored at −80°C prior to being 

applied to breast cancer cells in cell culture. Phenol red-free, serum-free DMEM conditioned by 

3T3-L1 fibroblasts for 24 hrs was also isolated. Fibroblast conditioned medium (fibro-CM) was 

applied to breast cancer cells as a control media not conditioned by an adipocyte. DMEM, FBS, 

P/S, and PBS were purchased from Thermo Fisher Scientific (HyClone Labs, Logan, UT). 

IBMX, insulin, and dexamethasone were purchased from Sigma-Aldrich (St. Louis, MO). 

4.2.2. Breast Cancer Cell Growth Experiments  

Prior to specific growth experiments, MCF-7 and T-47D cells purchased from ATCC 

(Manassas, VA) were maintained in DMEM, 10% FBS, and 1% penicillin/streptomycin (P/S). To 

explore whether adipo-CM stimulated cancer proliferation more than fibro-CM, phenol red-free, 

serum-free DMEM (unconditioned medium), fibro-CM, or adipo-CM was applied to MCF-7 or 
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T-47D cells for three days in culture, after which cells were collected and total live cell number 

was determined using a hemocytometer and manual cell counting. Preliminary experiments were 

conducted to determine the optimal dose of TCDD to use in proliferation experiments. In our 

preliminary experiments, we found that MCF-7 cells were more sensitive to the antiproliferative 

effects of TCDD than, T-47D cells (data not shown; n= 3). Thus, in all remaining experiments, 

MCF-7 cells were treated with 10 nM TCDD and T-47D cells were treated with 100 nM TCDD. 

The 100 nM dose of SU5416 was selected based on our preliminary data showing that SU5416 at 

this dose is a strong AHR agonist based on its ability to stimulate increases in CYP1A1 gene 

expression (data not shown; n= 3). Fibro-CM or adipo-CM supplemented with DMSO vehicle, 

TCDD, or SU5416 was applied to overnight serum-starved (phenol red-free DMEM) MCF-7 or 

T-47D cells for three days in culture, after which cells were collected and trypan blue and manual 

cell counting were used to determine live cell number. In other experiments, overnight serum-

starved (phenol red-free DMEM) MCF-7 or T-47D cells were stimulated with PBS vehicle or 

IGF-2 (100 ng/mL; R & D Systems) supplemented with DMSO vehicle, TCDD, or SU5416 for 

three days in culture, after which cells were collected and live cell was determined with trypan 

blue. The IGF-2 dose was based on the work of Worster et al. showing that IGF-1 (100 ng/mL) 

induced the proliferation of human breast epithelial cells [255]. 

4.2.3. SiRNA Experiments 

In order to show that TCDD and SU5416 inhibition of IGF-2 requires the AHR, breast 

cancer cells were plated in DMEM, 10% FBS, and P/S (80,000 cells per well of a six-well plate) 

for 24 hr, then transiently transfected with 50 nM of a single short interfering RNA (siRNA) that 

specifically targets the AHR (AHR-siRNA) or with a nontargeting control siRNA (con-siRNA) 

with 2 μL of DharmaFECT reagent 1 for 24 hr. Following removal of transient transfection 
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reagent, cells were serum-starved overnight in phenol red-free DMEM and then treated with 

IGF-2 (100 ng/mL) supplemented with DMSO vehicle or TCDD (MCF-7 (10 nM), T-47D 

(100 nM)) or SU5416 (MCF-7 100 nM) for three days in culture, after which cells were collected 

and trypan blue was used to determine the number of live cells. Con-siRNA (cat number D-

001810-01-20), AHR-siRNA (J-004990-05), and DharmaFECT transfection reagent number 1 

were purchased from Thermo Scientific, Dharmacon. DMSO and SU5416 were purchased from 

Sigma-Aldrich (St. Louis, MO). TCDD was purchased from Cambridge Isotopes Laboratory 

(Andover, MA) (cat number ED-901-B). 

4.2.4. Western Blot Experiments  

To validate AHR-siRNA mediated knockdown of the AHR, breast cancer cells (300,000 

cells per 35 mm plate) were transfected with con-siRNA or AHR-siRNA for 36 hr, followed by 

isolation of total cellular extract in 250 μL of 2X sample lysis buffer (Bio-RAD; cat number 161-

0737). Total cellular extract (~12.5 μg of protein) was subjected to SDS PAGE in Mini-

PROTEAN TGX 4–12% Precast Gels (Bio-Rad; Hercules, CA) and transferred to 

polyvinylidene difluoride (PVDF) membranes (Bio-Rad; Hercules, CA). Membranes were 

blocked in PBS, 0.05% Tween 20 (PBS-T), and 5% (wt/vol) low-fat powdered milk for one hr, 

followed by overnight incubation at 4°C with rocking with an appropriate primary antibody. 

Membranes were rinsed five times (five minutes each wash) with PBS-T and then incubated with 

an appropriate HRP-labeled secondary antibody (Thermo Scientific, Pierce) for 1 h, followed by 

rinsing five times (five minutes each wash) in PBS-T followed by the application of enhanced 

chemiluminescent substrate (Thermo Scientific, Millipore) and exposure to X-ray film (Midwest 

Scientific). Equal protein loading was confirmed by glyceraldehyde 3-phosphate dehydrogenase 

(abbreviated as GAPDH) western blots. AHR antibody was purchased from Santa Cruz 
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Biotechnology, cat number: sc-5579, and diluted 1 : 5,000 in PBS, 0.01% tween-20, and 5% 

powdered milk. GAPDH was purchased from Millipore, cat #: MAB374, and diluted 1 : 20,000 

dilution in PBS, .01% tween-20, and 5% powdered milk. 

4.2.5. RT-qPCR Experiments  

A RT2 Profiler PCR Array (PAHS-502ZC) (Superarray Bioscience Corporation, Qiagen) 

was used to compare gene expression between MCF-7 cells treated with IGF-2 (100 ng/mL) plus 

DMSO vehicle and MCF-7 cells treated with IGF-2 (100 ng/mL) plus TCDD (10 nM) for 48 hrs. 

The PAHS-502ZC PCR array allows for the integration of 84 genes that are prooncogenes or 

tumor suppressors and thus are key genes in tumorigenesis. Treatments were stopped, total RNA 

was isolated (RNeasy Mini Kit, Qiagen), and 1 μg of RNA was converted into cDNA (RT2 First 

Strand Kit, Qiagen). cDNA was combined with RT2 SYBER Green ROX qPCR Master Mix 

(Qiagen), and changes in gene expression were analyzed by RT2 Profiler PCR Array (PAHS-

502ZC). Statistically significantly differentially expressed genes between groups were calculated 

by RT2 Profiler PCR Array Data Analysis software package that calculates ΔΔ CT calculated 

fold changes and uses Student's t-test to calculate two-tail, equal variance P values. Experiments 

were performed three times (n= 3). 

4.2.6. IGF-2 Blocking Antibody Experiments 

In order to explore whether adipocytes secreted levels of IGF-2 are sufficient to stimulate 

the proliferation of breast cancer cells, a control mouse IgG (5 μg/mL) (R & D systems, cat 

number MAB002) or human IGF-2 blocking antibody (5 μg/mL) (R & D Systems, cat number 

MAB292) was added to adipo-CM prior to being added to human breast cancer cells for three 

days in culture, after which total live cell number was determined using trypan blue. This 

particular IGF-II blocking antibody was selected because it has been shown to specifically 
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neutralize human IGF-2 in MCF-7 proliferation assays and exhibits 100% cross-reactivity with 

mouse IGF-2 (R & D Systems product sheet, cat number MAB292). 

4.2.7. Mouse Adipokine Array Kit 

Protein adipokine arrays were purchased from R&D systems (Minneapolis, MN, cat 

number ARY-013) and conducted in accordance with the manufactured protocols. Normalized 

adipokine levels were calculated as the density of a specific adipokine divided by the density of 

an internal loading control on each array. Densitometry was calculated with ImageJ PC-based 

software (National Institute of Health). 

 4.2.8. Statistical Analysis 

All experiments were performed for a minimum of three times. One way analysis of 

variance (ANOVA), followed by Student-Newman-Keuls Post-Hoc Tests, was performed to 

determine statistically significant differences between multiple groups. Student's t-test was used 

to determine statistically significant differences between two groups. All statistical tests were run 

at a 95% confidence interval, and significance was denoted as P < 0.05. 
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4.3. RESULTS AND DISCUSSION 

4.3.1. Adipocytes Secrete IGF-2 at Levels That Stimulate Breast Cancer Cell Proliferation 

The application of adipocyte conditioned medium (adipo-CM) to MCF-7 or T-47D breast 

cancer cells for three days in culture significantly (P < 0.0001 and P < 0.005, resp.) increased 

proliferation more than the application of fibroblast conditioned medium (fibro-CM) or 

unconditioned medium (uncond-M) (Figures 11 (A) and (B)). Adipokine protein arrays revealed 

that the levels of several adipokines in adipo-CM were significantly higher than in fibro-CM, 

including insulin-like growth factor-2 (IGF-2) (by approximately three-fold; (P < 0.05)) (Figures 

11 (C) and (D)). Since the levels of IGF-2 were higher in adipo-CM than in fibro-CM (Figures 

11 (C) and (D)), and MCF-7 and T-47D cells overly express IGF1-R and IR-A [248, 249], we 

questioned the role of IGF-2 in adipo-CM. The addition of a specific IGF-2 blocking antibody to 

adipo-CM significantly reduced MCF-7 (P < 0.0003) and T-47D (P < 0.05) proliferation 

compared to control cells incubated in adipo-CM containing a nonspecific control IgG (Figures 

11 (E) and (F)). This result suggests that adipocyte secreted IGF-2 contributes to the proliferation 

of ER expressing breast cancer cells. 

4.3.2. Ligand-Activated AHR Inhibits Adipo-CM and IGF-2 Stimulated Breast Cancer Cell 

Proliferation 

TCDD is a highly specific AHR agonist [253]. The application of adipo-CM plus TCDD 

to MCF-7 and T-47D cells significantly (P < 0.0001 and P < 0.002, resp.) reduced proliferation 

compared to that observed in control cells stimulated with adipo-CM in the presence of vehicle 

DMSO (Figures 12 (A) and (B)). Conversely, MCF-7 and T-47D proliferation in fibro-CM was 

not inhibited by TCDD (Figures 12 (A) and (B)). These data suggest that activation of the AHR  
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Figure 11. Adipocytes secrete levels of IGF-2 that contribute to adipo-CM stimulated breast 
cancer cell proliferation. (A, B)The total number of live MCF-7 (A) and T-47D (B) cells grown 
in unconditioned (uncond-M), fibroblast (fibro-CM), or adipocyte (adipo-CM) conditioned 
medium for three days in culture was determined and is shown relative to the number of live 
cells in the uncond-M group, which was arbitrarily assigned a value of 1. Data shown are the 
means ± S.E. for three replicate experiments, and significant (P < 0.05) induction of cell number 
by fibro-CM (∗) compared to the uncond-M group or by adipo-CM (∗∗) compared to the uncond-
M and fibro-CM groups is shown. (C, D) Adipokine protein arrays were used to determine the 
relative levels of adipokines in adipo-CM and fibro-CM. (D) Data shown are the means ± SE for 
three experiments, and significantly (P < 0.05) higher levels of an adipokine in adipo-CM (∗) 
compared to fibro-CM are shown. Normalized adipokine levels were calculated as the 
densitometry of an adipokine normalized to the densitometry of an internal loading control. (E, 
F) The total number of live MCF-7 (E) and T-47D (F) cells treated with nonspecific IgG (5 
μg/mL) or a specific IGF-2 blocking antibody (5 μg/mL) in adipo-CM for three days in culture 
was determined and is displayed relative to the number of live cells in the fibro-CM nonspecific 
IgG group, which was arbitrarily assigned a value of 1. Data shown are the means ± S.E. for 
three replicate experiments. A significant (P < 0.05) decrease in cell number by IGF-2 antibody 
(∗) is shown. 
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Figure 12. AHR ligands inhibit 
adipo-CM and IGF-2 stimulated 
breast cancer cell growth. (A, B) 
The total number of live MCF-7 
(A) and T-47D (B) cells treated 
with DMSO vehicle or TCDD in 
fibro-CM or adipo-CM for three 
days in culture was determined and 
is displayed relative to the number 
of live cells in the fibro-CM DMSO 
control group, which was arbitrarily 
assigned a value of 1. Data shown 
are the means ± S.E. for three 
experiments, and a significant (P < 
0.05) decrease in cell number by 
TCDD (*) is indicated. (C, D) The 
total number of MCF-7 (C) and 
T47D (D) cells treated with DMSO 
or TCDD alone or plus IGF-2 (100 
ng/mL) for three days in culture 
was determined and is displayed 
relative to the number of live cells 
in the DMSO group, which was 
assigned a value of 1. Data shown 
are the means ± S.E. for three 
experiments, and a significant (P < 
0.05) decrease in cell number by 
TCDD (*) is indicated. (E, F) The 
total number of MCF-7 cells 
stimulated with DMSO or SU5416 
in fibro-CM or adipo-CM (E) or 
with DMSO or SU5416 alone or 
plus IGF-2 (100 ng/mL) (F) for 
three days in culture was 
determined and is displayed 
relative to the number of live cells 
in the DMSO group, which was 
assigned a value of 1. Data shown 
are the means ± S.E. for three 
experiments, and a significant (P < 
0.05) decrease in cell number by 
TCDD (*) is indicated. 
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with a highly specific AHR ligand specifically inhibits the mitogenic effects of adipokines that 

are present in the adipo-CM. Next, we conducted experiments to determine whether TCDD 

inhibits IGF-2 stimulated breast cancer cell proliferation. Treating MCF-7 and T-47D cells with 

IGF-2 (100 ng/mL) plus TCDD significantly (P < 0.0001 and P < 0.0034, resp.) inhibited 

proliferation compared to that observed in control cells stimulated with IGF-2 plus DMSO 

vehicle (Figures 12 (C) and (D)). This result indicates that activation of the AHR by a highly 

specific AHR agonist blocks IGF-2 stimulated breast cancer cell proliferation. 

To provide further evidence that ligand-activated AHR inhibits the proliferation effects of 

adipokines, we tested a second AHR agonist, SU5416 [252]. The application of adipo-CM with 

SU5416 significantly (P < 0.0001) inhibited MCF-7 cell proliferation compared to that observed 

in adipo-CM plus DMSO vehicle group (Figure 12 (E)). SU5416 did not reduce breast cancer 

cell number in the presence of fibro-CM (Figure 12 (E)). Further, SU5416 significantly (P < 

0.001) blocked IGF-2 stimulated MCF-7 cell proliferation (Figure 12 (F)). Collectively, these 

data indicate that exogenous AHR ligands inhibit the proliferative effects of mitogenic 

adipokines (including IGF-2) in human ER expressing breast cancer cells. 

4.3.3. AHR Ligand-Stimulated Inhibition of IGF-2 Requires the AHR 

Next, experiments were conducted to provide evidence that exogenous AHR ligands 

inhibit the proliferative effects of adipokines through a mechanism that is dependent on the AHR. 

To this end, MCF-7 and T-47D cells were transiently transfected with a short interfering RNA 

that specifically targets the AHR (AHR-siRNA) or with a nontargeting control siRNA (con-

siRNA) prior to treatment with IGF-2 (100 ng/mL) supplemented with DMSO vehicle or TCDD. 

The level of AHR protein in AHR-siRNA transfected MCF-7 and T-47D cells was significantly 

(P < 0.0002 and P < 0.0001, resp.) lower than in con-siRNA transfected cells (Figures 13 (A) and 
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(B)). In the presence of con-siRNA, TCDD significantly (P < 0.001) inhibited IGF-2 stimulated 

MCF-7 proliferation (Figure 13 (B)). Reducing the AHR in the presence of IGF-2 significantly 

(P < 0.001) inhibited proliferation relative to control cells treated with con-siRNA plus IGF-2 

(Figure 13 (B)). This result suggests that in the absence of exogenous AHR ligands, the AHR 

itself plays an endogenous role in MCF-7 cells that is required for maximal proliferation in the 

presence of IGF-2. Importantly, as shown in Figure 13 (B), reducing AHR prevented TCDD 

inhibition of IGF-2 (Figure 13 (B); compare last two right bars). This latter result provides 

evidence that TCDD inhibits IGF-2 by activating the AHR, because TCDD does not inhibit IGF-

2 in cells with reduced expression of the AHR (Figure 13 (B)). The TCDD-stimulated inhibition 

of IGF-2 by AHR was further confirmed in T-47D cells, which showed the TCDD 

antiproliferative effects towards IGF-2 were reversed upon AHR knockdown (Figures 13 (C) and 

(D)). To provide evidence that a different AHR ligand also inhibits IGF-2 by specifically 

activating the AHR, AHR-siRNA experiments were repeated with SU5416. As shown in Figure 

13 (E), under con-siRNA conditions, SU5416 significantly (P < 0.0001) inhibited IGF-2 

stimulated MCF-7 cell proliferation. In accordance with our prior result, reducing the AHR itself 

inhibited MCF-7 cell proliferation in the presence of IGF-2 compared to control cells transfected 

with con-siRNA and stimulated with IGF-2 (Figure 13 (E)). AHR-siRNA blocked SU5416 

inhibition of IGF-2 (Figure 13 (E); compare last two right bars). Collectively, these data provide 

mechanistic evidence that upon activation by exogenous AHR agonists TCDD and SU5416, the 

AHR inhibits IGF-2 stimulated MCF-7 and T-47D proliferation. 
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Figure 13. AHR ligand-stimulated inhibition of IGF-2 
requires the AHR. (A, C) MCF-7 (A) or T-47D (C) cells 
transiently transfected with con-siRNA or AHR-siRNA for 36 
hr, followed by isolation of total cellular extract and western 
blot analysis with AHR and GAPDH antibody. GAPDH was 
used to normalize between samples. Data shown are the means 
± S.E. of three experiments. A significant (P < 0.05) decrease 
in AHR by AHR-siRNA (*) is indicated. (B, D) The total 
number of MCF-7 (B) or T-47D (D) cells transfected with 
nontargeting control short interfering RNA (con-siRNA) or 
aryl hydrocarbon receptor siRNA (AHR-siRNA) for 36 hr and 
then treated with DMSO, vehicle control (con), IGF-2 (100 
ng/mL) plus DMSO or IGF-2 plus TCDD (MCF-7; 10 nM, T-
47D; 100 nM) for three additional days in culture was 
determined and is displayed relative to the number of live cells 
in the DMSO con-siRNA group, which was assigned a value 
of 1. Data shown are the means ± S.E. of three experiments. 
(E) The total number of MCF-7 cells transfected with con-
siRNA or AHR-siRNA for 36 hr and then treated with DMSO 
vehicle control (con), IGF-2 (100 ng/mL) plus DMSO, or IGF-
2 plus SU5416 (100 nM) for three additional days in culture 
was determined and is displayed relative to the number of live 
cells in the DMSO con-siRNA group, which was assigned a 
value of 1. Data shown are the means ± S.E. of three 
experiments. 
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Table 7. Reduced expression of proto-oncogenes in MCF-7 cells stimulated with IGF-2 plus 
TCDD compared to cells stimulated with IGF-2 at 48hrs. 
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4.3.4. TCDD Stimulates Reductions in E2F1, CCND1, MYB, SRC, JAK2, and JUND Gene 

Expression 

To begin to investigate the mechanism by which ligand-activated AHR inhibits 

proliferation, experiments were conducted to determine whether TCDD reduces the expression 

of genes that could be important for breast cancer cell proliferation in the presence of IGF-2. To 

this end, we used a commercially available RT2 Profiler PCR Array that is capable of integrating 

84 genes that are protooncogenes or tumor suppressors and thus key regulators of tumorigenesis. 

