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ABSTRACT 

 A major challenge for effective gene therapy is systemic delivery of viruses carrying 

therapeutic genes into affected tissue. The immunogenic nature of human adenoviruses (Ads) 

limits their use for intratumoral (IT) injection in gene therapy. Ads transfection is further 

hampered by the fluctuating presence of Coxsackie and Adenovirus Receptor (CAR) and 

integrins on the cells’ surface. To circumvent these limitations we developed a novel approach 

wherein Ads are encapsulated inside the shell of lyophilized, lipid-encapsulated, perfluorocarbon 

microbubbles (MBs)/ultrasound (US) contrast agents, which act as delivery vehicles for a site-

specific gene transfer system.  

 We performed infection studies with Ad.GFP (Green Fluorescent Protein), Ad.mda-7 

(melanoma differentiation associated gene 7) and CTV.mda-7 on human DU145 and mouse 

prostate cancer cells as well as observed enhanced GFP expression when Ad.GFP was delivered 

by MBs and US. Our results show that US breaks open the MB/Ads complexes by undergoing 

cavitation at the sonoporated site, which allows Ads to transfer their transgene only to the 

sonoporated region. Cavitation collapse of the MBs creates small shockwaves that increase cell 

permeability by forming temporary micropores on the cell surface bypassing the receptor-

mediated dependence of Ads for transfection. Fetal bovine serum (FBS) containing complement 

did not allow the unprotected Ads to infect the cells; however, MBs complexed with Ad.GFP did 

infect DU145 and TRAMP-C2 cells in a FBS rich media.  

 We studied MB assisted gene delivery of reporter (GFP) and therapeutic genes (p53, Rb, 

Rb2 (p130) and Mda-7/IL-24) into prostate cancer (PC) xenografted in immune-compromised 

athymic mice. The results demonstrated that MBs protect the host from unspecific viral immune 

response thus protecting the viral payload and allowing for intravenous (IV) injection rather than 
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IT injection. Additionally, Ad gene transfer was enhanced at the targeted/sonoporated mice 

tumor xenografts. This research demonstrated mda-7’s efficacy in reducing primary (treated) and 

untreated tumors that simulated the presence of metastasis in athymic mice xenograft models 

bearing human PC cells. Bystander anti-tumor activity of mda-7, a secreted cytokine was noted 

for non-targeted tumors.  

 Earlier in vitro studies on the combination of radiation and gene therapy (Ad.p53, Ad.Rb, 

and Ad.p130) demonstrated an increase in the percentage of cell death for DU145 cells. We also 

studied UTMD (ultrasound targeted microbubble destruction) gene therapy in combination with 

external beam radiation for radiation resistant PC. The results demonstrated an enhanced 

therapeutic benefit of tumor suppressor genes in radiation resistant PC. We also demonstrated an 

increase in the expression of tumor suppressor genes at the tumor site due to MBs and US.  

 These findings highlight the potential therapeutic benefit of this novel image guided gene 

transfer technology alone or in combination with external beam radiation for prostate cancer 

patients with therapy resistant disease. 
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CHAPTER I: PROSTATE CANCER AND TREATMENT STRATEGIES 

Prostate cancer 

 Prostate cancer (PC) is the most common malignancy in men and the second leading 

cause of cancer related deaths in the United States [1]. According to the American Cancer 

Society (ACS), PC represents 25% of newly diagnosed cancers every year [2]. There are more 

than 1,100,000 new cases of PC and 300,000 related deaths worldwide each year. In the United 

States about 240,000 new cases of PC are reported annually with a mortality rate >15% due to 

widespread implementation of prostate-specific antigen (PSA) testing and effective treatment of 

early stage PC disease [3-5]. 

 The disease is primarily diagnosed in men above the age of 40, with a median age above 

60 years [3]. The risk of incidence increases as one grows older. PC biology is heterogeneous as 

it ranges from indolent type where tumors progress slowly or not at all for several years to others 

that may progress more rapidly and be fatal after a few years. PC arises from different stresses 

such as chronic inflammation, oxidative stress, immune surveillance loss, and somatic 

alterations, which lead to genetic changes that transform the normal epithelium into pre-

neoplastic lesions to invasive carcinoma. Therapeutic options vary depending on the severity of 

the condition, age of the patient, staging, Gleason score and serum PSA level [6].  

 Organ confined disease staged T1/T2 with Gleason score ≤7 that lacks aggressive 

features [7] is suitable for radical prostatectomy (RP) and radiation therapy (RT) with external 

beam irradiation therapy (EBRT) or brachytherapy [8, 9]. This treatment option has shown 5 to 

10 year survival rate with significant morbidity, erectile dysfunction in 30-70% of cases and 

stress incontinence in up to 10% of the patients [6, 10]. In recent years, minimally invasive 

therapies have been developed for patients with localized prostate cancer such as three-
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dimensional conformal radiotherapy (3D-CRT), brachytherapy, intensity-modulated external 

beam radiotherapy (IMRT), cryosurgical ablation of the prostate and laparoscopic radical 

prostatectomy. These treatment strategies are for patients who are either not eligible for surgery 

or who do not want to risk the potential side-effects of surgery [6, 11-14]. 

 Cancer with a Gleason score ≥8 which exhibits aggressive features and found outside the 

prostate [7] and spread to other organs such as bladder, rectum and lymph nodes results in poor 

survival rate compared to localized PC. Approximately 30-35% is initially diagnosed as 

metastatic while 25% of patients develop metastases during follow up. Metastases are commonly 

found on the bone with an X-ray showing osteoblastic lesions or a bone scan as hot spots with 

areas of increased activity [15]. In such cases, RP followed by RT with hormone therapy (HT) 

can prolong survival but with negative quality of life [3]. HT with anti-androgens is the standard 

therapy for stage T4 PC that reduces serum levels of testosterone to castration levels, which 

eventually becomes non-responsive to androgen ablation. When these therapies fail and the 

cancer reoccurs there is a median survival of 2.5 years [15, 16]. Current therapy options for 

patients with hormone-refractory prostate cancer (HRPC) include RT and cytotoxic 

chemotherapeutic agents, such as mitoxantrone, estramustine and taxanes [15, 17]. These 

approaches only have a palliative benefit and show no consistent impact on survival [15]. No 

effective therapy exists for patients with metastases thus mandating the development of novel, 

more efficacious and innovative treatment approaches [18].  

 Different approaches have been tested with varying results. For example, gene therapy 

has been used to combat and cure a wide range of pathologies including locally advanced cancer 

but the major limiting factor has been the development of an effective delivery system. 

Metabolism of genetic materials by serum esterases prohibits intravenous administration. 
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Additionally, genes are macromolecules and their size greatly hinders passage across the 

capillary fenestrations of blood vessels without assistance. We and others have demonstrated 

viral vectors to be efficient delivery systems resulting in high levels of transgene expression. 

However, the antigenic nature of viruses leads to their rapid inactivation by the immune system. 

Additionally, the viruses are non-specific. This requires direct target organ injection with or 

without image guidance or operative bed injection. Current gene therapy technology is still in its 

infancy but the promise of molecular medicine is so immense that further research is needed.   

 

Treatment Strategies: 

Radiation Therapy 

 Ionizing radiation is primarily used to treat cancers by targeting critical cell components 

resulting in DNA damage directly by high radiation or indirectly by the action of free radicals 

formed as a result of ionization of water molecules by low radiation [19, 20]. The resulting DNA 

damage can result in double stranded breaks (DSB) that are difficult to repair and most toxic to 

the cancer cells [19]. Normal cells have intact mechanisms that repair the majority of DNA 

damage thus protecting the normal cells from harm. If the mechanism cannot repair the DNA, 

radiation induces apoptosis by either stimulating death receptors such as DR4 (death receptor 4) 

or CD95 (Fas) at the cell surface or halts cell cycle progression at distinct phases [19, 21]. The 

effect is most pronounced during M (mitosis) and G2 (Gap-2) phases of the cell cycle [22, 23]. 

Failure to undergo apoptosis may contribute to resistance of cancer cells to the therapeutic 

modalities. 

 Low dose rates of radiation can also be toxic as the oxygen reacts with the free radicals 

(reactive oxygen species (ROS)) formed during the ionization of water producing more toxic 

byproducts that make the cell sensitive to ionization radiation [23]. Solid tumors contain regions 
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with low blood supply resulting in reduced oxygen concentration (hypoxia) thus making these 

regions more resistant to ionization radiation [21]. Even though improvements in radiotherapy 

regimens are available the efficacy is still disappointing with regards to solid tumors.  

 Radiation can be delivered internally through radioactive seed implants called 

brachytherapy. Implants can be precisely placed into a body cavity, into the tissue, into the lungs 

and into blood vessels. The radiation sources deliver high doses of radiation to the specific tumor 

while the radiation dose drops off within the adjacent normal tissue [19]. Zelefsky et al. [12] 

reported the 8-year relapse free survival rate of 74% and 61% for low and intermediate risk 

groups respectively using Phoenix ASTRO (American Society for Therapeutic Radiology and 

Oncology) criteria for a multi-institutional study following brachytherapy [6].  

 The most common form of RT is delivered externally through a beam called EBRT. In 

most PC cases, RT is accompanied with RP or androgen deprivation therapy (ADT) [24]. 

Adjuvant RT has shown to benefit men with adverse pathologic features with Gleason scores ≥ 7 

at least in minimizing biochemical recurrence risk [25]. Thompson et al. from the Southwest 

Oncology Group (SWOG) showed an overall survival with adjuvant RT with 10 year estimates 

of 74% vs. 66% for patients with 60Gy to 64Gy and a metastasis free survival at 71% vs. 61% in 

adjuvant RT vs. no RT cohorts [25, 26]. Ten year survival rate following RT for well 

differentiated, moderately well differentiated and poorly differentiated PC is about 90%, 75% 

and 50% [27]. Along with the benefits seen with RT, complications such as rectal complications, 

urethral strictures and total urinary incontinence are common [25].  

 RT can be delivered in a fractionated dose of 1.8 - 2.0 Gy (Gray, unit of radiation) per 

day for 7-8 weeks (5 days per week) or until a total of 60 - 80Gy is delivered [28]. Pollark et al., 

showed that dosage has a direct impact on treatment effectiveness in a Phase III trial where they 
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compared 70Gy/2Gy versus 78Gy/2Gy, showing a significant difference (64% vs. 70% 

respectively) in the 6-year biochemical relapse free survival rate (bRFS) [29].  Similar results 

have been published in Phase III trial by Dearnaley et al., when comparing 64Gy/2Gy with 

74Gy/2Gy in a 10-year bRFS [30]. Additionally, treatment strategy that employs less frequent 

and larger fractions, termed hypofractionated radiation, may be more efficacious. Moderate (<5 

Gy/day) hypofractionated RT has shown similar efficacy with an improved side effect profile 

while extreme (≥5 Gy/day) hypofractionated RT is currently being evaluated but showing 

promising efficacy [28]. As dose is increased the risk of side effect increases as well.  

 Advances in imaging have raised the therapeutic ratio (the index between cytotoxic 

effects and normal tissue complications) and minimized damage to local tissue resulting in a 

decrease in the side effects seen due to RT. Advances in imaging has led to vast improvements in 

RT such as 3DCRT or IMRT and four dimensional RT (4D-RT) which splits the beam into 

several lower intensity beams sparing damage to surrounding normal tissue. With these advances 

more patients are being treated with doses exceeding 72Gy [31]. 

 In this study we treated human DU145 PC tumors with EBRT from a clinical linear 

particle accelerator (LINAC) model 21EX and model 6EX that produced 8Gy X-rays for the 

cancer treatment. These particle accelerators at the Tri-State Regional Cancer Center in Ashland, 

Kentucky offer bremsstrahlung x-ray energy of 6 MV, which was used in these investigations as 

well as a rapid dose delivery to the targeted tumor at a rate of 6 Gy/MU [32]. 
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High Intensity Focused Ultrasound 

  High Intensity Focused Ultrasound (HIFU) is used as a treatment for localized PC. It is a 

non-invasive and non-ionizing technique that induces coagulation, necrosis, cavitation and heat 

shock through intense US energy that thermally ablates a portion of the tissue situated at the 

focal point. US energy is delivered with a high-powered transducer, which is placed in the 

rectum to generate US waves that travel through the walls of the rectum and deposit energy to a 

focal zone in the prostate gland. There is no need for a surgical exposure or insertion of 

instruments into the lesion [6, 33].  

  The high powered US causes a rise in temperature up to 70 - 80ᴼC [34]. This elevation 

of tissue temperature leads to melting of the lipid membranes and protein denaturation (>43ᴼC) 

that results in irreversible tissue damage called coagulative necrosis [34, 35]. Similar tissue 

damage caused by a cavitation phenomenon can be achieved with bubble implosion and 

mechanical tissue disruption as a result of the interaction between US and MBs of water in the 

sonicated tissue enhancing tissue ablation [35]. 

 In the past 15 years there have been 30,000 prostate HIFU treatments, mainly in Europe 

[35].  In most clinical trials [6, 35, 36], patients had a localized PC (stage T1/T2) with Gleason 

scores ranging from 2 to 10 and received HIFU because the patients were either unsuitable for or 

unwilling to undergo RP. Uchida et al. [6] reported that after HIFU the biochemical disease free 

5 years rate was at 84%, 64% and 45% in low, intermediate and high-risk PC groups using 

Phoenix criteria. Pfeiffer et al. [36] also assessed the negative biopsy rates after HIFU at 84.2%, 

63.6% and 67.5% for the low, intermediate and high-risk PC groups. Similarly after HIFU, 5-

year biochemical free survival rates was reported to be 84.8%, 64.9% and 54.9% for 

aforementioned PC risk groups. Lastly, they also mentioned 5-year disease free survival rates as 
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81.7%, 53.2% and 51.2% for the respective PC risk groups [36].  

 HIFU has advantages over current treatment modalities as it is non-invasive and non-

ionizing allowing for repeated treatments of the affected tissue as well as the ability to affect a 

distant tissue [35, 37]. The disadvantages include the inability of US to travel through air 

preventing treatment within lung or lumen of most hollow organs within the body and long (1-

3hrs) exposure times depending on the size of the tumors [35]. Most common complications 

associated with HIFU are urinary retention, urinary tract infections, urinary incontinence and 

erectile dysfunction [35]. Presently, HIFU has some limitations and long-term clinical studies are 

needed to evaluate cancer specific and overall survival. Refinement of the HIFU and transducer 

technology will improve its therapeutic benefit making it an attractive treatment modality.  

 Currently, the cavitation phenomenon of microbubbles (MB) is being explored in relation 

to different US intensities as a potential drug delivery vehicle. The underlying mechanism is yet 

to be fully understood but there is growing evidence that suggest MB cavitation can elicit 

biological and mechanical changes that allow for the temporary uptake of drugs. Our lab has 

further explored this area of drug delivery with the intent to translate this technology from bench 

to bedside. 

 

Gene Therapy 

 Gene therapy is a therapeutic drug delivery and vaccination method that can be used to 

treat a large array of genetic and non-genetic diseases. It uses genetic materials such as DNA and 

RNA to rewrite or reverse the pathological conditions that account for the transformation of 

normal cells to a malignant or diseased phenotype. There have been significant improvements in 

the treatment of a variety of different malignancies including PC.  
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  Different strategies include the use of non-viral and viral vehicles that are suitable for 

integrating the genetic material into the host cell. There are distinct advantages and 

disadvantages for each delivery vehicle. Non-viral vehicles are suitable for their simplicity, 

packaging capacity, potential for large scale production and inducing fewer immunological 

responses. These vehicles have poor transfection and transduction efficiency to elicit a 

therapeutic benefit. Viral vehicles on the other hand can be engineered and finely tuned while 

retaining the capacity to deliver genetic material at a high transfection and transduction 

efficiency. However, our immunological system has evolved to counterattack against these viral 

pathogens by forming neutralizing antibodies that hamper its therapeutic potential. 

   Gene transfer can be done in vivo or ex-vivo. In vivo gene transfer is performed in the 

host via an intratumoral (IT) injection. It is cost effective and tailored to a class of patients rather 

than an individual. But the gene transfer efficiency is poor due to the mode of delivery and the 

stimulation of the hosts’ immune system. Ex-vivo gene transfer is performed on surgically 

harvested cells that are genetically engineered and re-introduced back  into the host [15]. Ex-

vivo gene transfer is typically done on clonal expansive cells such as dendritic cells, 

macrophages, monocytes, etc. for vaccination based gene therapy.   

 There have been several gene therapy clinical trials, which have shown potential towards 

treating prostate cancer. These therapies include vaccine therapy that uses various cytokines such 

as interleukin 2 (IL2) or granulocyte-macrophage colony-stimulating factor (GM-CSF), suicide 

cytotoxic therapy such as HSV-thymidine kinase or certain toxins, transfection of suppressor 

genes such as p53 or retinoblastoma (Rb), oncolytic viruses such as CV787 or CN-706 that have 

been designed specifically to replicate preferentially in prostate cancer cells and anti-sense 

therapy such as bcl-2 and C-myc to block oncogenes [15, 38-40]. In this study we have 
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performed gene therapy with melanoma differentiated associated gene 7 or interleukin 24 (mda-

7/IL-24), p53, retinoblastoma (Rb), retinoblastoma like protein 2 (p130) on PC models. 

 

Adenoviruses 

 Adenoviridae are icosahedral non-enveloped viruses with a 30 to 40kb linear double 

stranded-DNA genome [41]. Ads have been isolated from a number of different species with 

over 100 reported serotypes [42].  Human adenoviruses (HAdVs) consist of more than 55 

serotypes that are divided according to haemagglutination and genome sequences into seven 

species, HAdV-A, B, C, D, E, F and G. Members of species C, serotypes 2 and 5 Ads, are 

commonly used as vectors for gene therapy [42-44].  

 

Figure 1. Life cycle of adenoviruses. Replication-defective adenoviral vectors express the 

proteins encoded on their DNA but do not enter the lytic phase. (Adapted from Vorburger and 

Hunt, The Oncologist, 2002 [42].) 
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 The life cycle of an adenovirus can be divided into several stages (Fig. 1). During the 

infection stage, virus surface proteins, such as hexon proteins, penton base proteins, and fiber 

proteins attach to cellular receptors such as the coxsackie adenovirus receptor (CAR), integrins 

αVβ1/2/3, membrane cofactor protein (CD46), desmoglein-2 (DSG2), coagulation factor IX and 

X (FIX/FX), heparan sulfate proteoglycan (HSPG), etc. [45]. After entry into the nucleus, genes 

from the early region 1 (E1a and E1b) are quickly transcribed (Fig. 1); these affect cellular 

proteins that modulate several cellular processes, such as preventing apoptosis or inducing cell 

cycle entry [46]. Four non-contiguous regions of the genome are expressed (E1 to E4) during the 

early phases of viral replication. These regions serve as master transcriptional regulators that 

start the process of viral gene expression leading unto genome replication. During genome 

replication, the major late genes (L1 to L5) drive the viral replication and code for proteins that 

make up components of the viral capsid or are involved in assembly of the capsid. Other viral 

elements (cis or trans genes) are responsible for the origin of replication or the packaging signal 

that condenses the DNA but these must be carried out by the virus itself [42].  

 The trans genes can be complemented or replaced by foreign or therapeutic DNA. At 

least three such regions of the viral genome can accept insertions or substitutions of DNA: a 

region in E1, E3, and between E4 and the end of the genome. The E1 deletion renders the 

recombinant virus replication-defective, and thus provides an important safety feature [47]. The 

first-generations of non-replicating ads are derived from E1/E3 deleted wild type (wt) Ads [41]. 

Newer generations of Ads have deleted or inactivated entire coding regions (E2, E3 or E4 

regions) to increase DNA capacity and to alleviate antiviral host adaptive immunity [41]. 

However, to achieve a significant antitumor response Ads needs to be administered multiple 

times, which can still provoke an immune response that mediates viral clearance [44, 48].  
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 Ad vectors have several advantages: first, they rapidly infect a broad range of human 

cells; second, they yield high levels of gene transfer; third, they have low pathogenicity in 

humans, fourth, they can accommodate relatively large (~7.5 kilobase (kb)) segments of DNA; 

fifth, they can transduce non-proliferating (quiescent) cells; sixth, the viral genome does not 

undergo rearrangement; seventh, they allow for the transmission of their genes into the host 

nucleus but do not insert them into the host chromosome; eighth they are easy to manipulate and 

finely retuned because the technology of Ad production at high titers is well established and the 

Ad structure, genome and replication cycle is well characterized [42, 48, 49].  Ads are the most 

commonly used vector in clinical trials (∼471 clinical trials or ∼23% of all clinical trials initiated 

until January 2015) and approximately 75% of the 471 clinical trials have been initiated to treat 

PC (51 clinical trials) [45, 50].  

 

Conditionally Replication-competent Adenoviruses (CRCAs) 

 Replicating Ads or oncolytic Ads have the ability to infect a small portion of the tumor 

and kill the tumor cells at the end of their lytic cycle. Their resulting progeny are now capable of 

infecting the neighboring tumor cells ensuring a significant increase in the efficacy of gene 

delivery coupled with cytolytic activity (Fig. 2). The replication competence of Ads can be made 

conditional on the biology of the cells being infected. These replicating viruses are called 

conditionally replicating Ads.  

 CRCAs can be made by modifying the adenoviral proteins to enable the virus to replicate 

only in cells that bear the cancer related phenotypes [51]. For example, Ads deficient in E1B 

(ONYX-015) contain a deletion of 827 base pairs (bp) in the E1B region that allows the virus to 

replicate only in tumor cells lacking functional p53 [52]. In normal adenovirus, E1B codes for a 
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55kDa protein that binds and inhibits p53 in normal cells which in turn blocks viral replication. 

The ONYX-015 infected normal cell would exhibit p53 mediated growth arrest or apoptosis. 

Thus functional ONYX-015 is restricted to p53 deficient cells, resulting in tumor selective 

destruction [51]. 

 CRCAs can also be made by placing key viral proteins under the regulatory control of 

cell-specific gene promoters that restrict the viral lytic cycle to only the target cells [51]. For 

example, Ad named CN706 contains a human PSA promoter gene that is cloned upstream of the 

E1A viral gene which starts the early viral replication phase. In this study, we used cancer 

terminator viruses (CTVs) that contained progression elevated gene-3 (PEG-3) promoter. This 

promoter drives the expression of E1A and E1B genes thus ensuring cancer specific replication. 

The CTV also contains cytomegalovirus (CMV) promoter that regulates the expression of 

melanoma differentiated associated gene 7 or interleukin 24 (mda-7/IL-24) [53]. 

 

Figure 2. Schematic diagram of the cancer-selective killing efficacy of oncolytic Ads. Oncolytic 

Ads specifically kill tumor cells at the end of their lytic cycle, while sparing normal cells. 
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Replicated viral progeny then spread throughout a tumor, infect, and lyse surrounding cancer 

cells, ultimately leading to improved antitumor efficacy over non-replicating Ads. Moreover, the 

amplification and propagation of therapeutic genes using replicating viruses in infected 

neighboring cancer cells highlights the potential of replicating virus-based therapy. (Adapted 

from Choi, et al. Advanced Drug Delivery Reviews, 2012 [54].) 

 

Barriers to Virotherapy 

 Gene therapy makes efficient use of targeting viruses for cancer therapy, but several 

barriers exist that limit the delivery of viruses from reaching and spreading throughout the tumor. 

These barriers forces an increase in dosage of the viral particles thus increasing the possibility of 

adverse events [55].    

 

Figure 3. Barriers to systemic delivery of oncolytic viruses. There are three main areas that must 

be addressed to enable systemic delivery of virus particles, namely (i) avoiding neutralization by 

components of the blood stream including complement, FactorX, leukocytes, erythrocytes and 
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antibodies, (ii) minimizing unwanted infection of irrelevant cells, notably hepatocytes, which are 

usually present in vast excess, and avoiding premature scavenging by phagocytes, such as 

hepatic Kupffer cells, (iii) maximizing extravasation within tumor vasculature and penetration to 

infect all viable tumor cells whilst avoiding other components of the interstitium. Polymer coated 

viruses present one promising approach to address these barriers, although several other 

technologies are also under development. Abbreviations: ECM: extracellularmatrix, IgA: 

ImmunoglobulinA, IgG: ImmunoglobulinG, IgM: ImmunoglobulinM, FX: FactorX. (Adapted 

from Tedcastle, et al. Drug Discovery Today, 2012 [56].)   

  

 Current clinical trials in gene therapy are limited to intratumoral injections. This delivery 

method has the advantage of delivering large payloads to the tumor site and minimizing 

interactions with other cells but the viral spread is often limited to the needle track due to 

pressure gradients, binding to extracellular matrix (ECM) components, and limited convection 

[57, 58]. For massive tumor regression, infection must spread to cover a large volume of the 

tumor mass. Poorly organized leaky vasculature (Fig. 3) increases the interstitial fluid pressure 

(IFP) resulting in the loss of convection throughout the tumor making macromolecular transport 

dependent on passive diffusion [55, 59]. However, in a solid tumor, the complicated structure of 

the ECM (Fig. 3), which is composed of proteoglycans formed by both neoplastic and normal 

stroma, acts as a physical barrier against the penetration of the viruses [54]. Thus passive 

diffusion is limited due to the composition and organization of the tumor microenvironment. In 

addition, both specific (e.g., neutralizing Abs or cytotoxic T cells) and nonspecific (e.g., 

phagocytes or anti-viral cytokines) immune response mechanisms may also limit spread of viral 

particles [57]. 
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 The other major hurdle is to successfully use systemic virotherapy to deliver viral 

particles into tumor nodules [56]. Virus arriving at the tumor site must extravasate into the 

tumor. Extravasation is dependent on the adequate blood supply, tissue perfusion and tumoral 

enhanced permeability and retention (EPR) for transvascular transport. Tumor vasculature is 

chaotic in terms of microvessel length, diameter, spatial distribution, blood flow velocity and 

direction causing heterogeneous blood perfusion throughout the tumor [55]. The tumor 

vasculature causes regions of low-oxygenation leading to hypoxic tumor environments that 

become inaccessible to the virus. These regions are important as they house tumor stem cell 

niches and treatment resistant cells that trigger relapses in patients [55, 60, 61]. On the contrary, 

leaky tumor-associated vasculature can sometimes enable limited extravasation of virus particles 

through passive diffusion [56]. The passive diffusion is mediated by EPR but it is not consistent 

because of the differences in pore size and the abrupt changes in blood perfusion [55, 62, 63], 

thus extravasation into the tumor site is a limiting factor of systemic delivery. Lastly, once 

injected into the vasculature, the viruses undergo various interactions with the immune system, 

thereby reducing viral efficiency.  

 Ads are regarded as pathogens by the body and are attacked by the host immune system. 

They mostly induce the innate arm of the immune system resulting in the inactivation of the Ads, 

the inflammation of the transduced tissue due to T- and B-cell targeting the transduced tissue[64] 

and efficient clearance of Ads by the immune cells [41].  In fact, within 24 hours after IV 

administration, 90% of the Ad vector is eliminated from the mouse liver [65]. Systemic delivery 

of Ads into the bloodstream also exposes the virus to plasma proteins and blood cells (Fig. 3) 

[58]. The resulting interactions include the neutralization and/or opsonization by antibodies and 

complement (C3a)[66], phagocytosis by neutrophils and macrophages, sequestration on 
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erythrocytes as well as others [56, 58]. The innate immune response also involves the induction 

of cytokines by the viral capsid proteins and interactions with leukocytes, epithelial and 

endothelial cells resulting in signal transduction via MAP (Mitogen-activated protein kinases) 

and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) [41] as well as 

through Toll-like receptors and lectins in the plasma membrane and endosomes [44]. The 

adaptive arm of the immune response is seen in patients with pre-existing immunity. This 

immunity leads to a high prevalence of virus neutralization antibodies against Ads, preventing 

the vector from transducing cells efficiently and lowering the overall effect [67]. Lastly, non-

specific uptake by other tissues such as the lung, Kupffer cells in the liver, spleen and tissue 

resident macrophages all contribute to the rapid clearance of Ads. Thus these immune reactions 

severely limit the benefit of systemic delivery, intratumoral delivery, repeated administration and 

administration of high-titer Ads.  

 .  
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ABSTRACT 

 The field of ultrasound has expanded since the discovery of ultrasound contrast agents 

(UCAs) from diagnostics to therapeutic use. UCAs are known as microbubbles (MBs), which 

can be chemically and physically manipulated to improve their therapeutic potential. MBs can be 

tailored to bind to specific diseased tissues and act as carriers of different chemo-drugs and 

genetic materials. These engineered MBs can behave differently to ultrasound intensities 

resulting in different cavitation methods. Though the underlying mechanism is yet to be fully 

understood, there is evidence to suggest that mechanical pore formation of cellular membranes 

allows for the temporary uptake of drugs. The cavitation of MBs can induce temporary and 

reversible enhancement in the permeability of both individual cells as well as the endothelium 

including the blood brain barrier. There are too many side-effects and immune responses to 

current cancer and diseased treatments. MBs protect the immunogenic drugs from eliciting a 

detrimental response when delivered through the vasculature. They also help reduce the drug 

dosage by improving drug targeting and drug response. Thus, MBs can be used as vehicles for 

localized drug delivery and gene therapy allowing us to further develop the potential of curing 

cancer and other diseases.  

 

Keywords:  Microbubbles, ultrasound, ultrasound contrast agent, chemotherapy, adenovirus, 

Polyethylene glycol, perfluropentane, phospholipid, sonoporation, cavitation, Blood Brain 

Barrier (BBB), Gene Therapy, Chemotherapy, DNA, RNA, Protein, siRNA, miRNA, Drug 

delivery. 
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INTRODUCTION 

Historical Overview 

 Ultrasound (US) is the most widely used diagnostic imaging modality. This modality 

provides a safe, non-invasive, and portable real-time imaging at a low cost [68]. US sound waves 

have a frequency between 20 Hz to 20 kHz that is inaudible to the human ear [69]. Typically, in 

ultrasonography the diagnostic frequency ranges from 1-10 MHz [70]. To produce a US image a 

transducer that broadcasts the US wave pulses is placed on the skin or inside the body. These 

waves are reflected by the interfaces between different tissues or structures in the body. The 

imaging software system converts these reflected waves into electrical pulses and digitizes them 

[68]. Imaging is possible because the speed of sound in the tissue (~1500m/s) is known [71]. 

Biological tissues (except lung or bone) mainly consist of water, which has low compressibility, 

and sound waves propagate without significant scattering or reflection [71]. Thus the backscatter 

energy from tissue contains less or no harmonics [72]. Blood, a liquid phase material, has low 

compressibility and scatters US poorly, but the infusion of ultrasound contrast agents (UCAs) or 

microbubbles (MBs) can increase the scattering and reflection of the ultrasonic waves [68]. 

Thus, harmonics can be used to differentiate between blood flow with UCAs and the surrounding 

tissue [72].   

 The discovery of microbubble (MB) agents came from an accidental observation by Dr. 

Charles Joiner, a cardiologist in the late 1960s. Dr. Joiner performed an M-mode echocardiogram 

by injecting a patient with indocyanine green through the left ventricle to measure cardiac 

output. He observed a transient increase in the US signal from the ventricle after each injection 

[73, 74]. It was later shown that small bubbles forming at the catheter tip caused the increase in 

the signal, but subsequent research into duplicating the results was not successful [74]. In 1968, 
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Gramiak and colleagues observed a cloud of echoes after the injection of agitated saline in the 

aortic root [73]. They showed that the backscatter of the US for the blood pool can be increased 

by adding the gas bubbles that exist in agitated saline [72, 73]. Agitated saline is still used for the 

detection of right to left shunts in the heart [75]. These bubbles were large and unstable and had 

a short half-life and did not persist in the blood for long periods of time which limited their use 

[72]. Only right heart imaging was achieved because the first generation of UCAs that entrapped 

air and carbon dioxide in agitated saline and hydrogen peroxide could not pass through the 

pulmonary circulation [76]. 

 Mixing some of the patient’s blood with saline was found to markedly increase and 

prolong the stability of the bubbles [74]. Dr. Feinstein [77] found that albumin was the blood 

component improving MB stability [74].  Later on Feinstein developed the sonication method 

that produced more stable MBs, whose size could be controlled [78]. In 1994, Albunex 

(Molecular Biosystems, San Diego, CA) became the first commercially available contrast agent 

approved for human use in the United States. Albunex has a coating made of human serum 

albumin [72]. Coating of MBs resulted in the stabilization of MBs with different substances such 

as phospholipid, albumin, or polymers. Coated MBs formed the second generation UCAs that 

had a mean diameter less than 8 μm, which guarantees that the UCA could pass through the 

pulmonary circulation and reach various organs. MBs survived longer in the blood stream due to 

their lower solubility in water and had a strong harmonic response [76]. 

 The making of more stable, more effective UCAs revolutionized the pharmaceutical 

industry. The second commercially available contrast agent, Levovist, became available in 

Europe and Japan in 1996. Levovist like its forerunner Echovist [74] (Bayer Schering Pharma 

AG, Berlin, Germany) consists of galactose microcrystals whose surfaces provide absorption 
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sites on which air bubbles form when suspended in water [72]. Echovist performed poorly in the 

right heart because its intravenous (IV) injected MBs were not stable and failed to cross the lung 

capillaries [74]. Levovist MBs were further stabilized with a trace amount of palmitic acid [72], 

thus making it stable in the blood for 1-4 min, which increased the US signal by ~20 dB [74]. 

Levovist MBs formed in the blood flow while EchoGen® (Abbot Laboratories, Chicago, IL, 

USA) achieved MB formation through a totally different mechanism. EchoGen® consists 

essentially of a perfluoro-compound (perfluoropentane), which is liquid at room temperature but 

becomes a gas at body temperature. EchoGen® is prepared as an aqueous emulsion with 

surfactants that change to gas on injection, with the formation of MBs as small as 2–8 microns 

[74]. 

 Since 1997, contrast agents (CAs)  are further stabilized by replacing the air core with 

high-molecular-weight inert gases such as perfluorocarbons, which have a lower solubility and 

diffusivity in aqueous liquids compared with air [72].  Clinically proven agents based on this 

principle include SonoVue (SF6 gas), Definity/Luminity (C3F8), Imagent (C6H14), Sonazoid 

(C4F10) (these materials possess a lipid stabilizer shell), and Optison (C3F8 has a shell of 

denatured human serum albumin) [71]. These became the third generation of UCAs. 

 The history of UCA development has been long and difficult. Luck and astute 

observations helped develop and make US imaging the most cost effective technology available 

in the world. UCAs have opened up new opportunities in molecular imaging [71], drug delivery 

systems, high focused US (HIFU) surgery [79], and atherosclerosis [80]. 
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Ultrasound Contrast Agents or Microbubbles 

 Ultrasound contrast agents are also known as microbubbles (MBs). MBs enhance the 

quantification of perfusion and blood flow [81]. MBs are very echogenic and they resonate like a 

musical instrument [74]. The physical and chemical design of contrast agents (CAs)  are 

manipulated such that synthetic surfactant, tuning of size, composition, degradability, surface 

properties and bio-functionality make them very echogenic [81]. Typically, MBs are comprised 

of surfactant shell made from proteins, lipid and biodegradable polymers with an inner gas core, 

either of air or inert gases (Fig. 4). MBs have an average diameter of ~2 to 3µm, and the 

combined mass of the shell and gas core (Fig. 4) of each MB does not exceed a pictogram [71].        

