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ABSTRACT

Count data with excess number of zeros, ones or twos are commonly encountered in experimental
situations. In this thesis we have examined one such fertility data from Sweden. The standard
Poisson distribution, which is widely used to model such count data, may not provide a good fit
to model women’s fertility (defined as the number of children per woman in her lifetime) in a
specific population due to various cultural and sociological reasons. Therefore, the usual Poisson
distribution is inflated at specific values suitably, as dictated by the societal norms, to fit the
available data. The data set is examined using various tests and techniques to determine the
validity of using a multi-point inflated Poisson distribution as compared to the standard Poisson
distribution.

The various tests and techniques used include comparing the method of moment estimator of
various multi-point inflated Poisson distributions along with the standard Poisson distribution.
The maximum-likelihood estimators for Poisson distributions are also found and compared. Using
simulation study, the maximum-likelihood and method of moment estimators were compared, and
the maximume-likelihood estimator was found to have an overall better performance.

Validation for the results found involves using the Chi-square goodness of fit test on the various
Poisson distributions. Another validation test involves comparing the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) of the various Poisson distributions. The results
of the various tests and techniques demonstrate that a multi-point inflated Poisson distribution
provides a better fit and model as compared to the standard Poisson distribution.

Keywords and Phrases: Maximum-likelihood estimation, Method of moment estimator, Chi-

square Goodness of fit test.
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CHAPTER 1
INTRODUCTION

The widely used Poisson distribution of a discrete random variable that stands for the number or
count of statistically independent events occurring within a unit time or space has the probability

mass function (pmf) given as

p(k|\) = P(X = k) = Aeap(—\)/k! (1.1)

where k = 0,1,2,....; and A > 0. Apart from its property as a limiting distribution of a binomial
distribution, one can find many other characterizations in Feller (1968, 1971) [3] [4]. The list
of applications of the Poisson distribution is quite varied and long as indicated by some of the

references below:

e The number of soldiers of the Prussian army killed accidentally by horse-kick per year (von

Bortkiewicz(1898) [9]);
e The number of bankruptcies that are filed in a month (Jaggia and Kelly (2012)[5]);
e The number of arrivals at a car wash in one hour (Anderson et al. (2012)[1));
e The number of network failures per day (Levine et al. (2011) [6]);
e The number of blemishes per sheet of white bond paper (Doane and Seward (2010)[2]);

e The number of a particular type of insect that can be found in a 1-square-foot farmland

(Pelosi and Sandifer (2003)[8]);

e The number of births, deaths, marriages, divorces, suicides and homicides over a given period

of time (Weiers (2008)[10]).

Note that the Poisson model in (1.1), henceforth known as “Poisson(\),” has both mean and
variance = A, which can pose problems in some applications where variation may differ from the

mean. It has been observed that in many applications the dispersion of Poisson()) underestimates
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or overestimates the observed dispersion. This happens because the single parameter A\, over which
the Poisson distribution is dependent, is often insufficient to describe the true observed distribution.
In fact, in many cases, it is suspected that the overdispersion in the observed data is caused by
population heterogeneity which goes unnoticed. This population heterogeneity is unobserved, in
other words, the population consists of several subpopulations, but the subpopulation membership
is not observed in the sample. A special form of heterogeneity is described by a ‘two-mass distri-
bution’ giving mass 7 to count 0, and mass (1 — 7) to the second class which follows Poisson(\).
The result of this ‘two-mass distribution’ is the so called ‘Zero-Inflated Poisson distribution’ or ZIP
distribution with the probability mass function

74 (1 —me A if k=0

p(k|A, m) = (1.2)

(1—-m)p(klA) ifk=0,1,2,...
where A > 0, 0 < 7w < 1 and p(k|)\) is given in (1.1).

A further generalization of (1.2) can be obtained by inflating the Poisson distribution at several
specific values. To be precise, if the discrete random variable X is thought to have inflated proba-
bilities at the values ki, ...., kn, € {0,1,2,....}, then the following general probability mass function
can be considered:

ik (L= m)p(k[A) i & = Ky, ey Ko
plkA,mi,1 <i<m)= (= 2z mip(kiA) b (1.3)

(1= m)pklN)  ifk#k,1<i<m
where £k =0,1,2,...; A >0, and m; € (0,1), 1 <i <m, 0< > ", m < 1. For the remaining part
of this work, we will refer to (1.3) as the General Inflated Poisson (GIP) distribution which is the
main focus of this work.

A special case of the GIP is the Zero-Two Inflated Poisson (ZTIP) obtained when using k = 2,
with k1 = 0 and ks = 2, which has been justified to model the Swedish women’s fertility dataset by
Melkersson and Rooth (2000) [7]. The fertility dataset they considered, which represents a sample
of 1170 Swedish women of the age group 45-76 (as of 1991), is given in Table 1.1. It presents the

number of child(ren) per woman who, in 1991, crossed the child-bearing age.