We focused on comparison between two groups, MCF-7 cells stimulated with IGF-2 and MCF-7 

cells cotreated with IGF-2 plus TCDD for 48 hrs. This analysis revealed that the expression of 

E2F1, CCND1, MYB, SRC, JAK2, and JUND was significantly reduced in cells treated with 

IGF-2 plus TCDD compared to that observed in cells stimulated with IGF-2 (Table 7; n= 3).  

TCDD inhibition of these specific gene targets could be one mechanism by which ligand-

activated AHR inhibits mitogenic adipokine signaling, because the observed downregulated 

genes in TCDD treated cells play important roles in breast cancer cell proliferation. E2F1 is a 

transcription factor that binds retinoblastoma protein, enhances the proliferation of human cancer 

cells, and stimulates increases in the transcription and expression of CCND1 [256]. The tyrosine 

kinase JAK2 upon activation by cytokine receptor induced signaling to stimulate the 

phosphorylation and activation of STAT3 [247]. When activated by JAK2, STAT3 promotes the 

transcription and expression of CCND1 [244]. The basic leucine zipper (bZIP) transcription 

factor JUND by function as a component of AP-1 enhances the transcription and expression of 

CCND1 [257]. MYP is a 17 beta-estradiol regulated transcription factor that has been reported to 

be important for the proliferation of ER expressing human breast cancer cells, including T-47D 

and MCF-7 cells [257]. 
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4.4. CONCLUSION 

In summary, we provide evidence that adipocyte secreted IGF-2 is sufficient to contribute 

to the proliferation of human ER expressing breast cancer cells. This result suggests that 

adipocyte secretion of IGF-2 could play a role in promoting breast cancer in the context of 

obesity. Adipocytes have also been reported to secrete IGF-1 in the presence of high glucose and 

exogenously added fatty acids [245]. Both IGF-1 and IGF-2 enhance the proliferation of human 

cancer cells through IGF1-R and IR-A [248, 249]. Using highly specific AHR agonists and 

AHR-siRNA, we provide the first evidence suggesting that specific ligand activation of the AHR 

inhibits adipo-CM and IGF-2-stimulated proliferation of ER positive human breast cancer cells. 

It is important to note that E2F1, SCR, JAK2, and JUND are critical upstream transcriptional 

regulators of CCND1 [244, 247, 256, 258]. Thus, their downregulation by TCDD (Table 7) 

could be one mechanism by which TCDD downregulates CCND1 expression. CCND1 is also a 

critical mediator of the proliferative effects of IGF proteins and other adipokines like leptin [244, 

249]. Therefore, TCDD inhibition of CCND1 expression (Table 7) is likely to be one of the 

major mechanisms that inhibit mitogenic adipokine signaling in breast cancer cells. The results 

of this study provide the impetus for future study investigating the transcriptional mechanisms by 

which ligand-activated AHR by regulating the expression of prooncogenes modulates mitogenic 

adipokine signaling in human breast cancer cells. Collectively, this report provides evidence that 

drugs that target the AHR may reduce breast cancer risk in the context of human obesity.  
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ABSTRACT 

Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast 

cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma 

protein (Rb). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also 

regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-

7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (RT-

qPCR) analysis revealed that IGF-2 induced an approximately two-fold increase (P <.001) in the 

expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by qPCR 

indicated that IGF-2 promoted (P < .001) a seven-fold increase in AHR binding on the CCND1 

promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in 

CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the 

proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new 

regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 

and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be 

important for the proliferation of IGF responsive cancer cells that also express AHR. 

Keywords: Aryl hydrocarbon Receptor, IGF-2, CCND1, breast cancer cells 
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5.1. INTRODUCTION  

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose 

activity is regulated by lipid soluble environmental toxicants [253]. 2,3,7,8 tetrachlorodibenzo-p-

dioxin (TCDD) is a prototypical AHR agonist which is found in Agent Orange [253]. The 

binding of TCDD to AHR stimulates the AHR to translocate into the nucleus and stimulate 

transcription through specific xenobiotic response elements (XREs) in enhancers and promoters 

of TCDD stimulated genes [253, 259]. TCDD through AHR induces the expression of a 

“battery” of phase I and phase II drug metabolizing enzymes including the prototype TCDD-

AHR gene target cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) [253, 259]. 

The AHR also regulates cell cycle in part by binding with Cyclin D1 (CCND1) and cyclin 

dependent kinase 4 (CDK4) [105, 260]. CDK4 phosphorylates retinoblastoma protein (Rb), 

which inhibits Rb-mediated repression of E2F transcription factors [261-263]. The activation of 

E2F induces the expression of E2F target genes that are important for DNA synthesis and cell 

cycle advance [261-263]. Mitogens promote CDK4 activity by increasing the levels of cyclin 

proteins including CCND1 [261-263]. By functioning as a regulatory subunit on CDK 

holoenzymes, CCND1 promotes the phosphorylation and inhibition of RB1 to promote cell cycle 

advance and proliferation [261-263]. The AHR binds to CDK4 during advance through the cell 

cycle in human MCF-7 breast cancer cells [105]. TCDD binding to AHR attenuates AHR 

binding with CDK4, which correlated with cell cycle arrest and reductions in RB1 

phosphorylation in MCF-7 cells [105]. CCND1 was also present in CDK4-AHR complexes 

[105]. 

Insulin like growth factor (IGF)-1 and IGF-2 stimulate growth, development and the 

proliferation of human cancer cells including breast cancer cells [248, 249]. MCF-7 breast cancer 
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cells have been reported to express high levels of IGF-1 receptor (IGF1-R) and insulin receptor 

subtype A receptor (IR-A) [248, 249]. IGF-R1 and IR-A mediate the proliferative effects of IGFs 

on human breast cancer cells by inducing the phosphoinositide 3-kinase (PI3K)/AKT (protein 

kinase B) pathway and the mitogen-activated protein kinase (MAPK) pathway [248, 249, 264]. 

IGF-1 and IGF-2 have also been reported to increase levels of CCND1 to induce proliferation 

[248, 249, 262]. CCND1 promoter activity is regulated through multiple enhancers including 

activator protein-1 (AP-1) and T-cell factor (TCF)/lymphoid enhancing factor (LEF) sites [265-

268]. The transcription factors Jun and Fos bind to the AP-1 response elements [265, 266]. The 

transcriptional co-activator β-catenin confers transcriptional activity to TCF/LEF transcription 

factors bound to TCF/LEF elements in the CCND1 promoter [267, 268]. 

We have recently shown that adipocytes secrete levels of IGF-2 that are sufficient to 

stimulate the proliferation of MCF-7 and T-47D breast cancer cells [111]. We also found that 

AHR knockdown MCF-7 cells were less responsive to the proliferative effects of IGF-2 [111]. 

The purpose of this study was to investigate if: 1) IGF-2 signaling regulates the AHR and 2) 

IGF-2 induction of CCND1 requires AHR. We provide evidence that IGF-2 signaling activates 

AHR and that AHR is important for inducing the expression of CCND1 and MCF-7 

proliferation. This is a new link between IGF-2 signaling and AHR. 
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5.2. MATERIALS AND METHODS 

5.2.1. Materials and MCF-7 cell culture 

Dulbecco's Modified Eagle Medium/High glucose (DMEM) with L-glutamine and 

sodium pyruvate, 10% fetal bovine serum, penicillin, and streptomycin (100μg/mL) and 

phosphate buffered saline (PBS) were purchased from Fisher Scientific. Non-specific control 

RNA (cRNAi) (cat # D-001810-01-20), short interfering RNA against the AHR (AHRi) (J-

004990-08-0010) and Dharmafect transfection reagent (#1) were purchased from Thermo 

Scientific. MCF-7 human breast cancer cells were purchased from ATCC (Manassas) and 

maintained in DMEM, 10% FBS, with penicillin (100U/mL) and streptomycin (100 μg/mL) and 

.01 μg/mL bovine insulin (Cell Applications, Inc.) Insulin like growth factor 2 (IGF-2) was 

purchased from R & D systems and reconstituted in phosphate buffered solution. 

5.2.2. Western blot analysis to determine IGF-2 induction of AHR and CCND1 

200,000 MCF-7 cells plated in 35 mm plates (50% confluent) were serum starved 

overnight in phenol red-free DMEM and then treated with PBS vehicle or IGF-2 (100 ng/mL) for  

three hrs. This time point was selected based on our preliminary time course experiments 

showing that IGF-2 induction of CCND1 mRNA is maximal at three hr post IGF-2 (data not 

shown). Total cellular extract was isolated in 200 μL of 2X sample lysis buffer (Bio-RAD; cat 

#161-0737) and approximately 12.5 μg of protein was subjected to SDS PAGE and transferred to 

polyvinylidene difluoride (PVDF) membranes (Bio-Rad; Hercules, CA). Membranes were 

blocked in PBS, .01% Tween 20 (Bio-Rad; Hercules, CA) (PBS-T), 5% (wt/vol) lowfat 

powdered milk for one hr and incubated overnight with primary antibody at 4° C with gentle 

mixing. Membranes were rinsed five times (five mins each wash) with PBS-T and then incubated 

with an appropriate HRP-labeled secondary antibody (diluted 1:10,000 in PBS, .01% tween-20, 
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5% milk) (Thermo Scientific, Pierce) for one hr, followed with rinsing five times (five mins each 

wash) in PBS-T. Membranes were developed with enhanced chemiluminescent substrate 

(Millipore, Immobilon ECL substrate) and exposure to X-ray film (Midwest Scientific). 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody was purchased from Millipore 

(cat # MAB374), AHR antibody from Santa Cruz (Cat # H-211) and CCND1 antibody from 

Millipore (cat # 04-1151). Equal protein loading was confirmed by GAPDH western blots. 

Normalized levels of AHR, and CCND1 were expressed as a ratio of AHR/GAPDH and 

CCND1/GAPDH. Densitometry was calculated with ImageJ PC-based software (National 

Institute of Health). 

5.2.3. qPCR analysis to determine IGF-2 induction of AHR, CYP1A1, and CCND1  

200,000 MCF-7 cells plated in 35 mm plates were serum starved overnight in phenol red-

free DMEM, and then treated with PBS vehicle or IGF-2 (100 ng/mL) for three hrs. Total RNA 

was isolated in TRI-Reagent and quantitated by Nanodrop spectrophotometry. RNA was reverse 

transcribed to complementary DNA (cDNA) (Verso cDNA kit; Thermo Fisher Scientific; cat # 

AB-1453/B). Resulting cDNAs were subjected to quantitative real-time PCR (Q-PCR) using 

gene specific primers (300 nM per reaction) and 40 cycles of PCR in accordance with Absolute 

Blue SYBR Green Rox Mix (Thermo Fisher Scientific; cat # AB-4162/B) protocols. Relative 

gene expression between controls and IGF-2 treated cells was calculated using the formula 2-

ΔΔCT, as described by Livak and Schmittgen [239]. Glyceraldehyde-3-phosphate (GAPDH) 

mRNA levels served as the internal control. Primer sequences for GAPDH, AHR, CCND1 and 

CYP1A1 were: GAPDH (forward, 5′-CATGAGAAGTATGACAACAGCCT-3′; reverse, 5′-

AGTCCTTCCACGATACCAAAGT-3′), AHR (forward, 5′-ACATCACCTACGCCAGTGG-3′; 

reverse, 5′-CTCTATGCCGCTTGGAAGGAT-3′), CCND1 (forward, 5′-
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CCGCAATGACCCCGCACGAT-3′; reverse, 5′-AGGGCAACGAAGGTCTGCGC-3′) and 

CYP1A1 (forward, 5′-CTTCACCCTCATCAGTAATGGTC-3′; reverse, 5′-

AGGCTGGGTCAGAGGCAAT′-3). The Harvard Primer Bank 

http://pga.mgh.harvard.edu/primerbank/was used to design primers. Primer specificity was 

verified with melt curve analysis and NIH primer blast search engines 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome. 

5.2.4. Chromatin immunoprecipitation  

MCF-7 cells (500,000 per 60 mm plate) were serum starved overnight in phenol red-free 

DMEM, and then treated with PBS vehicle or IGF-2 (100 ng/mL) for three hr. Formaldehyde 

(1%) was then added to medium for ten mins, followed by Glycine (.5M) for five mins. Cells 

were rinsed with PBS, collected in PBS, pelleted by centrifugation, and lysed in 300 μL of lysis 

buffer (1% SDS; 5 mM EDTA; 50 mM Tris-HCl, pH 8) per 60 mm plate plus protease inhibitors 

(Thermo Scientific) for fifteen mins on ice. Cell extracts were sonicated (five times, each time 

ten seconds) and diluted 1:10 in dilution buffer (16.7 mM Tris-HCl, pH 8; 167 mM NaCl; 1.2 

mM EDTA; 0.01% SDS; 1.1% Triton X-100), rotated overnight at 4C with 1 μg of non-specific 

IgG (Santa Cruz; cat # 2027) or anti-AHR antibody (Santa cruz; cat # H-211). Antibody-

chromatin complexes were collected using 5 μL of magnetic protein A beads (life technologies; 

cat # 100.01D) with rotation at 4° C for 90 min. Using magnetic separation (life-technologies; 

part # 49-2025), beads were washed sequentially with buffer 1 (20 mM Tris-HCl, pH 8; 150 mM 

NaCl; 2.0 mM EDTA; 0.1% SDS), buffer 2 (20 mM Tris-HCl, pH 8; 500 mM NaCl; 2.0 mM 

EDTA; 0.1% SDS), buffer 3 (10 mM Tris-HCl (pH 8); 0.25M LiCl; 1mM EDTA; 1% NP-40; 1% 

deoxycholate), and then 1X TE buffer for five mins each, and incubated at 65° C for four to six 

hrs in elution buffer (1% SDS, 0.1 M NaHCO3) with proteinase K. DNA was purified (Qiagen; 
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cat # 28204) and analyzed using real time PCR. Primers spanning AP-1 and TCF/LEF response 

elements in the CCND1 promoter and xenobiotic response elements (XREs) in the CYP1A1 

promoter were used: AP-1 (forward, 5′-GGCAGAGGGGACTAATATTTCCAGCA-3′; reverse, 

5′-GAATGGAAAGCTGAGAAACAGTGATCTCC-3′) [269], TCF/LEF (forward, 5′-

GCTCCCATTCTCTGCCGG-3′; reverse, 5′-CGGAGCGTGCGGACTCTG-3′) [270] and XRE 

(forward, 5′-ACGCAGACCTAGACCCTTTGC-3′, reverse, 5′-CGGGTGCGCGATTGAA-3′) 

[271]. ChiP data was expressed as % input, in which signals obtained from the ChIP are divided 

by signals obtained from an input sample.  

5.2.5. AHR knockdown experiments  

MCF-7 cells were reverse transfected using methods we have used previously to 

selectively target genes for knockdown [272]. Briefly, 200,000 MCF-7 cells were plated in 

phenol red-free DMEM, 5% charcoal treated FBS, 50 nM cRNAi or AHRi, 2 μL of Dharmafect 

#1 per well of a six well plate for twelve hr and then new media was applied for twenty four hrs. 

Cells were then serum starved overnight in phenol red-free DMEM, followed by treatment with 

PBS vehicle or IGF-2 (100 ng/mL) for three hr. Treatments were stopped and cellular protein or 

mRNA was isolated for western blot and Q-PCR analysis, respectively, as detailed in sections 2.2 

and 2.3.  

5.2.6. Cell growth experiments  

MCF-7 cells were reverse transfected with 50 nM cRNAi or AHRi as detailed in 2.4 for 

36 hr and then serum starved overnight in phenol red-free DMEM. Cells were treated with PBS 

vehicle or IGF-2 (100 ng/mL) for three additional days. Cells were collected in trypsin and 

manual cell counting using a hemocytometer and trypan blue was used to determine live cell 

number. 
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5.2.7. Statistics  

Two-tailed, paired t tests with confidence intervals of 95% were used to determine 

statistically significant differences between two groups (vehicle versus IGF-2 treatment) in 

Figure 14. The Newman–Keuls (SNK) post-hoc test was used to determine statistically 

significant differences among groups following one-way analysis of variance (ANOVA) in 

Figure 15, Figure 16, and Figure 17. Specific P values are indicated in the results sections. 
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5.3. RESULTS 

5.3.1. IGF-2 increases AHR expression  

To investigate whether IGF-2 stimulates AHR expression, overnight serum starved MCF-

7 cells were treated with vehicle or IGF-2 (100 ng/mL) for three hrs. Western blot analysis 

revealed that IGF-2 induced 1.7- and 1.5-fold increases (P < .01) in AHR and CCND1 protein, 

respectively, compared with vehicle (Figure 14 (A)). The observed increases in AHR and 

CCND1 protein correlated with significant increases (P < .01) in AHR mRNA (1.9-fold) and 

CCND1 mRNA (2-fold) in IGF-2 treated cells compared with control cells (Figure 14 (B)). The 

levels of CYP1A1 mRNA, which is a TCDD-AHR gene target, were not induced by IGF-2 

treatment (Figure 14 (B)). This result suggests that IGF-2 signaling does not induce rapid 

increases in the levels of a lipophilic endogenous AHR ligand capable of inducing CYP1A1 

expression. 

5.3.2. IGF-2 stimulates AHR binding to CYP1A1 and CCND1 gene promoters 

To determine if IGF-2 promotes AHR binding to gene promoters, we performed 

chromatin immunoprecipitation experiments followed by real-time quantitative PCR (Q-PCR) 

(ChIP-qPCR). We first focused on AHR binding XREs in the CYP1A1 promoter [271]. AHR-

ChIP-qPCR experiments revealed that AHR binding to the XREs on the CYP1A1 promoter in 

vehicle treated cells was low and not significantly higher than non-specific IgG (Figure 15 (A)). 

In contrast, IGF-2 promoted a 5-fold increase (P < .0001) in AHR binding to the XREs on the 

CYP1A1 promoter compared to vehicle and this was significantly higher than non-specific IgG 

(Figure 15 (A)). 
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Figure 14. IGF-2 stimulates AHR. MCF-7 cells were treated with vehicle (Veh) or IGF-2 
(100 ng/mL) for 3 h. (A) Total cellular protein was then isolated and subjected to Western blot 
analysis. The blot was then probed with the indicated antibodies. Relative level of AHR and 
CCND1 protein was expressed as a ratio of AHR/GAPDH and CCND1/GAPDH. Significant 
(P < .01) increases in AHR, CCND1 protein by IGF-2 are indicated (*). (B) Quantitative real-
time quantitative polymerase chain reaction (Q-PCR) analysis of relative mRNA levels of 
CCND1, AHR and CYP1A1, with normalization to GAPDH internal control. The value in 
vehicle treated cells was set to 1. Significant (P < .01) increases in AHR and CCND1 mRNA 
by IGF-2 are indicated (**). CYP1A1 mRNA was not significantly induced by IGF-2. Data 
shown are the means ± S.E. of (A) three and (B) four independent experiments.  
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Figure 15. IGF-2 stimulates AHR binding on CYP1A1 and CCND1 gene promoters. MCF- 
7 cells were treated with vehicle (Veh) or IGF-2 (100 ng/mL) for 3 h and chromatin 
immunoprecipitation (ChIP) experiments were conducted, followed by Q-PCR. (A) A 
significant (P < .0001) increase in AHR binding to the XRE on the CYP1A1 promoter induced 
by IGF-2 is indicated (*). (B) A significant (P < .0001) increase in AHR binding to the AP-1 and 
TCF/LEF site induced by IGF-2 is indicated as (**). Data shown are the means ± S.E. of three 
independent experiments.  
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To determine if IGF-2 stimulates the AHR to bind to the promoter of an induced gene, we 

examined AHR binding to the AP-1 and TCF/LEF response elements on the CCND1 promoter. 