 

 Figure 4. Schematic representation of a coated microbubble. 

 The particle size of MBs for intravenous injection plays a significant role and needs to be 

carefully controlled. MBs must be small enough to cross the capillary bed (7.5 micron). Indeed, 

large bubbles are unable to pass through the capillaries, whereas small bubbles are considerably 

less effective scatterers [81]. It is now accepted that the size must be in the range of 1-7µm, 

preferably around 3µm, with as narrow size distribution as possible. The critical resonance 

frequency required to destroy the bubble depends on the diameter [74]. The rigidity of the shell 
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determined by the thickness of the surfactant would also determine its resonating potency and its 

echogenicity. It has been determined that US reflectivity is proportional to the fourth power of a 

particle diameter, but also directly proportional to the concentration of the particles themselves. 

The resonance frequency of MBs 1–7µm in diameter lies within the 2–15 MHz range, which is 

the US frequency used for clinical diagnosis [74].  

 Echogenic liposomes and various nanoparticle (NP) dispersions are being evaluated as 

CAs. Most liposomes have a multi-lamellar structure with embedded air pockets that are 

responsible for acoustic backscatter signal [82, 83]. Without an enclosed gas core the US signal 

from these particles is low. NPs dispersions are mostly liquid perfluorocarbon-based emulsions 

[84]. These NPs are also characterized as contrast agents for MRI, optical imaging, and drug 

delivery. US imaging using these materials requires a high frequency (multi-MHz) or high 

degree of target surface coverage with a CA [71, 85].  

 MBs do not diffuse across the endothelium and thus there is no interstitial enhancement. 

Essentially, MBs act as blood pool markers, or markers of any other body space into which they 

have been injected and their behavior is, in many respects, similar to that of labeled red blood 

cells. Vascular enhancement usually lasts a few minutes and the MBs are then dissolved. 

However, this model is complicated by evidence that some MBs are taken up by the 

reticuloendothelial systems [74]. 

 Single-bubble detection is possible in vitro in normal saline or blood with older imaging 

equipment. However, echoes from normal tissue can be nonlinear with non-fundamental 

frequency. To reduce these signals from tissues multi-pulse techniques such as phase inversion 

and power modulation are applied [71]. However, to detect MB vibration current imaging 
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systems use harmonic imaging, both in free-flow conditions [86] and when attached to a solid 

target [71, 87]. MBs are known to emit US at different frequencies such as sub-harmonic, second 

and third harmonic frequencies. This large discrepancy in the echoes between MBs and tissue 

allows for enhanced imaging with quantification of perfusion, blood flow, tumor and tissue 

vascularization [81], thus MBs are essential for diagnosing modality. 

 MBs are used not only for diagnostic applications but also for molecular imaging and 

therapeutic applications [68, 88-90]. Molecular imaging targets the molecular changes associated 

with diseases and improves the efficiency of in vivo imaging [72]. However, in this chapter we 

will focus on its therapeutic applications in treating cancer. Initial applications of MBs depended 

on the rate of bubble collapse and their bio-effects such as inducing cell damage, vascular injury 

[91], and the lysis of thrombus [92]. Interestingly, oscillating MBs can increase membrane 

permeability and open up tight junctions in endothelial cells [93-97], thus the therapeutic 

potential of drug delivery and drug action is increased. Based on chemical and physical nature of 

drugs, some MBs are known to have drugs encapsulated in liposomes, polymeric micelles, 

hollow particles and emulsion droplets with the aim to reduce non-specific drug resistance and 

side-effects associated with traditional cancer therapies [81].  
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Types of Microbubbles 

 MBs can be divided into several categories depending on their physical and chemical 

properties which are crucial in the design of a contrast agent for US guided drug delivery [81]. 

There are a few characteristics that are important when designing an MB. First, the intensity of 

the backscatter or echo caused by the MB is determined by Rayleigh scattering regime [81, 98]. 

The intensity depends on the surface properties or shell material, gas content and colloidal 

properties of MBs [81, 99]. Shell and gas components (Fig. 4) should be biodegradable, i.e. 

readily metabolized and/or excreted with minimal side-effects [81]. Additionally, MBs shouldn’t 

aggregate into large clusters which could result in non-specific and undesired adhesion to cells 

[99]. MBs should be effective at low doses [81]; for instance, the typical US Food and Drug 

Administration (FDA) approved dose of MBs for a patient is approximately 109-1010 MBs given 

for a 1-2 mL bolus intravenous injection [99]. Additionally, pre-formed drug loaded MBs or 

MBs alone should be sterilizable and stable with a shelf-life of two years [81, 99]. Other 

requirements include backscattering proficiency, fragility and cavitation properties of MBs [81]. 

US or acoustic pressure required to cause cavitation is measured as mechanical index (MI), a 

relative quotient computed as a peak negative acoustic pressure divided by the square root of the 

frequency [71]. MBs behave differently at various acoustic pressures, for example, at MI >0.2 

MBs behave in a nonlinear manner that allows some systems to detect smaller MBs [71]. At 

higher pressures (MI >0.4 and up to 1-1.9, depending on the frequency), MBs are completely 

destroyed [86]. Acoustic pressure depends on the diameter of the shell and its material, for 

example, thin lipid monolayered bubbles are flexible and vibrate in response to low-pressure US 

(e.g., MI = 0.06) [71], whereas, thick-shelled polymer bubbles don’t crack unless at critical 

pressure, or vibrate resulting in low acoustic echo response [100].  
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Agitated Gas Microbubbles (First Generation) 

 First generation MBs were prepared at patient bedside with two syringes connected via a 

stopcock valve that contained air and saline [101]. When liquid and gas are rapidly transferred 

from one medium to another the resulting high shear flow causes air bubbles to form of varying 

sizes [71]. These bubbles produced by agitation are called agitated-saline and are both large and 

unstable [71, 72]. The surface tension between the gas core and surrounding liquid causes the gas 

to diffuse into the surrounding liquid decreasing the size of the bubble [71]. MB requires a 

stabilizer shell to prolong its circulation time. The rate can be calculated using the equation by 

Epstein and Plesset [102] and Chen et al. [103] that an air bubble with a diameter of 5μm in air-

saturated water disappears in approximately 125 ms and an air bubble with a diameter of 3 μm 

disappears in approximately 32 ms at room temperature and ambient pressure [72].  

 There are several limitations in using these bubbles such as the size of bubble, circulation 

time and gas core. These bubbles are effectively removed by the lungs [72]. Additionally, these 

bubbles have a size greater than 10μm and are unable to traverse the pulmonary circulation [68]. 

MBs larger than 6-8µm are trapped in the lung capillaries and bubbles smaller than 1µm are less 

stable and less ultrasound responsive [81]. These bubbles need to be administered by 

intracoronary or aortic root injection to visualize the left cardiac chambers [72]. Additionally, 

because it takes at least 12 sec for a contrast agent to pass from a peripheral vein (i.e., the site of 

injection) to the end-organ [104], to be useful these bubbles need to persist for several minutes 

[72]. In 1984, Feinstein et al. introduced the use of sonication to create MBs that were stable and 

small enough to transit through the pulmonary microcirculation from right to left heart [77].   

 Since the introduction of saline MBs, other agitated contrast agents (hydrogen peroxide, 

dextrose, indocyanine green dye, iodinated contrast) have been used [68]. 
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Coated Microbubbles filled with Air (Second Generation) 

 The biggest dilemma facing scientists was the circulation time of bubbles. It was found 

empirically that a small admixture of the patient’s blood to the saline improves the stability and 

effectiveness of the agitated saline as a contrast agent [105]. Surfactants from the blood form a 

coating around the gas core and promote the lifetime of the MB by greatly reducing the surface 

tension at the interface [72]. The first stable MB marketed was Albunex (Table 1). Albunex had 

a short shelf-life after intravenous injection (tens of seconds) [71]. 

 An encapsulating shell is necessary to sustain the gas cavity and to reduce both the 

diffusion of gas leaving the core and the surface tension [81]. The encapsulating shell increases 

the shelf-life (days to months) of the bubbles. The albumin coating forms an elastic solid shell 

around the gas core and is relatively stiff. Coating enhances the bubble’s stability by supporting a 

strain to counter the effect of the surface tension [72]. The transpulmonary passage of contrast 

particles became possible only after the addition of a MB shell, i.e., a surfactant (lipid, protein, 

e.g. denatured albumin or polymer, e.g. poly-butyl-cyanoacrylate [69]) coat, which stabilized the 

bubbles so that they did not attach to the extensive surface of lung endothelium capillaries [71, 

106]. Bubble size is a critical parameter that must be controlled in the range of 1-7µm preferably 

around 3µm [81]. At that point, intravenous administration of contrast became a feasible option 

for delivering contrast to left heart chambers [106], with some contrast reaching the myocardium 

vasculature. To circulate freely and avoid entrapment in the microvasculature, MB particles need 

to be smaller than red blood cells (typically <4.5µm in mean diameter) [71]. 

  The compressibility of gaseous particles is many orders of magnitude higher than that of 

liquids and solids. As a result, the scattering efficiency from gaseous particles is many orders of 

magnitude higher than that from other objects. According to Rayleigh Scattering the intensity of 
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MB increases as the fourth power of frequency [81]. For such small MBs, the surface-to-volume 

ratio is high, and air can easily escape and dissolve in the surrounding medium (as a result, 

ultrasound contrast is lost). Therefore, transpulmonary air-filled MBs with these first-generation 

shells did not circulate long after intravenous injection (tens of seconds) [71]. Air consists mostly 

of nitrogen that is able to move easily out of the thin-shelled bubbles, especially in cases of 

oxygen inhalation that had reduced blood levels of dissolved nitrogen [107, 108]. In 

physiological conditions, the blood is saturated with air under atmospheric pressure, whereas the 

air pressure inside the bubbles is larger than atmospheric pressure due to Laplace pressure. When 

air-filled MBs are infused intravenously they dissolve spontaneously [99]. Surfactants such as 

lipid (~3nm thick), protein (15-150nm thick) or polymeric shell (200-500nm thick) eliminates 

the driving force for dissolution of MBs in saturated media as the elastic response of the interface 

arrests the shrinkage of the gas core [99, 109]. To improve MBs’ stability, currently used 

strategy is to fill them with a sparingly water soluble gas (perfluorocarbons act as osmotic agent) 

instead of air [110]. 

 At present Levovist (Table 1) is the most widely studied MB contrast agent and the only 

one commercially available in several countries. Levovist (Table 1), like its forerunner Echovist 

(Table 1) (also by Schering), is made of galactose microcrystals generating air in the vial [74]. 

Adding water to the galactose powder forms a suspension in which air MBs adhere to the fine 

irregularities of the surface of the microcrystals remaining in the solid state, which dissolve after 

injection, releasing the gas MBs into the blood. Levovist and Sonovue (Table 1) have half-lives 

of 78 seconds and 5 minutes, respectively [81]. 

 MBs are manufactured by two general techniques: self-assembly stabilization of 

dispersed gas particles, and double-emulsion preparation with core extraction. The first 
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technique is for lipid or protein-based bubbles. Gases (air or fluorinated gas with low solubility) 

are dispersed in the aqueous medium that contains a lipid or surfactant micellar mixture or a 

protein that is denatured by sonication. Those components are deposited on the gas-liquid 

interface and stabilize the MB. Some preparations are stable on storage in the aqueous phase for 

many months. Alternatively, MBs can be rapidly frozen and lyophilized for extended storage in 

dry state. The addition of water results in a reformation of the MB aqueous dispersion 

immediately before use [72]. 

Table 1: Comparison of Commercially Available Contrast Agents 
Agent Bubble Size mean 

(range) 
Gas Shell Composition 

Albunex 4.5µm (1-10µm) Air Albumin 
Levovist 2-3µm (2-8µm) Air Galactose/ palmitic acid  
Echovist - Air D-galactose 
EchoGen 2-5µm (1-30µm) Dodecafluoropentane Stabilized surfactant 
Sonogen 2-5µm (1-30µm) Perfluoropentane Anionically charged surfactant 
Optison 4.7µm(1-10µm) Octafluoropropane Albumin N-acetyltrytophan, 

Caprylic acid 
Definity 1.5µm(1-10µm) Octafluoropropane Lipids: DPPA, DPPC, 

MPEG5000 DPPE 
Imagent 6µm Perfluorohexane Lipid: DMPC 
Sonozoid 2.4-3.6 µm (3.4µm) Perfluorobutane Phospholipids 
Sonovist 1-2 µm Air Cyanoacrylate (polymer) 
Sonovue 2.5µm(1-10µm) Sulfur hexafluoride Lipids: Macrogol 4000, DSPC, 

DPPG, Palmitric acid 
Sonidel MB101 2.7 µm Perfluorocarbon Stabilized Lipid 
BG1135 2.9µm(1-8µm) Air Polymer 
BR14 2.5-3 µm Perfluorobutane Lipid 
BR38 <10µm Perfluorobutane Phospholipids 
PB 127 4.0µm(3-5µm) Nitrogen Biodegradable polymer bilayer 
PESDA 4.7 µm Perfluorocarbon Albumin 
Artenga 2.5 µm Variable Lipid 
AI-700 2µm Perfluorocarbon Poly-L-lactide co glycolide 
Cardiosphere/
Bisphere 

4µm Nitrogen Polylactide/Albumin 

Targeson 2.5 µm Perfluorocarbon Surface-modified Lipid 
Adapted from Liu, Y. et al. 2006 [69], Alzaraa, A. et al. 2012 [111] and Nomikou, N. and 
McHale, A.P. 2010 [112]) 
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Coated Microbubbles filled with Inert Gases (Third Generation) 

 Since 1997, contrast agents have been further stabilized by replacing the air core with 

high-molecular-weight inert gases or water soluble fluorinated gases [71] such as 

perfluorocarbons [72] and sulfur hexafluoride [68] which have a lower solubility and diffusivity 

in aqueous liquids compared with air [104]. Perflurocarbons act as osmotic agents and would 

dilute the other gases inside the bubbles thereby also reducing their partial pressure [81, 113]. 

This effect counterbalances the Laplace pressure and blood pressure [81]. 

 The gas core is generally surrounded by a protein (albumin), lipid, surfactant, or 

biocompatible polymer surfactant with a diameter ranging from 2 to 500nm. This shell improves 

stability against gas loss, dissolution, and MB coalescence, and produces a more standard size 

distribution [68]. The gases such as perfluorocarbons are exhaled through the lungs. Examples of 

this kind of agent are Optison (GE Healthcare, Chalfont St Giles, UK), which contains 

octafluoropropane and an albumin shell; SonoVue (Bracco, Milan, Italy), which has a sulfur 

hexafluoride core and a phospholipid coating [72]; Definity/Luminity (C3F8), Imagent (C6H14) 

and Sonazoid (C4F10) which possess a lipid stabilizer shell [71] (Table 1).  

 

Different types of Coated Microbubbles 

 Shell coating is critical for stabilizing MBs because the configuration and conformation 

of the shell material determines its stiffness which increases its  resistance to rupture by US as 

well as its clearance efficiency by the reticuloendothelial system [68]. The shell can be stiff with 

albumin, lysozyme and polymers or more flexible with lipid or phospholipid. Its thickness can 

vary from 10 to 600nm [81]. Surface tension, shell viscoelasticity and permeability, surface 

charge density, biodegradability, ligand density and payload capacity are properties that largely 
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depend on the choice of the surface-active agent, i.e. lipid, protein or synthetic polymer. MBs’ 

surface properties and size play a crucial role in prolonging the circulation life of MBs as 

phagocytic uptake depends on surface opsonization [114] and particle size. The larger sized MBs 

are eliminated more rapidly. Dendritic cells and macrophages are assigned to the clearance of 

MBs in the bloodstream [99]. The study of MBs’ biodistribution carried out by Tartis et al.[115] 

using Positron emission tomography (PET) showed that MB shell material accumulates in the 

spleen through size dependent filtration mechanisms. Immunogenicity, targeting efficiency, 

availability, potential for imaging and drug release upon ultrasound irradiation are functional 

properties consequently correlated with MBs’ structural features [99].

 

Figure 5. Schematic representation of different coated microbubbles. A) Polymer coated 

microbubbles. B) Phospholipid coated microbubbles. C) Protein coated microbubbles. 
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Interaction of Ultrasound and Microbubbles 

 Acoustic signals from MBs is dependent on the compressibility of the gas, bubble size, 

shell thickness, shell viscosity, shell density, properties of the surrounding medium, US 

frequency and power of the applied ultrasound [116, 117].  

 MBs owe their functionality to the gas core, which can compress and expand easily in 

response to the acoustic pressure change (Fig. 8) [72]. This change can result in 100-fold volume 

change and 4-5 fold diameter change [71]. Thus, when exposed to an ultrasound field, a gas 

bubble will undergo volumetric oscillations in response to the varying pressure (Fig. 8) [74, 

118]. The MB oscillations also results in a high backscattering of the ultrasound wave. The 

amplitude of these oscillations will be much larger than those of a very weakly compressible 

body such as a red blood cell [79]. Thus, despite their similarity in size, the MB will produce 

much stronger US echoes [74, 118]. Moreover, the MBs can act as resonant systems with 

resonant frequencies within the same range as medical ultrasound frequencies [72]. 

 Eventually with increasing pressure from the US the MBs will undergo violent collapse, 

releasing a shock wave and often fragmenting into smaller bubbles (Fig. 6, 7 & 8B) [119]. This 

process is variously referred to as inertial, unstable, or transient cavitation (Fig. 8B). Transient 

and unstable are both slightly misleading terms since a bubble can collapse repeatedly [120] 

without fragmenting, but inertial cavitation means the collapse of a gas cavity with significant 

amounts of energy being released (Fig. 8B) [72]. Broadband emissions are generated during 

inertial cavitation where bubbles undergo large radial oscillations that are dominated by the 

inertia of the surrounding liquid [121]. During compression of MB there is a rise in pressure and 

temperature within the bubble, but during an inertial collapse the temperature may reach several 

thousand degrees centigrade or more [122]. These extreme conditions are confined to the center 
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of the bubble; however, the bubble will have expanded again before any significant heat transfer 

can occur. Highly reactive chemical species may be produced such as free radicals and toxic 

chemicals such as hydrogen peroxide (H2O2) [123] at relatively high intensities [124].   

 

 

Figure 6. Optical frame images and streak image of ultrasound contrast agents. Optical frame 

images and streak image corresponding to the oscillation and fragmentation of a contrast agent 

microbubble, where fragmentation occurs during compression. The bubble has an initial 

diameter of 3 μm, shown in A. The streak image in h shows the diameter of the bubble as a 

function of time, and dashed lines indicate the times at which the two-dimensional frame images 

in A–G were acquired relative to the streak image. (Adapted from Chomas et al. American 

Institute of Physics, 2000 [125].) 
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Figure 7. Schematic representation of lipid (left column) and polymer (right column) 

microbubble interaction with ultrasound of increasing intensity (top to bottom). (Adapted from 

Hernot and Klibanov, Advanced Drug Delivery Reviews, 2008 [68]). 

 In addition to a temperature rise, “streaming” currents may also be set up as ultrasound 

propagates through a liquid as a result of momentum transfer [126]. A similar effect can occur on 

a correspondingly smaller scale around MBs undergoing stable oscillations (Fig. 8A) [127]. If 

the bubble is sufficiently close to a surface, such as a cell membrane, these circulating flows may 

give rise to shearing stresses which have been hypothesized as the means by which uptake of 

therapeutic components is enhanced [128]. Micro-streaming (Fig. 8A) will also contribute to 



35 

circulating material in the target region, which is extremely important in the context of 

therapeutic applications [129]. At higher amplitudes of oscillation, microstreaming can cause 

significant damage to cells and produce mechanical erosion [79, 130, 131]. In addition when a 

bubble rapidly collapses near a boundary, this collapse is asymmetrical. A high-speed liquid jet 

may form projecting through the bubble towards the boundary. This phenomenon is known as 

microjetting (Fig. 8C) [81]. Microstreaming and microjetting generate moderate shear stress on 

inducing hyperpolarization of the cell membrane by modifying the electrophysiologic cell 

activities and enhancing the cell’s permeability (Fig. 8) [132]. For drug-loaded MBs, 

microjetting would be the ideal release mechanism (Fig. 8C), since it effectively produces small 

holes within a cell membrane (sonoporation) which facilitates the drug uptake [133]. The rupture 

size is large enough to allow the passage of non-deformable particles up to 0.5µm in diameter, 

that depends on several parameters including the MB size, shell composition, acoustic pressure, 

and intravascular pressure [81]. 

 MBs and ultrasonic waves undergo a scattering interaction by absorbing the acoustic 

energy [81]. MBs in a liquid are forced to oscillate with only a relatively small to moderate 

increase and decrease of radius. The mechanical biological effect is estimated by certain 

ultrasound parameters and is called mechanical index (MI).  At low MI<0.1, MBs undergo 

alternate equal expansion and contractions symmetrically and in a linear manner [81]. At a 

slightly higher MI of 0.1 to 0.3, the bubble becomes somewhat resistant to compression than to 

expansion which results in stable or non-inertial cavitation (Fig. 8A & B) and leads to non-linear 

oscillations and backscatter at a variety of frequencies (harmonics, sub-harmonics and ultra-

harmonics) [68, 80]. When the bubbles are collapsing the kinetic energy of the bubble surpasses 

its surface energy and fragments into a number of smaller bubbles. Fragmentation (Fig. 6, 7 & 
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8B) has been exclusively observed with contrast agents with thin, elastic shells [134]. At even 

higher acoustic pressures (MI 0.3–0.6), MBs undergo forced expansion and compression that 

lead to its destruction by different methods such as outward diffusion of the gas during the 

compression phase, diffusion via large shell defects, or complete fragmentation of the shell and 

the gas core (Fig. 6, 7 & 8B)[125, 135]. MBs’ fragmentation can instead produce violent effects 

which causes cell membrane permeability [136] and lysis [133](Fig. 8B). Acoustical experiments 

are performed on a population of MBs, therefore they do not show how individual MBs respond 

in an acoustic field. Experimental evidence is obtained with high-speed camera microscopy of 

insonated bubbles [68]. These optical frame or streak images show the oscillating and 

fragmentation changes of a 3μm MB (Fig. 6) [125].   

 

Figure 8. Schematic representation of ultrasound causing microbubbles to behave in different 

ways that leads to endothelial pore formation and increase vascular permeability. A) Stable 

cavitation leads to expansion and contraction of microbubble that generates shear stress known 

as microstreaming. B) Inertial cavitations lead to implosion of the microbubbles that allow for 
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the release of the bubble contents or fragment into smaller microbubbles. C) Bubbles generate 

microjets when the resonance diameter is larger than the blood vessels that damage the 

endothelial lining. 

 
 Coated MBs undergo damping as dissipation of viscous energy. Damping reduces the 

amplitude of the bubble oscillations and it widens the resonance curve of the bubble [72].  MB 

shell material and stiffness also play a major role in determining the type of explosion or 

implosion that may occur when exposed to acoustic energy. Lipid or protein MBs and polymer 

MBs behave differently and depend on the amplitude of ultrasound to which they are exposed 

[68, 134].  The regime of phospholipid coated MBs depends on bubble radius and the 

concentration of phospholipid molecules. Phospholipid MBs exist in buckled, elastic and 

ruptured regime. The bubble is compressed when the coating is condensed which leads to 

buckling, and with the bubble coating in such a tensionless state, the resulting surface tension is 

zero (Fig. 6D) [72]. When the bubble is expanded (Fig. 6B), the coating may be ruptured and the 

gas core will be exposed to the surrounding liquid, changing the surface tension of the gas–liquid 

interface. In the intermediate elastic regime, the coating is assumed to behave elastically where it 

is relatively stiff. During the elastic regime, its resonance frequency is high and it will not easily 

oscillate when driven below resonance [137]. An increasing acoustic pressure can modify the 

concentration of lipid molecules on the bubble’s surface, forcing the bubble into the buckling 

regime, which suddenly reduces its stiffness [72]. 

 An oscillating phospholipid MB would most likely lead to stable or non-inertial 

cavitation (Fig. 8A & B). For MBs with a thin shell such as Optison (albumin shelled MBs) 

fragmentation is the major mechanism for bubble destruction [116]. Microjets (Fig. 8C) are also 

generated during cavitation of thin-shelled MBs [91] which produce vessel wall ruptures in vivo 
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and extravasation of nanoparticles into the interstitial space. Polymeric shells are stiff and will 

not oscillate actively at low US intensity (Fig. 7). The shell cracks as US pressure is increased 

above  the threshold value resulting in the escape of the encapsulated gas (Fig. 7) [68]. This type 

of MB destruction is called sonic cracking (Fig. 7). However, thick shelled rigid albumin MBs 

also undergo sonic cracking [116, 138]. For bubbles containing drugs in the gas phase (anesthetic 

gases, nitric oxide, oxygen) [139, 140], sonic cracking is a suitable mechanism. Fragmentation 

(Fig. 7), microjetting (Fig. 8) and sonic cracking (Fig. 7) can be effective mechanisms in drug 

delivery and therefore their occurrence should be finely predicted and tuned [81, 141]. 

 

  



39 

Bio-Effects 

 US assisted drug delivery is a very complex process that relies on biochemical and 

mechanical processes that occur during sonoporation which is defined as mechanical disruption 

of the plasma membrane [80, 81] (Fig. 9).  

 

Figure 9. Ultrasound interacts with the microbubble, causing oscillation and eventual 

destruction, leading to the release of genetic material. The accompanying cavitation produces a 

local shockwave that increases cellular permeability, allowing transcapillary passage of 

macromolecules through small endothelial perforations. (Image courtesy of C.R. Merritt, MD, 

Thomas Jefferson University Hospital, Philadelphia, PA.) (Adapted from Howard, Applied 

Radiology, 2004, [142].) 
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US energy can penetrate or “push” materials into skin, blood clots or other tissues [143]. Shear 

stress can be generated on the membrane of an endothelial cell through the  destruction of MBs 

that causes high-energy microstreams and microjets which increases the permeability of blood 

vessels promoting the extravasation (Fig. 10) of high molecular weight drugs [99]. This increase 

in permeability is probably due to transient holes in the plasma membrane and possibly the 

nuclear membrane [69]. Thus, acoustic cavitation is a pre-requisite in promoting the physical or 

chemical release of drugs from carriers (MBs), or in promoting the transport of drugs into cells 

(Fig. 10). US-induced passage of materials from the luminal to the adventitial side of vascular 

tissue (Fig. 9 & 10) have been proposed in the literature such as paracellular widening of inter-

endothelial clefts and tight junctions, free passage through injured endothelial lining and 

transcytosis via fenestration and channel formation [94] (Fig. 11).  

 
Figure 10. Enhanced drug and gene delivery achieved with the combination of particles and 

ultrasound. Insonation of circulating microbubbles in the chorioallantoic membrane model 
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results in small vascular defects, through which a fluorescent dye is transported, reproduced with 

permission from (27). (a)–(f) are a sequence of images acquired from 1.00-MHz center 

frequency insonation at a peak negative pressure of 1.3 MPa. (a) was acquired before insonation, 

(b)–(f) were acquired 0.06, 0.12, 1.24, 2.24 and 3.24 seconds after insonation began, 

respectively, demonstrating the transport of the fluorescent probe from the vasculature to the 

tissue interstitium.(Adapted from Ferrara et al., American Chemical Research, 2009[144].) 

 
Figure 11. Ultrasound mediated drug delivery through different means of transport. 

Sonoporation allows for the mechanical disruption of the endothelial cell membrane. 

Intracellular trasnsport allows for the uptake of microbubbles through endocytosis that transports 

the microbubble through to the interstitium. Paracellular transport allows for the opening of the 
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tight junctions or separation of bonds that hold the endothelial cells together which causes pore 

formation in the blood vessel wall.  

 In vivo studies suggest that a MI of 0.4 has been shown to be detrimental to the plasma 

membrane and microvasculature [145]. However, low intensity stable cavitation may not be 

adequately effective in triggering the drug delivery [81]. Reported bio-effects in vivo include 

hemolysis, damage to the microvasculature, opening of the blood brain barrier, effects on cardiac 

rhythm and thrombolysis [146]. The vessel wall structure has also been found to influence the 

degree of rupture [147]. The fore mentioned mechanisms have been proposed for the blood brain 

barrier (BBB)[148], but are also supported by studies in other tissue beds, including renal [149], 

prostate [150] and skeletal muscle [147] tissues. 

 

Sonoporation 

 Sonoporation refers to the localized, mechanical disruption of plasma membrane (Fig. 

11) [80]. Van Wamel et al., [151] using high speed imaging, showed transport of propidium 

iodide (PI) against endothelial cells as a direct correlation between cell deformation and resulting 

cell membrane permeability with in vitro studies. According to van Wamel et al. [93] poration is 

a transition of hydrophobic to hydrophilic pores. This transition creates cylindrical pores when a 

rotation of the polar heads brings a hydrophilic surface to the pore (Fig. 12). When US is applied, 

the adhered MBs on the transmembrane generate a critical ‘shear’ force, which leads to 

formation of pores once the membrane breakdown force is exceeded. Rapidly oscillating MBs 

undergo rapid expansion and compression (Fig.12) due to changes in the volume of the gases 

inside the bubble. The oscillating MBs generates fluid flow over the cell surface and is termed as 

microstreaming (Fig.13), which is responsible for the disruption of cell membrane by tearing the 
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lipid bilayer membrane open [130]. Cells can withstand compression better than elongation, 

which may act as the main component that determines pore formation. Scanning electron 

microscopy studies have already shown that membrane poration occurs after US and MBs 

treatment [152]. Mehier-Humbert et al. [152] showed an efficient delivery of FITC-dextran (77-

164 KDa) or particles of 25nm. They showed cell membranes with a pore size distribution up to 

75nm with ~60% of cells being positive for delivery of the particle. Pore formation allows for 

direct transfer of molecules into the cytoplasm. Van Wamel et al. [151] have also shown that PI 

does not enter a cell 1 min after the US exposure. These results support the general idea that the 

pores reseal quickly upon termination of US. Mehier-Humbert et al. [152] showed that almost all 

the routes of entry had closed 5 seconds after termination of US. The action of MBs on cells is a 

mechanical one and can be as important as chemical stimuli in determining vascular fate or 

pathological state. The most important biomedical application of the sonoporation technique is 

that it allows the introduction of membrane-impermeable xenomolecules (synthetic molecules) 

such as dyes, hormones, proteins, plasmids, etc. into living cells [93]. 

 
Figure 12. Proposed model of the oscillating microbubble enforced pore formation in the cell 

membrane. The pushing and pulling behavior of the microbubble causes rupture of the cell 

membrane creating a hydrophilic pore allowing trans-membrane flux of fluid and 

macromolecules. (Adapted from van Wamel et al., Journal of Control Release 2006 [93]). 
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Paracellular transport 

 Drugs can be delivered by paracellular transport between functional endothelial cells with 

MBs. Transport by low-frequency US is strongly supported in the literature [153]. When a sound 

wave is propagated through a liquid medium, steady currents (Fig. 13) are set up in the direction 

of beam as a result of momentum transfer [126]. This acoustic streaming (Fig. 13) occurs around 

MBs undergoing stable bubble oscillations (Fig. 13) within the US field growing in size via 

rectified diffusion [154]. These eddying flows may, in turn, impose shear stresses on nearby 

surfaces, such as cell membranes, and it is thought that this may promote the uptake of 

therapeutic components [130, 155]. When a MB oscillates near a vessel wall (Fig. 13), its shell is 

estimated to travel at speeds on the order of 250 m/s [156], either by directly perturbing nearby 

structures or by causing local fluid convection [157]. The acoustic radiation forces cause bubbles 

to move in the direction of the wave propagation by bringing them in contact with vessel 

endothelium [158]. Radiation pressure may be involved in Focused US + MBs-based blood brain 

barrier opening through activating the stretch-sensitive or mechanosensitive (MS) ion channels 

in the vascular endothelium [159]. MS channels are now known to be implicated in many basic 

cell functions [160]. During localized elongation of cell membranes the MS channels are 

activated by the conformational changes [161, 162]. The resulting openings are reversible [163].   

 Endothelial cell morphology can vary significantly between normal and diseased organs. 

The tissue microenvironment surrounding blood vessels seems to control the endothelial cell 

phenotype in vivo [164]. Thus the blood vessels or microvasculature in the brain differs from 

other organs. BBB is known to restrict the paracellular translocation of large hydrophilic 

macromolecules and toxic compounds into the brain via specific membrane located transport 

systems [165]. When MB oscillations occur in the cerebral microcirculation, the BBB is 
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disrupted, causing drug extravasation due to breakdown of transmembrane tight junction proteins 

that regulate the paracellular permeability of the endothelial cell layer [166].  

 

 

Figure 13. Possible mechanisms for blood–brain barrier disruption via ultrasound + 

microbubbles. Assuming that the effect is not due to bubble collapse (inertial cavitation), 

possible effects include stimulation of the endothelial cells via radiation force on the bubbles, 

bubble oscillation or from microstreaming of the fluid around the bubbles. (Adapted from 

Vykhodtseva et al, Ultrasonics, 2008 [159].) 

 

Transcytosis/Intracellular transport 

 MB cavitation can also provoke drug transport through a vascular endothelial cell. 

Transcytosis or intracellular transport (Fig. 11), in the context of drug delivery, consists of the 

drug being endocytosed at the luminal surface of the endothelial cell membrane [80]. 

Transcytosis can be achieved through either a receptor-mediated fashion [167] or by invagination 

caused by cavitation with US [168]. Ghitescu et al. [167] showed specific adsorptive binding of 

albumin complexes to plasmalemmal vesicles and clustering in uncoated pits. Plasmalemmal 

vesicles allow endothelial cells to transport molecules, such as proteins, from the blood that are 

too large to diffuse through cell junctions or fenestrae, and this transport takes place both by 

vectorial transcytosis (vesicles) and by connective transcytosis (channels) (Fig. 11). Ghitescu et 

al [167], also demonstrated that albumin can stimulate endocytosis and transcytosis (Fig.11) in 
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mouse pulmonary and myocardial endothelium. Thus, albumin coated MBs could potentially 

undergo endocytosis through similar process. Subsequent transportation through several 

intracellular compartments and secretion from the cell at the basolateral aspect [169] results in 

delivery to vascular tissue. MBs could undergo endocytosis via caveolar, an alternative pathway 

for targeted drug delivery [170]. Endocytosis through caveolar is a receptor-mediated process via 

receptor-targeted drug vesicles [80, 171]. 

 According to Chen et al. [168], invagination occurs when bubbles collapsed near the 

vessel wall that results in the vessel wall being pulled inward toward the lumen. Invagination 

causes higher strain on the vessel wall than distention resulting in vessel rupture [168]. This 

localized mechanical destruction of the endothelial membrane results in endocytosis and 

subsequent transcytosis (Fig.12). Cavitating MBs near the cell membrane can create a pore for 

increased membrane permeability to macromolecules, genes such as wt-p53 (plasmid vector) 

[172] and extracellular ions such as Ca+2 [173], which is repaired by cellular mechanisms within 

seconds [174]. Meijering et al. [95] demonstrated that endocytosis plays a key role in UMTD of 

macromolecules sized between 4 and 500 kDa. Dextran molecules of 155 and 500 kDa were 

mainly localized in vesicle-like structures after UTMD as a result of macropinocytosis, clathrin-

mediated and caveolin-mediated endocytosis. MBs also showed increased membrane 

permeability to extracellular ions is upregulated by endocytosis due to the calcium flux into the 

cell [95]. The types of MB oscillations required to observe these effects have also been 

investigated. Inertially cavitating MBs near the cell membrane form 1 - 200 nm pores due to 

localized tensions [175]. These pores are capable of resealing bifunctionally by either rapid 

phospholipid rearrangement or gradual, exocytosis-mediated membrane tension changes, which 

restore membrane integrity [173]. Thus, US enhanced endocytosis is an important pathway for 



47 

targeting drug delivery by UTMD [80]. 