Count Frequency Proportion

0 114 .097
1 205 175
2 466 .398
3 242 207
4 85 .073
5 35 .030
6 16 .014
7 4 .003
8 1 .001
10 1 .001
12 1 .001
Total 1,170 1.000

Table 1.1: Observed frequency of number of children (= count) per woman

It has been suggested that the fertility of Swedish women tends to have higher counts of zeroes
and twos. Zero children may be due to medical reasons or because some women might not have
found the “right” man. On the other hand, a relative excess of twos may be explained by social
processes, traditions of two-child family, and national institutional arrangements.

Whether a GIP with focus on (0, 2) i.e., ZTIP (as argued by Melkersson and Rooth (2000) [7])
or a GIP with focus on (0, 1,2) (called Zero-One-Two Inflated Poisson’ or ZOTIP) or some other
set {k1, ko...., kn } is appropriate for the above data will be eventually decided by a proper goodness
of fit test.

The rth raw moment of X having a GIP (i.e., GIP(A\, m;, 1 <i < m;ky,....,ky)) can be obtained

from the following expression:

B(X") =Y Km+ 1= m)> kplkl\)
=1 =1 k=0 (1‘4)

where u; is the rth raw moment of Poisson(A) which can easily be found from its moment

generating function (MGF) exp{A(exp(t) —1)}. Closed form expressions for the expectation E(X)



and variance Var(X) of X for the ZTIP model can be obtained as

E(X):27T2+>\(1*7T1*7T2) (15)

Var(X) = 4ma(1 — m2) + M1 — w1 — mo){1 + A(m1 + m2) — 4ma} (1.6)

In the next chapter, we first write the equations to obtain the method of moments estimators
(MMEs) and then the maximum likelihood estimators (MLEs) of the parameters. In Chapter 3, we
compare the performances of MMEs and MLEs for different GIP models using simulation studies.
In Chapter 4, we revisit the dataset given in Table 1.1 and find the proper GIP model to fit the

dataset.



CHAPTER 2
ESTIMATION OF GIP MODEL PARAMETERS

Given a random sample X7, ...., X,,, i.e. independent and identically distributed (iid) observations
from the GIP in (1.3) with parameters my,...., T, and X\, we first discuss the point estimation of

the parameters.
2.1 Method of Moments Estimation (MME)

The easiest way to obtain estimators of the parameters is through the method of moments estima-
tion (MME). Assuming that the sample is a cross section of the population, we equate the first (m
+ 1) sample moments with their population moments, i.e., we obtain a system of (m + 1) equations

of the form

my = K (1= Y muy(A)yr = 1,2, (m 4 1); (2.1)
=1 =1

where m, = > j—1 X7 /nis the rth sample raw moments, and . (N) = (d7 /dt")exp{ M(exp(t)—1)}| =0
is the rth raw moment of Poisson(A). The values of 7,7 = 1,2, ....,m, and A obtained by solving
the system of equations (2.1) are denoted by 7;(r7ar) and Az respectively. The subscript “MM)”
indicates the MME approach. Note that all parameters are nonnegative, and hence all estimates
also ought to be so. However, there is no guarantee that the corresponding MMEs of the parameters
would obey this restriction. Hence, we propose ‘corrected MMEs’ as

- (c)

Tinry = Ti(MM) truncated at 0 and 1 and S‘S\fl)M =\ (2.2)

where \* is the solution of \ in (2.1) after substituting ﬁl((cj)w M) Later in Chapter 3, we will see in

our simulation studies how to ensure that each 7%2(8\4 M) is between 0 and 1 as well as X%Z)M > 0.
In the special case of ZIP distribution, i.e., m = 1,k = 0, we have only two parameters:

and A. The population mean and variance are, respectively,

EX)=>0Q-m)Xand V(X) = A1 —m)(1+mA) (2.3)



By equating the above expressions with sample mean (X) and sample variance s = Z?ZI(X =
X)?/(n—1) (which is an alternative approach instead of dealing with m) and ms), we get the MMEs
of mp and X as Ty = (s — X)/{X?+(s*— X)} and A = X +(s2/X) —1. Note that (M M)

becomes negative if X > s2. Hence, our corrected MMEs are

() . 0 if X > s?
Ty = maz{0, 71} = B (2.4)

frl(MM) if X < 52

NC—
/\(MM) =4 o , (2.5)
)‘(MM) if X S S
In the above, XE?\ZM) becomes \* = X when X > s2, ie., ﬁg?MM) = 0. This is the estimated

value of A one obtains from (2.1) (for the special case of ZIP) after substituting 7 (a7 = 0.

In another special case of GIP, the Zero-Two Inflated Poisson (ZTIP) distribution, i.e., m =
2,k1 = 0,k = 2, we have three parameters: 7,7 and A. To obtain the MMEs of w1, m and A
we equate the first three raw sample moments with their population counterparts. We obtain a

system of three equations in three unknowns as follows:

2my + A1 —7m —m2) = my
Amg + A1+ XN (1 —m —m) = my

8my F A1+ 3N+ A (1 —m —m) = my (2.6)

In another special case of GIP, the Zero-One-Two Inflated Poisson (ZOTIP) distribution, i.e.,
m =3,k = 0,ky = 1, k3 = 2, we have four parameters: m, w9, 73 and A. To obtain the MMEs of

1,9, T3 and A, we equate the first four raw sample moments with their population counterparts.