These transcription factor binding sites were selected because AP-1 and TCF/LEF sites promote 

CCND1 transcription [265, 267, 268]. The binding of AHR to AP-1 and TCF/LEF sites on the 

CCND1 promoter was minimal in vehicle treated cells and not significantly different than non-

specific IgG (Figure 15 (B)). In contrast, the binding of AHR to AP-1 and TCF/LEF response 

elements on the CCND1 promoter was substantially increased (approximately seven-fold) by 

IGF-2 and this was significantly (P < .0001) greater than non-specific IgG (Figure 15 (B)). 

Collectively, these results indicate that IGF-2 promotes AHR binding to CYP1A1 and CCND1 

gene promoters.  

5.3.3. AHR knockdown inhibits IGF-2 induction of CCND1  

Next, experiments were conducted to investigate if IGF-2 induction of CCND1 requires 

AHR. Overnight serum starved control and AHR knockdown MCF-7 cells were treated with 

vehicle or IGF-2 (100 ng/mL) for three hrs. As shown in Figure 16 (A), AHR protein levels were 

lower (P < .0001) in AHR knockdown cells (by ten-fold) than control cells. IGF-2 stimulated (P 

< .001) approximately two-fold increases in AHR and CCND1 protein in control cells, which 

was completely abrogated in AHR knockdown cells (Figure 16 (A)). Analysis of mRNA revealed 

that IGF-2 stimulated a 1.5-fold increase in CCND1 mRNA, which was reduced (P < .01) to 1.3-

fold in AHR knockdown cells (Figure 16 (B)). These findings indicate that AHR knockdown 

cells are less responsive to IGF-2-stimulated increases in CCND1 mRNA and CCND1 protein.  

5.3.4. AHR knockdown compromises MCF-7 proliferation  

To determine the role of AHR in cell proliferation, MCF-7 control and AHR knockdown 

cells were treated with vehicle or IGF-2 (100 ng/mL) for three days. IGF-2 stimulated a 2.3-fold  
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Figure 16. IGF-2 induction of CCND1 requires AHR. MCF-7 cells were reverse transfected 
(see Section 2 for details) with cRNAi or AHRi prior to treatment with vehicle (Veh) or IGF-2 
(100 ng/mL) for 3 h. (A) Total cellular protein was then isolated and subjected to Western blot 
analysis. The blot was then probed with the indicated antibodies. Relative level of CCND1 and 
AHR protein was expressed as a ratio of AHR/GAPDH and CCND1/GAPDH. A significant (P < 
.001) increase in AHR and CCND1 by IGF-2 is indicated by (*). A significant (P < .001) 
decrease in AHR and CCND1 by AHRi is indicated by (**). (B) Q-PCR analyses of relative 
levels of CCND1 mRNA, expressed normalized to GAPDH. A significant decrease in CCND1 
by AHRi is indicated by (P < .01). Data shown are the means ± S.E. of three independent 
experiments.  
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Figure 17. IGF-2 induction of MCF-7 proliferation requires AHR. (A) MCF-7 cells were 
reverse transfected (see Section 2 for details) with cRNAi or AHRi prior to treatment with 
vehicle (Veh) or IGF-2 (100 ng/mL). After three days in culture, cells were collected and live cell 
number was determined. Cell number (Fold change) was expressed relative to the number of live 
cells in the cRNAi plus Veh group, which was arbitrarily assigned a value of 1. (B) Model of 
AHR roles in IGF-2 signaling. Dotted lines distinguish our data herein and data from Barhoover 
et al. 2010. IGF-2 signaling increases AHR, increases in AHR stimulate increases in CCND1 
protein. The increased levels of AHR in IGF-2 treated cells functions as a scaffold that bridges 
CCND1 and CDK4, which in turn stimulates the phosphorylation and inhibition of RB1. 
Inhibition of RB1 promotes cell cycle and MCF- 7 proliferation  
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increase in the number of live MCF-7 cells, which was reduced (P < .0001) to 1.2-fold by AHR 

knockdown (Figure 17 (A)). Reduced proliferation is consistent with observed reductions in 

CCND1 levels in AHR knockdown cells compared with control cells (Figure 16 (A)), given that 

CCND1 induces cell cycle progression. 
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5.4. DISCUSSION 

Our data indicates that IGF-2 signaling increases the levels of AHR mRNA and protein 

(Figure 14) as well as the binding of AHR to AP-1 and TCF/LEF response elements on the 

CCND1 promoter (Figure 15). We propose that the observed increase in AHR binding to the 

CCND1 promoter is important for the induction of CCND1 expression. Indeed, we found that 

AHR knockdown completely abrogated IGF-2 stimulated increases in CCND1 protein and 

significantly inhibited the induction of CCND1 mRNA compared to control cells (Figure 16). 

Modeled in Figure 17 (B) are our findings herein and the findings of Barhoover et al 

2010. We show that IGF-2 increases AHR, which in turn stimulates increases in CCND1 protein 

(Figure 9-11). Based on the results of Barhoover et al 2010 [105], the observed increases in AHR 

and CCND1 would bind to CDK4, which would promote the phosphorylation and inhibition of 

RB1 to promote cell cycle advance and MCF-7 proliferation (Figure 17 (B)). Our results 

showing that AHR knockdown cells are significantly less responsive to the proliferative effects 

of IGF-2 (Figure 17 (A)) support a requirement of AHR for the induction of CCND1 and CDK4-

induced phosphorylation of RB1 in MCF-7 cells [105]. Collectively, our results and the findings 

of Barhoover et al 2010 [105], provide two different but complementary mechanisms of action 

by which AHR may mediate the proliferative effects of IGF proteins and perhaps other mitogens 

that induce CCND1. These new findings suggest that human cancer cells that are highly 

responsive to IGF growth factors may require the AHR for maximal proliferation. 

Specific transcriptional proteins have been reported to stimulate the expression of AHR. 

Nuclear Factor, Erythroid 2-Like 2 (NRF-2) through the activation of an antioxidant response 

element (ARE) in the promoter of AHR, induces AHR transcription [273]. Overexpression of 

constitutively active β-catenin stimulated increases in AHR mRNA and AHR protein in human 
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colon cancer cells [274]. A prior report showed that the application of medium containing 10% 

calf serum, platelet-derived growth factor (PDFG) or basic fibroblast growth factor (bFGF) to 

overnight serum starved murine 3T3 fibroblasts stimulated increases in the levels of AHR protein 

and the activity of a murine AHR promoter reporter construct, which correlated with the onset of 

DNA synthesis [275]. Our finding that IGF-2 induced increases in AHR in MCF-7 cells further 

links growth factor signaling with endogenous AHR regulation. Our result showing that IGF-2 

induction of AHR is important for the induction of CCND1 provides insight as to the mechanism 

by which endogenous AHR regulation stimulates proliferation. 

In conclusion, we provide evidence that IGF-2 induction of AHR is important for the 

induction of CCND1 and MCF-7 proliferation. Barhoover et al 2010 have shown that TCDD 

inhibits MCF-7 cell cycle by disrupting interactions between CDK4 and AHR in MCF-7 cells 

[105]. We postulate that TCDD and other exogenous AHR ligands may impact cell proliferation 

by interfering with AHR-protein interactions on the CCND1 promoter. 
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ABSTRACT 

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that upon 

activation by the toxicant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) stimulates gene 

expression and toxicity. AHR is also important for normal mouse physiology and may play a role 

in cancer progression in the absence of environmental toxicants. The objective of this report was 

to identify AHR-dependent genes (ADGs) whose expression is regulated by AHR in the absence 

of toxicants. RNA-Seq analysis revealed that AHR regulated the expression of over 600 genes at 

an FDR<10% in MCF-7 breast cancer cells upon knockdown with short interfering RNA. 

Pathway analysis revealed that a significant number of ADGs were components of TCDD and 

tumor necrosis factor (TNF) pathways. We also demonstrated that siRNA knockdown of AHR 

modulated TNF induction of MNSOD and cytotoxicity in MCF-7 cells. Collectively, the major 

new findings of this report are: (1) endogenous AHR promotes the expression of xenobiotic 

metabolizing enzymes even in the absence of toxicants and drugs, (2) AHR by modulating the 

basal expression of a large fraction of TNF target genes may prime them for TNF stimulation and 

(3) AHR is required for TNF induction of MNSOD and the cellular response to cytotoxicity in 

MCF-7 cells. This latter result provides a potentially new role for AHR in MCF-7 cancer 

progression as a mediator of TNF and antioxidant responses. 

Keywords: Aryl hydrocarbon receptor (AHR); Gene expression; Breast cancer; Xenobiotics; 

Tumor necrosis factor 
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6.1. INTRODUCTION 

The environmental toxicant TCDD acts through a ligand-activated transcription factor, 

the aryl hydrocarbon receptor (AHR), to regulate gene expression and induce toxicity [253]. In 

the absence of TCDD, AHR localizes to the cytoplasm and is physically associated with heat 

shock protein 90 (HSP90), AHR interacting protein (AIP) and protein p23 in a protein complex 

[253]. TCDD stimulates AHR to undergo a conformational change that stimulates its 

translocation to the nucleus and dissociation away from HSP90, AIP and p23 [253]. Upon 

entering the nucleus, AHR physically interacts with AHR nuclear translocator (ARNT) to 

activate canonical TCDD target genes containing dioxin response elements (DREs), including 

CYP1A1, CYP1B1, NRF2 and AHR Repressor (AHRR) [253]. Prior pathway analyses have 

shown that TCDD regulated gene sets that are associated with metabolism of xenobiotics by 

cytochrome P450's, xenobiotic metabolism signaling, and fatty acid and lipid metabolism 

pathways; these findings are consistent with induction of phase I and phase II drug metabolizing 

enzymes [276, 277]. 

Several studies have shown that AHR inhibits and stimulates gene expression in the 

absence of TCDD [278-281]. For instance, Boutros et al. reported that knockdown of AHR in 

liver and kidney of mice disrupted the expression of 417 and 379 genes, respectively [278]. 

Adenoviral-mediated knockdown of AHR in primary mouse hepatocytes in vitro induced 

significant changes in the expression of 97 genes at 12 h and 246 genes at 24 h [279]. Chang et 

al. reported that AHR knockdown altered the expression of 1133 genes in mouse embryonic 

fibroblasts [280]. Mouse hepatoma cells (Hepa-1) express an AHR that binds DREs, while a 

variant line, Hepa-1 C35, harbors a dysfunctional mutant AHR that fails to bind DREs [281]. 

Consistent with AHR being an endogenous regulator of gene expression, the Hepa-C35 
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transcriptome is dramatically disrupted compared to parent Hepa-1 cells [282]. The findings that 

AHR knockout mice are less fertile, exhibit higher rates of intestinal cancers, and have 

developmental and vascular defects suggests that AHR regulation of gene expression in rodent 

models is physiologically important [283-287].  

AHR has been reported to play roles in breast tumorigenesis. Knockdown of AHR in 

breast cancer cells (BCCs) inhibits mitogen-induced proliferation (MCF-7 cell line), 

invasion/migration (MDA-MB-231 cell line) and xenograft tumorigenicity (rodent mammary 

fibroblasts) [108, 111, 114, 288]. Further, rat mammary tumors have been shown to express 

higher levels of AHR than normal mammary tissue [90]. The mechanism(s) of AHR action in 

breast tumorigenesis is not clear. We reasoned that defining AHR-dependent genes (ADGs) in 

MCF-7 BCCs would identify pathways downstream of AHR that are important in cancer. To this 

end, we performed expression profiling via RNA-Seq on control and AHR knockdown MCF-7 

cells in the absence of external stimuli. Pathway analysis of ADGs revealed new roles for AHR. 

First, MCF-7 cells maintain expression of xenobiotic metabolizing enzymes in the absence of 

toxicants. Second, AHR promotes basal expression of a large fraction of TNF target genes in 

MCF-7 cells. Finally, knockdown of AHR inhibited TNF-induced increases in MnSOD and 

promoted the cytotoxic response in MCF-7 cells. This latter result provides a potential new role 

for AHR in cancer as a mediator of MnSOD induction and the antioxidant cytoprotective 

response to TNF. 
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6.2. METHODS 

6.2.1. Materials and MCF-7 cell culture 

Dulbecco's Modified Eagle Medium/High glucose (DMEM) with l-glutamine and sodium 

pyruvate, phenol red-free DMEM, phosphate buffered saline (PBS), fetal bovine serum (FBS), 

charcoal-treated FBS, penicillin, and streptomycin were purchased from Thermo Fisher 

Scientific (Pittsburgh, PA). Sodium dodecyl sulfate (SDS), 30% acrylamide/bis solution, 

ammonium persulfate, Tween-20, and 2-mercaptoethanol was obtained from Bio-RAD 

(Hercules, CA). Non-specific control RNA (cRNAi) (cat no. D-001810-01-20), short interfering 

RNA (siRNA) against AHR (AHR-siRNA, cat no. J-004990-08-0010), RELA (RELA-siRNA, 

cat no. J-003533-06-0010) and DharmaFECT 1 Transfection Reagent (no.1) were purchased 

from GE Healthcare Life Sciences (Pittsburgh, PA). 2,3,7,8 Tetrachlorodibenzo-p-dioxin 

(TCDD) was obtained from Cambridge Isotopes Laboratory (Andover, MA). MCF-7 human 

breast cancer cells were purchased from ATCC (Manassas, VA) and maintained in DMEM, 10% 

FBS, with penicillin (100 IU/mL) and streptomycin 100 (μg/mL). 

6.2.2. AHR knockdown for RNA-Seq 

To knockdown AHR for RNA-Seq analysis, 200,000 MCF-7 cells in six-well tissue 

culture plates were transfected with 50 nM AHR-siRNA in phenol red-free DMEM, 10% 

charcoal-treated FBS and DharmaFECT 1 Transfection Reagent following the manufacturer's 

protocols. After 36 h, cells were serum starved overnight in phenol-red free DMEM. Control 

cells in 6-well tissue culture plates were transfected with 50 nM control-siRNA using the same 

methods used to knockdown AHR. 
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6.2.3. Whole transcriptome expression profiling via RNA-Seq 

Total RNA was isolated from overnight serum starved control (five replicates) and AHR 

knockdown MCF-7 (six replicates) using RNA purification columns (Qiagen, Valencia, CA) with 

DNase treatment. DNase was purchased from Qiagen. RNA sample quality was assessed using 

Bioanalyzer RNA Nano chips (Agilent); all RNA samples had an RNA Integrity Number greater 

than or equal to eight. RNA-Seq libraries were prepared from 1 μg of total RNA using a TruSeq 

RNA Prep Kit (Illumina Inc., San Diego, CA). 

6.2.4. RNA-Seq analysis 

RNA-Seq on AHR knockdown and control MCF-7 cells was performed using an Illumina 

HiSeq1000 in a 2 × 100 base paired end design yielding a minimum of 50 million reads per 

sample. Demultiplexing of samples was performed using CASAVA 1.8.2 (Illumina). Reads were 

aligned to the human reference genome (hg19/GRCh37) using TopHat 2.0.6. [289]. TopHat was 

configured to use BowTie 0.12.8 [290] and SAMtools 0.1.18. [291]. Aligned reads were then 

mapped to genes from the ensemble database using Bioconductor [292] packages Rsamtools and 

biomaRt [293]. Data were then analyzed using the DESeq Bioconductor package [294] as 

follows. Counts were normalized to account for differences in sequencing depth between 

samples. Samples were clustered using the top 30 expressing genes. One control sample, which 

did not cluster with the remaining control samples, was removed from further analysis. In order 

to mitigate the loss of statistical power from multiple hypothesis correction, we removed the 

lowest 40% of genes by total read count across all samples and performed differential expression 

analysis on the remaining 60%. Following standard practice (for example, [294]), genes 

statistically significant at a false discovery rate of 10% were reported, irrespective of fold 

change. To validate the low-expression filtering step, we repeated the analysis without removing 
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the 40% of genes that were low expressers (data not shown). None of the filtered genes were 

identified as statistically significant in this analysis, while the loss of statistical power resulted in 

126 of the unfiltered genes losing significance. Sequencing data were deposited in the Gene 

Expression Omnibus (GEO) database maintained by the National Center for Biotechnology 

Information (NCBI) and are accessible with accession number GSE52036s. 

6.2.5. Ingenuity pathway analysis (IPA) 

Differentially expressed genes (FDR < 10%) were expressed as a ratio of AHR knock-

down/control level and loaded into Ingenuity Pathway Analysis software (IPA; Ingenuity 

Systems, Redwood City, CA) in order to perform an IPA Core Analysis under default settings. Of 

the 634 RNAs, 496 were mapped to known functions and pathways by IPA. In IPA, a biological 

function is a process or disease with a pre-defined set of molecules (genes). IPA was used to 

compute significant associations between biological functions and our ADG set. Specifically, we 

ran a Core Analysis in IPA which used Fisher's Exact Test to assign levels of statistical 

significance to associations between biological functions and our gene set. We configured the 

core analysis to report Benjamini–Hochberg corrected p-values. We also used the Upstream 

Regulator Analysis function to identify candidate regulators of ADG pathways. 

6.2.6. Validation of RNA-Seq by qRT-PCR 

Real-time reverse-transcription PCR (RT-qPCR) analysis from control and AHR 

knockdown MCF-7 cells (five replicates) was carried out to validate RNA-Seq (AHR 

knockdown detailed in Section 2.2.). Total RNA was isolated using Qiagen RNA purification 

columns and DNase treated. Reverse transcription was performed with 100 ng of total RNA 

using Verso cDNA kit (Thermo Fisher Scientific; cat no. AB-1453/B). PCR of cDNA was 

conducted with SYBER GREEN and ROX qPCR mix (Qiagen) with a five min denaturing step 
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at 95° C, followed by 40 cycles of 15 s at 95° C, 30s at 60° C, 30s at 72° C. Relative gene 

expression was calculated using the formula 2ΔΔCT, as described by Livak and Schmittgen 

[239]. Glyceraldehyde-3-phosphate (GAPDH) mRNA levels served as the internal control. 