 
Enhanced Permeability and Retention Effect 

 UCAs are typically used to study the vasculature in animals and humans, thus employing 

them to study the aberrant tumor vasculature due to angiogenesis is a natural transition. 

Perfluoropentane filled silica nanoshells and microshells have been used to selectively image a 

tumor in a mouse ovarian tumor model [176]. Tumor angiogenesis is characterized by branching 

vessels with irregular diameters ranging from 10 to 200μm [177] and a lack of defining 

structures such as arterioles, capillaries, or venules [178]. Tumors induce angiogenesis to 

increase their nutrient and oxygen supply. The particular property of angiogenic vessels is their 

rapid growth from established vessels renders them “leaky” and defective. According to 

Pasqualini et al. [179] and Li [177], the tumor microvasculature has a vascular pore cutoff size 

from as low as 380nm up to 780nm, and the endothelial cells are misaligned or have large 

fenestrations. This phenomenon, which is generally referred to as the Enhanced Permeability and 

Retention (EPR) effect, can achieve high local concentrations of nano-encapsulated drugs at a 

tumor site (10- to 50- fold higher than in normal tissue) [99]. US exposure can enhance the size 

of these leaky vascular pores allowing for micron sized bubbles to collect at the tumor site. At 

the breast cancer (SK-BR-3) tumor site Zhao et al. [180], with phospholipid MBs, showed 

membrane pore diameter of 1-2µm with US exposure of 30 sec, diameter of 2-3µm with US 

exposure of 60 seconds and diameter of 3-5µm with US exposure greater than 60 seconds. Thus 

the EPR effect seen in tumors can be extremely beneficial in treating cancer.   

 Submicron bubbles could show higher intracellular uptake than microsized bubbles, 

allowing drug-release in different cellular compartments such as cytoplasm and nucleus [99]. 

The ability to synthesize nanobubbles has opened up further opportunities to deliver therapeutic 
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agents which require targeted extravasation into the tissues as micrometer sized MBs are 

typically too large to exit the vasculature. A prerequisite for this process is that the nanocarrier 

stays in the blood long enough to slowly accumulate in the tissue of interest with affected and 

leaky vasculature [99]. Nanometer sized bubbles can potentially exhibit an improved circulating 

lifetime [178]. The radiation force generated by insonofication [181] with the medical 

ultrasonography equipment can force the nanobubbles or MBs towards pores in these vessels and 

induce penetration of nanobubbles or MBs through the pores. The penetration of MBs results in a 

higher concentration of contrast in the tumor, a better visualization of the acoustic imaging and a 

targeted delivery of drug payload. In addition, the drug containing nanobubbles can be made 

slowly biodegradable, thus delivering their payload at a controlled rate [99]. These properties of 

the micro- or nano- bubbles make them an efficient drug delivery system for treating cancer. The 

most successful nano-bubble system consists of liquid paclitaxel loaded into perfluorocarbon 

emulsions that become echogenic when accumulated at the site of interest such as ovarian, breast 

and pancreatic cancer [182, 183]. 

 

 

 

 

 

 

 

 

 



49 

Uses of Microbubbles 

 Cavitation of MBs and its subsequent bio-effects on the vasculature and tissue cells 

shows the potential of using MBs as delivery vehicles. The chemical, physical and structural 

properties of the MBs also enhance the notion of using them to deliver therapeutic agents. Drugs 

can be incorporated into the MBs in a number of different ways, including binding of the drug to 

the MB shell and attachment of site-specific ligands. Drugs can also be imbedded in the 

membrane or loaded internally with the therapeutic agents and gas (Fig. 14).  

 

 

Figure 14. Manipulation of the microbubble shell for gene and/or drug delivery. (A) Drugs (red 

diamonds) may be attached to the surrounding microbubble membrane. (B) Materials may be 

imbedded in the membrane. (C) Bubbles may be loaded internally with the therapeutic agents 

and gas. (D) Hydrophobic drugs may be incorporated into an oily emulsion that forms a film 

around the bubble, which is then surrounded by a stabilizing membrane. (Adapted from Unger et 

al., European Journal of Radiology, 2002 [184].) 
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Subsequently, hydrophobic drugs may be incorporated into an oily emulsion that forms a film 

around the bubble, which is then surrounded by a stabilizing membrane (Fig. 14). 

Perfluorocarbon-filled MBs act as carriers of these agents until the site of interest is reached as 

they are sufficiently stable for circulating in the vasculature as blood pool agents [185]. 

Ultrasound applied over the skin surface can then be used to burst the MBs at this site, causing 

localized release of the drug [172, 186-188]. The use of US and MBs lowers the concentrations 

and reduces the systemic side effects of hazardous drugs like cytotoxic agents thereby improving 

the therapeutic index [185]. Thus, there is an increasing interest in developing noninvasive 

delivery methods for gene therapy and chemotherapeutics. 
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CHAPTER III : ULTRASOUND TARGETED MICROBUBBLE DELIVERY IN 
PROSTATE CANCER CELLS 

 
ABSTRACT 

Background 

The use of human adenoviruses (hu-Ads) in gene transfer studies is limited because of their 

immunogenic nature. To circumvent this limitation we have developed a novel approach 

constituted of hu-Ads encapsulated inside microbubbles (MBs). The melanoma-differentiation-

associated-gene-7 or interleukin-24 (mda-7/IL-24) is a tumor suppressor with pro-apoptotic 

activity against several cancers. However, to translate the site-specific gene transfer of Ad.mda-7 

complexes by ultrasound-targeted microbubble destruction (UTMD) from the bench to the 

bedside, studies involving the use of immune-deficient animal and immune-competent mice 

models are required. 

 

Hypothesis 

It has been shown that transfer of genes to mouse cells using hu-Ads is dependent on the 

expression of Coxsackie and Adenovirus Receptor (CAR) and certain integrins, which mediate 

hu-Ad attachment and internalization. Our hypotheses are that the murine derived prostate cancer 

cells will express CAR and/or a,ß integrins and will be transduced by hu-Ads. Microbubbles will 

protect the viruses from inactivating substances such as complement. UTMD will enhance gene 

transfer in both DU145 and murine PC cells regardless of complement rich FBS media.  

 

Methods 

We investigated the expression of CAR and a,ß integrins in murine and control human DU145  

PC cells by flow cytometry analysis. We tested the infectivity of Ad.GFP (green fluorescent 



52 

protein) and Ad.mda-7/IL-24 on both murine and DU145 prostate cancer cells. Viral burst assay 

was carried out on murine and DU145 PC cells with the CTV.Mda-7 oncolytic adenovirus to 

measure viral replication. We also tested the microbubble delivery of Ads with ultrasound in cell 

culture. Western blot analysis confirmed mda-7 protein expression following Ad-transduction. 

Annexin-V studies assessed the pro-apoptotic effect of the Ad.mda-7/IL-24.  

 

Results 

Our studies showed that cells express CAR receptor, a,ß integrins and that Ad.GFP and Ad.mda-

7/IL-24 transferred their transgene in the murine and human DU145 prostate carcinoma cells. 

Murine PC cells were unable to replicate the CTV oncolytic virus. Additionally, mda-7/IL-24 

significantly increased the apoptotic rate of the murine and DU145 transduced cells. 

Microbubble delivery of Ads with ultrasound in cell culture enhances gene transfer into the cells 

regardless of the complement rich FBS media.  

 

Conclusion 

Our study demonstrated the feasibility of using human DU145 prostate adenocarcinoma cells and 

TRAMP-C2 cells derived from a murine model of prostate cancer to translate the ultrasound-

mediated microbubble Adenovirus delivery system that we have developed. 
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INTRODUCTION 

 For more than four decades, human adenoviruses have served as an excellent model 

system to study molecular mechanisms controlling cell cycle progression and cell death. More 

than 60 types of HAdV have currently been identified and divided into eight species, designated 

A, B1, B2, C, D, E, F and G. Members of the different species use different receptors for virus–

host interactions and some are currently characterized as potential viral vectors in cancer gene 

therapy. HAdV show strict host specificity. Murine cells lack some of the receptors needed for 

HAdV infection such as the Coxsackie and Adenovirus Receptor (CAR), thus, murine cells are 

generally refractory (non-permissive) for HAdV infection and replication, although a very low 

level of HAdV infection and replication has been described in some mouse cells [189, 190]. 

 Melanoma differentiation associated gene-7 also called interleukin-24 (mda-7/IL-24) is 

well-known for its pro-apoptotic, anti-angiogenic, radio-sensitizing, immune-stimulatory 

properties and bystander activity on distant tumors [53, 191-197]. Mda-7/IL-24 is a 

multifunctional suppressor gene belonging to the IL-10 family of cytokines [198, 199]. When 

delivered by HAdV vector, mda-7/IL-24 induces apoptosis selectively in almost all cancer cells 

while leaving normal cells unharmed [195]. Mda-7/IL-24 can be expressed and secreted from 

naïve normal and cancer cells thereby enhancing its apoptotic activity against primary and 

metastatic cancer [194]. Thus, HAdV expressing mda-7 should provide both tumor selectivity 

and adequate induction of newly synthesized mda-7/IL-24 [53]. 

 Gene therapy by adenoviral vectors has shown promising results in treating locally 

advanced cancers; however, due to their immunogenicity they trigger both adaptive and innate 

immune responses. The antigenic nature of Ads leads to their rapid inactivation by neutralization 

antibodies and clearance by the immune system. Ad vectors elicit an innate immune response 
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through the myeloid differentiating factor 88 (MyD88)/Toll-like receptor (TLR)-9 resulting in 

the production of type I interferons (IFNs), interleukin (IL)-6 and IL-12 inflammatory cytokines 

[200, 201]. Additionally, unmodified viruses are generally non-specific in their action and this 

limits their use to direct target tumor or organ injection [53]. To circumvent these limitations we 

developed a novel approach wherein Ads are encapsulated inside the shell of acoustically active, 

lyophilized, lipid-encapsulated, perfluorocarbon microbubbles (MBs) (ultrasound (US) contrast 

agents), which act as delivery vehicles for a site-specific gene transfer system. MBs protect the 

viral payload from detection and rapid degradation by the hosts’ immune system allowing for an 

intravenous (IV) injection rather than intratumoral (IT) injection [53, 202]. US breaks open the 

MB/Ads complexes by inducing cavitation, which allows Ads to transfer their transgene only to 

the sonoporated region. Cavitation of the MBs creates small shockwaves that increase cell 

permeability by forming temporary micropores on the cell surface bypassing the receptor-

mediated dependence of HAdV. Our novel viral delivery technique mediated by MB and US 

brings new hope to the frontier of gene therapy and its use in clinical settings. 

 In order to facilitate the translation of this technology into human application, we 

envision testing an adenovirus carrying mda-7 (INGN 241) that is already in phase-I and -II 

clinical trials in patients with multiple solid tumors (none of which is of prostate origin) in 

treating PC cells [203]. In vivo studies involving the use of immune-deficient and immune-

competent PC mice models are required. Thus, we studied the capacity of human Ad.mda-7/IL-

24 to infect mouse PC cells (TRAMP-C2) derived from immune-competent mice and compared 

it to human PC (DU145). We also studied the effect of Ad.mda-7/IL-24 to increase the apoptotic 

rate of TRAMP-C2 and DU145 prostate cancer cells following mda-7 gene transfer. Lastly, we 

tested US guided MB assisted gene delivery of reporter Ad.GFP in both murine and human PC.   
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MATERIALS AND METHODS 

Cell Lines and Cell Culture 

The DU145 (human prostate adenocarcinoma), TRAMP-C2 (mice prostate 

adenocarcinoma) and human kidney embryonic 293 cell lines were obtained from the American 

Type Culture Collection (ATCC, Rockville, MD). DU145 cells were grown in RPMI 1640 

(Hyclone, Waltham, MA) supplemented with 10% fetal bovine serum (FBS) (Hyclone, 

Waltham, MA), and 100 units/mL penicillin supplemented with 1 mg/mL streptomycin (both 

from Hyclone, Waltham, MA). The 293 cells were grown with Dulbecco’s modified Eagle’s 

medium (Hyclone, Waltham, MA) supplemented with 10% FBS (Hyclone, Waltham, MA). 

TRAMP-C2 cells were grown with Dulbecco’s modified Eagle’s medium (Hyclone, Waltham, 

MA) supplemented with 5% FBS (Hyclone, Waltham, MA), and 100 units/mL penicillin 

supplemented with 1 mg/mL streptomycin (both from Hyclone, Waltham, MA). All cells were 

grown at 37ᴼC, in a 5% CO2/95% atmosphere incubator. 

 

Cytological Observations 

 The cells were examined under an inverted Olympus IX70 microscope (Olympus 

America, Inc. Melville, NY). Fluorescence images were captured with Sensicam QE camera 

(Cooke Co., Auburn Hills, MI) and managed with the SlideBook 3.0 software (Intelligent 

Imaging Innovations Inc., Denver, CO). 
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Adenoviral Production and Purification 

 Ad-GFP, which expresses the green fluorescence protein gene under the strong 

cytomegalovirus (CMV) constitutive promoter was generated using the AdEasy system 

(Carlsbad, CA); the conditionally replication competent cancer terminator virus CTV.Mda-7 

(Ad.PEG-E1A-mda-7) [18, 204, 205] and Ad.mda-7 [206] were amplified and purified with the 

BD Adeno-X virus purification kit (BD Biosciences, Mountain View, CA) following 

manufacturer’s directions. Viral titers were determined by a plaque assay and the titer was 

adjusted to 1.2x1012 plaque-forming units (pfu)/mL as described [206]. CTV.Mda-7 (Ad.PEG-

E1A-mda-7) and Ad.mda-7/IL-24 were provided by Dr. Paul Fisher (Virginia Commonwealth 

University, Richmond VA). Each viral stock was propagated and purified from 293 cell cultures. 

Cells were harvested 24-36 hours after infection, pelleted and re-suspended in heat-inactivated 

media. 293 cells were lysed by a three-freeze/thaw cycle method. Cell debris was removed. 

Viruses were purified by chromatography followed by dialysis. Viruses are aliquoted and stored 

at -80°C. Viral titers were determined by a plaque assay. Ad transductions were performed using 

10, 25, 50 MOI Ads, in RPMI-1640 media with 2% Fetaclone-III heat-inactivated FBS 

(Hyclone, Thermo Scientific, Waltham, MA) and in with DMEM media with 2% Fetaclone-III 

heat-inactivated FBS (Hyclone, Thermo Scientific, Waltham, MA). Cells were collected after 

24- or 48-hours.  

 

Viral Burst Assay 

 HEK 293 cells were used as control. HEK 293 cells, DU145 cells, TRAMP-C2 cells were 

infected with replicative HAdV (CTV.Mda-7) at 100 pfu/mL and 1,000 pfu/mL. Filtered 

transfection supernatants and viral particles present in the cells were collected at both 24 and 48 
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hours post-transfection. Cells were harvested 24- and 48- hours after infection, pelleted and re-

suspended in heat-inactivated media. 293 cells were lysed by a three-freeze/thaw cycle method. 

Cell debris was removed. Viruses are aliquoted and stored at -80ᴼC. The collective viral particles 

were tittered and determined by a plaque assay. 

 

Antibodies 

 The following primary antibodies were used in Western Blot studies: mouse monoclonal 

anti-Mda-7/IL-24 k101 (GenHunter Corporation) (1:2,000 incubation for overnight), GFP 

cat#632377 (1:500) (BD Bioscience) and β-actin cat#A3853 (1:1,500) (Sigma Aldrich) as a 

control. The following are used in the flow cytometry studies: Rabbit Anti-Coxsackie 

Adenovirus Receptor Polyclonal Antibody, Alexa Fluor® 488 Conjugated bs-2389R-A488, 

Rabbit Anti-Integrin Alpha V + Beta 5 Polyclonal Antibody, Alexa Fluor® 647 Conjugated bs-

1356R-A647 and Rabbit Anti-Integrin Alpha V + Beta 3 (CD51+CD61) Polyclonal Antibody, 

Alexa Fluor® 488 Conjugated bs-1310R-A488 from Bioss Inc. 

 

Western Blot Analysis 

 DU145 and TRAMP-C2 cells were transduced with 10, 25, 50 multiplicity of infection 

(MOI) of Ad.GFP and Ad.mda-7. Western blot analysis was conducted as previously described 

[53]. Cells were lysed on ice for 1hr with lysis buffer. Fifty μg of total protein plus loading 

buffer were loaded in each well for western blot analyses. SDS-PAGE was run using 8-12% bis-

acrylamide gel at room temperature. Samples were blotted onto a nitrocellulose membrane. To 

detect proteins the membranes was blocked with 5%Milk-TBST overnight at 4ᴼC and reacted to 

primary antibodies for 2hr at room temperature with constant motion on an orbital shaker. The 
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membranes were washed with TBST to remove excess primary antibodies. Incubation for 45 

minutes with appropriate secondary antibodies followed. Immunodetection was performed using 

the enhanced chemiluminescence (ECL) system (Amersham, IL) according to the manufacturer’s 

instructions. Western blot analyses with antibodies against the targeted proteins were performed 

to validate successful viral transfection of the cells.  

  

Flow Cytometry Assay 

 DU145 and TRAMP-C2 cells were checked for different surface Ad receptors such as 

CAR (coxsackie adenovirus receptor) and integrins αVβ3/5. Each was compared against IgG 

control. 10µL of Boss primary conjugated antibody was added for 30 mins at  4ᴼC, aashed 

several times with 2mL 1X PBS and resuspended in 100µL of 1X PBS. Samples were analyzed 

on BD Accuri C6 Flow Cytometery. 

  Adenoviral transduced DU145 and TRAMP-C2 cells were trypsinized and collected. 

Cells were centrifuged at 5000 rpm, washed and suspended in 1% FCS-PBS. This step was 

repeated three times. Samples were prepared and run by a BD Accuri C6 Flow Cytometer (BD 

Bioscience, San Jose, CA). Single cells population was gated and an FL1 & FL4 area histogram 

was drawn and formatted to show only the events inside the single cell region. 

 

Annexin-V Assay 

 Apoptotic cells were analyzed with fluorescein isothiocyanate (FITC) conjugated to 

Annexin-V antibody and Propidium Iodide (PI) from the Annexin-V/FITC Kit (Bender 

MedSystems, Burlingame, CA) following manufacturer's instructions. Cells were trypsinized and 

washed with PBS. Cells were centrifuged and re-suspended in binding buffer. The samples were 
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analyzed with BD Accuri C6 Flow Cytometer (BD Bioscience, San Jose, CA). Annexin-V assay 

experiment was repeated three times and was run as triplicate of technical repeats. Statistical 

analysis was performed with GraphPad Prism 6 statistical software. 

 

UTMD for Prostate Cancer Cells. 

 Human DU145 and murine TRAMP-C2 prostate cancer cells were grown in both Fetal 

Bovine Serum (FBS) rich media and Heat-inactivated FBS media. Targeson (Targeson, Inc. San 

Diego, CA) custom synthesis US contrast agent (perfluorocarbon microbubbles, encapsulated by 

a lipid monolayer and polyethylene glycol stabilizer) were prepared following manufacturer’s 

instructions [53]. Cells were infected with Ad.GFP with 10MOI or with Ad.GFP complexed with 

microbubbles (Targeson) at 10MOI. US exposure was achieved with a Micro-Maxx SonoSite 

(SonoSite, Bothell, WA) US machine equipped with the transducer L25 set at 0.7 Mechanical 

Index (MI), 1.8 MPa for 1 min [53].   

 

Statistical Analysis 

 Statistical analysis was performed using the GraphPad Prism 6 statistical software. 

Comparison of cell death by Annexin-V on adenoviral transduced groups was conducted using 

an ANOVA test with post hoc test Tukey’s multiple comparison test. P-values of less than 0.05 

were considered statistically significant.  
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RESULTS 

Cytological Observations after Adenoviral Gene Transfer 

 The murine TRAMP-C2 and human DU145 prostate cancer cells were transduced with 

an Ad carrying the green fluorescence protein (GFP) (Ad.GFP) (Fig.15) with increasing doses of 

10, 25 and 50 MOI (multiplicity of infection). TRAMP-C2 cells and DU145 cells infected with 

various doses of Ad.GFP showed a dose dependent increase of fluorescence. However, DU145 

cells showed a higher transduction of GFP in comparison to TRAMP-C2 cells at each 

multiplicity of infection.  

 

 

Figure 15. Fluorescence microscopy images of Ad.GFP (10, 25, 50 MOI) transduced TRAMP-

C2 and DU145 cells. We effectively infected TRAMP-C2 cells with Ad.GFP and observed a 

dose-dependent expression of GFP, which was correlated to the increasing amount of Adenoviral 

MOI used.   
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Quantification of the Ad.GFP Viral Uptake 

 Ad.GFP uptake was determined for murine TRAMP-C2 and human DU145 prostate 

cancer cells by using FACS analysis after infecting the cells with 10, 25 and 50 MOI. A 

discrepancy is observed for TRAMP-C2 cells when infected with 10MOI, showing only a 90% 

uptake of Ad.GFP. A dose dependent increase in uptake of Ad.GFP is observed in TRAMP-C2 

cells as the MOI is increased. DU145 cells on the contrary showed a 100% uptake regardless of 

MOI (Fig. 16).    

 

Figure 16. In vitro assessment of Ad.GFP uptake in murine and human carcinoma cell lines. 

Cells were infected at 10, 25 and 50 particles/cells (ppc) of Ad.GFP and harvested at 24 hours 

post-infection to determine the infectivity by FACS analysis.   

 

Quantification of Ad Receptors Present on the Surface of the Cells 

 Surface Ad receptors were determined by Accuri C6 flow cytometry for the percentage of 

expression of Coxsackie Adenovirus Receptor (CAR), integrin αVβ5 and αVβ3 that are known 

to be responsible for the attachment of Ad5 to mammalian cells (Table 2). Both human DU145 

and murine prostate cancer cells showed a similar expression profile for CAR and integrins 
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αVβ3/5. 

Table 2. Determination of the expression of surface Adenoviral receptors by flow cytometry. 

 

 

 

 

 

Verification of Protein Expression by Western Blots 

 The TRAMP-C2 cell line is generated from prostate tumors harvested from a 32-week 

TRAMP mouse.  We carried out infection studies with Ad5 carrying mda-7 or GFP at different 

multiplicities of infection (MOI). Figure 17 shows dose dependent expression of GFP and mda-7 

protein by western blot analysis (Fig. 17). The results show that we effectively transferred to 

murine PC cells a transgene (GFP or mda-7) with Ad5 viruses.  

 

Figure 17. Western blot analysis of TRAMP-C2 and DU145 cells infected with different MOIs 

of Ad.GFP or Ad.mda-7/IL-24. Cell lysates were run on SDS-PAGE and reacted with 

appropriate specific primary and secondary HRP-conjugated antibodies.  Beta actin was used as 

a loading control. 

Cells CAR αVβ5 αVβ3 

DU145 90.08±1.71 95.98±0.17 28.58±1.13 

TRAMP-C2 96.60±0.22 93.9±1.38 32.70±1.97 
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Viral Burst Assay to Assess the Capacity of Replicative HAd5 to Produce Viral Particles 

 The control HEK 293 embryonic kidney cells and human DU145 prostate cancer cells 

showed an increase in viral count at both 24 and 48 hours post infection of 100 pfu/mL and 

1,000 pfu/mL replicative competent HAd5 (CTV). Thus, DU145 and HEK 293 are permissive 

for the replication of HAd5 and would make good animal models for testing the replicative and 

transfection ability of HAd5. However, TRAMP-C2 cells showed a decrease in viral count from 

24 to 48 hours for both pfu of HAd5 indicating a lack of viral replication (Fig. 18). Thus 

TRAMP-C2 cells are non-permissive for replication of HAd5 and would make a good animal 

model only for the transfection ability of HAd5. 

 

Figure 18.  Subconfluent murine and human cell lines were infected with replicative competent 

HAdV at 100 pfu/mL and 1,000 pfu/mL and harvested 24- and 48-hours later.   

 

Annexin-V Staining for Cell Death 

 The apoptotic rate of the transduced cells was quantified by assessing Annexin-V 

expression. The analyzed cells were allocated in a quadrant diagram according to their DNA 
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content and the presence of Annexin-V on the extracellular cell membrane during apoptosis. 

Statistical analysis was run on Annexin-V triplicates using Graphpad Prism 6 software for an 

ANOVA on dead cells with a post hoc test of Tukey’s multiple comparison test (Fig. 19 and 

Table 3). TRAMP-C2 and DU145 cells were undergoing apoptosis and necrosis, collectively 

called as dead cells. Non-transduced cells were compared to Ad.mda-7/IL-24 transduced cells. 

Mean and standard deviation from Annexin-V experiment was calculated for each adenoviral 

treated group. There was an increase in the significance and percentage of cell death that was 

concentration dependent compared to the control. A significant percentage of cell death for 

TRAMP-C2 cells infected with 50MOI was observed in comparison to 10MOI of Ads (Fig. 19 

and Table 3). Cell death observed for TRAMP-C2 cells infected with 10MOI and 25MOI did not 

show any significant difference in comparison to DU145 cells infected with 10MOI. However, 

overall DU145 cells showed more cell death with Ad.mda-7 at 25MOI and 50MOI in 

comparison to TRAMP-C2 cells infected with the same MOI.   

 

Figure 19. Annexin-V/PI staining of TRAMP-C2 and DU145 cells infected with Ad.mda-7/IL-

24.  TRAMP-C2 cells were transduced with Ad.mda-7/IL-24 at 10, 25 & 50 multiplicity of 
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infection (MOI) and harvested at 96 hours post infection and determined by FACS analysis. Bar 

graph represents sum of apoptotic and necrotic cells. 

 

Table 3. ANOVA (Analysis of Variance) significance table with a Post Hoc Tukey’s multiple 

comparison test for Annexin-V assay between TRAMP-C2 and DU145 cells transduced with 

Ad.mda-7/IL-24. * The mean difference is significant at the 0.05 level. 

Comparison between groups Significant? 
TRAMP-C2:Control TRAMP-C2:10MOI Yes 

TRAMP-C2:Control TRAMP-C2:25MOI Yes 

TRAMP-C2:Control TRAMP-C2:50MOI Yes 

TRAMP-C2:Control DU145:Control No 

TRAMP-C2:Control DU145:10MOI Yes 

TRAMP-C2:Control DU145:25MOI Yes 

TRAMP-C2:Control DU145:50MOI Yes 

TRAMP-C2:10MOI TRAMP-C2:25MOI Yes 

TRAMP-C2:10MOI TRAMP-C2:50MOI Yes 

TRAMP-C2:10MOI DU145:Control Yes 

TRAMP-C2:10MOI DU145:10MOI No 

TRAMP-C2:10MOI DU145:25MOI Yes 

TRAMP-C2:10MOI DU145:50MOI Yes 

TRAMP-C2:25MOI TRAMP-C2:50MOI Yes 

TRAMP-C2:25MOI DU145:Control Yes 

TRAMP-C2:25MOI DU145:10MOI No 

TRAMP-C2:25MOI DU145:25MOI Yes 
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TRAMP-C2:25MOI DU145:50MOI Yes 

TRAMP-C2:50MOI DU145:Control Yes 

TRAMP-C2:50MOI DU145:10MOI Yes 

TRAMP-C2:50MOI DU145:25MOI No 

TRAMP-C2:50MOI DU145:50MOI Yes 

DU145:Control DU145:10MOI Yes 

DU145:Control DU145:25MOI Yes 

DU145:Control DU145:50MOI Yes 

DU145:10MOI DU145:25MOI Yes 

DU145:10MOI DU145:50MOI Yes 

DU145:25MOI DU145:50MOI Yes 

 

UTMD for Prostate Cancer Cells. 

 Human DU145 and murine prostate cancer cells were infected either with Ad.GFP or 

complexed Ad.GFP/MB at 10MOI and after 24hours images were taken with fluorescent 

microscopy. US application increased the expression of GFP in comparison to the control or 

Ad.GFP alone group for both DU145 and TRAMP-C2 cells (Fig. 20 and 22). US also allowed 

for the transfection of Ad.GFP in complement rich FBS media for both DU145 and TRAMP-C2 

cells (Fig. 20 and 22).  

 MBs also facilitated the transfection of Ad.GFP in both FBS rich and Heat Inactivated-

complement depleted FBS media (Fig. 21 and 23). Transfection increased further when Ad.GFP 

was complexed with a MB (Ad.GFP/MBs) and US was applied to both DU145 and TRAMP-C2 

cells (Fig. 21 and 23). Similar GFP expression was observed for DU145 when complexed 

Ad.GFP/MBs were incubated with FBS and US was applied regardless of media being used (Fig. 
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21) because FBS contains a complement, which binds to the free Ads on the surface of the 

bubble thereby inactivating the Ads. Similar observation was also recorded for TRAMP-C2 cells 

(Fig. 23). Lastly, unclean complexed Ad.GFP/MBs showed similar GFP expression compared to 

cleaned (FBS incubated) complexed Ad.GFP/MBs in complement rich FBS media (Regular 

media). Highest transfection was observed for DU145 cells that received the unclean (FBS 

untreated) Ad.GFP/MBs and US (Fig. 21).        

 

Figure 20. DU145 cells infected with Ad.GFP at 10MOI and Ultrasound application. 

*Flo:Florescence, HI:heat inactivated, US: Ultrasound, Regular media: contains fetal bovine 

serum (FBS). 
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Figure 21. DU145 Cells infected with Ad.GFP/MBs at 10MOI and Ultrasound application. In 

second column MBs rehydrated with PBS was added separately with Ad.GFP at 10MOI. In the 

third column Ad.GFP/MBs were complexed but not cleaned with FBS before adding it to the 

cells. In the fourth column Ad.GFP/MBs were complexed and cleaned with FBS before adding it 

to the cells.  *Flo:Florescence, HI:heat inactivated, US:Ultrasound, Regular media: contains fetal 

bovine serum (FBS).

 

Figure 22. TRAMP-C2 cells infected with Ad.GFP at 10MOI and Ultrasound application. 
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*Flo:Florescence, HI:heat inactivated, US: Ultrasound, , Regular media: contains fetal bovine 

serum (FBS). 

  

Figure 23. TRAMP-C2 cells infected with Ad.GFP/MBs at 10MOI and Ultrasound application. 

In second column MBs rehydrated with PBS was added separately with Ad.GFP at 10MOI. In 

the third column Ad.GFP/MBs were complexed but not cleaned with FBS before adding it to the 

cells. In the fourth column Ad.GFP/MBs were complexed and cleaned with FBS before adding it 

to the cells.  *Flo:Florescence, HI:heat inactivated, US: Ultrasound, Regular media: contains 

fetal bovine serum (FBS). 

.  
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DISCUSSION 

 There are many obstacles to successful virotherapy that have become apparent from 

clinical studies, including problems associated with the use of replicating human Ads that are 

species-specific as the non-human (animal) model systems rarely predict the outcome seen in 

humans. For example, human tumor xenografts in nude mice can provide a ‘permissive’ 

preclinical model for Ads but nude mice are by definition immune-compromised [190], thus the 

immune responses due to Ads cannot be fully studied in this pre-clinical model. Additionally, 

due to species specificity, Ads do not replicate in normal mouse tissues thereby preventing any 

relevant off-target effects in such systems. Lastly, immune-compromised mice have a deficient 

immune system thus making it difficult to observe the effects of immune modulatory viruses 

[56], thus more suitable animal models need to be selected for the desired effect to be observed. 

 In this study, the ability of both replicating (CTV.mda-7) and non-replicating (Ad.GFP 

and Ad.mda-7/IL-24) human Ad5 was tested by infecting human DU145 and murine prostate 

cancer cells. The goal of this study was to tested if human DU145 PC cells that are radio-

resistant, androgen receptor ablated, p53 mutated cells and isolated from a brain metastasis 

would make a good pre-clinical model for the use of microbubble assisted gene delivery with 

US. This delivery system has several components that needed to be test to ensure successful 

translation from bench to bedside. The infection studies on DU145 cells with Ad.GFP, Ad.mda-7 

and CTV.mda-7 showed successful transduction with different MOI of replication permissive 

HAd5 and demonstrated a therapeutic response to gene therapy with mda-7. Lastly, US greatly 

enhanced the transgene expression of GFP when delivered with complexed Ad.GFP/MBs 

regardless of the presence of FBS, thus ensuring a proper penetration of the encapsulated Ads 

into the cell. FBS acted as a complement protein system inactivating the Ads from infecting 
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DU145 cells. US and MBs cause temporary pore formation on the plasma membranes and 

increase the permeability of the membrane to allow an increased Ad uptake. These factors make 

DU145 xenograts an attractive immune-compromised animal model to test the delivery of 

microbubble assisted gene delivery with US.   

 Similarly, TRAMP-C2 PC cells that are radio-resistant, possessing wild-type (wt) p53, 

isolated from 32-week old C57BL6 immune-competent mice with poorly differentiated prostate 

carcinoma were tested for the delivery of MB assisted gene therapy with US to verify if they 

would make a good pre-clinical immune-competent model. Similar results to DU145 studies 

were observed using TRAMP-C2 cells except that infection studies using TRAMP-C2 cells 

showed a reduced GFP expression in comparison to the transfected DU145 cells. However, a 

dose dependent increase in transgene expression was observed as the MOI were increased. The 

transgene expression could not be explained by the Ads surface receptor expression in TRAMP-

C2 cells, as they are similar to DU145. Also, a reduced therapeutic response was observed for 

Ad.mda-7 transfected cells in comparison to DU145 cells, however still statistically significant in 

comparison to the control. Thus, murine immune-competent TRAMP-C2 prostate cells that can 

be syngeneically implanted into immune-competent C57BL6 would make an attractive model to 

study the immune-modulating, immune-responses due to the Ads and the therapeutic benefit of 

microbubble assisted US guided gene transfer. Additionally, the TRAMP mouse model of 

prostate cancer can be used to demonstrate the validity of UTMD mda-7 gene delivery approach 

in immune competent animals. 

 Successful completion of the immune competent animal studies will open the possibility 

to translate from the bench to the bedside the targeted mda-7 gene delivery method by 

performing clinical studies on metastatic prostate cancer patients.         
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CHAPTER IV: ERADICATION OF THERAPY-RESISTANT HUMAN PROSTATE 

TUMORS USING AN ULTRASOUND-GUIDED SITE-SPECIFIC CANCER 

TERMINATOR VIRUS DELIVERY APPROACH 
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ABSTRACT 

 Intratumoral injections of a replication-incompetent adenovirus (Ad) expressing 

melanoma differentiation–associated gene-7/interleukin-24 (Ad.mda-7), a secreted cytokine 

displaying cancer-selective, apoptosis-inducing properties, profoundly inhibits prostate cancer 

(PC) growth in immune-incompetent animals. In contrast, Ad.mda-7 is ineffective in PCs 

overexpressing antiapoptotic proteins such as Bcl-2 or Bcl-xL. However, intratumoral injections 

of a conditionally replication-competent Ad (CRCA) in which expression of the adenoviral E1A 

gene is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and 

which simultaneously expresses mda-7/interleukin (IL)-24 in the E3 region of the Ad (Ad.PEG-

E1A-mda-7), a cancer terminator virus (CTV), is highly active in these cells. A major challenge 

for gene therapy is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound 

(US) contrast agents (microbubbles—MBs) are viable candidates for gene delivery/therapy. 