Primer sequences GAPDH [forward 5′-catgagaagtatgacaacagcct 3′ and reverse 5′-

agtccttccacgataccaaagt-3′], OAS1 [forward 5′-cagacgatgagaccgacgat-3′ and reverse 5′-

cctggagtgtgctgggtcta-3′], PKD1L1 [forward 5′-cgcctctggattgtgataacag-3′ and reverse 5′-

cggtcccagtagcacacag-3′], PLA2G2 [forward 5′-accagacgtaccgagaggag-3′ and reverse 5′-

cgctggggattggtgactg-3′], SERPIN5A [forward 5′-atgcccttttcaccgacctg-3′ and reverse 5′-

tgcagagtccctaaagttggtag-3′], PYDC1 [forward 5′-cacacgtatagctaccggcg-3′ and reverse 5′-

cgcgtaagacaacagcagtg-3′], HMGCS2 [forward 5′-caatgcctgctacggtggta-3′ and reverse 5′-

gacggcaatgtctccacaga-3′], SERPIN3A [forward 5′-tgccagcgcactcttcatc and reverse 5′-

tgtcgttcaggttatagtccctc-3′], CYP1A1 [forward 5′-cttcaccctcatcagtaatggtc-3′ and reverse 5′-

aggctgggtcagaggcaat-3′], CYP1B1 [forward 5′-ctgcactcgagtctgcacat-3′ and reverse 5′-

tatcactgacatcttcggcg-3′], NRF2 [forward 5′-tccagtcagaaaccagtggat-3′ and reverse 5′-

gaatgtctgcgccaaaagctg-3′], PGR [forward 5′-ttatggtgtccttacctgtggg-3′ and reverse 5′-

gcggattttatcaacgatgcag-3′], MGP [forward 5′-tccgagaacgctctaagcct-3′ and reverse 5′-

gcaaagtctgtagtcatcacagg-3′], ADORA [forward 5′-ccacagacctacttccacacc-3′ and reverse 5′-

taccggagagggatcttgacc-3′], CREB3L [forward 5′-cctcccgaagcctcctattct-3′ and reverse 5′-

ggggttgatttcccagcca-3′], AHR [forward 5′-acatcacctacgccagtgg-3′ and reverse 5′-

ctctatgccgcttggaaggat-3′], ALOX5 [forward 5′-ctcaagcaacaccgacgtaaa-3′ and reverse 5′-

ccttgtggcatttggcatcg-3′], ALDH3A1 [forward 5′-tgttctccagcaacgacaagg-3′ and reverse 5′-

agggcagagagtgcaaggt-3′], RELA [forward 5′- tccagaccaacaacaacccc-3′ and reverse 5′-

gatcttgagctcggcagtgt] and ABCG2 [forward 5′-acgaacggattaacagggtca-3′ and reverse 5′-
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ctccagacacaccacggat-3′]. The Harvard Primer Bank http://pga.mgh.harvard.edu/primerbank/was 

used to design primers above. The primer sequences for the UGTA isoforms have been published 

[295]. Primers were purchased from Sigma (St. Louis, MO). Primer specificity was verified with 

melt curve analysis and NIH primer blast search engines located at 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome. Two-tailed, 

paired t tests with confidence intervals of 95% were used to determine statistically significant 

differences between controls and AHR knockdown cells. 

6.2.7. Western blot analysis determination of MnSOD 

AHR knockdown prior to western blot analysis was carried as detailed in Tomblin and 

Salisbury [114]. Briefly, MCF-7 cells (200,000) were mixed directly with siRNA (50 nM control 

or AHR-siRNA) and DharmaFECT 1 Transfection reagent (2 μL-per well), added to phenol red-

free DMEM, 10% charcoal treated FBS in 6-well tissue culture plates and cultured for twenty 

four hrs. Following serum starvation in phenol red-free DMEM for sixteen hrs, cells were treated 

with either H2O vehicle or human recombinant TNF (10 ng/mL) (R & D Systems) for twelve hrs. 

Treatments were removed, adherent and detached cells were collected and total cellular extract 

was isolated in 250 microliter of 2× sample lysis buffer (Bio-RAD; cat no.161-0737) and 

approximately 10 microgram of protein was subjected to SDS PAGE and transferred to 

polyvinylidene difluoride (PVDF) membranes (Bio-Rad). Membranes were blocked in PBS, 

0.01% Tween 20 (PBS-T), 5% (wt/vol) low fat powdered milk for one hr and incubated 

overnight with primary antibody at 4° C with gentle mixing. Membranes were rinsed five times 

(five min each wash) with PBS-T and then incubated with an appropriate HRP-labeled secondary 

antibody (Thermo Fisher Scientific) (diluted 1:10,000 in PBS-T, 5% milk) for one hr, followed 

with rinsing five times (five min each wash) in PBS-T. Membranes were developed with 



100 
 

enhanced chemiluminescent substrate (Millipore Corporation, Billerica, MA) and exposure to X-

ray film (MidSci, St. Louis, MO). Antibodies were purchased from the following vendors: (1) 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody from Millipore (cat no. 

MAB374), (2) AHR antibody from Santa Cruz (Santa Cruz, CA, Cat no. H-211) and (3) MnSOD 

antibody from Abcam (Cambridge, MA, cat no.: ab13533). GADPH was diluted 1:10,000, while 

AHR and MNSOD were diluted 1:2000 in PBS, 0.01% Tween-20, 5% powdered milk. 

Densitometry was calculated with ImageJ PC-based software (National Institute of Health). The 

Student–Newman–Keuls (SNK) post-hoc test was used to determine statistically significant 

differences among groups following one-way analysis of variance (ANOVA). 

6.2.8. qRT-PCR analysis TNF induction of SOD2 

MCF-7 cells were reverse transfected in six-well tissue culture plates as detailed in 

Section 2.6 and then treated with H2O vehicle or TNF (10 ng/mL) (R&D Systems) for twelve 

hrs. Treatments were removed, adherent and detached cells were collected and total RNA was 

isolated in TRI-Reagent (Sigma-Aldrich, St. Louis, MO) and quantitated by NanoDrop 

spectrophotometry. RNA was reverse transcribed to cDNA (Verso cDNA kit; Thermo Fisher 

Scientific; cat no. AB-1453/B). Resulting cDNAs were subjected to qRT-PCR with SYBR Green 

Rox Mix (Qiagen) using PCR reaction conditions detailed in Section 2.6. Relative gene 

expression among groups was calculated using the formula 2ΔΔCT, as described by Livak and 

Schmittgen [239]. Primer sequences for SOD2 mRNA were (forward, 5′-

GGAAGCCATCAAACGTGACTT-3′; reverse, 5′-CCCGTTCCTTATTGAAACCAAGC-3′). The 

SNK post-hoc test was used to determine statistically significant differences among groups 

following one-way analysis of variance (ANOVA). 
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6.2.9. qRT-PCR analysis of TCDD treated cells 

MCF-7 cells plated in 35 mm tissue culture plates (200,000 cells/mL) were serum starved 

overnight in phenol red-free DMEM. For TCDD stimulation, either 0.1% (v/v) Dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich) or TCDD (10 nM at the final concentration) was added 

directly to media along with either H2O vehicle or TNF (10 ng/mL) (R&D Systems) for twelve 

hrs. Treatments were stopped and cells were rinsed once with PBS. Total RNA was isolated using 

TRI reagent (Sigma-Aldrich) and SOD2 mRNA was measured using real time RT-qPCR 

analysis. 

6.2.10. Chromatin immunoprecipitation followed by qPCR (ChiP-qPCR) 

For ChIP, one 80% confluent 150 mm plate of MCF-7 cells was serum starved in phenol 

red-free DMEM and then treated with H2O vehicle or TNF (10 ng/mL) for one h or twelve hrs. 

Post treatment, cells were cross-linked with formaldehyde (Sigma-Aldrich) (0.75% v/v) for ten 

min at room temp, followed by the application of glycine (0.125 M) (Sigma-Aldrich) for five 

min. Cells were rinsed with cold PBS, pelleted by centrifugation, and cell pellets were lysed in 1 

mL Lysis Buffer (50 mM Tris–HCl pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 

Sodium Deoxycholate, 0.1% SDS plus protease inhibitors (Thermo Scientific no. 78410). After 

fifteen min, extracts were sonicated (five times, each time ten s) and diluted 1:10 in dilution 

buffer (1% Triton X-100, 2 mM EDTA pH8, 20 mM Tris–HCl pH 8, 150 mM NaCl plus protease 

inhibitors), rotated overnight at 4° C with 5 μg of non-specific IgG (Santa Cruz; cat no. sc-2027), 

5 μg of anti-AHR antibody (Santa Cruz; cat no. H-211) or 5 μg of anti-p65 NFKB antibody 

(Santa Cruz; cat no. sc-372). Antibody-chromatin complexes were collected using ten microliters 

of magnetic protein A beads (Invitrogen; cat no. 100.01D) with rotation at 4° C for 90 min. 

Using magnetic separation (Life-Technologies; part no. 49-2025), beads were washed three times 
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(ten min each wash) with wash buffer (20 mM Tris–HCl, pH 8; 150 mM NaCl; 2.0 mM EDTA; 

0.1% SDS) and once with final wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA pH 8, 

500 mM NaCl) and incubated at 65° C for four to six hrs in elution buffer (1% SDS, 0.1 M 

NaHCO3) with proteinase K (20 mg/mL) (Invitrogen Life-Technologies., Carlsbad, CA). DNA 

was purified with phenol-chloroform extraction followed by isopropanol precipitation and 

analyzed using real time PCR. Phenol, chloroform and isopropanol were purchased from Sigma-

Aldrich. Primers spanning NFκB response elements in intron 2 of SOD2 were: [forward 5′-

GGAAAAGGCCCCGTGATTT-3′ and reverse 5-TCCTGGTGTCAGATGTTGCC-3′] [296]. 

ChiP data was expressed as % input, in which signals obtained from the ChIP are divided by 

signals obtained from an input sample. Statistical differences among groups were determined by 

the SNK post-hoc test following one-way analysis of variance (ANOVA). 

6.2.11. Cell viability 

MCF-7 cells (200,000/mL) were mixed directly with 50 nM siRNA (either control or 

AHR-siRNA) and Dharmafect no. 1 transfection reagent (2 μL/mL), added to phenol red-free 

DMEM, 10% charcoal treated FBS and plated into 60 mm tissue culture plates (3 mL per plate) 

and cultured for 24 h. Following serum starvation in phenol red-free DMEM for 16 h, cells were 

treated with either H2O vehicle or human recombinant TNF (10 ng/mL) (R&D Systems) for 12 

h. Cell viability was measured with trypan blue stain (Thermo Fisher Scientific). The percentage 

of non-viable cells were calculated as: non-viable cell (%) = (total number of non-viable 

cells/total number of cells) multiplied by 100. The SNK post-hoc test was used to determine 

statistically significant differences among groups following one-way analysis of variance 

(ANOVA). 
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6.3. RESULTS 

6.3.1. Effect of AHR knockdown on MCF-7 gene expression 

Expression profiling on control and AHR knockdown MCF-7 cells was conducted to 

identify a set of ADGs in the absence of stimuli. AHR knockdown inhibited the expression of 

380 genes and promoted the expression of 254 genes at FDR < 10%, with all reported fold 

changes being at least 1.2 fold; we refer to the combined group of 634 genes as the ADG set. A 

full list of these genes is included as a supplemental file with NCBI GEO data deposit (accession 

number GSE52036). Real-Time qRT-PCR was used to validate RNA-Seq expression in a set of 

30 genes. The rational for selecting validation genes listed in Table 8 is that they were among 

either the top downregulated (CYP1A1, HMGCS2, OAS1, PLA2G2, ALDH3A1, PKD1L1), the 

top upregulated (CREB3L1, PYDC1, MGP, ADORA1, PGR, SERPIN3A, and SERPIN5A) 

ADGs or known TCDD gene targets (CYP1A1, CYP1B1, ABCG2, ALDH3A1, NRF2 and UDP-

glucuronosyltransferases (UGTAs). ALOX5 was selected for validation because it is the rate 

limiting gene in leukotriene synthesis [297]. 

In general, there is a good concordance between the RNA-Seq and qRT-PCR 

measurements. Levels of AHR mRNA were lower in knockdown MCF-7 cells than controls as 

measured by RNA-Seq (∼four-fold) and qRT-PCR (∼seven-fold) from independent experiments 

(Table 8). Expression of known TCDD-target genes (CYP1A1 [298], CYP1B1 [298] and 

ALDH3A1 [299]) was lower in AHR knockdown MCF-7 cells by both RNA-Seq and qRT-PCR 

measurements (Table 8). Prior reports have shown that TCDD stimulates increased expression of 

UGTAs in mouse liver [259]. RNA-Seq and qRT-PCR assays revealed that UGT1A1, UGT1A3,  
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Table 8. Fold change expression value from AHR knockdown MCF-7 compared to controls. 
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UGT1A4, UGT1A5, UGT1A6, UGT1A7 mRNAs were lower in AHR knockdown cells than 

controls (Table 8). UGT1A8, UGT1A9, and UGT1A10 were not differently regulated by qRT-

PCR, but their levels were lower (∼three-fold) in AHR knockdown cells compared with controls 

based on RNA-Seq measurements (Table 8). The drug transporter, ABCG2, has been reported to 

be induced by TCDD in human cells (breast, colon and liver), but not in rodent cells [41]. 

ABCG2 mRNA was ∼three fold lower in AHR knockdown MCF-7 cells than controls in both 

RNA-Seq and qRT-PCR data sets (Table 8). NRF2 is a transcription factor that stimulates the 

expression of anti-oxidant enzymes [259]. Prior reports have shown that NRF2 is a TCDD gene 

target [300, 301]. NRF2 expression was not differentially expressed by RNA-Seq, but its levels 

were lower (∼50%) in AHR knockdown cells compared with controls when assayed by qRT-

PCR (Table 8). The levels of the PLA2G2 and ALOX5 were lower in AHR knockdown MCF-7 

cells than controls by RNA-Seq and qRT-PCR (Table 8). 

AHR knockdown had modest stimulatory effects on the expression of several genes. As 

measured by RNA-Seq, CREB3L was the most upregulated gene (by 2.67290) in AHR 

knockdown MCF-7 cells compared with controls (Table 8). The expression of PGR, MGP, 

SERPIN3A, CREB3L, SERPIN5A, and ADORA were increased in AHR knockdown cells 

compared with controls by RNA-Seq and qRT-PCR (Table 8). Observed expression levels of 

IGHG2, IGHA1 and RNF128 were reduced by AHR knockdown by RNA-Seq analysis (GEO 

submission GSE52036), but not by qRT-PCR (data not shown). This discrepancy could be 

attributed to IGHG2, IGHA1 and RNF128 transcript levels that were below qRT-PCR detection 

limits (Ct values higher than 35; data not shown). We note that RNA-Seq fold changes were 

greater than qRT-PCR fold changes for several genes including: CYP1A1, HMGCS2, OAS1, 
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PLA2G2, ALDH3A1, MGP, CREB3L, UGTAs and ADORA; however the direction of 

expression changes were the same (Table 8). 

6.3.2. Pathway analysis of AHR-dependent genes 

In order to determine functions and pathways regulated by ADGs, we analyzed the ADG 

set using the ingenuity pathway analysis (IPA) core analysis tool which finds gene sets that are 

over-represented in defined, canonical cellular pathways and molecular functions. Of the 634 

genes, 496 were mapped to known functions and pathways by IPA. These ADGs were 

significantly associated with cancer-related pathways including: cellular movement, cell cycle, 

cellular growth and proliferation, cell death and survival, cellular development and cellular 

morphology (Table 9). In addition, significant numbers of ADGs were over-represented in 

pathways involved in post-translational modification and in the metabolism of drugs, amino 

acids and small molecules (Table 9). 

We refined the pathway analysis by applying the IPA Upstream Regulator Analysis tool to 

determine if the ADGs are connected through a common upstream regulator. This analysis 

revealed that ADGs were enriched among the following IPA canonical regulatory pathways: 

beta-estradiol (endogenous hormone), tumor necrosis factor (TNF) (cytokine), tumor protein 53 

(TP53) (transcriptional regulator), lipopolysaccharide (chemical drug), decitabine (chemical 

drug), calcitriol (chemical ligand), dexamethasone (glucocorticoid receptor), v-erb-b2 

erythroblastic leukemia viral oncogene homolog 2 (ERBB2) (kinase), cyclin-dependent kinase 

inhibitor 1A (CDKN1A) (kinase), TGF-β (growth factor) and TCDD (toxicant) (Table 10). 

Specifically, IPA reveals that 74 of 171 TNF pathway target genes are ADGs (Table 10). Of the 

74 ADGs in the TNF pathway, 44 exhibited patterns of expression consistent with inhibition of 

TNF activity (Table 10). The finding that IPA revealed 87 of 197 beta-estradiol target genes are  
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Table 9. IPA cellular and molecular functions associated with RNA-Seq ADGs. 
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ADGs is not surprising, considering that AHR and the estrogen receptor (ER) have been reported 

to interact extensively (Table 10) [51, 302]. Finally, ADGs were found to be significantly 

enriched within the TCDD pathway (23 of 125 TCDD pathway genes were ADGs) (Table 10). 

The IPA-predicted inhibition of TCDD activity (Table 10) was based in part on the observed 

inhibition of conical TCDD target genes including: CYP1A1, CYP1B1 and ALDH3A1 in AHR 

knockdown cells compared with controls. 

6.3.3. Comparison of AHR-dependent gene set with known TCDD and AHR effects 

TCDD is a strong exogenous AHR ligand that is resistant to degradation [253]. TCDD 

has been reported to regulate the expression of 104 genes in MCF-7 cells [277]. To identify ADG 

genes that are induced by TCDD in MCF-7 cells, we overlapped published TCDD microarray 

data and AHR knockdown RNA-Seq expression profiles [277]. While the majority of ADGs 

(621) did not overlap with reported TCDD-regulated genes, there were 13 genes in both sets 

(Figure 18). Common genes included CYP1A1, CYP1B1 and ALDH3A1, which are important in 

lipid metabolism, small molecule biochemistry, and drug metabolism (Figure 18). 

Lo and Matthews identified TCDD-induced binding sites in MCF-7 cells using ChIP-Seq 

technology [277]. Since these should represent AHR binding sites, we compared the TCDD-

ChIP-Seq gene set with ADG set and found that approximately 15% of ADGs have a TCDD-

AHR binding site. This finding suggests that the remaining 85% could be indirect AHR gene 

targets. The 80 specific TCDD-ChIP-Seq genes that overlap with the ADG set are shown in 

Figure 19. Common target genes included ABCG2, CYP1A1 and CYP1B1 which are known 

TCDD-AHR target genes [41, 277]. 
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Table 10. IPA upstream regulators associated with RNA-Seq ADGs. 
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Figure 18. Genes in common between AHR knockdown RNA-Seq expression profiles and 
TCDD-microarray data. Analysis of reported TCDD-microarray data demonstrated that 13 of 
634 ADGs were TCDD-regulated genes. The specific 13 ADGs that overlapped with TCDD-
microarray genes in MCF-7 cells are shown in the table. 
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Figure 19. Genes in common between AHR knockdown RNA-Seq expression profiles and 
TCDD-ChIP-Seq data. Analysis of reported MCF-7 TCDD-ChIP-Seq data revealed that 80 of 
the 634 AHR-RNA-Seq genes were TCDD-AHR bound genes. The specific 80 ADGs that 
overlapped with TCDD-ChIP-Seq genes in MCF-7 cells are shown in the table. 
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Figure 20. Genes in common between AHR knockdown RNA-Seq expression profiles and 
AHR-regulated genes in mouse liver. Analysis of reported AHR gene targets in mouse liver 
revealed that 28 of the 634 ADGs were AHR targets in mouse liver. The specific 28 ADGs that 
overlapped with AHR-regulated genes in liver are shown in the table. 
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Figure 21. Genes in common between AHR knockdown RNA-Seq expression profiles and 
AHR-regulated genes in mouse kidney. Analysis of reported AHR gene targets in mouse 
kidney revealed that 15 of the 634 ADGs were AHR targets in mouse kidney. The specific 15 
ADGs that overlapped with AHR-regulated genes in the kidney are shown in the table. 
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Microarray based expression profiles on liver and kidney from AHR null mice has been 

reported [278]. Twenty eight genes were shared between the mouse liver gene set and ADG set 

(Figure 20). A small number of mouse kidney genes (15) overlapped with ADG set (Figure 21). 

The specific ADGs that overlapped with AHR-liver and AHR-kidney are shown in Figure 20 and 

Figure 21, respectively. Differences in tissue- and species-specific expression may explain the 

limited overlap in these gene sets. 

6.3.4. AHR modulates TNF induction of MnSOD and cytotoxicity response 

Based on the finding that the ADG set is significantly associated with the TNF pathway, 

we sought to determine if TNF induction of SOD2 requires AHR expression. SOD2 is a nuclear 

gene that encodes the mitochondrial superoxide dismutase (MnSOD). We focused on MnSOD 

regulation because it is inducible [303] and Rico de Souza et al. [304] have reported that 

MnSOD levels are lower in AHR knockdown primary mouse lung fibroblasts than control cells 

[304]. Serum-starved control and AHR knockdown MCF-7 cells were treated with vehicle or 

TNF (10 ng/mL) for 12 h. As expected, AHR protein levels were lower in knockdown cells than 

control cells (Figure 22 (A)). While TNF stimulated MnSOD protein levels ∼eight-fold in 

control cells, this induction was significantly abrogated in AHR knockdown cells by 60% (Figure 

22 (A)). We then asked whether siRNA knockdown of AHR and NF-κB subunit RELA (also 

known as p65) inhibited TNF-stimulated induction of MnSOD mRNA expression. The impetus 

for including RELA is based on its requirement for TNF induction of the SOD2 gene [305, 306]. 

RELA mRNA was reduced ∼90% by siRNA treatment (Figure 22 (B)). Knockdown of AHR and 

RELA suppressed TNF induction of MnSOD mRNA levels (Figure 22 (B)). We also asked 

whether TCDD would modulate TNF regulation of MnSOD. The level of MnSOD induction by 

TNF was not affected by TCDD (Figure 22 (B)). Collectively, these data indicate that 
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endogenous AHR and RELA promote TNF induction of MnSOD in MCF-7 cells through a 

mechanism that is independent of TCDD effects. 

TNF-induced RELA stimulates SOD2 expression by binding to NF-kappa-B response 

elements (kappa-RE) in intron 2 [305, 306]. Physical interactions between AHR and RELA have 

been reported [307]. We therefore tested whether TNF signaling results in recruitment of AHR 

and RELA to the SOD2 kappa-RE. ChIP-qPCR experiments revealed that treatment with TNF 

(12 h) increased the binding of AHR and RELA on the SOD2 kappa-RE by ∼2.5 fold in each 

case (Figure 22 (C)). AHR and RELA association with kappa-RE in vehicle treated cells was not 

greater than non-specific IgG (Figure 22 (C)). These results indicate that TNF signaling recruits 

AHR and RELA to an active kappa-RE in the SOD2 gene [304, 305]. 

The finding that AHR modulates TNF induction of MnSOD prompted us to investigate 

whether AHR is required in the response to TNF-induced cytotoxicity. To this end, MCF-7 cells 

were transiently transfected with non-targeting control or AHR siRNAs prior to treatment with 

vehicle or TNF for 12 h, followed by determination of the percentage of non-viable cells. As 

shown in Figure 22 (D), TNF-induced cytotoxicity was significantly higher in AHR knockdown 

MCF-7 cells compared with controls (Figure 22 (D)). This result suggests that AHR suppresses 

TNF-induced cytotoxicity. 
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Figure 22. AHR promotes TNF induction of MnSOD. (A) MCF-7 cells were transfected with 
control (cRNAi) or AHR (AHRi) siRNAs (please see Section 2 for details regarding transfection) 
prior to treatment with vehicle (Veh) or TNF (10 ng/mL) for 12 h. Total cellular protein was then 
isolated and subjected to western blot analysis. The blot was then probed with the indicated 
antibodies. Relative level of MnSOD protein was expressed as a ratio of MnSOD/GAPDH. A 
significant decrease in MnSOD protein by AHRi is indicated by (* P < 0.001). (B) RT-qPCR 
analyses of SOD2 and RELA mRNA levels in MCF-7 cells transfected with control (cRNAi), AHR 
(AHRi) or RELA (RELAi) siRNAs prior to vehicle (Veh) or TNF (10 ng/mL) treatment for 12 h. 
Significant decreases in SOD2 or RELA mRNAs is indicated by ( * P < 0.001). For TCDD 
stimulation, MCF-7 cells were stimulated with either dimethyl sulfoxide vehicle (DMSO-veh) or 
TCDD (10 nM) in the presence of vehicle or TNF (10 ng/mL) for 12 h, followed by measurement 
of SOD2 mRNA with RT-qPCR. No significant difference is indicated by (NS). Gene expression 
was normalized against GAPDH. (C) MCF-7 cells were treated with vehicle (Veh) or TNF (10 
ng/mL) for 12 h and chromatin immunoprecipitation (ChIP) experiments were conducted, 
followed by real-time Q-PCR (ChIP-qPCR). A significant increase in AHR and RELA binding on 
an intronic NFKB response element in the SOD2 gene induced by TNF is indicated (* P < 0.03). 
(D) MCF-7 cells were transfected with cRNAi or AHRi prior to treatment with vehicle (Veh) or 
TNF (10 ng/mL) for 12 h and cell viability was determined as outlined in Section 2. Significant 
increases is indicated (* P < 0.05). ((A)–(D)) Data shown are the means -/+ S.E. of at least three 
independent experiments. 
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6.4. DISCUSSION 

In this report, RNA-Seq analysis revealed that the expression of over 600 genes in MCF-

7 cells is dependent on AHR based on our knockdown experiments. Pathway analysis revealed 

that a significant number of ADGs were present in toxicant and TNF pathways (Table 10). TNF 

induction of MnSOD required AHR and RELA expression, and this process involved recruitment 

of RELA and AHR to a TNF-responsive NF-kappa-B element in the SOD2 gene (Figure 22). 

Consistent with AHR/RELA recruitment to MnSOD, the cellular response to TNF was dependent 

on AHR expression as demonstrated in knockdown experiments (Figure 22). 

There is little current evidence that demonstrates that cancer progression requires the 

expression of AHR; however, it is clear that AHR responds to and modulates cancer signals. 

From our prior report, we know that insulin like growth factor 2 (IGF-2) signaling rapidly 

increases AHR mRNA and protein levels in MCF-7 cells and that upregulated AHR promoted the 

activation of the CCND1 gene upon binding to the CCND1 gene promoter [114]. In this report 

we demonstrate that AHR modulates MCF-7 responsiveness to TNF. Together these findings 

indicate that AHR can modulate MCF-7 cancer progression by interacting with two major cancer 

signaling pathways, specifically IGF-2 and TNF. 

Even though AHR expression has not been directly associated with cancer, AHR activity 

may be aberrant in cancer cells. AHRR is a putative tumor suppressor whose expression is 

downregulated in multiple cancers including breast tumors due to hypermethylation of its 

promoter [94]. AHRR inhibits AHR activity through a mechanism that could be mediated by 

AHRR binding with AHR [308]. Thus, AHR activity could be higher because AHRR expression 

is downregulated in human cancers [94]. 
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There are several lines of evidence that AHR through interactions with RELA regulates 

proinflammatory genes; our data suggests this interaction is also important for regulating 

MnSOD, a major antioxidant enzyme. DiNatale and colleagues demonstrated that TCDD and 

interleukin 1 (IL-1) synergistically induce IL-6 transcription [309]. This was mediated through 

DREs in the IL-6 gene promoter [309]. Recently, AHR itself, in the absence of TCDD, has been 

reported to activate the IL-6 gene by pairing with RELA at kappa-RE in the IL-6 gene [310]. 

AHR interaction with NF-kappa-B is not restricted to RELA, considering that AHR binding with 

RELB activates the IL-8 gene [311, 312]. TCDD inhibits NF-kappa-B activity when measured 

with EMSA and a kappa-B-RE luciferase reporter construct [307]. We found that TNF induction 

of MnSOD is refractory to TCDD (Figure 22). So in some cases TCDD interactions with NF-κB 

therefore could be gene specific. 

AHR-deficient MCF-7 cells were more sensitive to TNF-induced cytotoxicity than 

controls (Figure 22 (D)). TNF signaling stimulates opposing cell survival and death pathways 

[313]. TNF-induced NF-kappa-B protects cells from TNF-induced cell death by upregulating the 

expression of antioxidant and antiapoptotic genes [313]. Upregulation of MnSOD by NF-kappa-

B inhibits TNF-induced ROS accumulation and cell death [228, 314]. The levels of MnSOD 

were lower in AHR knockdown MCF-7 cells in response to TNF compared with controls (Figure 

22). Thus, AHR could in part protect MCF-7 cells from TNF-induced cytotoxicity by promoting 

upregulation of MnSOD (Figure 22). 

Our RNA-Seq data and IPA analyses are consistent with many reports showing that AHR 

regulates gene expression in the absence of TCDD. There are potential mechanisms to explain 

AHR activity in MCF-7 cells in the absence of TCDD. Chiaro et al. discovered that the 5-

lipoxygenase (5-LOX) pathway generates 5,6-dihydroxyeicosatetraenoic acid isomers (5,6-
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DiHETEs) that induce expression of a DRE-promoter reporter construct, the formation of AHR-

DNA binding complexes in EMSA assays, and increases in CYP1A1 mRNA in hepatocytes 

[315]. DiNatale and colleagues reported that the tryptophan metabolite kynurenic acid induced 

CYP1A1 mRNA, DRE-promoter reporter activity and the formation of an AHR-DNA complex, 

and competitively displaced labeled AHR ligand from AHR in hepatocytes [95]. Kynurenine has 

been reported to be secreted at μM levels from glioma cells and to induce DRE-promoter 

reporter activity, CYP1A1 mRNA levels and to competitively displace labeled AHR ligand from 

AHR in glioma cells [75]. 5,6-DiHETEs, kynurenic acid and kynurenine therefore may serve as 

endogenous AHR ligands that stimulate AHR activity and expression of AHR target genes in 

MCF-7 cells in the absence of TCDD. Considering our data showing that TNF-induced AHR 

binding at an active NFκB-RE, we postulate that AHR may be recruited to gene promoters by 

activated RELA (perhaps in an AHR ligand independent mechanism). 

In conclusion, our RNA-Seq data suggest a role for AHR in toxicant and TNF pathways. 

Further, AHR and RELA are clearly required for induction of MnSOD and the cytoprotective 

response to TNF. In a similar vein, AHR protects lung cells from cigarette induced cytotoxicity 

by maintaining MNSOD expression [304]. As a whole, our findings implicate unliganded AHR 

expression in a new aspect of cancer progression. 
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CHAPTER VII: ARYL HYDROCARBON RECEPTOR (AHR) REGULATION OF L-

TYPE AMINO ACID TRANSPORTER 1 (LAT-1) EXPRESSION IN MCF-7 AND MDA-

MB-231 BREAST CANCER CELLS. 
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ABSTRACT 

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated 

by environmental toxicants that function as AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine transporter that is 

overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast 

cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a 

significant association between TCDD-regulated genes (TRGs) and molecular transport. 

Overlapping the TCDD-RNA-Seq dataset obtained in this study with a published TCDD-ChIP-

seq dataset identified LAT1 as a primary target of AHR-dependent TCDD induction. Short 

interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated 

increases in LAT1 mRNA and protein required AHR expression. TCDD-stimulated increases in 

LAT1 mRNA were also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by 

TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. 

Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in 

AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an 

AHR binding site in the LAT1 gene in response to TCDD. In MCF-7 and MDA-MB-231 cells, 

endogenous levels of LAT1 mRNA and protein were reduced in response to knockdown of AHR 

expression. Knockdown experiments demonstrated that proliferation of MCF-7 and MDA-MB-

231 cells is dependent on both LAT1 and AHR. Collectively, these findings confirm the 

dependence of cancer cells on leucine uptake and establish a mechanism for extrinsic and 

intrinsic regulation of LAT1 by AHR. 

Key Words: Aryl Hydrocarbon Receptor (AHR); L-Type Amino Acid Transporter 1 (LAT1), 

TCDD, gene expression; breast cancer  
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7.1. INTRODUCTION 

Halogenated aromatic hydrocarbons (HAHs) are environmental toxicants that are formed 

as byproducts of industry and municipal waste incineration [316, 317]. 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) exhibits the highest affinity for AHR compared with other 

HAHs [318]. In the absence of ligand, AHR is associated with chaperone proteins including heat 

shock protein 90 (HSP90) [319, 320], Aryl Hydrocarbon Receptor Interacting Protein (also 

known as XAP2) [20, 321, 322], and the co-chaperone protein p23 [21]in the cytoplasm. Upon 

binding to TCDD, AHR translocates from the cytoplasm into the nucleus and binds AHR nuclear 

translocator (ARNT) [36, 253, 323]. TCDD-induced AHR/ARNT dimers confer transcriptional 

activity specifically to AHR response elements (AHR-REs) that cluster near the promoter regions 

of TCDD target genes [36]. CYP1A1 and CYP1B1 are phase I xenobiotic metabolizing enzymes 

that are transcriptionally induced by TCDD via AHR [36]. The induction of CYP1A1 and 

CYP1B1 transcription by TCDD also requires several transcriptional coactivators including 

steroid receptor coactivator 2 (SRC1), steroid receptor coactivator 2 (SRC2), p300 and BRG-1 

[37, 324, 325]. 

In addition to xenobiotic metabolism, immune responses are modulated by AHR and the 

outcome is dependent on the AHR ligand. For instance, T regulatory cells (Tregs) suppress 

excessive immune responses and their differentiation is promoted by TCDD or kynurenine 

(Kyn), and both of these AHR ligands are immunosuppressive [73, 74]. Th17 cells are 

proinflammatory T cells and their expansion and differentiation is enhanced by the endogenous 

AHR ligand 6-formylindolo [3,2-b] carbazole (FICZ), but suppressed by TCDD [74, 77]. 

Developmental and functional immunity is dependent on AHR and the dietary AHR ligands 

indolo [3,2-b] carbazole (ICZ) and 3,3-diidolylmethane (DIM) [326, 327]. Finally, cytokine and 
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chemokine gene expression in dendritic cells (DC) and macrophages is increased by AHR 

ligands, and the transcription of AHR is increased by nuclear factor kappa B in response to 

lipopolysaccharide (LPS) in innate immune cells [49, 95, 328]. 

TCDD-RNA-Seq analysis described herein identified 137 TCDD-regulated genes (TRGs) 

in MCF-7 breast cancer cells (BCCs) among which is L-Type Amino Acid Transporter 1 (LAT1). 

The uptake of large neutral acids including: leucine, arginine, phenylalanine, tyrosine, and 

tryptophan is mediated by LAT1 [230-232]. Breast, colorectal, head and neck, leukemia, 

lymphoma, melanoma, prostate and parathyroid cancers express higher levels of LAT1 compared 

with corresponding normal tissue [233]. LAT1 promotes proliferation of cancer cells by 

stimulating the uptake of amino acids that are important for protein synthesis [233]. In addition, 

its ability to promote cellular uptake of leucine would also increase the activity of mTORC1 

which has been reported to be important for the growth and survival of some cancers [235]. 

TCDD has been reported to increase LAT1 mRNA in HEPG2 cells, which are a model of 

hepatocellular carcinoma [329]. These observations strongly suggest that LAT1 is critical for 

cancer cell growth and survival. However, the mechanism by which TCDD or AHR regulates 

LAT1 expression has not been determined. 

The objective of this report was to investigate extrinsic regulation of LAT1 by 

TCDD/AHR and intrinsic (endogenous) regulation of LAT1 by AHR. Extrinsic regulation of 

LAT1 by TCDD/AHR was investigated in MCF-7 cells. Intrinsic regulation of LAT1 by AHR 

was investigated in MCF-7 and MDA-MB-231 cells because these BCC lines have been reported 

to exhibit endogenous AHR activity [59, 107-109]. Based on our findings, we report a new role 

for AHR as an extrinsic and intrinsic regulator of LAT1 expression in BCCs and show that AHR 

binds to LAT1 AHR-REs as part of a transcriptional activator complex. 



128 
 

7.2. METHODS 

7.2.1. Materials  

Dulbecco’s Modified Eagle Medium/High glucose (DMEM) with l-glutamine and 

sodium pyruvate, phenol red-free DMEM, phosphate buffered saline (PBS), fetal bovine serum 

(FBS), penicillin, streptomycin, and dimethyl sulfoxide (DMSO) were purchased from Thermo 

Fisher Scientific (Pittsburgh, PA). Sodium dodecyl sulfate (SDS), 30% acrylamide/bis solution, 

ammonium persulfate, Tween-20, 2-mercaptoethanol and polyvinylidene difluoride (PVDF) 

membranes were obtained from BIO-RAD (Hercules, CA). Non-targeting short interfering RNA 

(siRNA) (cat # D-001810-01-20), ON-TARGET plus human siRNAs against AHR (cat # J-

004990-08-0010, and cat # J-004990-06-0010) and LAT1 (cat # J-004953-09-0010) were 

purchased from GE Dharmacon (Lafayette, CO). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) 

was obtained from Cambridge Isotopes Laboratory (Andover, MA). The AHR antagonist CH-

223191 was purchased from Sigma–Aldrich (St. Louis, MO). MCF-7 and MDA-MB-231 BCCs 

were purchased from ATCC (Manassas, VA) and maintained in DMEM, 10% FBS, with 

penicillin (100 IU/mL) and streptomycin (100 IU/mL). 

7.2.2. TCDD RNA-Seq 

250,000 MCF-7 cells were seeded in 35 mm plates in DMEM supplemented with 10% 

FBS for 24 h, followed by overnight serum-starvation in phenol red-free DMEM, and then 

treated with vehicle (DMSO) or 10 nM TCDD for six hr. RNA-Seq analysis was based on four 

biological replicates in each experimental group. Total RNA purification kits (Qiagen, Valencia, 

CA) were used to extract total RNA. RNA sample quality was assessed using Bioanalyzer RNA 

Nano chips (Agilent); all RNA samples had an RNA Integrity Number greater than or equal to 

eight. RNA-Seq libraries were prepared from 1 μg of total RNA using a TruSeq RNA Prep Kit 
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(Illumina Inc., San Diego, CA). RNA-Seq was performed using an Illumina HiSeq1000 in a 2 × 

100 base paired end design yielding a minimum of 50 million reads per sample. Differentially 

expressed genes were identified at a False Discovery Rate (FDR) of 5% as detailed in our prior 

report [59]. Raw reads and processed data (unnormalized and normalized read counts by gene) 

were deposited in the Gene Expression Omnibus (GEO) at the National Center for 

Biotechnology Information and are accessible via accession number GSE76608. 

7.2.3. Ingenuity pathway analysis (IPA)  

TCDD-regulated genes (TRGs) were expressed as a ratio of TCDD/DMSO and loaded 

into IPA software (Ingenuity Systems, Redwood City, CA). Of the 137 TRGs identified by RNA-

Seq, 116 were mapped to known functions and pathways by IPA. The Core Analysis tool and the 

Fisher Exact Test in IPA were used to identify statistically significant associations between TRGs 

and cellular and molecular pathways. We configured the core analysis to report Benjamini–

Hochberg corrected p-values. 

7.2.4. Reverse transcription and real-time polymerase chain reaction (RT-qPCR) 

RT-qPCR assays were carried out as described in our prior reports [59, 114]. In brief, total 

RNA was extracted using RNA purification columns (Qiagen) and 100–300 ng of extracted RNA 

was reverse transcribed to cDNA using High Capacity Reverse Transcription kits (Thermo Fisher 

Scientific). Real-time qPCR reactions were performed in triplicate using SYBR Green Master 

Mix according to the manufacturer’s instructions (Thermo Fisher Scientific). Relative changes in 

gene expression were calculated using the 2−ΔΔCT formula as described by Livak and Schmittgen 

[239]. Glyceraldehyde-3-phosphate (GAPDH) mRNA levels served as the internal control. The 

sequences of the qPCR primers used to amplify GAPDH and AHR mRNA have been published 

[59]. LAT1 mRNA qPCR primers were: forward, 5′-ccgaggagaaggaagaggc-3′; reverse, 5′-
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gaagatgcccgagccgataa-3′. The Student–Newman–Keuls (SNK) post hoc test was used to 

determine statistically significant differences among groups following one-way analysis of 

variance (ANOVA). 