Here, we show that MB/Ad.mda-7 complexes targeted to DU145 cells using US dramatically 

reduced tumor burden in xenografted nude mice. Additionally, US-guided MB/CTV delivery 

completely eradicated not only targeted DU145/Bcl-xL-therapy-resistant tumors, but also 

nontargeted distant tumors (established in the opposite flank), thereby implementing a cure. 

These findings highlight potential therapeutic applications of this novel image-guided gene 

therapy technology for advanced PC patients with metastatic disease. 

 

Key Words: CTV; mda-7/IL-24; bystander anti-tumor activity; systemic targeted viral gene 

delivery; apoptosis induction 
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INTRODUCTION 

 Prostate cancer (PC) is the most common cancer and the second leading cause of cancer-

related deaths in men in the United States [1].  At present, no effective therapy is available for 

metastatic PC [207]. Advanced PC is refractory to conventional anticancer treatments because of 

frequent overexpression of antiapoptotic proteins Bcl-2 and/or Bcl-xL [208, 209]. The 

Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), is a secreted cytokine 

having broad-spectrum, cancer-selective, apoptosis-inducing properties that profoundly inhibits 

prostate cancer cell growth [210]. Adenovirus (Ad)-mediated delivery of mda-7/IL-24 (Ad.mda-

7) has shown dramatic anti-tumor effects in animal models and in clinical trials [195, 196, 211, 

212].  However, forced overexpression of Bcl-2 or Bcl-xL renders prostate cancer cells resistant 

to Ad.mda-7 [209].  In contrast, a conditionally replication-competent adenovirus (CRCA) (a 

cancer terminator virus- CTV), which expresses mda-7/IL-24 (Ad.PEG-E1A-mda-7) can 

abrogate acquired resistance of prostate cancer cells mediated through Bcl-2 and/or Bcl-xL 

overexpresion causing growth arrest and apoptosis and selectively replicating in prostate cancer 

xenografted cells in athymic nude mice. Moreover, the CTV completely eradicates not only 

primary tumors but also distant tumors following repeated intratumoral injections into the 

primary tumor site [18, 213].   

 A major challenge for effective gene therapy is the ability to specifically deliver nucleic 

acids and potentially toxic gene products directly into diseased tissue. Progress in gene therapy 

has been hampered by concerns over the safety and practicality of viral vectors, particularly for 

intravenous delivery, and the inefficiency of currently available non-viral transfection techniques 

[214]. Viruses are appealing delivery vectors because of their ability to efficiently transfer genes 

with sustained and robust expression. Recombinant Ads are one of the most common gene 
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transfer vectors utilized in human clinical trials, but systemic administration of this virus is 

thwarted by host innate and adaptive antiviral immune responses which can limit and/or preclude 

repetitive treatment regiments [215].   

 The quest for novel, safe and more efficient systemic gene delivery systems has recently 

highlighted ultrasound (US) contrast agents (microbubbles) as a potential candidate for 

enhancing delivery of molecules to target tissue [136, 216-218].  Currently used US contrast 

agents (microbubbles) contain high-molecular weight gasses with less solubility and diffusivity, 

which improves microbubble persistence and allows passage through the microcirculation. 

Microbubbles (MB) can be injected in peripheral veins, because the more robust bubbles can re-

circulate through the systemic circulation numerous times, surviving for several minutes within 

the bloodstream [218, 219]. The ideal MB diameter most likely is between 2.5 to 4 µm. MB is 

small enough to prevent entrapment within the pulmonary capillary bed (ranging from 5 to 8 µm 

in diameter), but big enough to entrap and protect viral vectors such as Ad from the environment. 

 We previously demonstrated the feasibility of site-specific gene delivery mediated by 

diagnostic US using Ad-GFP encapsulated in commercially available US contrast agents in vitro 

and in vivo [214]. An additional goal of our previous study was to determine if incubation of the 

microbubbles with complement could improve specificity of viral transgene transduction to the 

target tissue/organ allowing a simplified approach to encapsulation of the viral vectors with 

commercially available contrast agents. In the current investigation we tested a US contrast agent 

provided by Targeson, Inc (San Diego, CA) and the portable SonoSite Micro-Maxx ultrasound 

platform (SonoSite, Inc., Bothell, WA) equipped with a L25 linear array transducer. Targeson’s 

agents are lipid-encapsulated perfluorocarbon microbubbles with a mean diameter of 2.5 µm that 

can be used in a wide variety of animal models, and are compatible with virtually all ultrasound 
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scanners. The gas-filled microspheres effectively lower the energy threshold for non-thermal 

cavitation, thus allowing diagnostic transducers operating within the energy levels mandated by 

the FDA to be used for drug/gene delivery. Ultrasound-targeted microbubble destruction 

(UTMD) enables focal release of entrapped materials as well as the creation of small shock 

waves that increase cellular permeability [220]. In addition, the microbubbles protect the viruses 

from rapid degradation by the immune system, thus allowing for intravenous (IV) injection 

rather than direct target organ delivery by catheter-based approaches or operative bed injection 

[214, 218]. The IV injection is particularly important in cancer gene therapy of potentially 

inaccessible tumors because the microbubbles may also limit the amount of inflammatory 

response to the viruses and may allow repeated injections.  

 The ultimate goal of our research programs is to develop efficacious therapies for cancer. 

A primary focus is to engineer effective and safe delivery systems for viruses, chemotherapeutic 

agents and small molecule drugs. In the present study, we provide proof-of-principle for two 

essential components of this process, a site-specific gene delivery approach mediated by 

diagnostic US generated by a portable platform that works efficiently in vivo in combination with 

Ads delivering a highly effective, broad-based cancer gene therapeutic mda-7/IL-24. Evidence is 

provided that this combination has profound effects in animal models containing therapy-

resistant human prostate cancer cells.  
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MATERIALS AND METHODS 

Cell Lines, Cell Culture and Adenovirus Production 

 The DU145 (human prostate adenocarcinoma), cell line was obtained from the American 

Type Culture Collection (ATCC, Rockville, MD) and the DU-Bcl-xL cell line, which 

constitutively expresses elevated levels of Bcl-xL has been described previously [209]. The cell 

lines were grown at 37 °C, in a 5% CO2/95% atmosphere, in Dulbecco’s modified Eagle’s 

medium (Mediatech Inc., Herndon, VA) supplemented with 10% fetal bovine serum (FBS) from 

Hyclone, Inc., (Logan, UT). Ad-GFP, which expresses the green fluorescence protein gene under 

the strong cytomegalovirus (CMV) constitutive promoter was generated using the AdEasy 

system (Carlsbad, CA); the conditionally replication competent cancer terminator virus CTV 

(Ad.PEG-E1A-mda-7) [18, 204, 205] and Ad.mda-7 [206] were amplified and purified with the 

BD Adeno-X virus purification kit (BD Biosciences, Mountain View, CA) following 

manufacturer’s directions. Viral titers were determined by a plaque assay and the titer was 

adjusted to 1.2x1012 plaque-forming units (pfu)/mL as described [206].   

 

Preparation of Microbubbles and Ultrasound Platform 

 Targeson (Targeson, Inc. San Diego, CA) custom synthesis US contrast agent 

(perfluorocarbon microbubbles, encapsulated by a lipid monolayer and polyethylene glycol 

stabilizer) were prepared following manufacturer’s instructions. Microbubbles were reconstituted 

in the presence or absence of 1 mL of 1.2x1012 pfu of Ads and unenclosed, surface associated 

Ads were inactivated as previously described [214]. For in vivo experiments US exposure was 

achieved with a Micro-Maxx SonoSite (SonoSite, Bothell, WA) US machine equipped with the 

transducer L25 set at 0.7 Mechanical Index (MI), 1.8 MPa for 10 min.   
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Antibodies and Western Blot Analysis 

 DU145 cells were transduced with 50 MOI of Ad.mda-7 or Ad-CMV as a control and 24 

or 48-hr post transduction 50 µg of total cell extracts were subjected to Western blot analysis 

using a mouse monoclonal anti-MDA-7/IL-24 (GenHunter, Inc, Nashville, TN) (1:2,000 

incubation for 1 hr) or the mouse monoclonal anti-GAPDH sc-0411 (1:5,000 incubation for 1 hr) 

(SantaCruz, Santa Cruz, CA), as control. Western blot analysis was also conducted on protein 

extracts from microbubble/US assisted in vivo transfer of Ad-GFP or mda-7/IL-24 using 

antibodies that specifically recognized GFP sc-53882 (SantaCruz, Santa Cruz, CA), MDA-7/IL-

24 (GenHunter, Nashville, TN), and β-actin sc-47778 (SantaCruz, Santa Cruz, CA). Briefly, 96 

hr following targeted microbubble/US assisted in vivo transfer of Ad-GFP, mice were sacrificed 

and fresh tumor (right and left flank), heart, lung, liver, and kidney tissues were harvested and 

snap frozen in liquid nitrogen. Mice receiving mda-7/IL-24 gene-microbubble US guided therapy 

were sacrificed at the endpoint of the study (5-6 wks after gene therapy injections). Tissues were 

homogenized and equal amounts of proteins were run on a SDS-PAGE and transferred to a 

nitrocellulose membrane. The membrane was then incubated with the monoclonal anti-GFP 

1:2,000 for 1 hr at room temperature and then washed three times in TBS-T. Monoclonal anti-

MDA-7/IL-24 (GenHunter, Inc, Nashville, TN) was incubated 1:2,000 for 1 hr at room 

temperature and then washed three times in TBST. Monoclonal anti β-actin (1:5,000) was 

incubated 1 hr at room temperature and then washed three times in TBST. Appropriate 

secondary HRP-conjugated antibodies 1:20,000 were incubated 45 min at room temperature and 

washed three times with TBS-T. Signals were developed on an X-ray film after reaction with an 

Electrogenerated Chemiluminescence (ECL) Supersignal kit (Pierce, Rockford, IL). 

 



80 

Animal Study and Ultrasonic Bubble Destruction 

 Animal studies were performed in accordance with NIH recommendations and the 

approval of the institutional animal research committee. Animal care and humane use and 

treatment of mice were in strict compliance with (1) institutional guidelines, (2) the Guide for the 

Care and Use of Laboratory Animals (National Academy of Sciences, Washington, DC, 1996), 

and (3) the Association for Assessment and Accreditation of Laboratory Animal Care 

International (Rockville, MD, 1997). All the animals used in these studies were 8- to 12-week-

old female/male congenitally athymic BALB/c nude mice, homozygous for the nu/nu allele, bred 

in our laboratory. The colony of the mice was developed from breeding stock obtained from 

Charles Rivers Laboratories, Wilmington, MA. The mice were maintained in isolation in 

autoclaved cages with polyester fiber filter covers, under germ-free conditions; all food, water, 

and bedding were sterilized. A total of about 420 nude mice (n=10 each experimental point) were 

implanted with the human prostate adenocarcinoma cell lines (DU145 or DU-Bcl-xL) as a 

xenograft model (injecting 1.5 X 106 or 2.5 x 106 cancer cells on each flank of the animal). After 

~30-days, mice were sedated in an IMPAQ6 anesthesia apparatus (VetEquip Inc, Pleasanton, 

CA) that was saturated with 3-5% Isofluorane and 10-15% oxygen with the aid of a precision 

vaporizer (VetEquip Inc, Pleasanton, CA) to deliver the appropriate amount of anesthetic and to 

induce anesthesia. The mice were placed on a warmed mat with 37°C circulating water for the 

entire procedure. A27-gauge needle with a heparin lock was placed within a lateral tail vein for 

administration of contrast material. The nude mice received injections of 100 µL of 

microbubbles with/without Ads through the tail vein for 5 wks/once a wk. The mice were split 

into two control groups (one control group receiving 100 µL of microbubbles and US, and 

another control group receiving both microbubbles/Ad-GFP and US) and eight active groups of 
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10 mice each (all receiving microbubbles and Ad.mda-7 or CTV and US). Six additional control 

groups were set up which received direct i.v. injections of 100µL of the Ads (Ad-GFP, Ad.mda-

7/IL-24, or CTV) in the presence or not of US. Grayscale US imaging was performed with a 

SonoSite scanner (SonoSite, Bothell, WA) equipped with the transducer L25 set at 0.7 

Mechanical Index (MI), 1.8 MPa for 10 min. Ultrasound images were recorded as digital clips.  

In every experiment, 10 animals for each treatment or control group were used to study tumor 

regression. Every experiment was repeated at least twice. Tumor volumes were determined by 

measuring the tumors twice a wk with either a caliper or by ultrasound measurements of the 

tumor axes. Tumor volumes were determined using the following formula: V = (π / 8) a Χ b2, 

where V is the tumor volume, a is the maximum tumor diameter, and b is the diameter at 90° to 

a [221]. The mice were humanely sacrificed by placing them in a CO2 gas jar placed in a 

ventilated fume hood. The tumors (right and left flank), heart, lungs, kidneys, and liver were 

harvested. Tissues to be sectioned were dry snap frozen or placed either in OCT (Sakura Finetek 

USA, Inc., Torrance, CA), frozen in liquid nitrogen, and stored at -80°C or were preserved in 

neutral buffered formalin at 4°C prior to embedding in paraffin for immunohistochemical 

analysis. 

Statistical Analysis 

 All statistical analyses were performed by using SAS version 9.1. Comparisons of tumor 

volumes were done separately three times: before the treatment, two weeks after the treatment, 

and at the end of the study. Statistical analyses for comparisons of different types of treatments 

were done using one-way ANOVA followed by Tukey-Kramer multiple adjusted pair wise tests. 

P-value < 0.05 was considered significant.  
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RESULTS 

Targeson Microbubbles and a SonoSite Portable Micro-Maxx Ultrasound (US) Platform 

Efficiently Targets Ad-GFP Viruses to Tumors 

 We previously documented the feasibility of in vivo gene delivery mediated by diagnostic 

US using Ad-GFP encapsulated in a series of commercially available US contrast agents [214]. 

In the current investigation, we tested a different US contrast agent available from Targeson, Inc 

(San Diego, CA) and the portable SonoSite Micro-Maxx ultrasound platform (SonoSite, Inc., 

Bothell, WA) equipped with a L25 linear array transducer. Targeson’s agents are lipid-

encapsulated perfluorocarbon microbubbles with a mean diameter of 2.5 µm that can be used in 

a wide variety of animal models, and are compatible with virtually all ultrasound scanners [222].  

Targeson agents are normally sold as already reconstituted contrast agents that are stable for 

three months from arrival, and for this study we obtained a custom made freeze-dried Targeson 

contrast agent (perfluorocarbon microbubbles, encapsulated by a lipid monolayer and 

polyethylene glycol stabilizer) to be reconstituted with the viruses as previously described [214]. 

 To confirm the ability of the lyophilized Targeson US contrast agent to deliver viruses 

efficiently and specifically to defined sites in vivo, we performed a pilot study in which tumor 

xenografts were established in both flanks of athymic nude mice by injecting each site with 2 x 

106 DU145 human prostate carcinoma cells (Figure 24A). The DU145 tumor-bearing nude mice 

(n=10) were then injected in their tail vein with 100 µL of US contrast agent that was 

reconstituted with Ad-GFP or water as control. A portable SonoSite Micro-Maxx ultrasound 

platform (SonoSite, Inc., Bothell, WA) equipped with a L25 linear array transducer set at 0.7 

Mechanical Index (MI), 1.8 MPa for 10 min was used to sonoporate only the tumor implanted on 
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the right side (Figure 24A). Mice were sacrificed 96 hr after treatment and tumors (right and left 

side), lung, heart, liver and kidney were harvested and snap frozen. Figure 24B shows the 

specific delivery to the right tumor as evidenced by expression of the green fluorescence protein 

(GFP) in an immunoblot in which total protein extracts were run on a 10% SDS-PAGE. As a 

GFP control, we ran a GST-GFP fusion protein. Protein gel loading was normalized using β-

actin as a control. US-targeted microbubble destruction (UTMD) enables focal release of 

entrapped materials as well as the creation of small shock waves that are visualized as an 

enhancement of the image on the US scanner. Figure 24, panel C depicts the B-mode US 

imaging of a sonoporated tumor before injection with the microbubble/Ad-GFP complex contrast 

agent. Figure 24, panel D shows the B-mode ultrasound imaging of the same sonoporated tumor 

following microbubble/Ad-GFP complex injection. The image enhancement of the targeted 

tumor from cavitation of the microbubbles within the US field of view is clearly discernable 

indicating that the US settings are efficient in targeting microbubble destruction.  
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Figure 24. (a) Schematic representation of the microbubble delivery of Ad-GFP complexes and 

ultrasound (US) release in a tumor target site of the mouse. (b) Western blot analysis of Ad-

GFP/microbubble–transduced DU145 tumor xenografts. Immunoblot showing the expression 

levels of green fluorescent protein (GFP) in DU145 cells following ultrasound-targeted 

microbubble/Ad transduction of GFP at 96 hours. Only the tumor on the right flank was 

sonoporated for 10 minutes resulting in the delivery and expression of GFP. The left tumor, 

heart, lung, liver, and kidney were negative for GFP expression. Purified glutathione-S-
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transferase–GFP was used as a positive control. Protein gel loading was normalized using β-actin 

as a control. (c) Ultrasound imaging and US contrast enhancement of in vivo transduced DU145 

tumor xenografts. B-mode US imaging of a tumor before MB contrast agent injection. (d) B-

mode US imaging of the same tumor depicted in c following injection of microbubbles/Ad-GFP 

complexes. MBs cavitation within the targeted tumor dramatically enhances the tumor image 

within the US field of view. Ad, adenovirus. 

 

Microbubble Assisted Ad.mda-7 Gene Delivery Inhibits DU145 Human Prostate Cancer 

Growth In Vivo 

 In vitro and in vivo Ad-mediated gene transfer of the human mda-7/IL-24 gene (Ad.mda-

7) potently suppresses the growth of human cancer cells with no apparent toxicity to normal cells 

[195, 203, 206, 211, 212, 223-230]. Repeated intratumoral administration of Ad.mda-7 to tumor 

xenografts of various histological origin results in growth suppression via induction of apoptosis 

and anti-angiogenic mechanisms [195, 196, 209-212, 226, 228, 231]. Additionally, mda-7/IL-24 

induces a profound “bystander” antitumor effect resulting in tumor growth suppression not only 

in the treated tumors, but also in untreated distant tumors [18, 194, 195, 197, 205, 211-213, 223, 

224, 226, 227, 232, 233]. Although these results have been encouraging, this approach is limited 

since systemic delivery of Ad for treatment of disseminated cancer has not shown significant 

efficacy. 

 We have employed a novel systemic delivery approach to target Ad release in a site-

specific manner that consists of Ad incorporated in microbubbles combined with diagnostic US 

[214]. Proof-of-principle for this strategy comes from studies using Ad to systemically deliver 

the GFP gene in a tissue specific manner [214]. Because mda-7/IL-24 has shown significant 
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potential as a selective and effective anticancer agent in multiple animal model studies and in a 

Phase I intratumoral gene therapy trial in patients with advanced solid cancers [195, 196, 203, 

211, 212, 223, 224, 228], we tested the capacity of this approach to deliver Ad expressing this 

novel cytokine in prostate adenocarcinoma nude mouse xenograft models. For these studies, we 

used DU145 human prostate carcinoma cells and DU145 cells genetically engineered to express 

elevated levels of Bcl-xL (DU-Bcl-xL) [209], which is a common event in advanced prostate 

cancer and provokes resistance to multiple chemotherapeutic agents and to mda-7/IL-24 [207-

210]. The therapeutic arm of this work included two different viral constructs to deliver mda-

7/IL-24, Ad.mda-7, a nonreplicating Ad similar to the one used in Phase I clinical trials [206], 

and the CTV, a conditionally replication competent Ad capable of expressing mda-7/IL-24 that 

has been previously shown to completely eradicate not only primary breast, prostate and 

melanoma tumors but also distant tumors by intratumoral injections in a nude mouse model [18, 

197, 204, 205]. 

 To test this new therapeutic approach for tumor delivery, DU145 or DU-Bcl-xL tumor 

xenografts were established on both flanks of nude mice by injecting 2 x 106 cells in each side of 

the animals. DU145 and DU-Bcl-xL tumor bearing nude mice (n=10 each group) were then 

injected in their tail vein with 100 µL of US contrast agent that was reconstituted with Ad-GFP 

or water as control. Additional DU145 and DU-Bcl-xL tumor control nude mice (n=10 each 

group) were injected in the tail vein with 100 µL of Ad.mda-7 or the CTV (Ad.PEG-E1A-mda-7) 

without US contrast agent. Alternatively, tumor-bearing animals were injected in their tail vein 

with 100 µL of US contrast agent that was reconstituted with Ad.mda-7 or the CTV. A portable 

SonoSite Micro-Maxx US platform (SonoSite, Inc., Bothell, WA) equipped with a L25 linear 

array transducer set at 0.7 Mechanical Index (MI), 1.8 MPa for 10 min was used to sonoporate 
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the tumor implanted on the right side. In this study, gene therapy treatments were started ten 

weeks after the injection of the cell lines, when tumors reached an approximate volume of 150-

200 mm3.  Mice were injected once a week for four weeks for a total of four treatments. Mice 

were sacrificed two weeks after the end of the treatments to determine whether tumor 

suppression was reversible or irreversible. At the end of the study tumors (right and left flank), 

lung, heart, liver and kidney were harvested and snap frozen using liquid nitrogen. 

 US of Ad-GFP microbubble complexes in the right side tumor resulted in progressive 

growth of the tumors on both flanks (Figures 25A and E). The results shown in Figure 25 

represent the average tumor volumes measured in a minimum of 7 mice for each mda-7/IL-24 

group and a minimum of 5 mice for each control GFP group. All the mice were injected in the 

tail vein with the microbubble/Ad complexes and only the tumor on the right flank was 

sonoporated. Interestingly, we observed that microbubble-mediated Ad.mda-7 gene therapy 

inhibited the growth of DU145 prostate tumor xenografts during the treatment regimen (Figure 

25B), while the CTV microbubble-mediated gene therapy resulted in a steady progressive tumor 

regression that lasted an additional two weeks post-treatment (Figure 25C). 

 As predicted from previous studies [18, 209, 210], Ad.mda-7 was ineffective in causing a 

therapeutic response in tumor xenografts on either flank developed from DU-Bcl-xL cells 

(Figure 25F). In contrast, the conditionally replication competent CTV (Ad.PEG-Prom-mda-7) 

elicited a sustained growth inhibition of the therapy resistant DU-Bcl-xL tumor xenografts 

(Figure 25G). A Western blot analysis of total protein extracts from the harvested tumors showed 

expression of MDA-7/IL-24 protein in both the tumor samples implanted on the right and left 

flank (Figures 25D and H) validating the “bystander” effects of MDA-7/IL-24 previously 

reported [18, 194, 197, 204, 233]. In the case of the CTV, this amplified expression of MDA-



88 

7/IL-24 in the non-injected left tumor may also reflect secondary viral infection by the CRCA 

[18]. GAPDH expression was used to confirm equal loading of the gel. No tumor regression was 

observed in mice bearing DU145 and DU-Bcl-xL control tumors when injected intravenously 

with comparable doses of unprotected Ad.mda-7 and CTV viruses (Figures 27 and 28). 
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Figure 25. Growth curves and western blot analysis of large DU145 and DU-Bcl-xL tumor 
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xenografts treated with microbubble encapsulated Ad-GFP, Ad.mda-7, or cancer terminator virus 

(CTV) (Ad.PEG-E1A-mda-7) and treated with ultrasound (US) in the right tumor. Subcutaneous 

tumor xenografts from DU145 and DU-Bcl-xL were established in athymic nude mice in both 

right and left flanks and only tumors on the right side were sonoporated following tail-vein 

injection of the indicated microbubble/Ad complexes during a course of 4 weeks. Tumor 

treatments were initiated when tumors reached a size of 250–350 mm3. Arrows point at tumors 

and asterisks point at treatment times. (a) Measurement of green fluorescent protein (GFP)-

treated DU145 tumor volumes. The data represent mean ± SD with at least 5 mice in each group. 

(b) Measurement of Ad.mda-7-treated DU145 tumor volumes. The data represent mean ± SD 

with at least 7 mice in each group. (c) Measurement of CTV-treated DU145 tumor volumes. The 

data represent mean ± SD with at least 7 mice in each group. (d) Western blot analysis of protein 

extracts from representative DU145 tumor samples treated with Ad.mda-7 or CTV. The 

immunoblot was reacted with anti-MDA-7/IL-24. Arrowheads point at the various glycosylated 

forms of MDA-7/IL-24. Protein gel loading was normalized using anti-GAPDH as a control. (e) 

Measurement of GFP-treated DU-Bcl-xL tumor volumes. The data represent mean ± SD with at 

least 5 mice in each group. (f) Measurement of Ad.mda-7-treated DU-Bcl-xL tumor volumes. 

The data represent mean ± SD with at least 7 mice in each group. (g) Measurement of CTV-

treated DU-Bcl-xL tumor volumes. The data represent mean ± SD with at least 7 mice in each 

group. (h) Western blot analysis of protein extracts from representative DU-Bcl-xL tumor 

samples treated with Ad.mda-7 or CTV. The immunoblot was reacted with anti-MDA-7/IL-24. 

Arrowheads point at the various glycosylated forms of MDA-7/IL-24. Protein gel loading was 

normalized using anti-GAPDH as a control. Ad, adenovirus; GAPDH, glyceraldehyde 3-

phosphate dehydrogenase.  
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Microbubble Assisted CTV Gene Delivery Eradicates Prostate Cancer growth In Vivo 

 In our study, the size of the tumor was measured twice a week by caliper as well as by B-

mode ultrasound scanning. Figure 26A shows the ultrasound image and measurements of a 

DU145 tumor before treatment with Ad.mda-7-microbubble complexes. Panels B and C 

demonstrate the volume reduction in the same tumor after 2 and 4 weeks of treatments with 

Ad.mda-7-microbubble complexes and US. Figure 26D shows the B-mode scan image and 

measurements of a DU-Bcl-xL tumor before treatment with CTV-microbubble complexes. 

Panels E and F emphasize the dramatic volume reduction in the same tumor after 2 and 4 wks of 

treatments with CTV-microbubble complexes and US leading to the eradication of the tumor 

xenograft. Additionally, no tumor regrowth in the primary or distant sites was evident CTV-

microbubble complex and US-treated DU-Bcl-xL animals after an additional three weeks post-

treatment. To investigate if the tumor would reappear after a longer period of time following the 

last treatment, three out of ten animals initially treated with CTV-microbubble complexes were 

not sacrificed at the endpoint of the study and were maintained for an additional 3 months. The 

mice were then sacrificed and dissected to look for potential tumor recurrence and/or eventual 

tumor spread. We did not observe any local tumor reappearance or distant metastasis in the lungs 

or liver in these mice that were treated with CTV-microbubble complexes and US indicating that 

this therapeutic approach could be suitable to target conditionally replication-competent 

adenoviruses (CRCA) to prostate tumors causing the eradication of localized as well as distant 

metastatic tumors. Future studies testing this approach in immune competent tumor bearing and 

transgenic animals would provide definitive support for exploring this strategy in the context of a 

Phase I clinical trial. 
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Figure 26. B-mode ultrasound (US) imaging of DU145 tumor xenografts treated with 

microbubble/US-guided Ad.mda-7 and therapy resistant DU-Bcl-xL tumor xenografts treated 

with microbubble/US-guided cancer terminator virus (CTV).  

Subcutaneous tumor xenografts from DU145 and DU-Bcl-xL cells were established in athymic 

nude mice in both right and left flanks and only tumors on the right side were sonoporated 

following tail-vein injection of the indicated microbubble/Ad complexes during a course of 4 

weeks. Tumor volumes were determined by measuring twice a week the tumors with either a 

caliper or by US measurements of the tumor axes.  

(a) Ultrasound image and measurement of a DU145 tumor before treatment with Ad.mda-

7/microbubble complexes and US.  
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(b) US image and measurement of the same DU145 tumor 2 weeks following treatments with 

Ad.mda-7/microbubble complexes and US.  

(c) US image and measurement of the same DU145 tumor 4 weeks following treatments with 

Ad.mda-7/microbubble complexes and US.  

(d) US image and measurement of a DU-Bcl-xL tumor before treatment with CTV/microbubble 

complexes and US.  

(e) US image and measurement of the same DU-Bcl-xL tumor 2 weeks following treatments 

with the CTV/microbubble complexes and US.  

(f) US image and measurement of the same DU-Bcl-xL tumor 4 weeks following treatments with 

CTV/microbubble complexes and US. 

 Complete eradication of the DU-Bcl-xL tumor occurs 4 weeks after initiating the therapeutic 

treatment protocol. Ad, adenovirus; GFP, green fluorescent protein. 
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Figure 27. Growth curves of control DU145 tumor xenografts injected i.v. using unprotected 

Ad-GFP, Ad.mda‐7, or CTV (Ad.PEG-E1A-mda‐7) and treated or not with US. Subcutaneous 

tumor xenografts from DU145 were established in athymic nude mice in both right and left 

flanks and only tumors on the right side were sonoporated following tail vein injection of the 

indicated Ads during a course of 4 wks. Tumor treatments were initiated when tumors reached a 

size of 150 – 200 mm3. Asterisks point at treatment times. 

A) Measurement of CTV-injected and sonoporated DU145 tumor volumes. The data represent 
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mean ± s.d. with at least 5 mice in each group. 

B) Measurement of CTV-injected, but not sonoporated DU145 tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 

C) Measurement of Ad.mda-7-injected and sonoporated DU145 tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 

D) Measurement of Ad.mda-7-injected, but not sonoporated DU145 tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 

E) Measurement of Ad.GFP-injected and sonoporated DU145 tumor volumes. The data represent 

mean ± s.d. with at least 5 mice in each group. 

F) Measurement of Ad.GFP-injected, but not sonoporated DU145 tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 
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Figure 28. Growth curves of control DU-Bcl-xL tumor xenografts injected i.v. using unprotected 

Ad-GFP, Ad.mda‐7, or CTV (Ad.PEG-E1A-mda‐7) and treated or not with US. Subcutaneous 

tumor xenografts from DU-Bcl-xL were established in athymic nude mice in both right and left 

flanks and only tumors on the right side were sonoporated following tail vein injection of the 

indicated Ads during a course of 4 wks. Tumor treatments were initiated when tumors reached a 

size of 150 – 200 mm3. Asterisks point at treatment times. 

A) Measurement of CTV-injected and sonoporated DU-Bcl-xL tumor volumes. The data 
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represent mean ± s.d. with at least 5 mice in each group. 

B) Measurement of CTV-injected, but not sonoporated DU-Bcl-xL tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 

C) Measurement of Ad.mda-7-injected and sonoporated DU-Bcl-xL tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 

D) Measurement of Ad.mda-7-injected, but not sonoporated DU-Bcl-xL tumor volumes. The 

data represent mean ± s.d. with at least 5 mice in each group. 

E) Measurement of Ad.GFP-injected and sonoporated DU-Bcl-xL tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group. 

F) Measurement of Ad.GFP-injected, but not sonoporated DU-Bcl-xL tumor volumes. The data 

represent mean ± s.d. with at least 5 mice in each group.  
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DISCUSSION 

 Microbubbles have been used to protect viruses from rapid degradation by the immune 

system, thus allowing intravenous injection rather than direct target organ delivery by catheter-

based approaches or operative bed injection [234]. However, variable levels of non-targeted gene 

expression have been noted in other organs such as the liver and lungs [234]. We have recently 

shown that US imaging and US contrast agents can increase target specificity of Ads to tumors, 

achieving transient transgene expression with strict image-guided site specificity by selecting 

microbubbles which completely enclosed the Ads in their gas filled core [214]. In our prior 

experience, US-mediated microbubble destruction improved the efficacy and reduced the non-

specific expression of gene therapy vectors providing a useful tool for manipulating gene 

expression in the living animal. 

 Genetic therapies for prostate cancer represent promising strategies for the treatment of 

this neoplasm. The prostate gland is accessible by US, and potential therapeutic genes can be 

directed to this organ using portable diagnostic US platforms such as the SonoSite MicroMaxx 

(SonoSite, Inc., Bothell, WA) after a simple intravenous injection. Importantly, because prostate 

cancer is commonly a relatively slow-growing disease, it may be necessary to use repeated gene 

therapy applications, with single or multiple genes, over the life span of the patient. In these 

contexts, gene therapy protocols that delimit virus exposure to the immune system and can be 

administered multiple times during a patient’s lifetime are appealing. This possibility will need 

to be explored in the future using tumor-bearing immune competent animals. In the current work, 

we explored the ability of US-mediated microbubble destruction to specifically deliver in 

prostate adenocarcinoma xenografts the mda-7/IL-24 gene [235, 236], that has been successfully 

employed in a Phase I clinical trial in patients with advanced solid tumors [195, 196, 203, 211, 
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212, 223, 224, 228]. 

 Potentially useful approaches for treating prostate and other cancers involve the use of a 

replication incompetent adenovirus (Ad.mda-7) or a conditionally replication competent Ad 

(Ad.PEG-E1A-mda-7; CTV) to administer the therapeutic cytokine mda-7/IL-24 to induce 

targeted therapy of tumors [18, 195-197, 204, 205, 211, 212, 237]. Although very effective in 

prostate cancer cell lines, no therapeutic benefit is observed with Ad.mda-7 in the context of 

prostate cancer cells displaying elevated expression of Bcl-2 and/or Bcl-xL [18, 209]. In contrast, 

administration of the CTV by direct intratumoral delivery in nude mice containing xenografted 

Bcl-xL overexpressing DU145 cells implanted on both flanks of the animal results in tumor 

eradication in both the primary injected tumor and the distant untreated tumor [18]. 

Conditionally replication competent Ads (CRCA), which induce oncolysis by cancer-specific 

replication, have been evaluated in several prostate cancer clinical trials [238, 239]. Most 

currently employed CRCA are based on the ONYX-015 backbone, which is dependent on the 

p53 status of the cancer cells and have shown only minimal objective clinical responses, thus 

limiting their universal applicability for the treatment of prostate or other cancers [240]. To this 

end, the novel CTV CRCA that employs the progression elevated gene-3 (PEG-3) promoter that 

functions in all types of cancer cells [18, 204, 205, 241, 242], irrespective of their p53 or 

Rb/retinoblastoma gene status, with very limited to no activity in normal cells has been 

constructed. In the cancer terminator virus (CTV), Ad replication through the E1A gene is driven 

by the cancer-specific promoter of progression elevated gene-3 (PEG-3) [243], which results in 

concomitant production of mda-7/IL-24 from the E3 region of the Ad. This CTV generates large 

quantities of MDA-7/IL-24 as a function of Ad replication uniquely in cancer cells that not only 

have cancer-selective apoptosis-inducing properties but also display a plethora of indirect 
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antitumor ‘‘bystander’’ activities, including distant tumor growth suppression and apoptosis, 

immune modulation and anti-angiogenesis [195, 196, 204, 211, 212, 223, 232, 233, 237]. 

 A limiting factor in effective gene therapy when employing intravenous viral delivery 

and when using CRCA is the effect of the immune system in neutralizing Ads [215]. In this 

context, a means of shielding the initial viral delivery vector using microbubbles in principle 

permits enhanced delivery of the viral payload to tumors when coupled with US [214]. In the 

present study, we have employed this strategy using CTV-microbubble complexes coupled with 

US to treat both DU145 and therapy resistant DU-Bcl-xL established tumor xenografts on both 

flanks in nude mice. Systemic administration of the CTV-microbubble with US on the 

established right-side tumor resulted in robust transgene expression and apoptosis induction with 

complete eradication of both the injected right side primary and distant (opposite flank; 

potentially representative of metastasis) human prostate cancers. However, no tumor regression 

was observed instead in mice bearing DU145 and DU-Bcl-xL control tumors when injected 

intravenously with unprotected Ad.mda-7 and CTV viruses (see Figures 27 and 28), indicating 

that comparable doses of untargeted, unprotected viruses injected directly i.v. failed to elicit an 

antitumoral response. An exciting finding was that this protocol resulted in the indication of an 

enduring response in which no tumor regrowth occurred 3 months after cessation of the therapy 

protocol in the treated or untreated tumor site and additionally these animals had no signs of 

metastatic spread to the lungs or liver. Previous studies have indicated that the CTV when 

injected intratumorally will enter into the circulation, replicate and generate MDA-7/IL-24 

protein in the primary and distant tumors in the nude mouse, predicting induction of a potential 

immune response [18, 204, 205, 237, 241]. Further studies are planned in the context of immune 

competent animals, which would be an important step toward developing clinical trials with the 
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CTV-microbubble approach and US.   

 Obvious questions are why mda-7/IL-24 serves as such an effective anti-tumor agent and 

why the CTV is superior to Ad.mda-7 as a viral-based therapeutic for primary and disseminated 

cancers. A noteworthy reason for the robustness of mda-7/IL-24 is the ability of this secreted 

cytokine to elicit a potent ‘bystander’ anti-cancer effect [195]. Mda-7/IL-24 can directly induce 

apoptosis when expressed inside cancer cells and can also induce growth suppression, apoptosis 

and endogenous MDA-7/IL-24 protein expression and secretion when added as a purified protein 

through interactions with the IL-20R1/IL-20R2 and IL-22R1/IL-20R2 cell surface receptors 

[195, 211, 232, 233]. As a secreted cytokine, MDA-7/IL-24 also induces an array of potent 

immunomodulatory proteins from immune cells, including IL-6, IFN-γ, tumor necrosis factor-α, 

IL-1β, IL-12, and granulocyte macrophage colony-stimulating factor [232]. These cytokines 

secreted by peripheral blood mononuclear cells can activate antigen-presenting cells to present 

tumor antigens, thereby triggering an antitumor immune response [244]. These observations 

have been recapitulated in a Phase I clinical trial involving intratumoral injection of Ad.mda-7 

(INGN 241) in patients with advanced carcinomas and melanomas [203, 211, 228]. In principle, 

the ‘bystander’ effects elicited by MDA-7/IL-24 are concentration dependent [233] and large 

amounts of this cytokine generated by the CTV would be predicted to have an enhanced 

therapeutic impact in the patient. Moreover, the immunomodulatory functions of mda-7/IL-24 

would be particularly significant in a patient with an intact immune system where the generation 

of robust amounts of mda-7/IL-24 by the CTV might result in an amplified immune response 

against the cancer cells. The potent activity of the CTV compared to Ad.mda-7 suggests a need 

for only limited administration of this CRCA [18, 204, 205, 237], which would work extremely 

well in the context of microbubble-Ad complexes. In principle, the microbubble approach would 
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further minimize the activation of the immune system against the Ad that would normally 

promote viral clearance. We presently confirm for the first time that microbubble-assisted 

delivery of the CTV can serve as a valuable therapeutic tool to combat therapy resistant prostate 

cancer. As previously emphasized, the CTV-microbubble injected US treated mice appeared to 

be disease free 3 months after therapy cessation suggesting that a cure was established. We are 

planning to conduct long-term animal studies to verify this provocative observation in both 

immune incompetent and immune competent animals.  

 In summary, the present studies support the proposition that US-directed delivery of 

CTV-microbubble complexes might provide a nontoxic and effective alternative or complement 

to conventional adjuvant treatment modalities for patients with primary and metastatic prostate 

cancer. Based on previous studies of combinatorial therapy preclinical-trials in cell culture and in 

animal models, a combination of CTV-microbubble approach employing US with localized low-

dose radiotherapy might promote an even more profound effect, potentially further enhancing 

mice survival [212, 245]. We are currently studying the effects of chemotherapy and/or radiation 

therapy combined with microbubble-enhanced delivery of the CTV on promoting a cure in a 

preclinical setting of prostate cancer. 
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CHAPTER V: MICROBUBBLE-ASSISTED P53, RB, AND P130 GENE TRANSFER IN 

COMBINATION WITH RADIATION THERAPY IN PROSTATE CANCER 
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ABSTRACT 
 

 Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors 

has been explored as a means to enhance the therapeutic potential of gene transfer. A major 

challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. 

Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted 

delivery of systemically administered genes. 

 Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of 

microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in 

tumor growth compared to DU145 prostate cancer cell xenografts treated intratumorally with 

adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB 

treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated 

tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with 

external beam radiation resulted in the most profound tumor reduction in DU145 xenografted 

nude mice (p<0.05) compared to radiation alone. These findings highlight the potential 

therapeutic applications of this novel image-guided gene transfer technology in combination with 

external beam radiation for prostate cancer patients with therapy resistant disease. 

 
 
Keywords: Retinoblastoma, RB, p130, p53, tumor suppressor gene, microbubbles, ultrasound, 

systemic targeted viral gene delivery, radiation, external beam radiation, apoptosis induction, 

prostate cancer. 
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INTRODUCTION 

Current gene transfer clinical trials for prostate carcinoma use adenoviral vectors as 

efficient gene transducing agents but these viral vectors have been shown to elicit an immune 

response [202]. Rapid inactivation of adenoviruses by anti-adenoviral and neutralizing antibodies 

in the blood limits the use of adenoviral gene transfer to intraprostatic injections for site-specific 

delivery. To circumvent this problem we previously demonstrated a unique intravenous site-

specific delivery system for gene transfer both in vivo and in vitro, using adenoviral (Ad) 

mediated delivery of GFP [214] and melanoma differentiation associated gene-7/interleukin-24 

(mda-7) encapsulated in commercially available ultrasound (US) contrast agents (microbubbles) 

[53]. The microbubbles (MBs) are able to entrap and protect viral vectors from the immune 

system and are small enough to flow freely in the pulmonary and liver capillary bed. MBs 

undergo cavitation in the sonification zone, and release their contents. Cavitation also creates 

shockwaves that increase cell permeability allowing for better uptake of the genetic material into 

the targeted cell [53, 68, 214]. 

Radiation therapy (RT) is commonly used in cancer management, with 40% to 60% of all 

cancer patients receiving radiation treatment [246]. RT stimulates death receptors at the cell 

surface, generates reactive oxygen species and activates several cell cycle regulatory proteins 

including p53 [247], pRB [248], and other proteins that trigger senescence, necrosis or apoptosis 

[249]. Additionally, factors such as location, size, and inadequate vascular supply (hypoxia) play 

a role in the lack of responsiveness of neoplasms to ionization radiation [250].  

The human prostate cancer, DU145, displays genetic mutations in key cell cycle 

regulatory proteins, p53 and pRB. DU145 expresses a mutant p53 protein (mt-p53) due to 

mutations at codon 223 and 274 on both alleles [251], which is functionally inactive, stabilized, 
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and temperature sensitive [252]. Therefore, because functional p53 is required for ionizing 

radiation to activate p21cip/waf and to induce a G1-cell cycle arrest, DU145 cells are 

radioresistant [251, 253]. In addition, pRB gene has a biallelic disruption in these cells; one allele 

is deleted while the other produces a truncated product of the RB gene resulting in the loss of 

another G1 cell cycle phase regulator required for apoptosis following irradiation [254]. Studies 

by Sasaki, et al. [255] and Bowen, et al. [256] showed that DU145 cell death following ionizing 

radiation is increased when p53 and pRb are restored.  

Another cell cycle regulator, p130 is frequently altered in several human neoplasms 

including prostatic carcinomas. Previously we observed that p130 was expressed at low levels in 

more aggressive prostate tumors and hypothesized that the lack of p130 expression could be 

involved in the progression of the disease [257]. Additionally, we have examined the role of 

p130 in γ-radiation induced apoptosis by using a hamster tetracycline inducible glioblastoma cell 

line HJC12, and demonstrated that the cell cycle regulator p130 promoted radiation induced 

apoptosis by downregulation of the antiapoptotic BCl-2 gene and upregulation of pro-apoptotic 

transcription factor p73 [258]. These data suggest that cell cycle regulatory proteins play a 

significant role in the radio-sensitivity of prostate cancer cells. 

In 1996, Stevens and colleagues demonstrated that ionizing radiation improves viral gene 

transfer efficiency with greater integration of the transgene into the host cells [259]. In addition, 

combined treatment with adenovirus p53 and radiation has been shown to enhance the proportion 

of apoptotic cells by greatly increasing the number of cells arrested in the G1-phase of the cell 

cycle [255]. We hypothesized that ultrasound guided targeted delivery of adenoviruses 

containing the cell cycle genes p53, RB and p130 in combination with external beam radiation 

can further enhance the incorporation of cell cycle transgenes in prostate cancer cells, resulting 
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in greater ablation of prostate tumors than x-ray radiation alone.   

In the current investigation we used an ultrasound contrast agent provided by Targeson, 

Inc (San Diego, CA) and the portable SonoSite Micro-Maxx ultrasound (US) platform (SonoSite, 

Inc., Bothell, WA) equipped with an L25 linear array transducer. Targeson’s agents are lipid-

encapsulated perfluorocarbon microbubbles (MBs) with a mean diameter of 2.5 µm. The gas-

filled microspheres effectively lower the energy threshold for non-thermal cavitation, thus 

allowing diagnostic transducers operating within the energy levels mandated by the FDA to be 

used for drug/gene delivery. Ultrasound-targeted microbubble destruction (UTMD) enables focal 

release of entrapped materials as well as the creation of small shock waves that increase cellular 

permeability [220]. In addition, the MBs protect viruses from recognition and rapid degradation 

by the immune system, thus allowing for intravenous injection rather than direct target organ 

delivery by catheter-based approaches or operative bed injection [214, 218]. MB protection of 

the viruses may also limit the inflammatory response to the viruses, potentially allowing for 

repeated injections of transgene containing MBs.  

The ultimate goal of this research is to develop efficacious treatment modalities for 

therapy resistant prostate cancer. In the present study, we provide proof-of-principle for a site-

specific gene delivery approach mediated by a standard, portable diagnostic US platform. This 

system worked effectively in vivo to deliver Ads carrying cell cycle regulatory genes (p53, RB, 

and p130). Evidence is offered that the combination of 8 Gy radiation therapy with US targeted 

gene transfer of p53 and RB reduced the tumor size in an animal xenograft model of radiation-

resistant human prostate cancer cells. 
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MATERIALS AND METHODS 

Cell Lines, Cell Culture, and Adenoviral Production. 

The DU145 (human prostate adenocarcinoma), cell line was obtained from the American 

Type Culture Collection (ATCC, Rockville, MD). DU145 cells were grown in RPMI 1640 

(Hyclone, Waltham, MA) supplemented with 10% fetal bovine serum (Hyclone, Waltham, MA), 

and 100units/mL penicillin supplemented with 1 mg/mL streptomycin (both from Hyclone, 

Waltham, MA). The human kidney embryonic 293 cells were obtained from the American Type 

Culture Collection (ATCC, Rockville, MD) and grown with Dulbecco’s modified Eagle’s 

medium (Hyclone, Waltham, MA) supplemented with 10% fetal bovine serum (Hyclone, 

Waltham, MA). All cells were grown at 37ᴼC, in a 5% CO2/95% atmosphere incubator. 

The recombinant adenoviruses with wild-type p53, RB, p130 used in this study were 

serotype 5 adenovirus containing a cytomegalovirus (CMV) promoter. Non-coding empty 

Adenoviruses carrying only the CMV promoter were used as vector control. Each viral stock was 

propagated in and purified from 293 cell cultures. Cells were harvested 24-36 hours after 

infection, pelleted, resuspended in heat inactivated media and lysed by three-freeze/thaw cycles. 

Cell debris were removed and the viruses purified by chromatography followed by dialysis. 

Viruses were aliquoted and stored at -80°C. Viral titers were determined by a plaque assay. 

Ad.p53 viruses were generated using the AdEasy system (Carlsbad, CA), as previously described 

[260-263]. The Ad.RB viruses were generously provided by Dr. Juan Fueyo (M.D. Anderson 

Cancer Center, The University of Texas) and Ad.p130 viruses were purchased from Vector 

BioLabs (Philadelphia, PA). All adenovirus transductions were performed using 50 MOI Ads for 

in vitro studies, in RPMI-1640 media with 2% Fetaclone-III heat-inactivated FBS (Hyclone, 

Thermo Scientific, Waltham, MA). 
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Radiation 

 External beam radiation was provided using Varian Medical Systems, Inc. (Palo Alto, 

CA) Model 21EX and Model 6EX linear accelerators (LINAC), each owned and operated by 

Tri-State Regional Cancer Center in Ashland, KY. The machines were approved by the Inspector 

General of the State of Kentucky for irradiations to biological specimens and animals as desired 

by us. These particle accelerators offer a bremsstrahlung x-ray energy of 6 MV, which was used 

in these investigations as well as a rapid dose delivery to the targeted tumor at a rate of 6Gy/MU. 

Here, the number of monitor units (MU) is simply the internal timer of the LINAC. All dosages 

were pre-calculated for in vitro and in vivo  studies as previously described [264].  

 For the in vitro studies, 2 x 10^6 DU145 cells were seeded in 75cm^2 flasks and 

irradiated at 10Gy or 20Gy, at room temperature. For one treatment of 10Gy, 965 MU were 

given at 600 MU/min for a run time of 1 min 37 seconds. For one treatment of 20Gy, 1,930 MU 

were given at 600 MU/min for 3 min 13 seconds. For a combination therapy, 2 x 10^6 DU145 

cells were first radiated at 10Gy and 20Gy following by infection with Ad5CMV-p53 or 

Ad5CMV-RB or Ad5CMV-p130 viruses at 50 multiplicity of infection (MOI) units. The 

sensitivity to x-ray induced apoptosis was evaluated by phase contrast microscopy and flow 

cytometric analysis. Cells were collected at 24, 48, 72 and 96 hours after radiation to carry out 

Flow cytometric analysis and Western Blots. 

 For the in vivo studies, mice received irradiation in pie cages for a one-time dose of 8Gy 

(800 MU given at 600 MU/min for 80 seconds). An approved protocol concerning the Physics 

Policies and Procedures for handling of the mice and disposal of waste was used.  
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Flow Cytometry Analysis 

Irradiated, adenoviral (Ad.p53, Ad.RB and Ad.p130) transduced and combination treated 

DU145 cells were harvested at 24, 48, 72 and 96 hours following treatments, to study the cell 

cycle phase of each group. After three washings in 1mL of 1% fetal calf serum (FCS)-PBS the 

cells were fixed in 70% ethanol and stored at -20ᴼC. Cells were centrifuged, washed and 

resuspended in 1% FCS-PBS. The samples were then incubated at 37ᴼC with propidium iodide 

(PI) and RNAse A for 30 min.  The DNA content was analyzed by a BD Accuri C6 Flow 

Cytometer (BD Bioscience, San Jose, CA). The proportions of G1, S, G2 phase cell cycle were 

determined as previously reported [255]. 

 Apoptosis analysis was done using the Annexin-V assay on the Flow Cytometer. 

Apoptotic cells were analyzed with fluorescein isothiocyanate (FITC) conjugated to Annexin-V 

antibody and Propidium Iodide (PI) from the Annexin-V/FITC Kit (Bender MedSystems, 

Burlingame, CA) following manufacturer's instructions. The samples were analyzed with BD 

Accuri C6 Flow Cytometer (BD Bioscience, San Jose, CA). The Annexin-V assay experiment 

was repeated three times and was run as triplicate of technical repeats. Statistical analyses were 

performed with IBM SPSS statistic software. 

 

Antibodies and Western Blot Analysis 

Western blot analyses with antibodies against the targeted proteins were performed to 

validate successful viral transfection of the cells and of the in vivo tumors. DU145 cells were X-

irradiated, transduced with 50 MOI of Ad.p53, Ad.RB, Ad.p130, or Ad.CMV (control) for 24, 

48, 72 and 96 hrs post-irradiation/transduction. Cells were lysed on ice for 1 hr with lysis buffer. 

Fifty μg of total protein plus loading buffer were loaded in each well for western blot analyses. 
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SDS-PAGE was run using 8-12% bis-acrylamide gel at room temperature. Samples were blotted 

onto a nitrocellulose membrane. To detect proteins, the membranes were blocked with 5%Milk-

TBST overnight at 4ᴼC and reacted with primary antibodies for 2 hr at room temperature with 

constant motion on an orbital shaker. The membranes were washed with TBST to remove excess 

primary antibodies. Incubation for 45 minutes with appropriate secondary antibodies followed. 

Immunodetection was performed using the enhanced chemiluminescence (ECL) system 

(Amersham, IL) according to the manufacturer’s instructions using x-ray films. The following 

primary antibodies were used: mouse monoclonal antibodies against p53 (DO-1) cat#sc-126 

(1:500), pRb cat#sc-102 (1:250) (Santa Cruz Biotechnology, Santa Cruz, CA), β-actin 

cat#A3853 (1:1,500) (Sigma Aldrich) and rabbit polyclonal antibody against RBL2/p130 cat#sc-

317 (1:250). 

 

Preparation of MBs and US Platform. 

Targeson (Targeson) custom synthesis US contrast agent (perfluorocarbon MBs, 

encapsulated by a lipid monolayer and polyethylene glycol) stabilizer were reconstituted as 

previously described [53]. MBs were reconstituted in the presence or absence of 1 ml of 10^12 

plaque-forming units of Ads [53]. Unenclosed, surface-associated Ads were inactivated using 

incubation with FBS as previously described [53, 214]. For in vivo experiments US exposure was 

achieved with a Micro-Maxx SonoSite (SonoSite) ultrasound machine equipped with the 

transducer L25 set at 0.7 Mechanical Index, 1.8 MPa for 10 minutes as previously described [53, 

214]. 
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Animal Study  

Animal studies were performed in accordance with National Institutes of Health 

recommendations and the approval of the institutional animal research committee. DU145, 

human prostate carcinoma cells were xenografted to 8- to 12-week-old female or male athymic 

BALB/c nude mice, homozygous mutant for the nu/nu allele, bred in our laboratory. The colony 

of mice was developed from breeding stock obtained from Charles Rivers Laboratories, 

Wilmington, MA. Mice were sedated in an IMPAQ6 anesthesia apparatus (VetEquip, 

Pleasanton, CA) that was saturated with 3–5% isofluorane and 10–15% oxygen with the aid of a 

precision vaporizer (VetEquip) to deliver the appropriate amount of anesthetic and to induce 

anesthesia. Mice received subcutaneous injections along each of their dorsal flanks (both sides 

per mouse), of 2 x 10^6 DU145 cells in 200µL of PBS using a 22-gauge needle. Tumors were 

measured post-injection in their longest dimension and at 90ᴼ to their longest dimension using 

vernier calipers. Once the tumors reached a volume of approximately 200mm^3 the mice were 

divided into their various treatment groups. Tumor volumes were calculated using the formula 

tumor volume = (long arm x short arm2)/2 [265].  

 Sonoporation:  Gray scale-B-mode US imaging was performed with a SonoSite scanner 

(SonoSite) equipped with the transducer L25 set at 0.7 Mechanical Index, 1.8 MPa for 10 

minutes. US images were recorded as digital clips. Tumors on the right flank were sonoporated 

immediately after the MB encapsulated viral vector intravenous injections using a 27-gauge 

needle. Tumors on the contralateral flank (on the left flank) would serve as internal controls. 

Radiation of 8Gy was given to the appropriate groups followed by four weeks of MB guided 

delivery of Ad.p53, Ad.RB or Ad.p130.  

 Radiation: Radiation treatments were provided to groups of mice, generally 11 mice/pie-
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cage. Groupings were limited by the number of available slots in the Braintree Scientific, Inc. 

(Braintree, MA) Model MPC pie cage. The LINAC was programmed to provide an 8Gy 

radiation. Radiation was given to the appropriate groups followed by four weeks of adenoviral 

treatments.   

The DU145 tumor-bearing mice were directly injected in the tumor (IT) or through the 

dorsal tail vein (IV). Each control group got an IT injection of 100µL of PBS MBs or 100µL of 

un-encapsulated Ad.p53, Ad.RB or Ad.p130 viruses at a concentration of 10^9 pfu/µL.  

Radiation of 8Gy alone constituted an additional control group. Experimental groups were 

injected IV with 100 µL of MB encapsulated Ad.p53, Ad.RB or Ad.p130 at a concentration of 

10^9 pfu/µL. Tumor growth inhibition rate was calculated using the formula (1-(treated 

group/control group))*100%.  

 The animals were sacrificed by CO2 asphyxiation. Tumors, heart, lungs and liver were 

harvested at the end of the treatment course. Tissues used for molecular biological analysis were 

snap frozen in liquid nitrogen and stored at -80°C. Frozen tissues were homogenized and total 

proteins were extracted. Western blot studies allowed determining if the enhanced gene 

expression was specific to microbubble encapsulation and restricted to the US treated tumors 

instead of other tissues. The combination of external beam radiation, ultrasound treatment and 

systemic delivery of MB protected genetic material by viruses was examined for expression of 

the transduced tumor suppressor genes. 

 

In Vivo Bioluminescence Imaging 

 We imaged animals with the IVIS Lumina II (Caliper Life Sciences) at 24hrs and one 

week after MB-assisted gene delivery, to quantify photons emitted by the control animals that 
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received Ad.LUC. For each imaging session mice were injected intraperitoneally with D-

luciferin (150 mg kg−1) under anesthesia using 1.5–2.5% isoflurane/oxygen mixture. Images 

were acquired 10 min after injection of D-luciferin as follows. The anesthetized mice were 

placed in a light-tight chamber, and images were generated over a 1-minute exposure using a 

cryogenically cooled charge-coupling device camera IVIS Lumina II (Caliper Life Sciences) to 

quantify photons spontaneously emitted by the animal. Images were pseudocolored using the 

Xenogen (Caliper Life Sciences, Hopkinton, MA, USA) software and overlayed on a black-and-

white photograph of the animal generated with cabinet lighting. The visual output represents the 

number of photons emitted s_1 cm_2 as a pseudocolor image where the maximum is red and the 

minimum is purple. Image acquisition and BLI data analysis were done using Living Image 

software (Caliper Life Sciences). 

 

Statistical Analyses 

All statistical analyses were performed using IBM SPSS software. Comparisons were 

conducted using an ANOVA test with post hoc test of Dunnett’s T3. P values of less than 0.05 

were considered statistically significant.  

A comparison of tumor volumes was done for week 19 after the treatment at the end of 

the study. Statistical analyses for comparisons of different types of treatments were done using 

one-way analysis of variance using a post hoc test of Dunnett’s T3. P value <0.05 was 

considered significant.  
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RESULTS 

Phase Contrast Microscopic Analysis: Irradiated DU145 Cells that were then Transduced 

with p53, RB, and p130 Genes 

We observed that after 96 hours, radio-resistant DU145 cells, which were x-ray irradiated 

and then transduced with 50 MOIs of Ad.p53, Ad.RB, or Ad.p130 had a higher number of dead 

cells than cells which did not receive the transgenes and that there was an increase in the number 

of apoptotic cells as radiation dose was escalated from 10 to 20Gy (Fig. 29a). Microscopic 

analysis revealed that following radiation induced DNA damage, cells adopted a large flattened 

shape with distorted cell membranes and multiple nuclei typical of senescent cells. We also 

observed that at 96 hours, the RB or p53 gene transfer and radiation therapy resulted in a higher 

increase of cell death than p130 gene transfer (Fig. 29a). Non-irradiated and non-transduced 

control cells exhibited similar percentages of cell death when compared to control non-coding 

CMV-Adenoviruses transduced cells (data not shown). 

Interestingly, cells x-ray irradiated and transduced with Ad.p53, Ad.RB or Ad.p130 

showed an increase in cell death, compared to the control x-irradiated group from 24-72 hours 

(Fig. 29b). Few dead DU145 cells were observed at 24-72 hours following x-ray irradiation 

when compared to the non-transduced control (Fig. 29b). Radiation combined with adenoviral 

transductions increased the number of dead cells regardless of the transduced genes (p53, RB & 

p130) in a time and dose dependent manner (Fig. 29a and b). Taken together, these data suggest 

that gene transfer of RB or p53 resulted in an improvement in the cell death of the radio-resistant 

DU145 cells. 
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Figure 29a. Microscopy image analysis of DU145 cells transduced with Ads carrying tumor 

suppressor genes (p53, RB and p130) ± radiation from 72hrs. Apoptotic cells appear as floating 

in the bright field microscopy image. Top row images are of control DU145 cells and the ones 

that received radiation of 10Gy or 20Gy only. The second row images are DU145 cells that 

received 50MOI adenoviral transduction of p53 alone and those combined with 10Gy and 20Gy 

radiation. The third row images are of DU145 cells that received 50MOI adenoviral transduction 

of pRB alone and those combined with 10Gy and 20Gy radiation. The fourth row images are of 
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DU145 cells that received 50MOI of adenoviral transduction of p130 alone and those combined 

with 10Gy and 20Gy radiation. 

  

Figure 29b. Microscopy images of adenovirally transduced tumor suppressor genes (p53, RB 

and p130) ± radiation from 24-72hrs. Top row images are of DU145 cells that received radiation 

of 10Gy and 20Gy only at 24, 48, and 72 hours, respectively. The second row images are DU145 

cells that received 50MOI of Ad.p53 combined with 10Gy and 20Gy radiation at 24, 48, and 72 

hours, respectively. The third row images of DU145 cells that received 50MOI of Ad.pRB 

combined with 10Gy and 20Gy radiation at 24, 48, and 72 hours, respectively. The bottom row 

images are of DU145 cells that received 50MOI of Ad.p130 combined with 10Gy and 20Gy 

radiation at 24, 48, and 72 hours, respectively.   
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Transgene Expression of p53, pRb, and p130 in Irradiated DU145 Cells 

Western blot studies were done to confirm the adenoviral transduction of DU145 cells by 

adenoviruses carrying genes p53, pRb and p130. Normally, irradiation induced cell death results 

in the accumulation of proteins p53 and hypo-phosphorylated pRb leading to G1 arrest. We 

found that following x-ray irradiation there was no change in the expression of mutant p53 and 

truncated pRb in the control DU145 cells regardless of the irradiation dose (Fig. 30).  Mutant p53 

and truncated pRb are stabilized and non-functional in DU145 cells leading resistance to 

radiation-induced cell death [252, 254]. We also observed an accumulation of p130, which 

occurred in a time dependent manner following x-ray irradiation, regardless of the irradiation 

dose (Fig. 30). Cells transduced with adenoviral Ad.p53, Ad.RB, and Ad.p130 showed increased 

expression of these functional recombinant proteins (Fig. 30). Higher expression levels of all of 

the adenovirally transferred recombinant proteins were observed as the x-ray dose was increased 

from 10Gy to 20Gy.  
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Figure 30. Western Blot analysis of the cell lysates collected at 24, 48, 72 & 96 hours post- 

adenoviral transduction. Treatments and time of collection after radiations are as labeled at the 

top, protein detected are labeled on the right. Anti-beta-actin was used as a loading control. 50μg 

of total lysates were run in SDS polyacrylamide gels. 

Cell Cycle Analysis of DU145 Cells Following X-ray Irradiation and Gene Transduction 

 The replication status of DU145 cells following radiation therapy, adenoviral gene 

transfer of p53, RB, or p130, or combined radiation and adenoviral gene transfer was computed 

as the percentage of cells accumulated in the G1, S or G2 cell cycle phases by a propidium 

iodide staining. The data was plotted on a linear diagram to show points in time where there was 

accumulation or reduction of G1- and G2-phases at 24-96 hours of DU145 cells treated with the 

various adenoviruses and x-ray irradiation (Fig. 31a-f). Control DU145 cells showed a small (8-

11%) fraction of cells in S-phase (Table 4). The cells treated with Ad.p53, Ad.RB, or Ad.p130 
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showed accumulation at the G1-phase with reduction in G2-phase of the cell cycle suggesting a 

block of the G1/S phase transition (Fig. 31a, c and e). Notably, x-ray irradiated DU145 cells 

showed a marked accumulation in the G2-phase with a reduction in the G1-phase of the cell 

cycle suggesting a block at the G2/M transition (Fig. 31a-f). The combined treatment of Ad.p53 

or Ad.RB transduction and x-ray irradiation showed a reduction of the number of cells in the G2-

phase with accumulation of cells in the G1-phase (Fig. 31a,b & c,d). However, combined 

treatment of Ad.p130 transduction and x-ray irradiation showed a G2/M block (Fig. 31e-f), 

suggesting that this cell cycle response was most likely due to the irradiation.  

 

Table 4. The percentage of DU145 cells in G1, S and G2 cell cycle phase with its standard 

deviation that received treatments of adenovirus, radiation and combined (radiation + 

adenovirus) treatment as analyzed by flow cytometry at 24-96 hours. 

 G1 phase 
(Mean ± SD) 

S phase 
(Mean ± SD) 

G2 phase 
(Mean ± SD) 

Groups 24 
hrs 

48 
hrs 

72 
hrs 

96 
hrs 

24 
hrs 

48 
hrs 

72 
hrs 

96 
hrs 

24 
hrs 

48 
hrs 

72 
hrs 

96 
hrs 

Control 40 
± 

18.53 

35.53 
± 

15.65 

39.2 
± 

13.86 

40.9 
± 

12.80 

11.33 
± 

5.28 

10 
± 

1.15 

9 
± 

1.42 

8.87 
± 

1.16 

48.83 
± 

23.25 

49.27 
± 

11.07 

45.93 
± 

19.87 

45.5
3 
± 

20.6
8 

10Gy 
Rad 

70.87 
± 

2.63 

62.3 
± 

1.51 

51.67 
± 

4.29 

40.53 
± 

0.76 

15.63 
± 

1.45 

14.03 
± 

2.20 

19.83 
± 

2.55 

24.17 
± 

1.05 

13.93 
± 

1.67 

23.9 
± 

2.52 

29.4 
± 

0.96 

34.9
7 
± 

1.7 
20Gy 
Rad 

60.93 
± 

3.93 

38.27 
± 

0.75 

33.1 
± 

0.34 

16.77 
± 

3.09 

15.13 
± 

3.8 

22.47 
± 

1.75 

12.67 
± 

1.58 

13.43 
± 

4.22 

25.2 
± 

0.17 

40.1 
± 

1.7 

52.97 
± 

1.31 

67.3
7 
± 

1.62 
Ad.p53 27.33 

± 
4.98 

36.93 
± 

1.59 

49.37 
± 

3.42 

55.8 
± 

2.17 

8.07 
± 

2.89 

10.06 
± 

1.26 

16.87 
± 

3.35 

6.16 
± 

2.39 

65.1 
± 

3.82 

53.63 
± 

1.66 

34.33 
± 

1.53 

36.2
7 
± 

3.42 
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Ad.p53 
+ 10Gy 

Rad 
27.2 

± 
1.61 

36 
± 

1.08 

48.83 
± 

3.27 

59.47 
± 

2.35 

6.07 
± 

0.15 

9.47 
± 

1.94 

14.1 
± 

2.36 

13.07 
± 

2.15 
67.13 

± 
1.53 

53.33 
± 

3.19 

32.63 
± 

3.86 

27.1
7 
± 

1.46 
Ad.p53 
+ 20Gy 

Rad 
39.87 

± 
2.10 

56.1 
± 

1.67 

64.7 
± 

0.72 

74.27 
± 

2.33 

17.87 
± 

2.19 

9.7 
± 

1.21 

11.03 
± 

1.60 

10.77 
± 

1.27 
42.83 

± 
3.5 

34.83 
± 

0.91 

24.7 
± 

1.97 

15.2
7 
± 

3.09 
Ad.pR

B 19.9 
± 

3.74 

30.87 
± 

4.27 

37.33 
± 

2.2 

44.1 
± 

2.36 

11.33 
± 

3.76 

8.3 
± 

3.65 

7.43 
± 

0.59 

12.6 
± 

1.4 
69.03 

± 
1.80 

60.97 
± 

2.18 

55.37 
± 

1.96 

42.9
7 
± 

3.72 
Ad.pR

B + 
10Gy 
Rad 

23.23 
± 

1.93 

31.1 
± 

2.08 

38.77 
± 

4.58 

51.93 
± 

4.68 

8.13 
± 

2.0 

10.23 
± 

0.87 

6.97 
± 

1.47 

11.33 
± 

2.35 
68.9 

± 
1.83 

58.77 
± 

1.69 

54.4 
± 

3.27 

36.4 
± 

2.0 
Ad.pR

B + 
20Gy 
Rad 

26.7 
± 

2.08 

33.6 
± 

2.07 

47.57 
± 

2.42 

68.13 
± 

2.87 

11.4 
± 

5.38 

10.53 
± 

3.89 

13.87 
± 

0.64 

6.93 
± 

3.27 
61.63 

± 
2.83 

54.9 
± 

1.68 

38.53 
± 

2.61 

24.9
3 
± 

3.95 
Adp13

0 
45.43 

± 
3.30 

54.2 
± 

4.33 

58.47 
± 

3.05 

67.2 
± 

3.22 

21.8 
± 

2.26 

19.47 
± 

4.31 

20.9 
± 

3.96 

17.47 
± 

2.40 

32.9 
± 

3.99 

26.23 
± 

1.60 

20.47 
± 

0.67 

15.3 
± 

3.54 
Adp13

0 + 
10Gy 
Rad 

59.73 
± 

1.65 

52.57 
± 

3.13 

43.87 
± 

0.93 

27.73 
± 

7.70 

20.47 
± 

1.50 

19.2 
± 

1.35 

13.23 
± 

3.21 

15.17 
± 

7.41 
19.27 

± 
1.65 

27.8 
± 

2.41 

42.23 
± 

1.70 

56.7 
± 

1.15 
Adp13

0 + 
20Gy 
Rad 

57.9 
± 

1.35 

52.47 
± 

3.86 

34.27 
± 

2.96 

18.73 
± 

4.46 

18.8 
± 

0.82 

14.53 
± 

2.07 

15.33 
± 

1.72 

10.07 
± 

4.79 
24.5 

± 
0.79 

33.33 
± 

5.76 

51.57 
± 

1.53 

70.5 
± 

1.06 
*Ad-adenovirus, *Rad- radiation, *SD- standard deviation 
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Figure 31. The accumulation/reduction of cells in G1- and G2-phase of cell cycle from a 

population of DU145 cells that received adenoviral p53 (panels a and b), RB (panels c and d) 

or p130 (panels e and f) with or without radiation treatments. The days after radiation are 

indicated on the ordinate. The percentage of cells in G1/G2 phase of cell cycle are indicated on 

the abscissa. A best-fit line was drawn on data points collected over four days. 
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External Beam Radiation Followed by Adenoviral p53, pRb, p130 Transduction Increased 

the Apoptotic Rate of DU145 Cells In Vitro 

Apoptotic cell death of Ad.p53, Ad.RB, or Ad.p130 transduced and irradiated DU145 

cells was detected using a fluorescent-labeled Annexin-V antibody (Annexin-V-FITC) in 

combination with propidium iodide (PI) by flow cytometry 24-96 hours after irradiation. We 

observed that the apoptotic rate of DU145 cells transduced with control CMV non-coding 

adenovirus (Ad.CMV) was comparable to the untreated control DU145 cells regardless of time 

point (Fig. 32 & 33). Compared to the control, there was a significant (p<0.05) increase in cell 

death for all treatments (Fig. 32 & Table 5). As radiation was increased from 10Gy 

(14.23%±0.87) to 20Gy (24.67%±2.28) there was a ~10% increase in cell death at 96 hours. A 

trend of increased cell death was also observed in all treated groups as time progressed (Fig. 33). 