7.2.5. Short interfering RNA (siRNA) assays and Western blotting 

The siRNA knockdowns were performed as detailed in our prior reports [59, 114]. 

Briefly, 200,000 cells (MCF-7 or MDA-MB-231) in 1 mL of DMEM supplemented with 10% 

FBS were mixed directly with 100 nM of siRNA that was non-targeting, AHR-targeting or 

LAT1-targeting and 3 μL of Lipofectamine RNAiMAX transfection reagent (Thermo Fisher 

Scientific) and immediately plated in 35 mm tissue culture plates for 48 h. MCF-7 cells were 

then treated with vehicle (DMSO) or 10 nM TCDD for 16 h. Treatments were removed and cells 

were rinsed once with PBS. For Western blotting, total protein was extracted by scraping cells in 

2× Laemmli Sample Buffer containing β-mercaptoethanol (BME). Laemmli sample buffer and 

BME were purchased from BIO-RAD. Standard Western blotting techniques were used to 

analyze ∼10 μg of protein per sample (please refer to our prior reports for technical details [59, 

114]). Western blot analysis of GAPDH was used to confirm equal protein loading. Blots were 

probed with anti-GAPDH antibody (diluted 1:10,000), anti-AHR antibody (diluted 1:5,000) or 

anti-LAT1 antibody (diluted 1:2,000) overnight at 4° C, followed by incubation with anti-HRP 

secondary antibody (1:5000) for one hr at room temperature. The blots were then rinsed with 

PBS + 0.1% tween 20, and then developed with enhanced chemiluminescent substrate Millipore 

Corp., (Billerica, MA). The anti-GAPDH antibody was purchased from Millipore (Cat 

#MAB374). The anti-AHR antibody was obtained from Santa Cruz Biotechnology (Santa Cruz, 

CA, Cat #H-211) and the anti-LAT1 antibody was purchased from Cell Signaling Technology 

(Danvers, MA, Cat #5347). Densitometry was calculated with ImageJ PC-based software 
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(National Institute of Health). The Student–Newman–Keuls (SNK) post hoc test was used to 

determine statistically significant differences among groups following one-way analysis of 

variance (ANOVA).   

7.2.6. Chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) 

The ChIP-qPCR assays were carried out as described in our previous report [114]. In 

brief, nonspecific IgG, and antibodies that were specific for AHR, ARNT or p300 were obtained 

from Santa Cruz Biotechnology. The antibodies against acetylated lysine 9 or lysine 14 in histone 

H3 were purchased from Cell Signaling Technology. The magnetic protein A beads and 

proteinase K were purchased from Life Technologies (Carlsbad, CA). A recent TCDD-ChIP-Seq 

report identified an AHR binding site within a 900 bp region in LAT1 corresponding to 

coordinates 87,840,300–87,841,199 (human genome version 19 (Hg19)) [277]. This AHR 

binding site was investigated in this report by ChIP-qPCR with primers that span coordinates 

87,840,403–87,840,544, which were: [forward 5′-GCACGTACCTGTAGGGGTTG-3′ and 

reverse 5′-ATGCTCTCTCCCCGGTGATT-3′]. The ChIP-qPCR primers used to amplify the 

AHR binding sites in the CYP1B1 gene have been published [330]. ChIP-qPCR data were 

expressed as % input in which signals obtained from the ChIP are divided by signals obtained 

from an input sample. Statistical differences among groups were determined by the SNK post 

hoc test following one-way analysis of variance (ANOVA). 

7.2.7. Leucine uptake experiments 

Leucine uptake experiments were performed in MCF-7 cells grown to confluence on 24 

well plates. The cells were first washed twice with Na-free buffer (130 mM TMACl, 4.7 mM 

KCl, 1 mM MgSO4, 1.25 mM CaCl2, 20 mM HEPES; pH 7.4) and incubated with the same for 

ten min at room temperature. The uptake was then initiated by incubating the cells for 30 s with 
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Na-HEPES buffer (130 mM NaCl, 4.7 mM KCl, 1 mM MgSO4, 1.25 mM CaCl2, 20 mM 

HEPES; pH 7.4) with 10 μCi of 3H-l-Leucine (PerkinElmer; Waltham, MA) and 10 μM l-

Leucine (Sigma–Aldrich). The reaction was stopped with ice cold Na-HEPES buffer after which 

the cells were washed twice with the same ice-cold buffer. The cells were then lysed in 500 μl of 

1 N NaOH followed by incubation for 20 min at 70° C. The lysed contents of each well was 

collected in a 7 ml scintillation tube and mixed with 5 ml Ecoscint A (National Diagnostics; 

Atlanta, GA). Leucine uptake experiments were conducted using chemicals obtained from 

Sigma–Aldrich. The vials were kept in the dark for 48 hr and the radioactivity was determined in 

a Beckman 6500 scintillation counter. 

7.2.8. MDA-MB-231 and MCF-7 proliferation experiments  

20,000 MDA-MB-231 or 10,000 MCF-7 cells in 1 mL of DMEM + 10% FBS were mixed 

directly with siRNA’s (100 nM) that were non-targeting, AHR-targeting or LAT1-targeting and 3 

μL of RNAiMax Transfection Reagent. The cells were then plated into 96 well plates at a density 

of 2000 MDA-MB-231 or 1000 MCF-7 cells per well. After three days, cell proliferation was 

assayed with the Aqueous One Solution Cell Proliferation Assay (Promega, Madison, WI) in 

accordance with the manufacturer’s protocol. 
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7.3. RESULTS 

7.3.1. TCDD RNA-Seq   

RNA-Seq analysis revealed that TCDD-regulated the expression of 137 genes in MCF-7 

BCCs at an FDR <5%, with all fold changes greater than or equal to 1.3 compared with vehicle. 

Of these 137 TCDD-regulated genes (TRGs), 116 were mapped to known functions by IPA. 

Comparison of TRGs with a published TCDD/AHR-ChIP-Seq dataset [277] revealed that 47 

genes were shared between the two gene sets (Figure 23). These 47 genes included known 

TCDD target genes such as CYP1A1 [331], CYP1B1 [331] and ALDH3A1 [299] (Figure 23). 

Bioinformatic analysis revealed that the 47 TCDD target genes were significantly associated 

with metabolic pathways including: lipid metabolism, carbohydrate metabolism, nucleic acid 

metabolism, vitamin and mineral metabolism and energy production (Table 11). The 47 TCDD 

target genes were also associated with cancer processes including: cell death and survival, cell 

cycle, cellular growth and proliferation, and molecular transport (Table 11). 

7.3.2. TCDD/AHR regulation of LAT1 and leucine uptake  

The TCDD-RNA-Seq indicated that LAT1 (also known as SLC7A5) was induced 2.33-

fold by TCDD (Table 11), while TCDD-ChIP-Seq evidence suggested that AHR could directly 

bind to intron 2 of the LAT1 gene [277]. We decided to further investigate extrinsic regulation of 

LAT1 by TCDD, considering that prior reports indicate that upregulation of LAT1 could be 

important for breast cancer progression [117, 332, 333]. To investigate whether TCDD increases 

LAT1 expression through AHR, MCF-7 cells were transfected with short interfering RNA 

against AHR (AHRi). Control MCF-7 cells were transfected with non-targeting siRNA (cRNAi).  
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Figure 23. Genes common between TCDD RNA-Seq data and TCDD-ChIP-Seq data. 
Analysis of reported MCF-7 TCDD-ChIP-Seq data revealed that 47 of the 116 TCDD-RNA-Seq 
genes were TCDD-AHR/ARNT bound genes. The specific 47 TCDD-regulated genes and their 
associated fold changes are shown in the table. 
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Table 11. IPA cellular and molecular functions associated with the 47 TRGs that overlap with 
reported TCDD-AHR/ARNT ChIP-seq. 
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SiRNA-treated cells were then exposed to either vehicle or TCDD (10 nM) for six hr. Reductions 

in AHR mRNA were confirmed in MCF-7 cells transfected with AHRi compared with those 

transfected with cRNAi (Figure 24 (A)). As expected, TCDD-stimulated increases (three-fold) in 

LAT1 mRNA compared with vehicle in MCF-7 cells transfected with cRNAi (Figure 24 (B)). In 

contrast, AHRi significantly reduced the stimulatory effect of TCDD on LAT1 expression (P < 

0.01; Figure 24 (B)). These results indicate that LAT1 regulation by TCDD is mediated by AHR. 

To investigate whether TCDD increases LAT1 expression by binding to AHR, MCF-7 

cells were treated with CH-221391, which is an AHR antagonist that specifically inhibits the 

binding of TCDD to AHR [334]. TCDD induction of CYP1A1 transcription is a commonly used 

readout of TCDD-induced AHR activity that requires TCDD to bind AHR. To verify that CH-

221391 is an AHR antagonist in MCF-7 cells, its ability to suppress induction of CYP1A1 by 

TCDD was measured by RT-qPCR. The findings revealed that TCDD-induced increases in 

CYP1A1 were indeed reduced by CH-221391, indicating that it is an effective AHR antagonist 

in MCF-7 cells (Figure 24 (C)). As expected, TCDD-stimulated increases (∼three-fold) in LAT1 

mRNA in control MCF-7 cells not treated with CH-221391 (Figure 24 (D)). In contrast, CH-

221391 significantly (P < 0.01) suppressed the stimulatory effect of TCDD on LAT1 expression 

(Figure 24 (D)). These results indicate that regulation of LAT1 by TCDD requires TCDD to bind 

AHR. 

Western blot experiments were conducted to confirm that TCDD induction of LAT1 

mRNA leads to increases in LAT1 protein. Exposure to TCDD stimulated robust increases (∼ten-

fold) in LAT1 protein in MCF-7 cells transfected with cRNAi (Figure 25 (A) and (B)). Induction 

of LAT1 protein by TCDD was completely suppressed in MCF-7 cells transfected with AHRi 

(Figure 25 (A) and (B)). As expected, AHR protein levels in MCF-7 cells transfected with AHRi  
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Figure 24. AHR mediates TCDD-stimulated increases in LAT1 mRNA. (A and B) MCF-7 
cells were transfected with siRNAs that were either non-targeting (cRNAi) or AHR targeting 
(AHRi) and then treated with DMSO vehicle (Veh) or TCDD (10 nM) for 6 h. (C and D) MCF-7 
cells were treated vehicle or TCDD (10 nM) in the absence (controls) or presence of CH-223191 
(10 µM) for 6 h. (A–D) AHR, LAT1, CYP1A1 or GAPDH mRNA were quantified by qRT-PCR 
from total RNA. GAPDH mRNA levels were used to normalize samples. * P < 0.05; **P > 0.01. 
Data shown are the mean ± S.E. of three independent experiments. 
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Figure 25. AHR mediates TCDD-stimulated increases in LAT1 protein. (A–C) MCF-7 cells 
were transfected with siRNAs that were either non-targeting (cRNAi) or AHR targeting (AHRi) 
and then treated with vehicle (Veh) or TCDD (10 nM) for 16 h. Total cellular protein was then 
isolated and subjected to Western blot analysis. The blot was then probed with the indicated 
antibodies. Relative levels of AHR or LAT1 protein were expressed as a ratio to GAPDH loading 
control. * P < 0.05; **P > 0.01. Data shown are the mean ± S.E. of three independent 
experiments. 
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were lower than those transfected with cRNAi (Figure 25 (A) and (C)). Leucine uptake 

experiments were performed to investigate if the induction of LAT1 protein by TCDD coincided 

with increases in leucine uptake by MCF-7 cells. Significant increases in leucine uptake by cells 

was observed in response to TCDD exposure compared with vehicle-treated cells (Figure 26). 

Taken together, these results indicate that the induction of LAT1 protein by TCDD leads to a 

functional increase in leucine uptake by MCF-7 cells. 

7.3.3. TCDD-induced AHR/ARNT/p300 recruitment to an AHR binding site in the LAT1 

gene  

A prior report by Lo and Matthews (2012) identified an AHR binding site in intron 2 of 

the LAT1 gene by TCDD-ChIP-seq analysis in MCF-7 cells [277]. In order to characterize the 

mechanism of LAT1 induction, we measured AHR recruitment to the AHR response elements 

(AHR-REs) in LAT1 intron 2 by ChIP-qPCR analysis. The results showed a significant (P < 

0.05) 4-fold increase in AHR binding to the intron 2 site in response to TCDD compared with 

vehicle (Figure 27 (A)). In accordance with its known mechanism of action, TCDD-increased 

(by 37-fold) AHR binding to AHR-REs that are located upstream from the CYP1B1 transcription 

start site (Figure 27 (D)). 

By binding to AHR, the ARNT transcription factor promotes AHR recruitment to AHR-

REs in TCDD target genes [36, 253]. We assessed ARNT binding to the LAT1 intron 2 and 

CYP1B1 using ChIP-qPCR analysis and the findings revealed its recruitment to AHR-REs in the 

LAT1 and CYP1B1 genes was increased by 12- and 55-fold, respectively in response to TCDD 

(Figure 27 (B) and (E)). Prior reports indicate that AHR/ARNT heterodimers recruit the p300 

transcription complex to TCDD target genes [37]. The AHR-REs in LAT1 and CYP1B1 genes 

exhibited three-fold and ten-fold increases, respectively, in p300 binding in response to TCDD  
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Figure 26. TCDD increases leucine uptake. MCF-7 cells were treated with vehicle or 10 nM 
TCDD for 6 h, followed by analysis of leucine uptake as detailed in the material and methods. * 
P < 0.05. Data shown are the mean ± S.E. of three independent experiments 
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Figure 27. TCDD-stimulated 
AHR/ARNT/p300 recruitment and histone 
H3 acetylation at an AHR binding site in the 
LAT1 gene. (A–E) MCF-7 cells were treated 
with DMSO or 10 nM TCDD for 45 min. Cells 
were then subjected to ChIP with non-specific 
IgG (IgG), or AHR, ARNT, p300, acetylated 
histone H3 (lysine 9 or 14) targeting 
antibodies, followed by qPCR amplification of 
the AHR binding site in the LAT1 (A–C) or 
CYP1B1 (D and E) genes. Significant 
increases in AHR, ARNT, or p300 binding to 
AHR binding sites in the LAT1 (A–C) or 
CYP1B1 (D and E) gene by TCDD are 
indicated by * P < 0.05, or **P < 0.01. (C) 
Significant increases in the acetylation of 

lysine 9 or 14 in histone H3 at the AHR binding site in the LAT1 gene by TCDD are indicated by 
#P < 0.05. Data shown are the mean ± S.E. of three independent experiments. 
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compared with vehicle (Figure 27 (B) and (E)). 

The p300 complex has inherent histone acetylase activity and is known to increase in 

histone H3 acetylation at lysine 9 and lysine 14, both of which are markers of active transcription 

[335]. Consistent with its physical recruitment to the LAT1 AHR-RE, we observed increases in 

the acetylation of histone H3 at lysine 9 and lysine 14 (by 2.4 and 1.8-fold, respectively) at the 

AHR-RE in response to TCDD (Figure 27 (C)). Collectively, these data indicate that extrinsic 

regulation of LAT1 by TCDD is mediated via the AHR binding and recruitment of p300 to the 

AHR-RE in the LAT1 gene. 

7.3.4. Endogenous regulation of LAT1 by AHR promotes MCF-7 and MDA-MB-231 

proliferation 

Intrinsic regulation of LAT1 by AHR was investigated in MCF-7 and MDA-MB-231 

cells because these BCC lines have been reported to exhibit endogenous AHR activity [59, 107-

109]. Western blot analysis revealed basal AHR and LAT1 protein expression in MCF-7 (Figure 

28 (A)) and MDA-MB-231 (Figure 28 (C)) cells transfected with cRNAi. Transfection with 

AHRi reduced AHR protein in MCF-7 (Figure 28 (A)) and MDA-MB-231 cells (Figure 28 (C)) 

to levels that were not detected by standard Western blot analysis. Reducing AHR protein 

expression with AHRi also suppressed the levels of LAT1 protein in MCF-7 (by ∼70%) (Figure 

28 (A)) and MDA-MB-231 (by ∼60%) (Figure 28 (C)) and the levels of LAT1 mRNA in MCF-7 

(by ∼50%) (Figure 28 (B)) or MDA-MB-231 (by ∼40%) (Figure 28 (D)) compared with 

controls. These data indicate that endogenous AHR activity regulates LAT1 expression in MCF-7 

and MDA-MB-231 cells. 

Since LAT1 is known to promote cancer cell proliferation by stimulating the amino acid 

uptake [233], we sought to determine if AHR expression and its regulation of LAT1 in MCF-7  
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Figure 28. Endogenous regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 cells. (A–
D), MCF-7 (A and B) or MDA-MB-231 (C and D) cells were transfected with control (cRNAi) 
or AHR (AHRi) siRNA for 72 or 48 h, respectively. (A and C) Total cellular protein was then 
isolated and subjected to Western blot analysis. Blots were then probed with the indicated 
antibodies. Relative levels of AHR or LAT1 protein was expressed as a ratio of AHR/GAPDH or 
LAT1/GAPDH, respectively. * P < 0.05; **P > 0.01. (B and D) RTqPCR analyses of LAT1 
mRNA levels in MCF-7 (B) or MDA-MB-231 (D) cells transfected with cRNAi or AHRi. 
GAPDH mRNA levels were used to normalize samples. * P < 0.05. (A–D) Data shown are the 
mean ± S.E. of three independent experiments. 
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Figure 29. AHR and LAT1 promote MCF-7 and MDA-MB-231 proliferation. (A and B), 
MCF-7 (A) or MDA-MB-231 (B) cells were transfected with cRNAi, LAT1i or AHRi for 3 days, 
followed by analysis of proliferation (please see methods for details). Significant decreases in 
proliferation by LAT1i or AHRi are indicated by * P < 0.05, or **P < 0.01. Data shown are the 
mean ± S.E. of nine replicates. 
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and MDA-MB-231 are important for proliferation. To this end, MCF-7 and MDA-MD-231 cells 

were transfected with cRNAi, AHRi or LAT1-targeting siRNA (LAT1i). After three days, 

significant reductions in proliferation was observed in MCF-7 (Figure 29 (A)) and MDA-MB-

231 (Figure 29 (B)) cells expressing LAT1i or AHRi compared with those transfected with 

cRNAi. These findings suggest that AHR regulation of LAT1 and LAT1 expression are important 

for the proliferation of MCF-7 and MDA-MB-231 cells. 
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7.4. DISCUSSION 

The findings of this report provide new insight into extrinsic and intrinsic regulation of 

LAT1 by AHR. Reducing AHR with AHRi suppressed extrinsic regulation of LAT1 by TCDD in 

MCF-7 cells (Figures 24 and 25) and intrinsic regulation of LAT1 in MCF-7 and MDA-MB-231 

cells (Figure 28). These findings indicate that AHR regulates LAT1 expression. ChIP-qPCR 

results indicate that extrinsic regulation of LAT1 by TCDD is mediated via the AHR binding site 

in the LAT1 gene (Figure 27). Indeed, the binding of AHR/ARNT/p300 and the acetylation of 

histone H3 at the AHR site in the LAT1 gene was increased by TCDD (Figure 27). Consistent 

with reports showing that AHR promotes MCF-7 and MDA-MB-231 cancer processes [109, 

114], our proliferation assays indicate that reducing AHR suppressed their proliferation (Figure 

29). 

Prior reports have provided important insights into amino acid uptake by other 

transporters in MCF-7 and MDA-MB-231 cells. Karunakaran et al. demonstrated that SLC6A14 

(also known as ATBo+) is a Na+ dependent, estrogen-induced transporter that mediates the 

uptake of all essential amino acids, including leucine, in MCF-7 cells [336]. The SLC6A14 

inhibitor α-methyl-dl-tryptophan stimulated apoptosis of MCF-7, but not MDA-MB-231 cells, 

which was attributed to selective expression of SLC6A14 in MCF-7, but not MDA-MB-231 cells 

[336]. Shennan et al. established that MCF-7, but not MDA-MB-231 cells express LAT2, which 

is an isoform of LAT1 that also mediates leucine uptake [337]. Our observation that MCF-7 cells 

exhibit high basal leucine uptake activity in the absence of TCDD can be explained by the 

transporter activity of SLC6A14 and LAT2 as well as basal LAT1 activity (Figure 26). Since 

TCDD induction of SLC6A14 and LAT2 mRNA was not observed in our RNA-Seq data, we 
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conclude that the increase in leucine uptake in the presence of TCDD in MCF-7 cells is mediated 

via increased expression of LAT1.  

CYP1A1 and CYP1B1 harbor upstream AHR-REs within 1 kb of their transcription start 

sites [330, 338, 339]. Reported TCDD-ChIP-seq data indicated that the LAT1 gene lacks 

promoter AHR-REs [277], but its expression is regulated by an AHR binding site located in 

intron 2 (Figure 27), which is 29 kb from the LAT1 promoter. Although long distance regulation 

of gene promoters by AHR-REs is relatively novel for TCDD, it is not uncommon for gene 

promoters to be regulated by distal enhancers [340]. 

AHR stimulation of transcription may rely on endogenous ligands. D’Amato et al. 

demonstrated that MDA-MB-231 cells synthesize kynurenine, which is a tryptophan metabolite 

and a known endogenous AHR ligand [109]. Production of kynurenine by MDA-MB-231 cells is 

mediated by tryptophan 2,3-dioxygenase (TDO2), which is the first and rate-limiting enzyme in 

the kynurenine synthesis pathway [109]. Thus, the observed AHR activity that is required for 

LAT1 expression in MDA-MB-231 cells could be attributed to kynurenine interacting with AHR. 

However, endogenous AHR activity could also reflect its interaction with the other tryptophan 

metabolites that also function as AHR agonists such as kynurenic acid or xanthurenic acid [95]. 

Regulation of LAT1 by unliganded AHR is also a possibility, considering that AHR can be 

regulated by cyclic AMP [341, 342]. 

Previous reports have provided important evidence that breast cancer progression may 

require LAT1. For instance, LAT1 expression is upregulated in human breast tumors compared 

with normal breast tissue [332]. Shennan et al. demonstrated that 2-aminobicyclo-(2,2,1)-

heptane-2-carboxylic acid (BCH), which inhibits L type transporters, suppressed the proliferation 

of MCF-7, MDA-MB-231 and ZR-75-1 BCCs [117]. Our findings now establish that specifically 
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knocking down the expression of LAT1 with siRNA inhibits proliferation of MCF-7 and MDA-

MB-231 cells (Figure 29). 

In addition to breast cancer cells, normal cells that require high levels of amino acid 

uptake for their proliferation and differentiation have been reported to express LAT1 and AHR. 

In this regard, leucine uptake by activated T cells is mediated through LAT1 and LAT1 null T 

cells exhibit defects in proliferation and effector activity [343-345]. As noted in the introduction, 

AHR promotes the differentiation of Tregs and Th17 cells in response to TCDD or FICZ, 

respectively [73, 74, 77]. Given these prior reports, it is possible that in addition to 

carcinogenesis, the induction of LAT1 by AHR may promote the proliferation and differentiation 

of Tregs or Th17 cells depending on which AHR ligand is present. 
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CHAPTER VIII: DISCUSSION AND FUTURE DIRECTIONS 

8.1. DISCUSSION. 

 At the end of my research project, I still find AHR signaling to be as fascinating now as it 

was to me when I first began studying it four years ago. This is due in part to the vastness of 

AHR biology, which seems to reveal itself slowly and veer into new directions with each decade. 

In toxicology, AHR is without a doubt the most highly studied receptor, given the breadth of 

compounds which work through AHR to exert their effects. While the AHR has been extensively 

studied in response to environmental pollutants/toxicants, there is still much to be learned about 

endogenous AHR cellular signaling. To date, over 400 exogenous ligands for the AHR have been 

found [346]. AHR is an evolutionarily conserved protein [347], and over the past decade great 

strides have been made in understanding endogenous AHR function as well as the 

characterization of endogenous AHR ligands [44, 59, 75, 95, 107-109]. While AHR research has 

shifted from toxicology-based to a more cancer-based emphasis, it is clear there is still much to 

learn regarding AHR functioning in both normal and cancerous tissues. 

The objectives for our research were simple, yet with a broad spectrum: to reveal new 

tumor promoting roles for the AHR in breast cancer. We have done that, and continue to 

approach this objective from many new angles, as I will detail in the next sections. First, we 

revealed that adipokine-induced increases in MCF-7 BCC proliferation required AHR, 

considering that its knockdown suppressed MCF-7 proliferation in response to adipo-CM or 

IGF-2 compared with controls (Figure 16). In addition to characterizing new roles for AHR, our 

work also identified that IGF-2 is an important adipocyte-secreted factor that promotes MCF-7 

and T-47D proliferation. Our finding that IGF-2-mediated cancer effects are mediated in part 

through AHR suggests that combining AHR antagonists with IGF1-R blocking antibodies [348] 
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may increase the efficiency of IGF1-R blocking antibody therapy in women with breast cancer. 

This combination could be particularly effective in obese women with breast cancer, considering 

that many obese women have hyperinsulinemia and the fact that adipose tissue secretes IGF-1 

and IGF-2 [111-113]. Measuring gene expression with cancer profiling gene arrays revealed that 

TCDD, which potentially suppresses endogenous AHR signaling by downregulating AHR 

protein, induced decreases in the expression of CCND1 in IGF-2-treated MCF-7 BCCs (Table 

7). This novel result opened up a new line of study, investigating whether IGF-2 upregulation of 

CCND1 required endogenous AHR. We addressed this question in my second publication as 

detailed in the next paragraph.  

In our next study, we extended upon our first report showing that AHR responds to and 

mediates the effects of adipokines/IGF-2 and asked whether the adipokine/IGF target CCND1 

was in fact a primary AHR gene target. We discovered that IGF-2 signaling increased both AHR 

mRNA and AHR protein levels, as well as the recruitment of AHR to AP-1 and TCF response 

elements within the CCND1 promoter (Figures 14 and 15). This recruitment was undoubtedly 

very important, as silencing AHR with AHR-targeting siRNA significantly blunted IGF-2-

stimulated increases in CCND1 mRNA and protein when compared to control cells (Figure 16). 

Based on the findings from Barhoover et al. [105], we hypothesized that increases in AHR would 

promote its interaction with the CCND1 and CDK4 complex, and that AHR/CCND1/CDK4 

complexes would in turn suppress Rb activity by phosphorylating Rb, which would promote cell 

cycle advancement (Figure 17 (B)). The observation that AHR-null cells are less responsive to 

the proliferative effects of IGF-2 supports the requirement of AHR for the proper 

phosphorylation of Rb in BCCs (Figure 17 (A)) [105]. Our findings in this study complemented 

those found by Barhoover et al [105], leading to two unique but ultimately linked mechanisms by 
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which endogenous AHR functions to promote cell cycle progression in response to growth 

factors like IGF-2.   

Considering our finding that reducing AHR decreased the expression of CCND1 (Figure 

16), we hypothesized that AHR regulates endogenous gene expression in MCF-7 BCCs. To 

address this hypothesis, we performed RNA-seq analysis to establish genome-wide changes in 

gene expression in response to AHR knockdown in MCF-7 BCCs. RNA-seq revealed that AHR 

knockdown altered the expression of over 600 genes in MCF-7 cells. Ingenuity Pathway 

Analysis revealed that AHR-regulated genes were significantly associated with toxicant and 

tumor necrosis factor (TNF) pathways (Table 10). We then treated MCF-7 BCCs with TNF and 

established that TNF-stimulated increases in MnSOD mRNA and protein required AHR and 

RELA, and that this coincided with AHR and RELA recruitment to a transcriptionally active NF-

κB response element in the SOD2 gene (Figure 22). AHR-null cells were more sensitive to TNF-

induced cytotoxicity than controls (Figure 22 (D)). Considering that MnSOD protects cancer 

cells from TNF-induced cell death by reducing ROS production [228, 314], we hypothesize that 

the reduced levels of MnSOD in AHR-null MCF-7 BCCs increases ROS levels in response to 

TNF, causing cell death. Our finding extends prior reports showing that AHR and NF-KB 

interact to modulate signaling induced by cytokines. For instance, IL-1 has been shown to 

promote the binding of AHR and RELA to the IL-6 gene promoter [309], and this stimulates the 

expression of IL-6 [309]. AHR also interacts with RELB to regulate IL-8 expression [311, 312]. 

Collectively, our work established that IGF-2 and TNF, which are major cancer pathways, 

regulate gene expression through AHR in MCF-7 BCCs. 

To further characterize AHR regulation of gene expression, we conducted RNA-seq to 

identify TCDD/AHR regulated genes in MCF-7 BCCs. To this end, MCF-7 BCCs were treated 
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with either DMSO vehicle or 10 nM TCDD for six hr. We identified that TCDD regulated the 

expression of 118 genes (Figure 23). TCDD-regulated mRNAs were overlapped with a reported 

TCDD-ChIP-seq dataset to identify primary TCDD/AHR gene targets [277]. This analysis 

identified that SLC7A5 was a primary TCDD/AHR target gene. Considering that SLC7A5 is 

reportedly overexpressed in breast cancer compared with normal tissue [233], we investigated its 

regulation by TCDD/AHR in further detail. ChIP analysis revealed that TCDD induced 

recruitment of a transcriptional complex to intron 2 of the LAT1 gene and that this complex 

consisted of AHR, ARNT, and p300, and finally that their binding correlated with increases in 

histone H3 acetylation (Figure 27). Further characterization of AHR regulation of LAT1 

expression established that endogenous AHR activity promoted the expression of LAT1 in MCF-

7 and MDA-MB-231 BCCs (Figure 28). We postulate that endogenous AHR ligands produced 

by MCF-7 and MDA-MB-231 BCCs activate AHR and that this, in turn, stimulates LAT1 

expression. Potential endogenous AHR ligands that could be involved in the regulation of LAT1 

include the breakdown products of tryptophan metabolism: kynurenine, kynurenic acid, and 

xanthurenic acid [75, 95]. Given prior reports from our lab and others suggesting that AHR is 

crucial for BCC proliferation [107, 108, 111, 114], it was expected that reductions in AHR or 

LAT1 would reduce the proliferation of MCF-7 or MDA-MB-231 BCCs. Supporting this, 

siRNA-mediated knockdown of AHR or LAT1 confirmed that both genes are required for the 

proliferation of MCF-7 and MDA-MB-231 BCCs (Figure 29). Even though MCF-7 also express 

LAT2 and SLC6A14 [336, 337], it is important to note that these two leucine transporters cannot 

compensate for the loss of LAT1, as knockdown of LAT1 reduced MCF-7 proliferation (Figure 

29). Our work supports the findings of prior reports showing that the LAT system inhibitor, 2-

amino-bicyclo[2.2.1]heptane-2-carboxylic acid (BCH), reduced the proliferation of MCF-7, ZR-
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75-1 and MDA-MB-231 BCC proliferation [117], providing further evidence for the importance 

of leucine transport in breast cancer. 

In short, we have uncovered several novel roles for AHR in breast cancer. AHR is 

required for the proliferative effects of adipokines on breast tumor cells (Chapter IV). IGF-2, a 

dominant adipokine, recruits AHR to the CCND1 promoter to increase CCND1 mRNA and 

protein, and silencing AHR blocked this induction (Chapter V). Finally, RNA sequencing studies 

revealed AHR is needed for maximal induction of SOD2 by TNF in MCF-7 BCCs (Chapter VI), 

and that AHR regulates the expression of the important amino acid transporter LAT1 in MCF-7 

and MDA-MB-231 BCCs (Chapter VII). 

8.2. PRELIMINARY DATA. 

 In addition to investigating the mechanism how TCDD/AHR-induced increases in LAT1 

expression, I also have addressed if estrogen (E2) and adipo-CM also regulate LAT1 expression. 

In order to reduce confounding estrogenic effects from serum, or phenol-red, experiments were 

conducted in serum-free, phenol-red free cell culture medium. Stimulating MCF-7 and T-47D 

BCCs with estrogen increased LAT1 mRNA and protein (Figure 30 A and B). We questioned 

whether E2 induced ERα binding to the AHR binding site in the LAT1 gene. ChIP analysis 

revealed that E2 increased the binding of ERα to the AHR binding site in intron 2 of the LAT1 

promoter (Figure 30 C). Given our lab’s focus on obesity-driven increases in breast cancer, we 

questioned whether adipo-CM could exert the same effect on LAT1. MCF-7 cells were treated 

with either unconditioned media (con-CM), fibroblast-conditioned media (fibro-CM), or 

adipocyte-conditioned media (adipo-CM) which was devoid of FBS and phenol-red for 24 h. 

Adipo-CM increased the levels of LAT1 protein relative to other treatment conditions. As 

described in our report [111], adipo-CM contains a cocktail of adipokines including leptin and  
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Figure 30. Estrogen treatment increases LAT1 expression and the binding of ERα to the 
AHR binding site in the LAT1 gene in MCF-7 cells. (A & B) MCF-7 cells maintained in E2-
free conditions for 48 h were then treated with vehicle or 10 nM estradiol (E2) for 24 h. LAT1 
mRNA (A) and protein (B) levels were then determined. (C) MCF-7 cells were maintained in 
E2-free conditions for 48 h before treatment with vehicle or E2 for 1 h. ChIP was performed with 
a non-specific IgG or an ERα specific antibody. Recruitment expressed as % input as determined 
through qPCR. “*” denotes statistical significance reached (P < 0.05) as determined by Student’s 
T-test (A & B) or one-way ANOVA (C).  
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Figure 31. Adipo-CM treatment increases LAT1 expression via ERα and AHR recruitment 
to AHR response elements in the LAT1 promoter in MCF-7 cells. (A) MCF-7 cells were 
maintained in E2-free conditions for 48 h prior to treatment with con-CM, fibro-CM, or adipo-
CM for 24 h. Total protein was extracted and LAT1 protein levels were determined by western 
blot. (B) MCF-7 cells were maintained in E2-free conditions for 48 h before treatment with con-
CM, fibro-CM, or adipo-CM for 1 h. ChIP assays were conducted with anti-ERα or anti-AHR 
antibodies. Recruitment expressed as % input as determined through qPCR.  
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Figure 32. Proposed mechanism by which E2 and adipo-CM increase LAT1 expression. (A) 
E2, leptin and adiponectin upon binding their cognate receptors induce signaling that increases 
ERK activation. (B) Upon its activation, ERK phosphorylates and activates ERα, facilitating 
interactions between AHR and SRC-3 and their recruitment to an AHR binding site in the LAT1 
gene. (C) Increased LAT1 transcription drives the accumulation of LAT1 and the transport of 
leucine. (D) Leucine activates mTOR signaling and increases proliferation. Adipo-CM = 
adipocyte conditioned media, E2 = 17-β-Estradiol, ERK = extracellular regulated kinase, AHR = 
aryl hydrocarbon receptor, ERα = estrogen receptor alpha, SRC-3 = steroid receptor coactivator 
3, LAT1 = l-type amino acid transporter 1, Gln = glutamine, Leu = leucine, mTORC1 = 
mammalian target of rapamycin complex 1. 
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adiponectin. These results suggest the high levels of leptin and low levels of adiponectin secreted 

by adipocytes in obesity could promote the expression of LAT1 in breast tumors in obese 

patients (Figure 31 A). ChIP analysis was conducted to investigate if adipo-CM promoted the 

binding of AHR and ERα to the AHR binding site in the LAT1 gene, and the findings revealed 

increased binding of both transcription factors (Figure 31 B). Collectively, these data suggest 

that adipocyte-secreted factors in combination with environmental pollutants like TCDD may 

promote the expression of LAT1 in BCCs via AHR and ERα. Such regulation would be expected 

to increase BCC proliferation, considering that increases in LAT1 would promote the activity of 

the mTORC1 pathway (Figure 32). The following sections will outline the rationale and 

proposed experiments to study this new finding. 

8.3. RATIONALE FOR NEW EXPERIMENTS. 

 As shown in our model shown in Figure 32, we hypothesize that estrogen and adipo-CM 

will increase the expression of LAT1 by stimulating the binding of AHR, ERα and SRC-3 to the 

AHR binding site of the LAT1 gene. The rational for this hypothesis stems from prior reports 

showing that obese women have higher levels of estrogen due to excess adipose tissue than lean 

women [161]. Upon estrogen binding, ERα binds to and recruits the transcriptional co-activator 

SRC-3 to ER target genes that stimulate cancer, including CCND1 and cMYC [349, 350]. The 

binding of ERα to SRC-3 is highly relevant to breast cancer, considering that transgenic 

overexpression of SRC-3 is sufficient to induce breast cancer in mice [351]. In human breast 

cancer, the SRC-3 gene is often amplified, and one report noted SRC-3 expression was elevated 

in over 60% of breast cancer cases [352]. As mentioned, SRC-3 is an ERα transcriptional co-

activator and amplification of SRC-3 is typically seen in ER-expressing breast tumors. In this 

regard, one study noted SRC-3 was critical for MCF-7 BCC growth in vitro and in vivo [353]. 
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High SRC-3 expression is linked to chemotherapeutic resistance to tamoxifen in breast cancer 

patients [354]. SLC7A5 (LAT1) expression has also been linked to tamoxifen resistance [237, 

238]. Phosphorylation of both SRC-3 and ERα by ERK increase their transcriptional activity 

[355, 356], and E2 and certain adipokines have been shown to increase ERK signaling [357-

359]. Our preliminary data demonstrates that E2 and adipo-CM increase the expression of LAT1, 

and we provide the first evidence that this could be mediated through ERα and AHR recruitment 

to AHR-RE in intron 2 of the LAT1 gene (Figures 28 and 29). Given the reports linking both 

LAT1 and SRC-3 to tamoxifen resistance, we hypothesize that E2 and adipo-CM stimulate 

increases in LAT1 expression through formation of a transcriptional complex including ERα, 

AHR, and SRC-3 at AHR binding site in the LAT1 gene leading to upregulation of LAT1 

expression in breast tumors and activation of mTORC1 (Figure 32). The following sections will 

detail future experiments that will be done to test our hypothesis. 