The highest percentage of cell death was observed at 96hrs following radiation for all treated 

groups.  

The percentage of cell death increased when adenoviral transduction of p53, RB or p130 

was combined with x-ray irradiation in comparison to the control or to adenoviral transduced 

groups regardless of the time point (Fig. 32 & 33). Compared to the 10 Gy irradiated cells there 

was a significant (p<0.01) increase in cell death for p53 overexpressing cells (Fig. 32 & Table 5).  

Compared to the 10 and 20 Gy irradiated cells there was a significant (p<0.01) increase in cell 

death for pRb overexpressing cells (Fig. 32 & Table 5). The highest percentage (41.17%±1.46) 

of cell death was observed at 96 hours for Ad.RB transduced DU145 cells in combination with x-

ray irradiation (Fig. 32).  
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Figure 32. Bar graph representation of apoptosis assay with Annexin-V and Propidium Iodide 

staining of adenoviral infected tumor suppressor genes (p53, RB and p130) ± external beam 

radiation at 96hrs analyzed on Accuri C6 flow cytometer. The percentages of dead cells are 

indicated on the ordinate. The control and treatment groups are indicated on the abscissa. * 

indicates statistical significance between control and 10-20 Gy irradiated cells. ** indicates 

statistical significance between irradiated cells and cells that received combination of adenoviral 

gene transfer and external beam radiation. 
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Table 5. Multiple comparison ANOVA (Analysis of Variance) significance table with a 

Dunnett’s T3 test for Annexin-V assay experiment of DU145 cells following radiation and 

adenoviral gene transfer for 96hrs time point. The statistical analysis was run using IBM SPSS 

software.  

 (I) groups (J) groups Mean 
Difference (I-

J) 

Std. Error Sig. 

DU145 CMV -.43 .50 1.0 
Rad 10gy -11.73* .60 .00 
Rad 20gy -22.17* 1.36 .02 
Adp53 -15.00* 1.02 .02 
Adp53+ 10gy -24.60* .96 .00 
Adp53+ 20gy -33.90* 1.92 .02 
AdpRB -18.13* 1.12 .02 
AdpRB+ 10gy -25.93* .54 .00 
AdpRB+ 20gy -38.67* .90 .00 
Adp130 -9.43* .94 .04 
Adp130+ 10gy -14.13* .98 .02 
Adp130+ 20gy -25.67* .87 .00 

 CMV Rad 10gy -11.30* .63 .00 
Rad 20gy -21.73* 1.37 .02 
Ad.p53 -14.57* 1.04 .02 
Ad.p53+ 10gy -24.17* .98 .00 
Ad.p53+ 20gy -33.47* 1.93 .02 
Ad.pRB -17.70* 1.14 .01 
Ad.pRB+ 10gy -25.50* .58 .00 
Ad.pRB+ 20gy -38.23* .92 .00 
Ad.p130 -9.00* .96 .04 
Ad.p130+ 10gy -13.70* 1.0 .02 
Ad.p130+ 20gy -25.23* .90 .00 

 Rad 10Gy Rad 20gy -10.43 1.41 .08 
Ad.p53 -3.27 1.09 .49 
Ad.p53+ 10gy -12.87* 1.03 .01 
Ad.p53+ 20gy -22.17* 1.96 .04 
Ad.pRB -6.40 1.19 .15 
Ad.pRB+ 10gy -14.20* .67 .00 
Ad.pRB+ 20gy -26.93* .98 .00 
Ad.p130 2.30 1.02 .74 
Ad.p130+ 10gy -2.40 1.05 .73 
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Ad.p130+ 20gy -13.93* .95 .01 
 Rad 20Gy Ad.p53 7.17 1.63 .19 

Ad.p53+ 10gy -2.43 1.60 .96 
Ad.p53+ 20gy -11.73 2.31 .13 
Ad.pRB 4.03 1.70 .69 
Ad.pRB+ 10gy -3.77 1.39 .60 
Ad.pRB+ 20gy -16.50* 1.56 .02 
Ad.p130 12.73* 1.59 .03 
Ad.p130+ 10gy 8.03 1.61 .14 
Ad.p130+ 20gy -3.50 1.55 .74 

 Ad.p53 Ad.p53+ 10gy -9.60* 1.32 .03 
Ad.p53+ 20gy -18.90* 2.12 .04 
Ad.pRB -3.13 1.44 .77 
Ad.pRB+ 10gy -10.93* 1.06 .03 
Ad.pRB+ 20gy -23.67* 1.28 .00 
Ad.p130 5.57 1.31 .20 
Ad.p130+ 10gy .87 1.33 1.0 
Ad.p130+ 20gy -10.67* 1.26 .02 

 Ad.p53+10Gy Ad.p53+ 20gy -9.30 2.10 .23 
Ad.pRB 6.47 1.40 .16 
Ad.pRB+ 10gy -1.33 1.00 .98 
Ad.pRB+ 20gy -14.07* 1.23 .01 
Ad.p130 15.17* 1.26 .01 
Ad.p130+ 10gy 10.47* 1.28 .02 
Ad.p130+ 20gy -1.07 1.21 1.0 

 Ad.p53+20Gy Ad.pRB 15.77 2.18 .06 
Ad.pRB+ 10gy 7.97 1.94 .33 
Ad.pRB+ 20gy -4.77 2.07 .72 
Ad.p130 24.47* 2.09 .02 
Ad.p130+ 10gy 19.77* 2.11 .03 
Ad.p130+ 20gy 8.23 2.06 .30 

 Ad.pRB Ad.pRB+ 10gy -7.80 1.16 .1 
Ad.pRB+ 20gy -20.53* 1.37 .00 
Ad.p130 8.7 1.39 .06 
Ad.p130+ 10gy 4.0 1.42 .52 
Ad.p130+ 20gy -7.53 1.35 .09 

 Ad.pRB+10Gy Ad.pRB+ 20gy -12.73* .95 .01 
Ad.p130 16.5* .99 .01 
Ad.p130+ 10gy 11.80* 1.02 .02 
Ad.p130+ 20gy .27 .92 1.0 

 Ad.pRB+20Gy Ad.p130 29.23* 1.22 .00 
Ad.p130+ 10gy 24.53* 1.25 .00 
Ad.p130+ 20gy 13.0* 1.17 .01 
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 Ad.p130 Ad.p130+ 10gy -4.70 1.28 .29 
Ad.p130+ 20gy -16.23* 1.20 .00 

 Ad.p130+10Gy Ad.p130+ 20gy -11.53* 1.23 .01 
 
Microbubble Assisted Adenoviral p53, pRb, and p130 Gene Transfer in Combination with 

External Beam Radiation Enhanced Therapy of Radio-resistant DU145 Tumor Xenografts. 

We have been focusing on developing a safe and effective means of gene delivery in vivo 

to realize the therapeutic potential of the synergistic effects of tumor suppressor gene expression 

and ionizing radiation to combat human malignancy, specifically prostate carcinoma. To follow 

up on our previous studies on the use of microbubble assisted adenoviral gene transfer in radio-

resistant prostate cancer [53], we decided to compare the effects of microbubble assisted 

adenoviral p53, RB, and p130 gene delivery combined with radiation therapy on xenografted 

DU145 tumors in nude mice. 

We have employed here a novel systemic delivery approach to target adenovirus (Ad) 

release in a site-specific manner that consists of Ad incorporated in MBs combined with 

diagnostic US [53, 214]. Proof-of-principle for this strategy comes from studies using Ad to 

systemically deliver the GFP gene or a target gene (Mda-7/IL-24) in a tissue specific manner [53, 

214]. 

 For these current studies, we used DU145 human prostate carcinoma cells. The 

therapeutic arm included three different non-replicating adenoviral constructs to deliver p53, RB, 

and p130 that have been previously shown to increase radiation therapy response or to reduce 

tumor growth in various tumor types [254, 258, 266, 267]. The control arms of the study 

included Adenovirus expressing the green fluorescent protein (GFP) and the firefly luciferase 

gene (LUC). To test the specificity of intravenous injection of Ads complexed MBs for gene 

delivery in vivo we used the reporter firefly luciferase gene (LUC). We showed exclusive 
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bioluminescence in the sonoporated tumor at 24hrs from MB-assisted gene delivery using whole 

animal bioluminescence imaging (BLI) (Fig. 34), which was not extended to other districts of the 

animal even after one week from LUC gene delivery.  

Figure 34. Detection of MB-assisted Firefly Luciferase gene transfer through whole animal 

imaging. Panel a) is the ultrasound image of a tumor xenograft. Panel b) is the image from a 

mouse sonoporated on the tumor xenografted in the left flank showing specific luciferase 
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luminescent signal at 24 hours from the treatment. Panel c) is the image from the same mouse as 

in panel b showing specific luminescent signal at 1 week from the treatment. 

 
To test this new therapeutic approach for targeted tumor delivery of p53, pRb and p130, 

prostate tumor xenografts were established on both flanks of nude mice by injecting 4 x 106 

DU145 cells in the subcutaneous region of each flank of the animals. DU145 tumor bearing nude 

mice (n=5 each group) were then injected in their tail veins with 100 µL of US contrast agent 

that was reconstituted with PBS or Ad.GFP as controls. Additional DU145 tumor control nude 

mice (n=5 each group) were injected intratumorally (IT) with 100 µL of unprotected Ad.p53, 

Ad.RB or Ad.p130. In the treatment arm tumor-bearing animals were injected in their tail vein 

with 100 µL of US contrast agent (Targeson, San Diego, CA) that was reconstituted with 

Ad.p53, Ad.RB or Ad.p130. Tumors implanted on the right-side, were sonoporated as previously 

reported [53]. The treatment schedule is described in figure 4. In this study, gene transfer 

treatments were started twelve weeks after the injection of the cell lines, when tumors reached an 

approximate volume of 200-250 mm3. Mice were irradiated with 8Gy of x-ray irradiation from a 

clinical linear particle accelerator (LINAC) on week 12. Three days after radiation therapy, mice 

were injected once a week for four weeks (wks 13-16) and were again irradiated at week 16 (Fig. 

35). Mice were then injected once a week for three additional weeks (wks 17-19) and were 

sacrificed one week after the end of the treatments because the control tumors reached an 

approximate volume of 1,000 mm3 (Fig. 35). Compared to untreated or to irradiated control, 

tumors transduced with MB-assisted gene transfer using adenoviruses overexpressing p53, pRb, 

and p130 in combination with radiation treatments showed marked reduction of tumor size 

which was statistically significant (p<0.05) (Fig. 36). Tumors treated with ultrasound MB-
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assisted gene transfer of p53, RB, and p130 were smaller in size (Fig. 36) with an inhibition rate 

of 91.24%, 92.27%, and 48.31% respectively, when compared to the final tumor volume of 

control tumors (Table 6). Irradiated tumors were smaller in size than control tumors (Fig. 36) 

with an inhibition rate of 21.98% (Table 6). B-mode US scanned images showed in figure 38 

demonstrate tumor reduction in real time (Fig. 38) as the US images were recorded during the 

course of the treatment. US scanned images for groups that were transduced with p53 or RB 

showed a marked reduction in tumor growth, whereas tumors transduced with p130 exhibited a 

plateaued growth (Fig. 38).  

Compared to untreated or to irradiated control, intratumoral injections (IT) of Ad.p53 or 

Ad.RB significantly reduced tumor size (p<0.05) with an inhibition rate of 81.29% and 85.99%, 

respectively (Fig. 36 and Tables 6 and 7). Compared to radiation only groups, tumor treatment 

with Ad.p53 (p=0.015) and Ad.pRB (p=0.014) significantly decreased tumor growth (Table 7). 

The effect was further significantly enhanced (p<0.05) when gene transfer with Ad.p53 or Ad.RB 

was combined with radiation showing a growth inhibition rate of 88.04% and 87.82% compared 

to radiation control, respectively (Table 6 and 7). We also observed that when IT treatment of 

Ad.p53 or Ad.RB was combined with radiation there was reduction in tumor growth (Fig. 36) 

compared to gene transfer groups alone, although the difference was not statistically significant 

(Table 7). Interestingly, the IT injection with Ad.p130 slowed the growth of the tumors with an 

inhibition rate of 52.70%. However, IT injection of Ad.p130 combined with x-ray irradiation 

improved its efficacy by only about 4% (Table 6).  

The intravenous injection (IV) of MB complexed with Ad.p53 or Ad.RB did not result in 

inhibition of tumor growth when no ultrasound was applied (Fig. 37). Only tumors on the flank 

that received ultrasound (right flank) exhibited tumor growth reduction (Fig. 36 and 37). Tumors 
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on the sonoporated flank (right side) that were transduced with Ad.p53 or Ad.RB (but not 

irradiated) showed a growth inhibition rate of 91.24% and 92.27%, respectively. Tumors treated 

with ultrasound MB-assisted gene transfer of Ad.p53 showed better (but not significant) growth 

inhibition than IT Ad.p53 (p=0.363) or combined x-ray irradiation with IT Ad.p53 (p=0.65). 

This trend was also observed in tumors treated with ultrasound MB-assisted gene transfer of 

Ad.RB versus IT injections of Ad.RB (p=0.630) or combined x-ray irradiation with IT Ad.RB 

(p=0.283) (Table 7). Tumors treated with x-ray irradiation combined with microbubble assisted 

gene transfer of Ad.p130 resulted in 66.0% tumor reduction respect to the radiation control.  

Notably, the greatest tumor reduction was observed in tumors that were treated with x-ray 

irradiation combined with microbubble assisted gene transfer of Ad.p53 or Ad.RB with an 

inhibition rate of 94.44% and 95.95%, respectively (Table 6) (p<0.05).  

 

Table 6. Mean percentage inhibition rate and standard deviation of final tumor volume at week 

19 compared against the control non-treated group.  

Groups Inhibition Rate (%) SD 
Radiation (Control) 21.98 2.92 
IT Ad.p53 81.29 5.71 
IT Ad. p53 + Rad 88.05 2.76 
IT Ad.pRB 85.99 3.13 
IT Ad.pRB + Rad 87.82 0.79 
IT Ad.p130 52.70 4.86 
IT Ad.p130 + Rad 56.12 10.19 
IV MB Ad.p53 US 91.24 0.22 
IV MB Ad.p53 US + Rad 94.44 1.26 
IV MB Ad.pRB US  92.27 2.39 
IV MB Ad.pRB US + Rad 95.95 1.18 
IV MB Ad.p130 US 48.31 2.47 
IV MB Ad.p130 US + Rad 66.02 7.27 
   *SD-standard deviation *Rad-Radiation *% -Percentage 
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Figure 35. In vivo study timeline. Treatments are marked on the line from week 12 to week 19 

(end of the study). Radiation followed by four gene transfer treatments is considered as a cycle. 

In the in vivo study there were two treatment cycles. 

 

Figure 36. Bar graph of DU145 tumor xenografts volumes (± SD) at week 19 after direct 

intratumoral injection (IT) of Ad-GFP, Ad.p53,Ad.pRB, or Ad.p130 with and without radiation. 

Mean tumor volume for intravenous (IV) injections of MBs complexed with Ad.p53, Ad.RB or 
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Ad.p130 of sonoporated tumors (right flank) with or without external beam x-ray radiation was 

also plotted. The mean tumor volumes are indicated on the ordinate. The group is indicated on 

the abscissa. The IT and IV treatments were compared against the non-treated control and 

radiation control to determine the most effective treatment. * indicates statistical significance 

between control and treated cells. 

 

Figure 37. Bar graph representation of mean tumor volume for all groups (left and right flank 

mean tumor volume) with standard deviation error bars. The tumor on the left flanks served as 

internal controls to monitor any additional effect by the adenoviruses or MBs complexed with 

viruses on distant untreated tumors. Only tumors on the right flanks were treated with adenoviral 

vectors or UTMD of Ads/MBs regarding the sonoporated groups. On the ordinate the mean 

tumor volumes are indicated. On the abscissa are indicated the different treatment groups. 
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Table 7. Multiple comparisons ANOVA (Analysis of Variance) significance table with a post 

hoc Dunnett’s T3 test for the in vivo experiment following radiation and adenoviral gene transfer 

on the treated right tumors at week 19. The statistical analysis was run using IBM SPSS 

software. Mean and standard deviation of final tumor volume obtained at week 19. 

(I) Group (J) Group Mean 
Difference  

(I-J) 

Std. Error Sig. 

Control Rad Control 242.11 70.51 .38 
IT Ad.p53 894.55* 64.95 .02 
IT Ad.p53 + Rad 966.22* 60.59 .02 
IT Ad.pRB 941.38* 64.50 .01 
IT Ad.pRB + Rad 962.28* 60.03 .03 
IT Ad.p130 578.16* 70.36 .04 
IT Ad.p130 + Rad 621.91* 70.97 .03 
IV MB US Ad.p53 999.64* 59.77 .03 
IV MB US Ad.p53 +Rad 1035.58* 59.64 .02 
IV MB US Ad.pRB 1012.58* 60.33 .02 
IV MB US Ad.pRB +Rad 1052.10* 59.72 .02 
IV MB US Ad.p130 530.80 62.32 .07 
IV MB US Ad.p130 +Rad 727.83* 65.38 .03 

Rad Control IT Ad.p53 652.44* 46.05 .01 
IT Ad.p53 + Rad 724.11* 39.66 .01 
IT Ad.pRB 699.28* 45.41 .00 
IT Ad.pRB + Rad 720.18* 38.80 .02 
IT Ad.p130 336.05 53.40 .06 
IT Ad.p130 + Rad 379.80* 54.20 .04 
IV MB US Ad.p53 757.53* 38.40 .02 
IV MB US Ad.p53 + Rad 793.47* 38.18 .02 
IV MB US Ad.pRB 770.48* 39.27 .01 
IV MB US Ad.pRB + Rad 809.99* 38.32 .01 
IV MB US Ad.p130 288.70 42.26 .08 
IV MB US Ad.p130 + 
Rad 485.73* 46.65 .01 

 IT Ad.p53 IT Ad.p53 + Rad 71.67 28.63 .67 
IT Ad.pRB 46.84 36.18 .99 
IT Ad.pRB + Rad 67.74 27.43 .69 
IT Ad.p130 -316.39 45.81 .06 
IT Ad.p130 + Rad -272.64 46.74 .1 
IV MB US Ad.p53 105.09 26.85 .36 
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IV MB US Ad.p53 + Rad 141.03 26.55 .22 
IV MB US Ad.pRB 118.04 28.08 .29 
IV MB US Ad.pRB + Rad 157.55 26.74 .18 
IV MB US Ad.p130 -363.75* 32.13 .01 
IV MB US Ad.p130 + 
Rad -166.71 37.72 .18 

 IT Ad.p53 + Rad IT Ad.pRB -24.83 27.59 1.0 
IT Ad.pRB + Rad -3.93 14.30 1.0 
IT Ad.p130 -388.06 39.37 .05 
IT Ad.p130 + Rad -344.31 40.46 .07 
IV MB US Ad.p53 33.42 13.16 .66 
IV MB US Ad.p53 + Rad 69.36 12.52 .16 
IV MB US Ad.pRB 46.37 15.52 .49 
IV MB US Ad.pRB + Rad 85.88 12.93 .09 
IV MB US Ad.p130 -435.41* 22.01 .00 
IV MB US Ad.p130 + 
Rad -238.38 29.58 .06 

 IT Ad.pRB IT Ad.pRB + Rad 20.90 26.34 1.0 
IT Ad.p130 -363.22* 45.16 .04 
IT Ad.p130 + Rad -319.48 46.11 .06 
IV MB US Ad.p53 58.26 25.74 .75 
IV MB US Ad.p53 + Rad 94.20 25.42 .40 
IV MB US Ad.pRB 71.20 27.02 .63 
IV MB US Ad.pRB + Rad 110.72 25.63 .31 
IV MB US Ad.p130 -410.58* 31.21 .01 
IV MB US Ad.p130 + 
Rad -213.55 36.94 .08 

 IT Ad.pRB + Rad IT Ad.p130 -384.13 38.51 .06 
IT Ad.p130 + Rad -340.38 39.62 .08 
IV MB US Ad.p53 37.36 10.30 .33 
IV MB US Ad.p53 + Rad 73.30 9.47 .05 
IV MB US Ad.pRB 50.30 13.18 .28 
IV MB US Ad.pRB + Rad 89.82* 10.01 .02 
IV MB US Ad.p130 -431.48* 20.43 .01 
IV MB US Ad.p130 + 
Rad -234.45 28.42 .08 

 IT Ad.p130 IT Ad.p130 + Rad 43.75 54.0 1.0 
IV MB US Ad.p53 421.48 38.10 .05 
IV MB US Ad.p53 + Rad 457.42* 37.89 .05 
IV MB US Ad.pRB 434.42* 38.98 .04 
IV MB US Ad.pRB + Rad 473.94* 38.03 .04 
IV MB US Ad.p130 -47.36 41.99 1.0 
IV MB US Ad.p130 + 
Rad 149.68 46.41 .43 
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 IT Ad.p130 + Rad IV MB US Ad.p53 377.73 39.22 .07 
IV MB US Ad.p53 + Rad 413.67 39.01 .06 
IV MB US Ad.pRB 390.68 40.07 .06 
IV MB US Ad.pRB + Rad 430.19 39.15 .06 
IV MB US Ad.p130 -91.11 43.01 .80 
IV MB US Ad.p130 + 
Rad 105.93 47.33 .76 

 IV MB US Ad.p53 IV MB US Ad.p53 + Rad 35.94 7.64 .17 
IV MB US Ad.pRB 12.94 11.93 1.0 
IV MB US Ad.pRB + Rad 52.46 8.29 .06 
IV MB US Ad.p130 -468.84* 19.65 .01 
IV MB US Ad.p130 + 
Rad 

-271.81 27.86 .06 

 IV MB US Ad.p53 + 
Rad 

IV MB US Ad.pRB -23.0 11.22 .82 
IV MB US Ad.pRB + Rad 16.52 7.24 .75 
IV MB US Ad.p130 -504.78* 19.23 .01 
IV MB US Ad.p130 + 
Rad 

-307.75 27.57 .05 

 IV MB US Ad.pRB 
  

IV MB US Ad.pRB + Rad 39.52 11.68 .41 
IV MB US Ad.p130 -481.78* 21.30 .00 
IV MB US Ad.p130 + 
Rad 

-284.75* 29.05 .04 

 IV MB US Ad.pRB + 
Rad 

IV MB US Ad.p130 -521.30* 19.50 .01 
IV MB US Ad.p130 + 
Rad -324.27* 27.76 .04 

 IV MB US p130  IV MB US Ad.p130 + 
Rad 197.03 32.98 .09 

*IT – Intratumoral, *IV-Intravenous, *MB-Microbubble, *US-Ultrasound, *Ad-Adenovirus, 
*Rad-Radiation.  
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Microbubble-Assisted p53, pRB, and p130 Gene Transfer Results in Enhanced Protein 

Expression of Targeted Genes. 

Protein expression of p53-, RB-, and p130-transduced genes in tumors that received US 

and x-ray irradiation was analyzed by western blots (Fig. 39). There was no change in expression 

of mutated p53 and pRb in all control tumors with either radiation or ultrasound (Fig. 39a). Only 

endogenous expression of p130 was increased when the tumors were irradiated (Fig. 39 a, d). 

Tumors that received direct intratumoral injection with Ad.p53, Ad.RB, or Ad.p130 showed 

increased expression of the targeted tumor suppressor genes (Fig. 39a-d). Intravenous injection 

of complexed MBs showed high expression of transduced p53, RB and p130 in tumors that were 

sonoporated (Fig. 39a-d). 

 

Figure 39. Western Blot analysis of the tumors collected at week 19 from in vivo study. L and R 

indicate tumors implanted in the left and right flank, respectively. (Panel a) Control (not treated) 

DU145 tumors and treated DU145 tumors, as labeled. PBS+MB = empty MBs; Rad = 8Gy 

radiation; US = Ultrasound. (Panel b) Tumors untreated and treated with Ad.p53 
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(Ad.p53+MBs), radiation and ultrasound, as labeled. (Panel c) Tumors untreated and treated 

with Ad.pRB (Ad.pRB+MBs), radiation and ultrasound, as labeled (Panel d). Tumors untreated 

and treated with Ad.p130 (Ad.p130+MBs), radiation and ultrasound, as labeled. Anti-beta-actin 

was used as a loading control. 50μg of total cell lysates were run on SDS polyacrylamide gels. 
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DISCUSSION 

Primary prostate cancer (PC) can be tackled successfully in many cases with standard 

treatments, such as radical prostatectomy, radiation therapy, and hormone therapy, offering long-

term cancer-specific survival for most patients. While surgery and radiation therapy may have 

similar outcomes for early-stage prostate cancer, radiation therapy is the primary option for 

locally advanced prostate cancer. However, over one third of patients who are treated with 

conventional curative therapy will progress to an androgen-independent (castration-resistant) 

prostate cancer. Development of androgen-independent, radio-resistant prostate cancer and 

metastatic progression are key concerns in the management of this disease [268, 269]. The 

strategies used to tackle these issues are the accurate stratification of patients whose early 

prostate cancer is likely to progress to hormone-refractory and metastatic disease, and of course 

improvement and broadening of the available therapeutic choices. Prostate cancer is regarded as 

relatively resistant to radiation [257]. Consistent with this notion, androgen-independent DU145 

human prostate cancer cells manifest resistance to radiation-induced apoptotic death [254, 255]. 

Previous studies using UV- [254] and γ-radiation [270] have been shown to cause a 

G2/M cell cycle-phase block in DU145 cells at 24hrs. In our study, ionizing radiation of 10Gy 

and 20Gy also resulted in G2/M cell cycle-phase block with an increasing number of DU145 

cells accumulated in the G2-phase of the cell cycle when assayed from 24 to 96hrs.  

Interestingly, we observed little apoptotic cell death in the DU145 cells at 24hrs for both 10Gy 

and 20Gy external beam radiation which could be explained by the fact that DU145 cells 

undergo DNA fragmentation as early as 4hrs after irradiation while end-stage DNA 

fragmentation does not peak until 24-36hrs [249]. Additionally, Bromfield et al. demonstrated 

with flow cytometry assays that greater than 70% of DU145 cells were non-proliferating 

following irradiation [251], which provided us with a rationale for investigating modalities to 
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increase the sensitivity of prostate cancer to radiation-induced DNA damage using gene transfer 

of key cell-cycle regulators. 

The p53, RB and p130 gene products are key factors that participate in cell-cycle arrest, 

apoptosis and cellular senescence. PCs manifest frequent mutations in tumor suppressor genes 

such as p53 and RB [271], and we have demonstrated in the past an inverse association between 

histological grading in aggressive tumor types of prostate cancer [272] and p130 expression.  

Additionally, p130 has been mapped to the human chromosome 16q12.2, an area in which 

deletions have been found in several human neoplasias including breast, ovarian, hepatic, and 

prostatic cancers [273].   

Our model system, DU145 cells, a human prostate cancer cell line, has a mutant 

nonfunctional temperature sensitive p53, and expresses a truncated pRb protein [254]; however 

the functional status of p130 is undetermined in DU145 prostate cancer cells. P53 and pRb 

overexpression have been shown to play a central role following radiation in PC cell lines [274] 

[256] while RB loss has been linked to radiation resistance in DU145 cells [256].   

We decided to compare and contrast the ability of p53, RB and p130 to radio-sensitize 

prostate cancer cells in vitro and to investigate their efficacy in reducing tumor size following 

targeted gene transfer using a microbubble-assisted gene transfer method that we have perfected 

in our laboratory [53, 214, 218]. This strategy allows for systemic targeted delivery to prostate 

cancer xenografts of therapeutic adenovirus carrying therapeutic genes. 

As expected, DU145 cells transduced with adenovirus carrying wt-p53 showed a shift 

from the G2/M to the G1-phase of the cell cycle regardless of the radiation dose, as previously 

demonstrated [255]. Apoptosis was observed for p53 groups treated with or without radiation. 

Overexpression of p53 in DU145 cells restored irradiation-induced senescence by forming the 
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characteristic heterochromatin structure called senescence-associated heterochromatic foci 

(SAHFs) [275]. SAHFs could account for the relatively low amount of apoptosis at 24 hrs. The 

downstream effectors such as Bax [251] or p21Waf1 that are attenuated/absent in DU145 [276] 

would hamper the cells from undergoing apoptosis. Additionally, the mutant p53 described in the 

DU145 cells has been shown to suppress the ability of wt-p53 to induce cell cycle arrest by 

exerting a dominant negative effect on the DNA binding activity of wt-53 and to reduce the 

trans-activation of target genes [277]. Even by lowering the temperature to 32ᴼC from 37ᴼC and 

activating the temperature sensitive nonfunctional p53 in DU145 cells, Bajgelman and Stauss 

were unable to trans-activate p21Waf1 [252]. However, we observed that adenoviral 

overexpression of wt-p53 restored the sensitivity of the DU145 cells to ionizing radiation 

indicating that gene transfer of wild-type copies of the p53 gene and its overexpression in the 

targeted cells could be a viable therapeutic option for radio-resistant PCs. 

Proteins of the retinoblastoma family (pRb, p107 and p130) are known to exert control 

over the entry into S-phase of the cell cycle [278]. Gamma (γ) and ultraviolet (UV) radiation are 

known to be ineffective on pRb deficient cells. After DNA damage by γ-radiation, pRb is 

hypophosphorylated and induces growth arrest by blocking cell-cycle progression at the G1/S 

phase [279]. G1-phase blockage has been previously observed when cells were transduced with 

pRb in the presence or absence of radiation [254]. Some reports indicate that apoptosis of cells 

which are deficient in pRb protein is inhibited after restoring wt-pRb [280]. In our study, we 

observed that by restoring a wild-type RB in DU145 cells, which have a truncated pRb, we were 

able to facilitate apoptosis similarly to when we restored wt-p53. The highest apoptotic response 

was observed in pRb transduced DU145 cells which received 20Gy irradiation. Interestingly, our 

study showed increased expression of pRb protein when Adenoviral gene transfer treatment was 
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combined with radiation therapy. Similar results have been shown for pRb negative and positive 

esophageal squamous cell carcinoma (ESCC) treated with a combination of adenoviral gene 

delivery of RB94, a truncated more active RB gene product, and radiation therapy [267]. 

Hypophosporylated p130 complexes with E2F transcription factors and has been 

associated with control over the G0/G1 phase of the cell cycle [278]. In our study we observed 

that overexpressed p130 in prostatic DU145 cells led to DNA accumulation at G0/G1 of the cell 

cycle. Interestingly, irradiated or combined irradiated and Ad.p130 gene transfer groups showed 

accumulation of cells in the G2 cell cycle phase suggesting a block at the G2/M transition. In 

several cell lines, the overexpression of p130 has been shown to result in binding to cyclins A 

and B promoter regions, regulating the expression of S- and G2-phase transitions, and 

dominating the p53-p21 DNA damage response pathway leading to senescence [281].   

Our in vitro study confirmed an increase in expression of endogenous or transduced p130 

after exposure to genotoxic stress such as radiation, as previously observed [275, 282].  

Adenoviral overexpression of p130 increased the percentage of apoptotic cells after ionizing 

radiation, but to a lower extent than in groups transduced with p53 or RB.   

It has been shown in the prostatic cancer cell lines C4-2 and LNCap, that ionizing 

radiation exposure results in up-regulation of the transcription factor E2F4 which has been 

shown to complex with p130 and to co-localize in the nucleus regardless of androgen sensitivity, 

resulting in tumor growth suppression and G2 arrest [282]. The authors demonstrated that the 

formation of the E2F4/p130 complex is specifically regulated by IR in prostate cancer cells and 

suggested that the interaction between p130 and its natural partner CDK2 is also affected by IR, 

which may be a result of the increased levels of E2F4 associated with p130, leading to a decrease 

in p130 phosphorylation and decreased cell viability. The inhibition of E2F4 by siRNA in 
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prostate C4-2 cells results in apoptosis and increased sensitivity to radiation [282], thus 

suggesting a partial explanation of the lack of apoptosis and radiation resistance of the DU145 

cells following overexpression of p130. Additionally, p130 induces accumulation of pro-

apoptotic p73, a p53-related gene that alternatively splices and mediates radiation-induced 

apoptosis independent of p53 by interacting with c-Abl tyrosine kinase in glioblastoma cells 

indicating that p130 radiosensitization could be cell type specific [258].   

Adenoviral gene transfer is limited by the ability of Adenovirus serotype 5 (Ad5) to 

transduce target cells and the inability to deliver it intravenously without causing liver 

inflammatory damage or elimination by the immune system [202]. Patients exposed to 

adenoviruses tend to develop neutralizing and anti-adenovirus antibodies [283, 284]. Another 

limitation of using Adenoviruses for gene transfer techniques in cancer is that the efficiency of 

these viruses to transfer genetic materials to cancer cells is dependent upon the availability of 

Coxsackie adenovirus receptor (CAR) on the surface of the targeted cells, which facilitates 

adenoviral entry. These difficulties in the use of Adenoviruses for cancer gene therapy have 

limited their use to direct injections to the tumoral mass, which resulted in partially transduced 

tumors [218, 285]. 

To circumvent the difficulties caused by the use of adenoviruses as vectors for gene 

transfer we used ultrasound contrast agents (microbubbles) to provide protection to the virus 

from the immune system as well as to increase target organ specificity, allowing intravenous 

injection and less aggressive viral administration [214]. Microbubbles (MBs) can be injected into 

peripheral veins, as these robust bubbles can re-circulate through the systemic circulation 

numerous times within the bloodstream [219]. Cavitation also improves the efficiency of viral 

infection by creating small shockwaves that increase cellular permeability [220]. Phase I to III 
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clinical trials have demonstrated that MBs are safe and well tolerated even at higher doses [286].  

 Previous studies of our lab demonstrated that MB complexes with Ad.GFP (Green 

Fluorescent Protein) were able to express GFP specifically localized to sonoporated tumors [53]. 

Our western blot studies on harvested tumors showed high levels of transgene expression at the 

tumor site by more efficient GFP gene transfer into the target cells [53]. 

In earlier studies, therapy resistant prostate cancer cell lines containing wt-p53, mutated 

p53 or p53 null were radio-sensitized by adenoviral mediated p53 gene transfer [274, 287]. As 

expected, in our in vitro study the DU145 cells transduced with p53 were radio-sensitized to 

ionizing radiation resulting in higher apoptotic rates than either irradiation group or adenoviral-

p53 transduced groups. Additionally, reduction of tumor volumes by ultrasound mediated 

microbubble destruction of wt-p53 or wt-pRb resulted in increased ablation of the tumors when 

compared to intra-tumoral injections. Ad.p130 intra-tumoral injection in mice showed slower 

growth rate than the untreated control or irradiated groups. Interestingly, Ultrasound targeted 

microbubble destruction (UTMD) of Ad.p130 MB complexes resulted in slower tumor growth, 

but no tumor reduction was observed (Fig. 36).   

 Clinical studies for combinational therapy of p53 and RB gene transfer and ionizing 

radiation in lung [266], hepatocellular [288], and esophageal carcinomas [267] have been 

successful in eliciting partial and complete remission of tumors. Our study demonstrated that 

combination therapy of radiation and intratumoral injections of Ad.p53, Ad.RB or Ad.p130 

caused an enhanced effect in comparison to adenoviral intratumoral injections (IT) or radiation 

treatment alone. Currently, phase-I clinical studies of combination therapy with IT adenoviral 

p53 gene delivery for prostate cancer are underway at M.D. Anderson Cancer Center, Texas and 

UCLA School of Medicine, California to test its efficacy [289]. Interestingly, we observed more 
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profound response in reducing tumor growth of treated tumors by combining the ultrasound-

targeted destruction of Ad.p53 or Ad.RB MB/complexes with ionizing radiation. As 

demonstrated by western blot analysis, tumor volume reduction in these samples was associated 

with overexpression of the p53 or RB genes (Fig. 39). UTMD of Ad.p130 combined with 

radiation resulted instead in a relatively plateaued tumor growth curve, which was comparable to 

the initial volume of tumors at the beginning of the treatment schedule. Thus p130, in a 

comparative gene transfer study with other known cell cycle regulating proteins such as pRb and 

p53, caused a “tumorstatic” effect that was not significantly enhanced by radiation therapy. On 

the other hand, we showed that the highest decrease in tumor growth was observed when p53 

and RB genes were transferred by ultrasound-targeted destruction of Adenoviral-MB/complexes 

in combination with ionizing radiation.  

 An open question is: What effect would the pooled transfer of the cell cycle regulating 

genes p53, pRb and p130 with or without ionizing radiation have on tumor growth? It is possible 

that combined gene transfer of multiple cell cycle regulatory proteins could result in further 

tumor growth suppression. In fact, tumors are made of a heterogeneous population of cells that 

may contain a variety of genetic dysfunctions and/or changes. Thus exploring the effects of 

pooled transfer of therapeutic genes is needed in order to increase their antitumoral activity while 

possibly decreasing the number of injections needed to realize their radiosensitizing ability. 

Altogether, these findings highlight the translational therapeutic potential of this novel image-

guided gene transfer technology in combination with external beam radiation for prostate cancer 

patients with therapy resistant disease.  
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CHAPTER VI : CONCLUSION AND FUTURE DIRECTIONS 

 In Chapter 1, we reviewed current literature on prostate cancer (PC) and highlighted 

some of the therapeutic options in treating PC. We also reviewed some of the potentials and 

barriers to gene therapy with viral vectors. We chose to study metastatic PC because there are no 

successful treatment modalities available for the disease while treatment options for stage T1/T2 

have decent 5 year survival rates.   

 In Chapter 2 we described the ultrasound targeted destruction of microbubbles as a gene 

delivery system. We reviewed current literature on the different types of available MBs that are 

currently used. We also described the behavior of the MBs when exposed to US and the 

biological changes that are associated with their interactions. Chapter 2 clearly shows that 

together MB and US become a reliable systemic drug delivery system.  

 In Chapter 3, we explored human DU145 and murine TRAMP-C2 PC cells as potential 

animal models for testing the UTMD drug delivery system. Infection studies were carried out to 

establish whether human non-replicative viruses (Ad.GFP and Ad.mda-7/IL-24) and replicative-

competent virus (CTV.mda-7) could be used to determine a therapeutic response in cancer cells. 

We clearly observed that Ad.GFP and Ad.mda-7/IL-24 could infect and transfer their transgene 

in both PC cells, although only CTV.mda-7 could be replicated in DU145 cells. UTMD gene 

delivery system was also tested in an in vitro setting showing an increased enhancement of 

Ad.GFP transgene expression. This clearly showed that US with MBs caused pore formation on 

the plasma membrane thereby increasing the permeability of the membrane to allow increased 

Ad uptake. Thus, animal studies on xenografted DU145 PC studies in immune-compromised 

nude mice and syngeneic model of TRAMP-C2 PC injected in immune-competent mice become 

attractive to test the UTMD gene delivery system. 
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 In Chapter 4, we described our studies of the UTMD gene delivery system for Ad.GFP, 

Ad.mda-7 and CTV.mda-7 in a xenograted DU145 PC model with tumors on both flanks of nude 

mice. Targeson MBs/Ads complexes were injected into the tail vein while only the tumor on the 

right flank was sonoporated. The study was designed to define an improved therapeutic approach 

for delivering Ad.mda-7, which will permit systemic delivery and targeted tumor release by US 

specifically and effectively in the primary tumor. This treatment resulted in a dramatic reduction 

in the size of not only the treated tumor on the right flank, but also of the non-treated tumor on 

the left flank due to mda-7 bystander effect [53]. US-guided focused release of entrapped 

materials from the MBs will increase the delivery specificity and therapeutic efficiency of 

Ad.mda-7 towards PC xenografts. Our findings in combination with the positive results of 

Phase-I Clinical trial with Ad.mda-7 [211] suggest that this cytokine has considerable potential 

as a gene therapy for cancer.  

 In Chapter 5, we described the combined therapy approach of using radiation and UTMD 

for the delivery of Ad.p53, Ad.RB and Ad.p130 in a xenografted DU145 PC model with tumors 

on both flanks of nude mice. Similar to the previous animal study, Targeson MBs/Ads 

complexes were injected into the tail vein while only the tumor on the right flank was 

sonoporated. We demonstrated that combined radiation and UTMD gene therapy enhanced the 

therapeutic benefit of tumor suppressor genes in radiation resistant PC. There was no bystander 

activity that was observed in this study as tumor suppressor genes such as p53, pRb and p130 are 

not secreted proteins. The increased expression of p53, Rb and p130 further proved that UTMD 

targets only the tumor that is sonoporated making it a specific gene delivery therapy system.   

 In addition to the experiments that were performed, we propose to further develop the 

UTMD system using immune-competent animals to facilitate its translation into a clinically 
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feasible technology for the effective delivery of therapeutic genes to treat human PC. Our data 

shows that murine TRAMP-C2 PC cells are efficiently infected by non-replicative Ad.GFP and 

Ad.mda-7/IL-24 using the MB/Adenoviral system cavitated by US, which results in the 

expression of the transduced genes. Additionally, mda-7/IL-24 acts as a pro-apoptotic gene 

resulting in the increased cell death of PC cells. Thus we believe that MBs will effectively shield 

the Ads from immune surveillance in immune-competent mice, and target the delivery of 

Ad.GFP & Ad.mda-7 specifically to PCs. These studies would further establish the efficiency 

and specificity of gene delivery in primary advanced prostate cancer by using an innovative 

system consisting of ultrasound contrast agents, viral vectors and ultrasound waves. 

  In conclusion, our present body of work supports the hypothesis that the UTMD systemic 

gene delivery system we have developed is a promising therapeutic approach for PC that 

deserves further investigation in immune competent organisms to warrant its future translation 

from bench to bedside.  

  



153 

REFERENCES 

1. Damber, J.E. and G. Aus, Prostate cancer. Lancet, 2008. 371(9625): p. 1710-21. 
2. Society, A.C., Prostate cancer facts. In: Cancer facts and figures 2009. American Cancer 

Society, 2009. Atlanta, GA: p. 19-20. 
3. Tao, Z.Q., et al., Epidemiology of prostate cancer: current status. Eur Rev Med 

Pharmacol Sci, 2015. 19(5): p. 805-12. 
4. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90. 
5. Punnen, S. and M.R. Cooperberg, The epidemiology of high-risk prostate cancer. Curr 

Opin Urol, 2013. 23(4): p. 331-6. 
6. Uchida, T., et al., Transrectal high-intensity focused ultrasound for the treatment of 

localized prostate cancer: eight-year experience. Int J Urol, 2009. 16(11): p. 881-6. 
7. Zelefsky, M. and J. Eastman, Cancer of the prostate, in Cancer: Principles and Practice 

of Oncology V. DeVita, T.S. Lawrence, and S.A. Rosenberg, Editors. 2008, JB 
Lippincott: Philadelphia, PA. p. 1392-1452. 

8. Shao, Y.H., et al., Risk profiles and treatment patterns among men diagnosed as having 
prostate cancer and a prostate-specific antigen level below 4.0 ng/ml. Arch Intern Med, 
2010. 170(14): p. 1256-61. 

9. Cooperberg, M.R., J.M. Broering, and P.R. Carroll, Time trends and local variation in 
primary treatment of localized prostate cancer. J Clin Oncol, 2010. 28(7): p. 1117-23. 

10. Hull, G.W., et al., Cancer control with radical prostatectomy alone in 1,000 consecutive 
patients. J Urol, 2002. 167(2 Pt 1): p. 528-34. 

11. Kupelian, P.A., et al., Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 
Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int J Radiat 
Oncol Biol Phys, 2007. 68(5): p. 1424-30. 

12. Zelefsky, M.J., et al., Multi-institutional analysis of long-term outcome for stages T1-T2 
prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys, 
2007. 67(2): p. 327-33. 

13. Tooher, R., et al., Laparoscopic radical prostatectomy for localized prostate cancer: a 
systematic review of comparative studies. J Urol, 2006. 175(6): p. 2011-7. 

14. Han, K.R., et al., Treatment of organ confined prostate cancer with third generation 
cryosurgery: preliminary multicenter experience. J Urol, 2003. 170(4 Pt 1): p. 1126-30. 

15. Sternberg, C.N., Highlights of contemporary issues in the medical management of 
prostate cancer. Crit Rev Oncol Hematol, 2002. 43(2): p. 105-21. 

16. Sternberg, C.N., Hormone refractory metastatic prostate cancer. Ann Oncol, 1992. 3(5): 
p. 331-5. 

17. Dyrstad, S.W., P. Shah, and K. Rao, Chemotherapy for prostate cancer. Curr Pharm Des, 
2006. 12(7): p. 819-37. 

18. Sarkar, D., et al., Eradication of therapy-resistant human prostate tumors using a cancer 
terminator virus. Cancer Res, 2007. 67(11): p. 5434-42. 

19. Romero-Weaver, A.L., Howard, C., Radiation in Cancer Therapy, in Cutting Edge 
Therapies for Cancer in the 21st Century, P.P. Claudio, Vogiatzi, P., Editor. 2014, 
Bentham Science Publishers. p. 81-110. 

20. Matsumoto, K., et al., Detection of free radical reactions in an aqueous sample induced 
by low linear-energy-transfer irradiation. Biol Pharm Bull, 2009. 32(4): p. 542-7. 



154 

21. Willers, H. and K.D. Held, Introduction to clinical radiation biology. Hematol Oncol 
Clin North Am, 2006. 20(1): p. 1-24. 

22. Hogle, W.P., The state of the art in radiation therapy. Semin Oncol Nurs, 2006. 22: p. 
212-220. 

23. Kassis, A.I., Therapeutic radionuclides: biophysical and radiobiologic principles. Semin 
Nucl Med, 2008. 38(5): p. 358-66. 

24. Gomez-Millan, J., et al., Advances in the treatment of prostate cancer with radiotherapy. 
Crit Rev Oncol Hematol, 2015. 

25. Perez, B.A., Koontz, B.F.  , Radiotherapy before and after radical prostatectomy for 
high-risk and locally advanced prostate cancer. Urologic Oncology: Seminars and 
Original Investigations, 2014. 

26. Thompson, I.M., Jr., et al., Adjuvant radiotherapy for pathologically advanced prostate 
cancer: a randomized clinical trial. JAMA, 2006. 296(19): p. 2329-35. 

27. Nilsson, S., B.J. Norlen, and A. Widmark, A systematic overview of radiation therapy 
effects in prostate cancer. Acta Oncol, 2004. 43(4): p. 316-81. 

28. Sanfilippo, N.J. and B.T. Cooper, Hypofractionated radiation therapy for prostate 
cancer: biologic and technical considerations. Am J Clin Exp Urol, 2014. 2(4): p. 286-
93. 

29. Pollack, A., et al., Prostate cancer radiation dose response: results of the M. D. 
Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys, 2002. 53(5): p. 1097-
105. 

30. Dearnaley, D.P., et al., Escalated-dose versus control-dose conformal radiotherapy for 
prostate cancer: long-term results from the MRC RT01 randomised controlled trial. 
Lancet Oncol, 2014. 15(4): p. 464-73. 

31. Zelefsky, M.J., et al., Changing trends in national practice for external beam 
radiotherapy for clinically localized prostate cancer: 1999 Patterns of Care survey for 
prostate cancer. Int J Radiat Oncol Biol Phys, 2004. 59(4): p. 1053-61. 

32. Nande, R., et al., Microbubble-assisted p53, RB, and p130 gene transfer in combination 
with radiation therapy in prostate cancer. Curr Gene Ther, 2013. 13(3): p. 163-74. 

33. Madersbacher, S., et al., Effect of high-intensity focused ultrasound on human prostate 
cancer in vivo. Cancer Res, 1995. 55(15): p. 3346-51. 

34. Alkhorayef, M., et al., High-Intensity Focused Ultrasound (HIFU) in Localized Prostate 
Cancer Treatment. Pol J Radiol, 2015. 80: p. 131-41. 

35. Cordeiro, E.R., et al., High-intensity focused ultrasound (HIFU) for definitive treatment 
of prostate cancer. BJU Int, 2012. 110(9): p. 1228-42. 

36. Pfeiffer, D., J. Berger, and A.J. Gross, Single application of high-intensity focused 
ultrasound as a first-line therapy for clinically localized prostate cancer: 5-year 
outcomes. BJU Int, 2012. 110(11): p. 1702-7. 

37. Webb, H., M.G. Lubner, and J.L. Hinshaw, Thermal ablation. Semin Roentgenol, 2011. 
46(2): p. 133-41. 

38. Ferrer, F.A. and R. Rodriguez, Prostate cancer gene therapy. Hematol Oncol Clin North 
Am, 2001. 15(3): p. 497-508. 

39. Rodriguez, R., et al., Prostate attenuated replication competent adenovirus (ARCA) 
CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. 
Cancer Res, 1997. 57(13): p. 2559-63. 



155 

40. Miyake, H., et al., Novel therapeutic strategy for advanced prostate cancer using 
antisense oligodeoxynucleotides targeting anti-apoptotic genes upregulated after 
androgen withdrawal to delay androgen-independent progression and enhance 
chemosensitivity. Int J Urol, 2001. 8(7): p. 337-49. 

41. Muruve, D.A., The innate immune response to adenovirus vectors. Hum Gene Ther, 
2004. 15(12): p. 1157-66. 

42. Vorburger, S.A. and K.K. Hunt, Adenoviral gene therapy. Oncologist, 2002. 7(1): p. 46-
59. 

43. Harrach, B., Benko, M., Both., G., et al., Adenoviridae - Ninth Report of the International 
Committee on Taxonomy of Viruses., in Virus Taxonomy, A.M.Q. King, Adams, M.J., 
Carstens, E.B., Lefkowitz, E.J., Editor. 2011, Elsevier, Oxford. p. 125-141. 

44. Hendrickx, R., et al., Innate immunity to adenovirus. Hum Gene Ther, 2014. 25(4): p. 
265-84. 

45. Arnberg, N., Adenovirus receptors: implications for targeting of viral vectors. Trends 
Pharmacol Sci, 2012. 33(8): p. 442-8. 

46. Chiocca, E.A., Oncolytic viruses. Nat Rev Cancer, 2002. 2(12): p. 938-50. 
47. Fallaux, F.J., A.J. van der Eb, and R.C. Hoeben, Who's afraid of replication-competent 

adenoviruses? Gene Ther, 1999. 6(5): p. 709-12. 
48. Zhang, W.W., Development and application of adenoviral vectors for gene therapy of 

cancer. Cancer Gene Ther, 1999. 6(2): p. 113-38. 
49. Alemany, R., C. Balague, and D.T. Curiel, Replicative adenoviruses for cancer therapy. 

Nat Biotechnol, 2000. 18(7): p. 723-7. 
50. Edelstein, M., Gene Therapy Clinical Trials Worldwide, 2011. 
51. Green, N.K. and L.W. Seymour, Adenoviral vectors: systemic delivery and tumor 

targeting. Cancer Gene Ther, 2002. 9(12): p. 1036-42. 
52. Barker, D.D. and A.J. Berk, Adenovirus proteins from both E1B reading frames are 

required for transformation of rodent cells by viral infection and DNA transfection. 
Virology, 1987. 156(1): p. 107-21. 

53. Greco, A., et al., Eradication of therapy-resistant human prostate tumors using an 
ultrasound-guided site-specific cancer terminator virus delivery approach. Mol Ther, 
2010. 18(2): p. 295-306. 

54. Choi, J.W., et al., Evolution of oncolytic adenovirus for cancer treatment. Adv Drug 
Deliv Rev, 2012. 64(8): p. 720-9. 

55. Miller, A.C., Russell, S.J., Heterogeneous delivery is a barrier to the translational 
advancement of oncolytic virotherapy for treating solid tumors. Virus Adaptation and 
Treatment, 2014. 6: p. 11-31. 

56. Tedcastle, A., et al., Virotherapy--cancer targeted pharmacology. Drug Discov Today, 
2012. 17(5-6): p. 215-20. 

57. Heise, C.C., et al., Efficacy of a replication-competent adenovirus (ONYX-015) following 
intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther, 
1999. 6(6): p. 499-504. 

58. Lyons, M., et al., Adenovirus type 5 interactions with human blood cells may compromise 
systemic delivery. Mol Ther, 2006. 14(1): p. 118-28. 

59. Padera, T.P., et al., Pathology: cancer cells compress intratumour vessels. Nature, 2004. 
427(6976): p. 695. 



156 

60. Wang, Y. and F. Yuan, Delivery of viral vectors to tumor cells: extracellular transport, 
systemic distribution, and strategies for improvement. Ann Biomed Eng, 2006. 34(1): p. 
114-27. 

61. Cardenas-Navia, L.I., et al., The pervasive presence of fluctuating oxygenation in tumors. 
Cancer Res, 2008. 68(14): p. 5812-9. 

62. Maeda, H., H. Nakamura, and J. Fang, The EPR effect for macromolecular drug delivery 
to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct 
tumor imaging in vivo. Adv Drug Deliv Rev, 2013. 65(1): p. 71-9. 

63. Prabhakar, U., et al., Challenges and key considerations of the enhanced permeability 
and retention effect for nanomedicine drug delivery in oncology. Cancer Res, 2013. 
73(8): p. 2412-7. 

64. Yang, Y., et al., Immune responses to viral antigens versus transgene product in the 
elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther, 1996. 
3(2): p. 137-44. 

65. Worgall, S., et al., Innate immune mechanisms dominate elimination of adenoviral 
vectors following in vivo administration. Hum Gene Ther, 1997. 8(1): p. 37-44. 

66. Cichon, G., et al., Complement activation by recombinant adenoviruses. Gene Ther, 
2001. 8(23): p. 1794-800. 

67. Roberts, D.M., et al., Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-
existing anti-vector immunity. Nature, 2006. 441(7090): p. 239-43. 

68. Hernot, S. and A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene 
delivery. Adv Drug Deliv Rev, 2008. 60(10): p. 1153-66. 

69. Liu, Y., H. Miyoshi, and M. Nakamura, Encapsulated ultrasound microbubbles: 
therapeutic application in drug/gene delivery. J Control Release, 2006. 114(1): p. 89-99. 

70. Zagzebski, J., Essentials of Ultrasound Physics. 1996, Mosby, St. Louis. 
71. Klibanov, A.L., Ultrasound molecular imaging with targeted microbubble contrast 

agents. J Nucl Cardiol, 2007. 14(6): p. 876-84. 
72. Faez, T., et al., 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason 

Ferroelectr Freq Control, 2013. 60(1): p. 7-20. 
73. Gramiak, R. and P.M. Shah, Echocardiography of the aortic root. Invest Radiol, 1968. 

3(5): p. 356-66. 
74. Calliada, F., et al., Ultrasound contrast agents: basic principles. Eur J Radiol, 1998. 27 

Suppl 2: p. S157-60. 
75. Soliman, O.I., et al., The use of contrast echocardiography for the detection of cardiac 

shunts. Eur J Echocardiogr, 2007. 8(3): p. S2-12. 
76. Xu, H.X., Contrast-enhanced ultrasound: The evolving applications. World J Radiol, 

2009. 1(1): p. 15-24. 
77. Feinstein, S.B., et al., Two-dimensional contrast echocardiography. I. In vitro 

development and quantitative analysis of echo contrast agents. J Am Coll Cardiol, 1984. 
3(1): p. 14-20. 

78. Wiencek, J.G., et al., Pitfalls in quantitative contrast echocardiography: the steps to 
quantitation of perfusion. J Am Soc Echocardiogr, 1993. 6(4): p. 395-416. 

79. Azmin, M., et al., How do microbubbles and ultrasound interact? Basic physical, 
dynamic and engineering principles. Curr Pharm Des, 2012. 18(15): p. 2118-34. 

80. Sutton, J.T., et al., Ultrasound-mediated drug delivery for cardiovascular disease. Expert 
Opin Drug Deliv, 2013. 10(5): p. 573-92. 



157 

81. Cavalieri, F., M. Zhou, and M. Ashokkumar, The design of multifunctional microbubbles 
for ultrasound image-guided cancer therapy. Curr Top Med Chem, 2010. 10(12): p. 
1198-210. 

82. Alkan-Onyuksel, H., et al., Development of inherently echogenic liposomes as an 
ultrasonic contrast agent. J Pharm Sci, 1996. 85(5): p. 486-90. 

83. Huang, S.L., et al., Physical correlates of the ultrasonic reflectivity of lipid dispersions 
suitable as diagnostic contrast agents. Ultrasound Med Biol, 2002. 28(3): p. 339-48. 

84. Wickline, S.A. and G.M. Lanza, Nanotechnology for molecular imaging and targeted 
therapy. Circulation, 2003. 107(8): p. 1092-5. 

85. Wickline, S.A., et al., Blood contrast enhancement with a novel, non-gaseous 
nanoparticle contrast agent. Acad Radiol, 2002. 9 Suppl 2: p. S290-3. 

86. Klibanov, A.L., et al., Detection of individual microbubbles of an ultrasound contrast 
agent: fundamental and pulse inversion imaging. Acad Radiol, 2002. 9 Suppl 2: p. S279-
81. 

87. Klibanov, A.L., et al., Detection of individual microbubbles of ultrasound contrast 
agents: imaging of free-floating and targeted bubbles. Invest Radiol, 2004. 39(3): p. 187-
95. 

88. Bohmer, M.R., et al., Ultrasound triggered image-guided drug delivery. Eur J Radiol, 
2009. 70(2): p. 242-53. 

89. Lindner, J.R., Molecular imaging of cardiovascular disease with contrast-enhanced 
ultrasonography. Nat Rev Cardiol, 2009. 6(7): p. 475-81. 

90. Gessner, R. and P.A. Dayton, Advances in molecular imaging with ultrasound. Mol 
Imaging, 2010. 9(3): p. 117-27. 

91. Skyba, D.M., et al., Direct in vivo visualization of intravascular destruction of 
microbubbles by ultrasound and its local effects on tissue. Circulation, 1998. 98(4): p. 
290-3. 

92. Tachibana, K. and S. Tachibana, Albumin microbubble echo-contrast material as an 
enhancer for ultrasound accelerated thrombolysis. Circulation, 1995. 92(5): p. 1148-50. 

93. van Wamel, A., et al., Vibrating microbubbles poking individual cells: drug transfer into 
cells via sonoporation. J Control Release, 2006. 112(2): p. 149-55. 

94. Sheikov, N., et al., Effect of focused ultrasound applied with an ultrasound contrast agent 
on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med 
Biol, 2008. 34(7): p. 1093-104. 

95. Meijering, B.D., et al., Ultrasound and microbubble-targeted delivery of macromolecules 
is regulated by induction of endocytosis and pore formation. Circ Res, 2009. 104(5): p. 
679-87. 

96. Juffermans, L.J., et al., Ultrasound and microbubble-induced intra- and intercellular 
bioeffects in primary endothelial cells. Ultrasound Med Biol, 2009. 35(11): p. 1917-27. 

97. Kooiman, K., et al., Increasing the endothelial layer permeability through ultrasound-
activated microbubbles. IEEE Trans Biomed Eng, 2010. 57(1): p. 29-32. 

98. Morse, P.M., Ingard K. U., Theoretical Acoustics. 1968, Princeton, NJ: Princeton 
University Press. 

99. Cavalieri, F., et al., Methods of preparation of multifunctional microbubbles and their in 
vitro / in vivo assessment of stability, functional and structural properties. Curr Pharm 
Des, 2012. 18(15): p. 2135-51. 



158 

100. Postema, M., et al., Ultrasound-induced gas release from contrast agent microbubbles. 
IEEE Trans Ultrason Ferroelectr Freq Control, 2005. 52(6): p. 1035-41. 

101. Seward, J.B., et al., Peripheral venous contrast echocardiography. Am J Cardiol, 1977. 
39(2): p. 202-12. 

102. Epstein, P.S., Plesset, M. S., On the Stability of Gas Bubbles in Liquid-Gas Solutions. 
Journal of Chemical Physics, 1950. 18(11): p. 1505-1509. 

103. Chen, W.S., T.J. Matula, and L.A. Crum, The disappearance of ultrasound contrast 
bubbles: observations of bubble dissolution and cavitation nucleation. Ultrasound Med 
Biol, 2002. 28(6): p. 793-803. 

104. Barry B. Goldberg, J.S.R., Ultrasound Contrast Agents: Basic Principles and Clinical 
Applications 2001, United Kindom: Martin Dunitz Ltd. 

105. Blomley, M., M. Claudon, and D. Cosgrove, WFUMB Safety Symposium on Ultrasound 
Contrast Agents: clinical applications and safety concerns. Ultrasound Med Biol, 2007. 
33(2): p. 180-6. 

106. Keller, M.W., S.B. Feinstein, and D.D. Watson, Successful left ventricular opacification 
following peripheral venous injection of sonicated contrast agent: an experimental 
evaluation. Am Heart J, 1987. 114(3): p. 570-5. 

107. Porter, T.R. and F. Xie, Visually discernible myocardial echocardiographic contrast after 
intravenous injection of sonicated dextrose albumin microbubbles containing high 
molecular weight, less soluble gases. J Am Coll Cardiol, 1995. 25(2): p. 509-15. 

108. Geiser, E.A., et al., Evidence for a relation between inspired gas mixture and the left 
ventricular contrast achieved with Albunex in a canine model. Clin Cardiol, 1996. 19(4): 
p. 289-95. 

109. Sirsi, S. and M. Borden, Microbubble Compositions, Properties and Biomedical 
Applications. Bubble Sci Eng Technol, 2009. 1(1-2): p. 3-17. 

110. Schutt, E.G., et al., Injectable microbubbles as contrast agents for diagnostic ultrasound 
imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl, 2003. 42(28): p. 
3218-35. 

111. Alzaraa, A., et al., Targeted microbubbles in the experimental and clinical setting. Am J 
Surg, 2012. 204(3): p. 355-66. 

112. Nomikou, N. and A.P. McHale, Exploiting ultrasound-mediated effects in delivering 
targeted, site-specific cancer therapy. Cancer Lett, 2010. 296(2): p. 133-43. 

113. Van Liew, H.D. and M.E. Burkard, Bubbles in circulating blood: stabilization and 
simulations of cyclic changes of size and content. J Appl Physiol, 1995. 79(4): p. 1379-
85. 

114. Moghimi, S.M., Hamad, I. , Factors controlling pharmacokinetics of intravenously 
injected nanoparticulate systems. Biotechnology: Pharmaceutical Aspects., 2009. 10: p. 
267-282. 

115. Tartis, M.S., et al., Dynamic microPET imaging of ultrasound contrast agents and lipid 
delivery. J Control Release, 2008. 131(3): p. 160-6. 

116. de Jong, N., et al., Absorption and scatter of encapsulated gas filled microspheres: 
theoretical considerations and some measurements. Ultrasonics, 1992. 30(2): p. 95-103. 

117. Lindner, J.R., Wei, K. , Contrast echocardiography. Curr. Probl. Cardiol. , 2002. 27: p. 
454–519. 

118. Postema, M. and G. Schmitz, Ultrasonic bubbles in medicine: influence of the shell. 
Ultrason Sonochem, 2007. 14(4): p. 438-44. 



159 

119. Lauterborn, W., Kurz, T., Physics of bubble oscillations. Reports on Progress in Physics, 
2010. 73(10): p. 106501. 

120. Church, C.C., Carstensen EL., "Stable" inertial cavitation. Ultrasound Med Biol, 2001. 
27(10): p. 1435-1437. 

121. Holland, C.K., et al., In vitro detection of cavitation induced by a diagnostic ultrasound 
system. IEEE Trans Ultrason Ferroelectr Freq Control, 1992. 39(1): p. 95-101. 

122. McNamara W.B., D.Y.T., Suslick K.S., Sonoluminescence temperatures during multi-
bubble cavitation. Nature, 1999. 401: p. 772-775. 

123. Suslick, K.S., Sonochemistry. Science, 1990. 247(4949): p. 1439-45. 
124. Riesz, P. and T. Kondo, Free radical formation induced by ultrasound and its biological 

implications. Free Radic Biol Med, 1992. 13(3): p. 247-70. 
125. Chomas, J.E., Dayton P.A., May, D., Allen, J., Klibanov, A., Ferrara, K., Optical 

observation of contrast agent destruction. Applied Physics Letters, 2000. 77: p. 1056-
1058. 

126. Hill, C.R., ed. Physical Principles of Medical Ultrasonics. 2004, Wiley-Blackwell. 
127. Elder, S., Nyborg W.L., Acoustic Streaming Resulting from A Resonance Bubble. Journal 

of the Acoustical Society of America, 1956. 28(1): p. 155. 
128. Marmottant, P., Biben, T., Hilgenfeldt, S., Deformation and rupture of lipid vesicles in 

the strong shear flow generated by ultrasound-driven microbubbles. Proceedings of the 
Royal Society A, 2008. 464(2095): p. 1781-1800. 

129. Datta, S., et al., Correlation of cavitation with ultrasound enhancement of thrombolysis. 
Ultrasound Med Biol, 2006. 32(8): p. 1257-67. 

130. Marmottant, P. and S. Hilgenfeldt, Controlled vesicle deformation and lysis by single 
oscillating bubbles. Nature, 2003. 423(6936): p. 153-6. 

131. Rooney, J.A., Hemolysis near an ultrasonically pulsating gas bubble. Science, 1970. 
169(3948): p. 869-71. 

132. Tran, T.A., Roger, S., Le, J.Y., Guennec, J.Y., Tranquart, F., Bouakaz, A., Effect of 
ultrasound activated microbubbles on the cell electrophysiological properties. 
Ultrasound Med Biol, 2006. 33: p. 158-163. 

133. Ward, M., J. Wu, and J.F. Chiu, Ultrasound-induced cell lysis and sonoporation 
enhanced by contrast agents. J Acoust Soc Am, 1999. 105(5): p. 2951-7. 

134. Bloch, S.H., Wan, M., Dayton P.A., Ferrara, K.W., Optical observation of lipid- and 
polymer-shelled ultrasound microbubble contrast agents. Applied Physics Letters, 2004. 
84: p. 631-633. 

135. Chomas, J.E., et al., Mechanisms of contrast agent destruction. IEEE Trans Ultrason 
Ferroelectr Freq Control, 2001. 48(1): p. 232-48. 

136. Lawrie, A., et al., Microbubble-enhanced ultrasound for vascular gene delivery. Gene 
Ther, 2000. 7(23): p. 2023-7. 

137. de Jong, N., Cornet, R. and Lancee, C. , Higher harmonics of vibrating gas-filled 
microspeheres. Part one: Simulations. Ultrasonics, 1994. 32(6): p. 447-453. 

138. de Jong, N. and L. Hoff, Ultrasound scattering properties of Albunex microspheres. 
Ultrasonics, 1993. 31(3): p. 175-81. 

139. Unger, E.C., et al., Therapeutic applications of lipid-coated microbubbles. Adv Drug 
Deliv Rev, 2004. 56(9): p. 1291-314. 



160 

140. Cavalieri, F., Finelli, I., Tortora, M., Mozetic, P., Chiessi, E., Polizio, F., Brismar, T., 
Paradossi., G., Microbubbles as (NO) delivery device. Chem. Matter, 2008. 20: p. 3254-
3258. 

141. Postema, M.A.B., Medical Bubbles. 2004, Veenendaal: Universal Press. 
142. Howard, C.M., The role of ultrasound contrast agents in gene therapy. Applied 

Radiology, 2004. 33: p. 126. 
143. Smith, N.B., et al., Ultrasound-mediated transdermal transport of insulin in vitro through 

human skin using novel transducer designs. Ultrasound Med Biol, 2003. 29(2): p. 311-7. 
144. Ferrara, K.W., M.A. Borden, and H. Zhang, Lipid-shelled vehicles: engineering for 

ultrasound molecular imaging and drug delivery. Acc Chem Res, 2009. 42(7): p. 881-92. 
145. ter Haar, G., Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput, 

2009. 47(8): p. 893-900. 
146. Dalecki, D., WFUMB Safety Symposium on Echo-Contrast Agents: bioeffects of 

ultrasound contrast agents in vivo. Ultrasound Med Biol, 2007. 33(2): p. 205-13. 
147. Price, R.J., et al., Delivery of colloidal particles and red blood cells to tissue through 

microvessel ruptures created by targeted microbubble destruction with ultrasound. 
Circulation, 1998. 98(13): p. 1264-7. 

148. Choi, J.J., et al., Noninvasive, transcranial and localized opening of the blood-brain 
barrier using focused ultrasound in mice. Ultrasound Med Biol, 2007. 33(1): p. 95-104. 

149. Wible, J.H., Jr., et al., Microbubbles induce renal hemorrhage when exposed to 
diagnostic ultrasound in anesthetized rats. Ultrasound Med Biol, 2002. 28(11-12): p. 
1535-46. 

150. Li, T., et al., Mechanisms of prostate permeability triggered by microbubble-mediated 
acoustic cavitation. Cell Biochem Biophys, 2012. 64(2): p. 147-53. 

151. van Wamel, A., et al., Ultrasound microbubble induced endothelial cell permeability. J 
Control Release, 2006. 116(2): p. e100-2. 

152. Mehier-Humbert, S., et al., Plasma membrane poration induced by ultrasound exposure: 
implication for drug delivery. J Control Release, 2005. 104(1): p. 213-22. 

153. Fan, L., Liu, Y., Ying, H., Xue, Y., Zhang, Z., Wang, P., Liu, L., Zhang, H., Increasing 
of blood-tumor barrier permeability through paracellular pathway by low-frequency 
ultrasound irradiation in vitro. J Mol Neurosci., 2011. 43(3): p. 541-548. 