8.4. ERα, AHR, AND SRC-3 KNOCKDOWN TO TEST THEIR ROLE IN THE 

REGULATION OF LAT1  

 To investigate whether AHR, ERα, and SRC-3 are important for stimulus-induced LAT1 

expression, non-malignant MCF-10A cells, ERα positive (MCF-7, T-47D, or ZR-75-1) or ERα 

negative (MDA-MB-231) BCCs would be transfected with non-targeting (control), AHR, SRC-

3, ERα targeting siRNA’s using methods that we have published [44, 114], and detailed in 

Chapter III. After 24 h, siRNA’s would be removed and cells will be serum-starved overnight in 

phenol red-free DMEM devoid of FBS prior to treatment with vehicle, E2 (10 nM), con-CM, 

fibro-CM, or adipo-CM for time course studies. Western blot and real time qPCR analysis of 

ERα, AHR, and SRC-3 would be conducted to verify their knockdown by their respective 

siRNA’s compared with non-targeting siRNA. Protein and mRNA levels of LAT1 would be 
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measured by western blot and real time qPCR, respectively, to investigate our hypothesis that its 

regulation is dependent on ERα, AHR, and SRC-3. I expect ERα, AHR, and SRC-3 knockdown 

will compromise induction of LAT1 expression upon treatment with E2 or adipo-CM, given our 

preliminary data showing ERα and AHR recruitment to the AHR binding site in the LAT1 gene 

(Figures 30 & 31), and the extensive literature showing SRC-3 to be an important ER-co-

activator [349, 362-364]. 

8.5. CHIP ANALYSIS TO EVALUATE THE BINDING OF ERα, AHR, AND SRC-3 TO 

THE AHR SITE IN THE LAT1 GENE. 

 The binding of ERα, AHR and SRC-3 to the AHR binding site in the LAT1 gene would 

need to be investigated using ChIP-qPCR assays, as described in Chapter III. Non-cancerous 

MCF-10A cells, ERα positive BCCs (MCF-7, T-47D or ZR-75-1) or ERα negative BCCs 

(MDA-MB-231) would be seeded into 60mm plates for 24 h prior to overnight serum-starvation 

in phenol-red free DMEM devoid of FBS then stimulated with vehicle, E2 (10 nM), fibro-CM, or 

adipo-CM for time course studies. ChIP-qPCR analysis using methods detailed in our recent 

publications [44, 114] would then be performed to assess the binding of ERα, AHR, and SRC-3 

at the AHR binding site in intron 2 of the LAT1 gene. The acetylation of histone H3 at lysine 9 

and lysine 14 are markers of active transcription, and these histone H3 modifications in intron 2 

of the LAT1 gene would also be investigated by ChIP-qPCR. Non-specific IgG would be used to 

control for antibody binding specificity, as we have used in our prior reports [44, 114]. The 

comparative CT method will be used to calculate transcription factor binding, with input ChIP 

DNA used to normalize samples as detailed in our prior reports [44, 114] and Chapter III. I 

expect these experiments would reveal ERα, AHR and SRC-3 form an active transcriptional 

complex at the AHR binding site of LAT1 to regulate its expression. 
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8.6. ANALYSIS OF TRANSCRIPTIONAL ACTIVITY OF AHR BINDING SITE IN 

INTRON 2 OF LAT1 GENE. 

These experiments would establish the transcriptional activity of the AHR-REs in intron 

2 of the LAT1 gene in response to E2 or adipo-CM stimulus, a very important question to 

address. The region of the LAT1 gene that harbors intron 2 and accompanying AHR-REs would 

be subcloned into promoter reporter luciferase constructs following methods we have previously 

published [272]. Non-cancerous MCF-10A cells, ERα positive BCCs (MCF-7, T-47D, ZR-75-1) 

or ERα negative BCCs (MDA-MB-231) would be seeded into 96 well plates at a density of 

5,000 cells per well for 24 h prior to transfection with 100 ng of an “empty” luciferase reporter 

vector (Dual Light Reporter Gene Assay System; Life Technologies) or the luciferase reporter 

vector which will express the 1 KB region containing intron 2 of the LAT1 gene. After 24 h, cells 

would be treated with vehicle, E2 (10 nM), con-CM, fibro-CM, or adipo-CM for time course 

studies and reporter activity would be measured using a luminometer. To verify that increases in 

intron 2 of the LAT1 gene is attributed to AHR-REs, these specific sites in intron 2 of the LAT1 

gene could be mutated using standard procedures (QuikChange II XL Site-Directed Mutagenesis 

Kits, Agilent Technologies). Given that we found there are three putative AHR-REs in the LAT1 

gene, these AHR-REs may differ in activity. To address this, several different LAT1 intron 2 

constructs could be made that either contain a mutation in one of the AHR-REs, two of the AHR-

REs, or a construct in which all three of AHR-REs have been mutated to assess activity of the 

different sites. I expect that AHR is able to bind to all of these regions, and therefore, constructs 

containing the three mutated AHR-REs would inhibit transcriptional activity at the AHR binding 

site most effectively. 
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8.7. SILENCING AHR, ERα, OR SRC-3 WITH TAMOXIFEN TREATMENT: 

INCREASED TUMOR CELL DEATH? 

 Given reports that have linked LAT-1 and SRC-3 expression to tamoxifen resistance [237, 

238, 354], and our recent report characterizing AHR regulation of LAT-1 [44], we would assay 

whether silencing ERα, AHR, or SRC-3 sensitizes ERα-expressing tumor cells to tamoxifen 

treatment. To this end, we would reverse transfect 200,000 ERα positive (MCF-7, T-47D, or ZR-

75-1) BCCs in the presence of con-siRNA, ERα-siRNA, AHR-siRNA, or SRC-3-siRNA for 36 h 

prior to treatment with tamoxifen (0.001, 0.01, 0.1, or 1 µM). Lower concentrations which have 

been shown to have minimal effect or which only induce cell-cycle arrest will be used, instead of 

higher concentrations (above 5 µM) which have been shown to induce apoptosis in MCF-7 

BCCs [360]. Cell viability would then be determined utilizing the Aqueous One Solution Cell 

Proliferation Assay (Promega, Madison, WI), which we used to assess cell number in our recent 

report [44], as well as manual cell counting using the trypan blue exclusion method to identify 

dead cells [240]. If viability is reduced, parallel western blot experiments would be performed 

looking at hallmarks of apoptosis, including cleavage of caspases as well as cleavage of poly 

ADP ribose polymerase (PARP) [361], upon treatment. Considering that obesity induces breast 

tumors in post-menopausal women [112, 113], and tamoxifen is especially indicated for use in 

ERα-expressing tumors in post-menopausal women [360], experiments silencing AHR, ERα, or 

SRC-3 to see if loss of these important transcriptional regulators confers sensitivity to tamoxifen 

treatment will be especially informative.  

8.8. ANTICIPATED AND ALTERNATIVE OUTCOMES FOR PROPOSED 

EXPERIMENTS. 
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 Given our preliminary data showing E2 and adipo-CM can stimulate a marked increase in 

LAT1 expression in MCF-7 BCCs (Figure 30 A and B, Figure 31 A), as well as increased 

recruitment of ERα and AHR to AHR-RE in intron 2 of LAT1 in response to E2 or adipo-CM 

stimulus (Figure 30 C, Figure 31 B), I expect that knockdown of ERα and AHR will abrogate E2 

and adipo-CM regulation of LAT1 expression. I also expect SRC-3 knockdown to compromise 

stimulus-driven increases in LAT1, due to the extensive literature showing SRC-3 is a 

transcriptional co-activator of ERα signaling [349, 362-364]. Our prior report has characterized 

the AHR binding site in intron 2 of LAT1 to be important for TCDD-stimulated increases in 

LAT1 [44]. Experiments looking at transcriptional activity of intron 2 of LAT1 upon stimulus 

would provide additional insights as to the role of this 1 KB fragment in E2 or adipo-CM-

stimulated increases in LAT1. Site-directed mutagenesis experiments would prove important in 

determining if one, two, or all three of the putative AHR binding sites in this fragment are 

important for conferring transcriptional activity upon stimulus. Finally, I predict silencing AHR, 

ERα, or SRC-3 will allow tamoxifen to induce apoptosis in ER-expressing BCCs at lower 

concentrations due to reductions in LAT1 expression, as LAT1 levels have been linked to 

tamoxifen resistance in breast tumors [237, 238].  

 Alternative outcomes exist for these experiments. An important alternative outcome is 

that silencing SRC-3 may prove insignificant to blunt E2 and adipo-CM-stimulated induction of 

LAT1. If this is the case, looking at other ERα co-activators which ERα-signaling has been 

shown to utilize to regulate gene expression, including other members of the p160 family like 

SRC-1 [365], would provide additional insight. SRC-1 has been shown to interact both with ERα 

and AHR [37, 365], where SRC-3 has only been shown to interact with ERα. The proposed ERα-

AHR crosstalk mechanism for regulating LAT1 in response to E2 and adipo-CM may recruit 
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SRC-1 to AHR-RE to regulate LAT1 as part of the transcriptional complex in place of SRC-3. 

Similarly, p300 is a known ERα and AHR co-activator [366]. We have already shown p300 

recruitment to the AHR binding site upon TCDD stimulus [44]. Thus, p300 binding at the AHR 

site in response to E2 and adipo-CM stimulus may be a critical player in the observed increases 

in LAT1 we have seen (Figures 30 & 31). Once the co-activator(s) have been determined, the 

alternative co-activator(s) could then be silenced using targeting siRNAs to reduce their 

expression and determine first, whether LAT1 expression is compromised upon their silencing, 

and second, whether sensitivity to tamoxifen occurs with their loss.  

 I do not anticipate any pitfalls in completing these experiments, as we have used all of the 

proposed methods (western blotting, real time qPCR, ChIP, etc) numerous times in previously 

published reports to generate data [44, 59, 111, 114, 272]. Overall, I expect these future 

experiments to reveal that E2 and mitogenic factors present in adipo-CM (i.e. leptin) increase 

LAT1 expression through recruitment of ERα, AHR, and SRC-3 to the characterized AHR 

binding site in intron 2 of the LAT1 gene. To build on our adipo-CM findings, determining which 

factor or cocktail of factors critical for the observed increases in LAT1 upon adipo-CM treatment 

could then be assessed. I feel that targeting members of this transcriptional complex, such as the 

use of AHR antagonists, as part of a combinatorial treatment regimen could be beneficial in 

treatment of breast cancer in obese patients, as well as sensitizing ERα-expressing breast tumors 

to tamoxifen treatment.    

8.9. CONCLUSION 

My thesis research over the past four years has led to a better understanding of the 

complex roles that AHR plays in breast cancer. By uncovering some novel tumor promoting 

roles for AHR, it begs the question whether more emphasis should be given to AHR modulating 
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drugs for use in cancer patients. While targeting the IGF-1 and PI3K/AKT/mTOR pathways have 

received great attention over the years, recent strides in AHR research suggests that targeting 

AHR warrants continued investigation. In this regard, AHR and its roles in tumor initiation, 

invasion, and metastasis are being explored in many cancer types in addition to breast cancer, 

including prostatic, ovarian, colorectal, melanoma, and gliomas. Targeting AHR as a 

chemotherapeutic could, therefore, have broad-spectrum effects on the treatment outcome of a 

variety of cancers in future patients. 
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APPENDIX B: ABBREVIATIONS 

3-MC…3-methylcholanthrene 

4EBP…4E binding protein 

5-LOX… arachidonate 5-lipoxygenase 

5,6-DiHETEs…5,6-dihydroxyeicosatetraenoic acid isomers 

ABCG2…ATP-Binding Cassette, Sub-Family G (WHITE), Member 2 (Junior Blood Group) 

ACPR30…adiponectin 

ADG…AHR dependent gene 

Adipo-CM…adipocyte conditioned media 

AdipoR1…adiponectin receptor 1 

AdipoR2…adiponectin receptor 2 

ADORA…adenosine receptor 

AHH…aryl hydrocarbon hydroxylase 

AHR…aryl hydrocarbon receptor 

AHR -/-…AHR-null mice 

AHRi… short inferfering RNA targeting the AHR gene 

AHRR…aryl hydrocarbon receptor repressor 

AHR-RE… aryl hydrocarbon receptor response element 
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AHR-siRNA…short inferfering RNA targeting the AHR gene 

AIP…AHR interacting protein 

AKT…protein kinase B 

ALDH1A3…Aldehyde Dehydrogenase 1 Family, Member A3 

ALDH3A1… Aldehyde Dehydrogenase 3 Family, Member A1 

ALOX5… Arachidonate 5-Lipoxygenase 

AMPK…adenosine monophosphate dependent kinase 

ANOVA…analysis of variance 

AP-1…activator protein-1 

AP-1-RE… activator protein-1 response element 

AR…androgen receptor 

ARE…androgen response element 

ARNT…aryl hydrocarbon nuclear translocator 

ATP… adenosine triphosphate 

B(a)P… benzo(α)pyrene 

BCC…breast cancer cell 

BCH…2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid 

bFGF…basic fibroblast growth factor 
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bHLH…basic helix loop helix 

BME…β-mercaptoethanol 

BRG-1…brahma related gene-1 

bZIP… Basic Leucine Zipper Domain 

CBP…CREB binding protein 

CCND1…cyclin D1 

CD98… 4F2 cell-surface antigen heavy chain 

CDK…cyclin dependent kinase 

CDK4… cyclin dependent kinase 4 

CDKN1A… Cyclin-Dependent Kinase Inhibitor 1A 

ChIP…chromatin immunoprecipitation 

ChIP-Seq… chromatin immunoprecipitation sequencing 

Co-IP…co-immunoprecipitation 

Con-CM…unconditioned/control media 

Con-siRNA…non-specific control short interfering RNA 

CREB3L… cAMP-responsive element-binding protein 3-like protein 

cRNAi… non-specific control short interfering RNA  

CSC…cancer stem cell 
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CSP…chondroitin sulfate proteoglycan 

CUL4B…cullin 4B 

CYP1A1…cytochrome P450 1A1 

CYP1B1…cytochrome P450 1B1 

DDB1…damaged DNA binding protein-1 

DIM…3,3-diidolylmethane 

DMBA…7,12-dimethylbenz[a]anthracene 

DMEM… Dulbecco's Modified Eagle Medium 

DMSO…dimethyl sulphoxide 

DRE… dioxin response element 

E2… 17β-estradiol 

E2F4…E2F transcription factor 4 

EDTA… ethylenediaminetetraacetic acid 

EGF…epidermal growth factor 

eIF…eukaryotic initiation factor 

EMT…epithelial to mesenchymal transition 

ER…estrogen receptor 

ERRBB2… Erb-B2 Receptor Tyrosine Kinase 2 
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ERK…extracellular regulated kinase 

FBS…fetal bovine serum 

FDR…false discovery rate 

Fibro-CM…fibroblast conditioned media 

FICZ…6-formylindolo [3,2-b] carbazole 

FSH…follicle stimulating hormone 

GAPDH… glyceraldehyde 3-phosphate dehydrogenase 

GEO…gene expression omnibus 

GPX…glutathione peroxidase 

GR…glutathione reductase 

GSH…reduced glutathione 

GSSG…oxidized glutathione 

GST…glutathione-S-transferase 

H2O2…hydrogen peroxide 

HAH…halogenated aromatic hydrocarbon 

Hepa-1…mouse derived liver cell line 

HER2…epidermal growth factor receptor 2 

HMGCS2…3-Hydroxy-3-Methylglutaryl-CoA Synthase 2 (Mitochondrial) 
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HRP…horseradish peroxidase 

HSP90…heat shock protein-90 

I3C…indole-3-carbinol 

IBMX… 3-isobutyl-1-methylxanthine 

ICZ…indolo [3,2-b] carbazole 

IGF-1…insulin-like growth factor 1 

IGF1-R…insulin-like growth factor 1 receptor 

IGF1-R/IR…hybrid IGF/IR receptor 

IGF-2…insulin-like growth factor 2 

IGF-2R…insulin-like growth factor 2 receptor 

IgG…immunoglobulin G 

IL-1…interleukin 1 

IL-1β…interleukin 1-beta 

IL-6…interleukin 6 

IL-8…interleukin 8 

INBRE… IDeA Network of Biomedical Research Excellence 

IPA…ingenuity pathway analysis 

IR…insulin receptor 
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IR-A…type A insulin receptor 

JAK…janus kinase 

JUND…Jun D proto-oncogene 

Kyn…kynurenine 

LAT1…L-type amino acid transporter-1 

LEPR…leptin receptor 

LEPR-b…dominant isoform of leptin receptor 

LH…luteinizing hormone 

LOX1…lipoxygenase 1 

LPS…lipopolysaccharide 

MAPK…mitogen activated protein kinase 

MCL…mantle cell lymphoma 

MEF…mouse embryonic fibroblast 

MGP… Matrix Gla Protein 

MMP…matrix metalloproteinase 

MnSOD…manganese superoxide dismutase 

MPE…malignant pleural effusion 

MRK… dominant-negative IGF1-R mice 
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mRNA…messenger ribonucleic acid 

mTOR…mammalian target of rapamycin 

MUC1…mucin 1 

MYB… Avian Myeloblastosis Viral Oncogene Homolog 

NANOG…nanog homeobox 

NADPH… nicotinamide adenine dinucleotide phosphate 

NCBI… National Center for Biotechnology Information 

NCOA-1…nuclear receptor co-activator 1 

NF-κB…nuclear factor kappa-light-chain-enhancer of activated B cells 

NF-κB-RE… NF-κB response element 

NRF2… nuclear factor erythroid 2-related factor 

NRP…neuropilin 

O2
.-...superoxide anion radical 

OAS1…2'-5'-Oligoadenylate Synthetase 1 

OCT4…octamer-binding transcription factor 4 

OxLDL…oxidized low-density lipoprotein 

p70S6K…ribosomal S6 kinase 

PAH… polycyclic aromatic hydrocarbon 
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PBS…phosphate buffered saline  

PDFG…platelet derived growth factor 

PGR…progesterone receptor 

PhRMA… the Pharmaceutical Research and Manufacturers of America 

PI3K… phosphatidylinositol-3-kinase 

PKD1L1… Polycystic Kidney Disease 1 Like 1 

PLA2G2… phospholipase A2 group IIA 

PMA… phorbol 12-myristate 13-acetate 

PPP…picropodophyllin 

PVDF… polyvinylidene difluoride 

PYDC1… pyrin domain containing 1 

qPCR…quantitative polymerase chain reaction 

Rb…retinoblastoma protein 

RBX-1… ring box-1 

RELA…p65 subunit of NF-κB 

RELB…p50 subunit of NF-κB 

RNA…ribonucleic acid 

RNA-Seq…RNA sequencing 
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ROS…reactive oxygen species 

SDS…sodium dodeacyl sulfate  

SERPIN3A…serpin 3a 

SERPIN5A…serpin 5a 

siRNA…short-interfering ribonucleic acid 

SLC7A5… solute carrier family 7 (amino acid transporter light chain, L system) member 5 

SNK…Student Newman-Keuls test 

SOD1… superoxide dismutase 1 

SOD2…superoxide dismutase 2 

SOD3… superoxide dismutase 3 

SOX2…SRY (sex determining region Y)-box 2 

SRC…steroid receptor co-activator 

STAT…signal transducer and activator of transcription 

SU5416… [3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indole-2-one] 

SWI/SNF… SWItch/Sucrose Non-Fermentable 

TCDD…2,3,7,8-tetrachlorodibenzo-p-dioxin 

TCF…T-cell factor 

TCF/LEF…T-cell factor/lymphoid enhancing factor 
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TCF-RE…TCF response element 

TDO2…tryptophan dioxygenase 2 

TGFα…transforming growth factor alpha 

Th17…T-helper 17 cells 

TNBC…triple-negative breast bancer 

TNF…tumor necrosis factor α 

TP53…p53 tumor suppressor gene 

Tregs…T regulatory cells 

TRGs…TCDD regulated genes 

TSS…transcriptional start site 

UGTAs… UDP-glucuronosyltransferase genes 

VEGF…vascular endothelial growth factor 

VEGFR…VEGF receptor 

XAP2… hepatitis B virus X-associated protein 2 

XRE…xenobiotic response element 
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