154. Hsieh, D.Y., Plesset, M.S., Theory of rectified diffusion of mass into gas bubbles. J. 
Acoust. Soc. Am., 1961. 33: p. 206-211. 

155. Marmottant, P., Biben, T., Hilgenfeldt, S., Deformation and rupture of lipid vesicles in 
the strong shear flow generated by ultrsound-driven microbubbles. Proc. R. Soc. A - 
Mathl Phys. Engng Sci., 2008. 464: p. 1781-1800. 

156. Allen, J.S., D.J. May, and K.W. Ferrara, Dynamics of therapeutic ultrasound contrast 
agents. Ultrasound Med Biol, 2002. 28(6): p. 805-16. 

157. Collis, J., et al., Cavitation microstreaming and stress fields created by microbubbles. 
Ultrasonics, 2010. 50(2): p. 273-9. 

158. Leighton, T., The Acoustic Bubble. 1994, San Diego: Academic Press. 
159. Vykhodtseva, N., N. McDannold, and K. Hynynen, Progress and problems in the 

application of focused ultrasound for blood-brain barrier disruption. Ultrasonics, 2008. 
48(4): p. 279-96. 

160. Hamill, O.P., Twenty odd years of stretch-sensitive channels. Pflugers Arch, 2006. 
453(3): p. 333-51. 



161 

161. Mihran, R.T., F.S. Barnes, and H. Wachtel, Temporally-specific modification of 
myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med 
Biol, 1990. 16(3): p. 297-309. 

162. Mihran, R.T., F.S. Barnes, and H. Wachtel, Transient modification of nerve excitability in 
vitro by single ultrasound pulses. Biomed Sci Instrum, 1990. 26: p. 235-46. 

163. Yang, F.Y., et al., Reversible blood-brain barrier disruption by repeated transcranial 
focused ultrasound allows enhanced extravasation. J Control Release, 2011. 150(1): p. 
111-6. 

164. Schnitzer, J.E., Vascular Endothelium: Physiology, Pathology and Therapeutic 
Opportunities. , ed. G.V.R. Born, Schwartz, C.J. 1997, Stuttgart: Schattauer. 

165. Deli, M.A., Potential use of tight junction modulators to reversibly open membranous 
barriers and improve drug delivery. Biochim Biophys Acta, 2009. 1788(4): p. 892-910. 

166. Jalali, S., Huang, Y., Dumont, D.J., Hynynen, K., Focused ultrasound-mediated BBB 
disruption is associated with an increase in activation of AKT: experimental study in rats. 
BMC Neurology, 2010. 10: p. 114. 

167. Ghitescu, L., et al., Specific binding sites for albumin restricted to plasmalemmal vesicles 
of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol, 1986. 
102(4): p. 1304-11. 

168. Chen, H., et al., Blood vessel rupture by cavitation. Urol Res, 2010. 38(4): p. 321-6. 
169. Niles, W.D. and A.B. Malik, Endocytosis and exocytosis events regulate vesicle traffic in 

endothelial cells. J Membr Biol, 1999. 167(1): p. 85-101. 
170. Schnitzer, J.E., et al., Filipin-sensitive caveolae-mediated transport in endothelium: 

reduced transcytosis, scavenger endocytosis, and capillary permeability of select 
macromolecules. J Cell Biol, 1994. 127(5): p. 1217-32. 

171. McIntosh, D.P., et al., Targeting endothelium and its dynamic caveolae for tissue-specific 
transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc 
Natl Acad Sci U S A, 2002. 99(4): p. 1996-2001. 

172. Taniyama, Y., et al., Local delivery of plasmid DNA into rat carotid artery using 
ultrasound. Circulation, 2002. 105(10): p. 1233-9. 

173. Fan, Z., et al., Spatiotemporally controlled single cell sonoporation. Proc Natl Acad Sci 
U S A, 2012. 109(41): p. 16486-91. 

174. Deng, C.X., et al., Ultrasound-induced cell membrane porosity. Ultrasound Med Biol, 
2004. 30(4): p. 519-26. 

175. Zhou, Y., J. Cui, and C.X. Deng, Dynamics of sonoporation correlated with acoustic 
cavitation activities. Biophys J, 2008. 94(7): p. L51-3. 

176. Ta, C.N., et al., Integrated processing of contrast pulse sequencing ultrasound imaging 
for enhanced active contrast of hollow gas filled silica nanoshells and microshells. J Vac 
Sci Technol B Nanotechnol Microelectron, 2012. 30(2): p. 2C104. 

177. Li, W.W., Tumor angiogenesis: molecular pathology, therapeutic targeting, and 
imaging. Acad Radiol, 2000. 7(10): p. 800-11. 

178. Wheatley, M.A. and J. Lewandowski, Nano-sized ultrasound contrast agent: salting-out 
method. Mol Imaging, 2010. 9(2): p. 96-107. 

179. Pasqualini, R., W. Arap, and D.M. McDonald, Probing the structural and molecular 
diversity of tumor vasculature. Trends Mol Med, 2002. 8(12): p. 563-71. 

180. Zhao, Y.Z., et al., Phospholipids-based microbubbles sonoporation pore size and reseal 
of cell membrane cultured in vitro. J Drug Target, 2008. 16(1): p. 18-25. 



162 

181. Dayton, P., et al., Acoustic radiation force in vivo: a mechanism to assist targeting of 
microbubbles. Ultrasound Med Biol, 1999. 25(8): p. 1195-201. 

182. Rapoport, N.Y., et al., Controlled and targeted tumor chemotherapy by ultrasound-
activated nanoemulsions/microbubbles. J Control Release, 2009. 138(3): p. 268-76. 

183. Wickline, S.A. and G.M. Lanza, Molecular imaging, targeted therapeutics, and 
nanoscience. J Cell Biochem Suppl, 2002. 39: p. 90-7. 

184. Unger, E.C., et al., Therapeutic applications of microbubbles. Eur J Radiol, 2002. 42(2): 
p. 160-8. 

185. Tsutsui, J.M., F. Xie, and R.T. Porter, The use of microbubbles to target drug delivery. 
Cardiovasc Ultrasound, 2004. 2: p. 23. 

186. Shohet, R.V., et al., Echocardiographic destruction of albumin microbubbles directs gene 
delivery to the myocardium. Circulation, 2000. 101(22): p. 2554-6. 

187. Chen, S., et al., Optimization of ultrasound parameters for cardiac gene delivery of 
adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble 
destruction. J Am Coll Cardiol, 2003. 42(2): p. 301-8. 

188. Mukherjee, D., et al., Ten-fold augmentation of endothelial uptake of vascular 
endothelial growth factor with ultrasound after systemic administration. J Am Coll 
Cardiol, 2000. 35(6): p. 1678-86. 

189. Ganly, I., V. Mautner, and A. Balmain, Productive replication of human adenoviruses in 
mouse epidermal cells. J Virol, 2000. 74(6): p. 2895-9. 

190. Hallden, G., et al., Novel immunocompetent murine tumor models for the assessment of 
replication-competent oncolytic adenovirus efficacy. Mol Ther, 2003. 8(3): p. 412-24. 

191. Caudell, E.G., et al., The protein product of the tumor suppressor gene, melanoma 
differentiation-associated gene 7, exhibits immunostimulatory activity and is designated 
IL-24. J Immunol, 2002. 168(12): p. 6041-6. 

192. Ramesh, R., et al., Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a 
novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res, 2003. 
63(16): p. 5105-13. 

193. Yacoub, A., et al., mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma 
cells in vitro via JNK signaling. Cancer Biol Ther, 2003. 2(4): p. 347-53. 

194. Su, Z., et al., Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a 
role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene, 2005. 24(51): p. 
7552-66. 

195. Fisher, P.B., Is mda-7/IL-24 a "magic bullet" for cancer? Cancer Res, 2005. 65(22): p. 
10128-38. 

196. Fisher, P.B., et al., mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine 
gene: from the laboratory into the clinic. Cancer Biol Ther, 2003. 2(4 Suppl 1): p. S23-
37. 

197. Sarkar, D., et al., Melanoma differentiation associated gene-7 (mda-7)/IL-24: a 'magic 
bullet' for cancer therapy? Expert Opin Biol Ther, 2007. 7(5): p. 577-86. 

198. Pestka, S., et al., Interleukin-10 and related cytokines and receptors. Annu Rev Immunol, 
2004. 22: p. 929-79. 

199. Huang, E.Y., et al., Genomic structure, chromosomal localization and expression profile 
of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth 
suppressing and apoptosis inducing properties. Oncogene, 2001. 20(48): p. 7051-63. 



163 

200. Zhu, J., X. Huang, and Y. Yang, Innate immune response to adenoviral vectors is 
mediated by both Toll-like receptor-dependent and -independent pathways. J Virol, 2007. 
81(7): p. 3170-80. 

201. Zhu, J., et al., Innate immunity against vaccinia virus is mediated by TLR2 and requires 
TLR-independent production of IFN-beta. Blood, 2007. 109(2): p. 619-25. 

202. Dash, R., et al., Developing an effective gene therapy for prostate cancer: New 
technologies with potential to translate from the laboratory into the clinic. Discov Med, 
2011. 11(56): p. 46-56. 

203. Cunningham, C.C., et al., Clinical and local biological effects of an intratumoral 
injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I 
study. Mol Ther, 2005. 11(1): p. 149-59. 

204. Sarkar, D., et al., A cancer terminator virus eradicates both primary and distant human 
melanomas. Cancer Gene Ther, 2008. 15(5): p. 293-302. 

205. Sarkar, D., et al., Dual cancer-specific targeting strategy cures primary and distant 
breast carcinomas in nude mice. Proc Natl Acad Sci U S A, 2005. 102(39): p. 14034-9. 

206. Su, Z.Z., et al., The cancer growth suppressor gene mda-7 selectively induces apoptosis 
in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci 
U S A, 1998. 95(24): p. 14400-5. 

207. Moon, C., et al., Current status of experimental therapeutics for prostate cancer. Cancer 
Lett, 2008. 266(2): p. 116-34. 

208. Shi, X.B., P.H. Gumerlock, and R.W. deVere White, Molecular biology of prostate 
cancer. World J Urol, 1996. 14(5): p. 318-28. 

209. Lebedeva, I.V., et al., Bcl-2 and Bcl-x(L) differentially protect human prostate cancer 
cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-
7/IL-24. Oncogene, 2003. 22(54): p. 8758-73. 

210. Lebedeva, I.V., et al., Melanoma differentiation associated gene-7, mda-7/interleukin-24, 
induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and 
inducing reactive oxygen species. Cancer Res, 2003. 63(23): p. 8138-44. 

211. Lebedeva, I.V., et al., mda-7/IL-24, novel anticancer cytokine: focus on bystander 
antitumor, radiosensitization and antiangiogenic properties and overview of the phase I 
clinical experience (Review). Int J Oncol, 2007. 31(5): p. 985-1007. 

212. Lebedeva, I.V., et al., mda-7/IL-24: exploiting cancer's Achilles' heel. Mol Ther, 2005. 
11(1): p. 4-18. 

213. Sarkar, D., et al., Acquired and innate resistance to the cancer-specific apoptosis-
inducing cytokine, mda-7/IL-24: not insurmountable therapeutic problems. Cancer Biol 
Ther, 2008. 7(1): p. 109-12. 

214. Howard, C.M., et al., Ultrasound guided site specific gene delivery system using 
adenoviral vectors and commercial ultrasound contrast agents. J Cell Physiol, 2006. 
209(2): p. 413-21. 

215. Jiang, H., et al., Recombinant adenovirus vectors activate the alternative complement 
pathway, leading to the binding of human complement protein C3 independent of anti-ad 
antibodies. Mol Ther, 2004. 10(6): p. 1140-2. 

216. Ng, K.Y. and Y. Liu, Therapeutic ultrasound: its application in drug delivery. Med Res 
Rev, 2002. 22(2): p. 204-23. 

217. Larina, I.V., B.M. Evers, and R.O. Esenaliev, Optimal drug and gene delivery in cancer 
cells by ultrasound-induced cavitation. Anticancer Res, 2005. 25(1A): p. 149-56. 



164 

218. Howard, C.M., The role of ultrasound contrast agents in gene therapy. Applied 
Radiology, 2004. 33, suppl(10): p. 126-35. 

219. Goldberg, B.B., J.B. Liu, and F. Forsberg, Ultrasound contrast agents: a review. 
Ultrasound Med Biol, 1994. 20(4): p. 319-33. 

220. Pitt, W.G., G.A. Husseini, and B.J. Staples, Ultrasonic drug delivery--a general review. 
Expert Opin Drug Deliv, 2004. 1(1): p. 37-56. 

221. Puisieux, I., et al., Canarypox virus-mediated interleukin 12 gene transfer into murine 
mammary adenocarcinoma induces tumor suppression and long-term antitumoral 
immunity. Hum Gene Ther, 1998. 9(17): p. 2481-92. 

222. Dayton, P.A. and J.J. Rychak, Molecular ultrasound imaging using microbubble contrast 
agents. Front Biosci, 2007. 12: p. 5124-42. 

223. Eager, R., L. Harle, and J. Nemunaitis, Ad-MDA-7; INGN 241: a review of preclinical 
and clinical experience. Expert Opin Biol Ther, 2008. 8(10): p. 1633-43. 

224. Fisher, P.B., et al., Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-
24): novel gene therapeutic for metastatic melanoma. Toxicol Appl Pharmacol, 2007. 
224(3): p. 300-7. 

225. Inoue, S., et al., mda-7 In combination with bevacizumab treatment produces a 
synergistic and complete inhibitory effect on lung tumor xenograft. Mol Ther, 2007. 
15(2): p. 287-94. 

226. Ramesh, R., et al., Local and systemic inhibition of lung tumor growth after nanoparticle-
mediated mda-7/IL-24 gene delivery. DNA Cell Biol, 2004. 23(12): p. 850-7. 

227. Tahara, I., et al., Systemic cancer gene therapy using adeno-associated virus type 1 
vector expressing MDA-7/IL24. Mol Ther, 2007. 15(10): p. 1805-11. 

228. Tong, A.W., et al., Intratumoral injection of INGN 241, a nonreplicating adenovector 
expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic 
outcome in advanced cancer patients. Mol Ther, 2005. 11(1): p. 160-72. 

229. Yacoub, A., et al., MDA-7 (interleukin-24) inhibits the proliferation of renal carcinoma 
cells and interacts with free radicals to promote cell death and loss of reproductive 
capacity. Mol Cancer Ther, 2003. 2(7): p. 623-32. 

230. Zerbini, L.F., et al., A novel pathway involving melanoma differentiation associated 
gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis 
and growth arrest of cancer cells. Cancer Res, 2006. 66(24): p. 11922-31. 

231. Nishikawa, T., et al., Adenovirus-mediated mda-7 (IL24) gene therapy suppresses 
angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther, 2004. 9(6): 
p. 818-28. 

232. Gupta, P., et al., mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing 
cytokine. Pharmacol Ther, 2006. 111(3): p. 596-628. 

233. Sauane, M., et al., Autocrine regulation of mda-7/IL-24 mediates cancer-specific 
apoptosis. Proc Natl Acad Sci U S A, 2008. 105(28): p. 9763-8. 

234. Beeri, R., et al., New efficient catheter-based system for myocardial gene delivery. 
Circulation, 2002. 106(14): p. 1756-9. 

235. Jiang, H., et al., Subtraction hybridization identifies a novel melanoma differentiation 
associated gene, mda-7, modulated during human melanoma differentiation, growth and 
progression. Oncogene, 1995. 11(12): p. 2477-86. 

236. Jiang, H., et al., The melanoma differentiation associated gene mda-7 suppresses cancer 
cell growth. Proc Natl Acad Sci U S A, 1996. 93(17): p. 9160-5. 



165 

237. Sarkar, D., Z.Z. Su, and P.B. Fisher, Unique conditionally replication competent bipartite 
adenoviruses-cancer terminator viruses (CTV): efficacious reagents for cancer gene 
therapy. Cell Cycle, 2006. 5(14): p. 1531-6. 

238. Freytag, S.O., et al., Phase I study of replication-competent adenovirus-mediated double-
suicide gene therapy in combination with conventional-dose three-dimensional conformal 
radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk 
prostate cancer. Cancer Res, 2003. 63(21): p. 7497-506. 

239. Small, E.J., et al., A phase I trial of intravenous CG7870, a replication-selective, 
prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-
refractory, metastatic prostate cancer. Mol Ther, 2006. 14(1): p. 107-17. 

240. Heise, C., et al., ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific 
cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic 
agents. Nat Med, 1997. 3(6): p. 639-45. 

241. Sarkar, D., et al., Targeted virus replication plus immunotherapy eradicates primary and 
distant pancreatic tumors in nude mice. Cancer Res, 2005. 65(19): p. 9056-63. 

242. Su, Z.Z., et al., Targeting gene expression selectively in cancer cells by using the 
progression-elevated gene-3 promoter. Proc Natl Acad Sci U S A, 2005. 102(4): p. 1059-
64. 

243. Su, Z.Z., Y. Shi, and P.B. Fisher, Subtraction hybridization identifies a transformation 
progression-associated gene PEG-3 with sequence homology to a growth arrest and 
DNA damage-inducible gene. Proc Natl Acad Sci U S A, 1997. 94(17): p. 9125-30. 

244. Gao, P., et al., Secretable chaperone Grp170 enhances therapeutic activity of a novel 
tumor suppressor, mda-7/IL-24. Cancer Res, 2008. 68(10): p. 3890-8. 

245. Yacoub, A., et al., MDA-7/IL-24 plus radiation enhance survival in animals with 
intracranial primary human GBM tumors. Cancer Biol Ther, 2008. 7(6): p. 917-33. 

246. Tsai, C.H., J.H. Lin, and C.P. Ju, Gamma-radiation-induced changes in structure and 
properties of tetracalcium phosphate and its derived calcium phosphate cement. J 
Biomed Mater Res B Appl Biomater, 2007. 80(1): p. 244-52. 

247. Kastan, M.B., C.E. Canman, and C.J. Leonard, P53, cell cycle control and apoptosis: 
implications for cancer. Cancer Metastasis Rev, 1995. 14(1): p. 3-15. 

248. Udayakumar, T., et al., The E2F1/Rb and p53/MDM2 pathways in DNA repair and 
apoptosis: understanding the crosstalk to develop novel strategies for prostate cancer 
radiotherapy. Seminars in radiation oncology, 2010. 20(4): p. 258-66. 

249. Algan, O., et al., Radiation inactivation of human prostate cancer cells: the role of 
apoptosis. Radiat Res, 1996. 146(3): p. 267-75. 

250. Pawlik, T.M. and K. Keyomarsi, Role of cell cycle in mediating sensitivity to 
radiotherapy. Int J Radiat Oncol Biol Phys, 2004. 59(4): p. 928-42. 

251. Bromfield, G.P., et al., Cell death in irradiated prostate epithelial cells: role of apoptotic 
and clonogenic cell kill. Prostate Cancer Prostatic Dis, 2003. 6(1): p. 73-85. 

252. Bajgelman, M.C. and B.E. Strauss, The DU145 human prostate carcinoma cell line 
harbors a temperature-sensitive allele of p53. Prostate, 2006. 66(13): p. 1455-62. 

253. Kuerbitz, S.J., et al., Wild-type p53 is a cell cycle checkpoint determinant following 
irradiation. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7491-5. 

254. Bowen, C., S. Spiegel, and E.P. Gelmann, Radiation-induced apoptosis mediated by 
retinoblastoma protein. Cancer Res, 1998. 58(15): p. 3275-81. 



166 

255. Sasaki, R., et al., Additional gene therapy with Ad5CMV-p53 enhanced the efficacy of 
radiotherapy in human prostate cancer cells. Int J Radiat Oncol Biol Phys, 2001. 51(5): 
p. 1336-45. 

256. Bowen, C., M. Birrer, and E.P. Gelmann, Retinoblastoma protein-mediated apoptosis 
after gamma-irradiation. J Biol Chem, 2002. 277(47): p. 44969-79. 

257. Crook, J.M., et al., Prostate motion during standard radiotherapy as assessed by fiducial 
markers. Radiother Oncol, 1995. 37(1): p. 35-42. 

258. Pucci, B., et al., pRb2/p130 promotes radiation-induced cell death in the glioblastoma 
cell line HJC12 by p73 upregulation and Bcl-2 downregulation. Oncogene, 2002. 21(38): 
p. 5897-905. 

259. Stevens, C.W., M. Zeng, and G.J. Cerniglia, Ionizing radiation greatly improves gene 
transfer efficiency in mammalian cells. Hum Gene Ther, 1996. 7(14): p. 1727-34. 

260. Nande, R., et al., Targeting a newly established spontaneous feline fibrosarcoma cell line 
by gene transfer. PLoS One, 2012. 7(5): p. e37743. 

261. Aimola, P., et al., Cadmium induces p53-dependent apoptosis in human prostate 
epithelial cells. PLoS One, 2012. 7(3): p. e33647. 

262. Mukerjee, R., et al., Transcriptional regulation of HIV-1 gene expression by p53. Cell 
Cycle, 2010. 9(22): p. 4569-78. 

263. Claudio, P.P., et al., Cdk9 phosphorylates p53 on serine 392 independently of CKII. 
Journal of cellular physiology, 2006. 208(3): p. 602-12. 

264. Gossman, M.S., et al., A novel phantom model for mouse tumor dose assessment under 
MV beams. Health Phys, 2011. 101(6): p. 746-53. 

265. Lowe, S.W., et al., p53 status and the efficacy of cancer therapy in vivo. Science, 1994. 
266(5186): p. 807-10. 

266. Swisher, S.G., et al., Induction of p53-regulated genes and tumor regression in lung 
cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation 
therapy. Clin Cancer Res, 2003. 9(1): p. 93-101. 

267. Zhang, H., et al., Retinoblastoma 94 enhances radiation treatment of esophageal 
squamous cell carcinoma in vitro and in vivo. J Radiat Res, 2012. 53(1): p. 117-24. 

268. Vogiatzi, P., et al., Targeted therapy for advanced prostate cancer: Looking through new 
lenses. Drug news & perspectives, 2009. 22(10): p. 593-601. 

269. Vogiatzi, P. and P.P. Claudio, Efficacy of abiraterone acetate in post-docetaxel 
castration-resistant prostate cancer. Expert review of anticancer therapy, 2010. 10(7): p. 
1027-30. 

270. Teyssier, F., et al., [Cell cycle regulation after exposure to ionizing radiation]. Bull 
Cancer, 1999. 86(4): p. 345-57. 

271. Lee, J.T., et al., Targeting prostate cancer based on signal transduction and cell cycle 
pathways. Cell cycle, 2008. 7(12): p. 1745-62. 

272. Claudio, P.P., et al., Expression of cell-cycle-regulated proteins pRb2/p130, p107, 
p27(kip1), p53, mdm-2, and Ki-67 (MIB-1) in prostatic gland adenocarcinoma. Clinical 
cancer research : an official journal of the American Association for Cancer Research, 
2002. 8(6): p. 1808-15. 

273. Claudio, P.P., T. Tonini, and A. Giordano, The retinoblastoma family: twins or distant 
cousins? Genome biology, 2002. 3(9): p. reviews3012. 

274. Cowen, D., et al., Prostate cancer radiosensitization in vivo with adenovirus-mediated 
p53 gene therapy. Clin Cancer Res, 2000. 6(11): p. 4402-8. 



167 

275. Lehmann, B.D., et al., Distinct roles for p107 and p130 in Rb-independent cellular 
senescence. Cell Cycle, 2008. 7(9): p. 1262-8. 

276. Bott, S.R., et al., p21WAF1/CIP1 gene is inactivated in metastatic prostatic cancer cell 
lines by promoter methylation. Prostate Cancer Prostatic Dis, 2005. 8(4): p. 321-6. 

277. Willis, A., et al., Mutant p53 exerts a dominant negative effect by preventing wild-type 
p53 from binding to the promoter of its target genes. Oncogene, 2004. 23(13): p. 2330-8. 

278. Helmbold, H., W. Deppert, and W. Bohn, Regulation of cellular senescence by Rb2/p130. 
Oncogene, 2006. 25(38): p. 5257-62. 

279. Harrington, E.A., et al., pRB plays an essential role in cell cycle arrest induced by DNA 
damage. Proc Natl Acad Sci U S A, 1998. 95(20): p. 11945-50. 

280. Haas-Kogan, D.A., et al., Inhibition of apoptosis by the retinoblastoma gene product. 
EMBO J, 1995. 14(3): p. 461-72. 

281. Helmbold, H., et al., Rb2/p130 is the dominating pocket protein in the p53-p21 DNA 
damage response pathway leading to senescence. Oncogene, 2009. 28(39): p. 3456-67. 

282. DuPree, E.L., S. Mazumder, and A. Almasan, Genotoxic stress induces expression of 
E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res, 2004. 
64(13): p. 4390-3. 

283. Dummer, R., et al., Biological activity and safety of adenoviral vector-expressed wild-
type p53 after intratumoral injection in melanoma and breast cancer patients with p53-
overexpressing tumors. Cancer Gene Ther, 2000. 7(7): p. 1069-76. 

284. Yen, N., et al., Cellular and humoral immune responses to adenovirus and p53 protein 
antigens in patients following intratumoral injection of an adenovirus vector expressing 
wild-type. P53 (Ad-p53). Cancer Gene Ther, 2000. 7(4): p. 530-6. 

285. Rochlitz, C.F., Gene therapy of cancer. Swiss medical weekly, 2001. 131(1-2): p. 4-9. 
286. Bhatia, V.K. and R. Senior, Contrast echocardiography: evidence for clinical use. J Am 

Soc Echocardiogr, 2008. 21(5): p. 409-16. 
287. Colletier, P.J., et al., Adenoviral-mediated p53 transgene expression sensitizes both wild-

type and null p53 prostate cancer cells in vitro to radiation. Int J Radiat Oncol Biol Phys, 
2000. 48(5): p. 1507-12. 

288. Yang, Z.X., et al., Clinical study of recombinant adenovirus-p53 combined with 
fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin 
Oncol, 2010. 136(4): p. 625-30. 

289. Lupold, S.E. and R. Rodriguez, Adenoviral gene therapy, radiation, and prostate cancer. 
Rev Urol, 2005. 7(4): p. 193-202. 

 

 

 

  



168 

APPENDIX 

Letters from Office of Research Integrity IRB Approval 

   



169 

 



170 

Curriculum Vitae 
Rounak Nande 

3800 Kendale Road, Annandale, VA 22003. 
|(703)946-4534|nande@marshall.edu 

 
Education Marshall University, Huntington, WV 25755 

Ph.D. in Biomedical Sciences, May 2015 
M.Sc. in Biomedical Sciences with Thesis, May 2013 
Virginia Tech, Blacksburg, VA 
B.Sc. in Biology, Psychology Minor, May 2007 
 

 
Research 
Experience 

 
Marshall University,  
Biomedical Sciences, Huntington, WV                                                                                       
Dr. Pier Paolo Claudio’s Lab                                  August 2008- May 2014 
• Ultrasound Guided Microbubble Delivery of Adenoviruses 
• Cell Culture, Cell line storage, Viability Assays 
• Flow Cytometry 
• Virus Expansion and Purification  
• Radiation of Cell cultures and Mice 
• Maintaining mice colonies, animal surgeries 
• Polymerase chain reaction (PCR) 
• Western Blots  
• Chromosome Identification and Staining 
• Protocols, grants writings 
• Analyzed and recorded research data using various software programs 
 
Johns Hopkins University,                                                                             
Baltimore, MD                                                                     
Department of Neurosurgery.                                       June-August,2005,2006 
Hunterian Brain Tumor Research Laboratory                                                 
• Performed microsurgical techniques including intracranial implantations 
• Carried out release kinetic studies measuring drug concentrations in solvent 

systems using high pressure liquid chromatography 
• Prepared specimens for histological staining and evaluation 
• Analyzed and recorded research data using various software programs 
• Prepared data for presentations at national conferences 

 
 
Awards 

 
Best Overall Poster Presentation. ARCC conference. October 2012 & 
October 2014. 
2nd Best Overall Poster Presentation. ARCC conference. October 2013. 
NASA West Virginia Space Grant Consortium fund Graduate Fellowship 
2013-14 
 



171 

 
NASA West Virginia Space Grant Consortium fund Graduate Fellowship 
2014-15 
Graduate Student Organization Scholarship, Outstanding Performance, 
Marshall University School of Medicine, Biomedical Sciences, 2014  
Travel Award from Marshall University for Experimental Biology (2013) 
 

 
Publications 
 
 
 

 
Markus Bookland, B.S., Rounak Nande, Betty Tyler, B.A., Thomas Schluep, 
Ph.D., Jon Weingart, M.D., and Henry Brem, M.D. “In vitro and in vivo 
toxicity testing for the prolonged local delivery of a Cyclosert®-camptothecin 
polymer.” American Association of Neurological Surgeons, San Francisco, 
CA, April 22-27, 2006. 
 
Greco A, Di Benedetto A, Howard CM, Kelly S, Nande R, Dementieva Y, 
Miranda M, Brunetti A, Salvatore M, Claudio L, Sarkar D, Dent P, Curiel DT, 
Fisher PB, Claudio PP. “Eradication of therapy-resistant human prostate 
tumors using an ultrasound-guided site-specific cancer terminator virus 
delivery approach.” Molecular Therapy, 2010 Feb; v18 (2): 295-306. 
 
Nande R, Di Benedetto A, Aimola P, De Carlo F, Carper M, Claudio CD, 
Denvir J, Valluri J, Duncan GC, Claudio PP. “Targeting a newly established 
spontaneous feline fibrosarcoma cell line by gene transfer.” PLoS One. 2012; 
7(5):e37743. Epub 2012 May 30. 
 
Nande R, Greco A, Gossman MS, Lopez JP, Claudio L, Salvatore M, 
Brunetti A, Denvir J, Howard CM, Claudio PP. “Microbubble-assisted p53, 
RB, and p130 gene transfer in combination with radiation therapy in prostate 
cancer” Current Gene Therapy, 2013 Jun 1;13(3):163-74. 
 
Nande R and Claudio P. “Ultrasound Contrast Agents in Cancer Therapy” 
chapter in book titled "Cutting edge therapies for cancer in the 21st century", 
Bentham Science Publishers Ltd, 2014 July 10: 425-512. 
 
Mathis SE, Alberico A, Nande R, Neto W, Lawrence L, McCallister D, 
Denvir J, Kimmey G, Mogul M, Oakley G, Denning K, Dougherty T, Valluri 
J and Claudio PP. “Chemo-predictive assay for targeting cancer stem-like 
cells in patients affected by brain tumors” PLoS One, 2014 Aug 
21;9(8):e105710. 
 
Nande R and Claudio PP. “Ultrasound-mediated oncolytic virus delivery and 
uptake for increased therapeutic efficacy: state of the art” Oncolytic 
Virotherapy. 2015 (Submitted for approval) 
 
Nande R, Nyugen K, Boskovic O, Claudio PP. “Ultrasound Targeted 
Microbubble Delivery in human and mice prostate cancer cells.” 2015 
(Submitted for approval) 



172 

 
Oral 
Presentations  
 

 
Joan C. Edwards School of Medicine, 24th Annual Research Day, May 2012. 
Joan C. Edwards School of Medicine, 25th Annual Research Day, May 2013. 
Joan C. Edwards School of Medicine, 26th Annual Research Day, May 2014. 
Joan C. Edwards School of Medicine, 27th Annual Research Day, May 2015. 
 

 
Poster 
Presentations 
 

 
American Society of Gene and Cell Therapy (ASGCT) Conference, 13th 
Annual Meeting, Washington D.C., May 2010. 
Joan C. Edwards School of Medicine, 22nd Annual Research Day, 
Huntington, March 2010. 
STaR Symposium, 87th annual meeting of the West Virginia Academy of 
Science and the 4th biennial, WV State University, April, 2012. 
Center for Clinical and Translational Science (CCTS) Spring Conference, 
Kentucky, 2012 
Appalachian Regional Cell Conference (1st ARCC), Charleston Area 
Medical Center in Charleston, WV. October 2012. 
Experimental Biology (EB) Conference 2013, Boston Convention and 
Exhibition Center, Boston MA. April 2013. 
Appalachian Regional Cell Conference (2nd ARCC), Charleston Area 
Medical Center in Charleston, WV. October 2013. 
Appalachian Regional Cell Conference (3nd ARCC), Marshall University, 
Huntington, WV. October 2014. 
 

 
Clinical 
Experiences 

 
Riverside Medical Associates,                                                                         
Riverside, MD                
Intern                                                                                                                         
July, 2004 
• Prepared cash and account receivable reports for physicians 
• Processed and billed patient accounts 
• Coordinated activities between patients, nurses, physicians and practice 

coordinators 
• Organized patient records as well as updated medical databases 
• Directed patients to appropriate resources for the effective treatment of 

personal needs 
• Assisted with various laboratory experiments and preparatory work 

 
 
Teaching 
Experiences 

 
Marshall University                                                                                      
Huntington, WV 
Biomedical Teaching Practicum  
• Angiogenesis Lecture in BMS 600 (Graduate Course) 
• Cell Cycle Lecture in BMS 600 (Graduate Course) 

 



173 

 
Marshall University, Tutoring Services                                                      
Huntington, WV 
• Tutoring in Biology, Chemistry, Physics, Mathematics (Algebra, Geometry, 

Pre-calculus, Calculus, Trigonometry.) 
 
Fairfax County Public Schools,                                                                           
Fairfax, VA 
• Substitute Teacher for Elementary, Middle and High Schools. 

 
 
Mentorship 
Experiences 

 
• Two 4th year Medical Students from Marshall University 
• Capstone Student 
• WV INBRE Undergraduate and High School Teacher 
• Marshall University Undergraduate student now Virginia Tech 

Veterinarian Student 
• Medical Student now a Radiologist at Cancer Centers of America 
• PhD student from Virginia Commonwealth University 

 
 
Work 
Experience 

 
Virginia Tech, Chemistry Dept.                                                                    
Blacksburg, VA 
Lab Technician                                                          January-May, 2006 - 2007 
• Maintained and organized the lab on a daily basis 
• Prepped for labs and lecture material  
• Demonstrated reactions for students  

 
 
Extra-
curricular 
Activities  

 
The Society of Indian American, Virginia Tech. 
CCVT, Cricket Club, Intra-mural sport, Virginia Tech. 
Basketball, Intramural Sport, Virginia Tech. 
Basketball, Intramural Sport, Marshall University, 2010-14 
Soccer, Intramural Sport, Marshall University, 2012-14. 
Cricket Coach at Wicket Club, Sterling Virginia, 2012-14. 
Volunteer at Corpus Christi Pre-School, Annandale, Virginia, 2010-14. 
Volunteer Cook for Graduate Student Organization (GSO) Fund raising, 
Marshall University 
Volunteer to Draw the Marshall University Biomedical Sciences T-shirt 
Volunteer for Interview and Dinner sessions of potential PhD students    
  

 

 


	Marshall University
	Marshall Digital Scholar
	2015

	Investigation Of Ultrasound Targeted Microbubbles As A Therapeutic Gene Delivery System For Prostate Cancer
	Rounak Paramjeet Nande
	Recommended Citation


	tmp.1437483760.pdf.IOvpJ