Thus we obtain a system of four equations in four unknowns as follows:

7['2+27T3+)\(1*7T1*7T2*7T3) = my
Ty +Ams + A1+ A)(1 —m — M —m3) = my
7T2+87T3+)\(1+3)\+)\2)(1—7T1—7T2—7T3) = Mg

T 4+ 1673 + A1+ TA+6X2 + X)) (1 — 71 —mp —73) = my (2.7)

Algebraic solutions to these systems of equations, ( i.e. the algebraic expressions for the MMEs
of the parameters of interest) in (2.6) and (2.7) are obtained using Mathematica and are given in
Appendix (B). We note that these solutions may not fall in the feasible regions of the parameter
space, so we put restrictions to these solutions as discussed for the ZIP distribution to obtain the

corrected MMEs.
2.2 Maximum Likelihood Estimation (MLE)

Another other approach of estimating parameters is the maximum likelihood estimation (MLE)
method. Based on the data X = (Xi,...., X},), the likelihood function L = L\, m;,1 < i <
m; X) is defined as follows. Let Y; = number of observations at k; with inflated probability, i.e.,
Vi =3 I(X; = ki),1 < i < m, where I is an indicator variable. Also, let Y. = 71", V; =
total number of observations with inflated probabilities, n = total number of observations, and

(n —Y.) = total number of non-inflated observations. Then,

L:ﬁ{m 1—277, PR J (! im (XN}
=1 =1

X, #k;

1w+ kzm RPH1 =S m) e T w1
i=1 =1

X;#ki

Thus, the loglikelihood function [* = In L is

= Yiln{m + 1—27” (BN} + (n=Y)In(1 =) m)+ > Inp(X;|))
=1 =1

Xk



Since

> Inp(X;0) = -An-Y)+ A X; =) k) +c
X, #k; j=1 =1

where ¢ = (term free from the parameters), the loglikelihood function becomes

= Yiln{m + 1—27” (ki)Y + (n=Y)In(1 =) m)
=1 =1
—A(n—Y)+lnA(ZXj—Zle2)+c
j=1 =1

(2.9)

The MLEs, 77,1 < i <m, and S\ML, are the values of m;, 1 < i < m, and A which maximize [*
in (2.9) over the parameter space © = {(A\, 71, ...,m)[0 < m; < 1,1 <i<m;0< > 7" m < 1,A>
0}. There are user-friendly softwares available which allow direct optimization of a multivariate
function. But if maximization of [* is to be done by solving the system of equations, one can use
the following traditional steps.

Taking partial derivatives of [* w.r.t. the parameters and setting them equal to zero yields

o _ . 1 B S (k| A)
Rl ol (R S TII5Y) S SRCE comar s /e TT(APYY
. (n-Y)
(1—21711”1)
-y mpWM kN (nX = 3% kY1)
Z T - sm mp(ky ) X =0

=0, Vi=1,...,my (2.10)

where p™ (Fi|A) = (8/0N)p(kilA) = p(ki — 1IA) = p(k|A), and p(~1]A) = 0.

It is not clear whether the MME or the MLE provides overall better estimators. To the best
of our knowledge, no comparative study has been reported in literature. Since the estimators do
not have any general closed form expressions, simulation studies can provide some guidance about
the performance of these two types of estimators. For this reason, we consider some special cases

of the GIP with m = 1, 2 and 3 in the next chapter.



CHAPTER 3
SIMULATION STUDY

The following three cases are considered for our simulation study:

(i) m =1, k1 = 0 (Zero Inflated Poisson (ZIP) distribution)

(ii) m = 2, k1 = 0, k2 = 2 (Zero-Two Inflated Poisson (ZTIP) distribution)

(i) m = 3, k1 = 0, ke = 1, k3 = 2 (Zero-One-Two Inflated Poisson (ZOTIP) distribution)

For each special model mentioned above, we generate random data Xi, ..., X;, from the distri-
bution (with given parameter values) N = 10000 times. Let us denote a parameter (either m; or
A) by the generic notation 8. The parameter 6 is estimated by two possible estimators é](\f[)M (the
corrected MME) and 037, (the MLE). At the Ith replication, 1 < I < N, the estimates of 0 are

é}(\%/l[) and ég\l/f) ; respectively. Then the standardized bias (called ‘SBias’) and standardized mean

squared error (called ‘SMSE’) are defined and approximated as

N

SBias(f) = E(0 — 0)/0 ~ {> (0 —0)/0}/N

=1

N
SMSE(0) = E(0 — 0)*/6> = {> (0¥ — 0)*/0°}/N (3.1)
=1

Note that 6 will be replaced by HA](\Z)M and 077 in our simulation study. Further observe that we
are using SBias and SMSE instead of the actual Bias and MSE, because the standardized versions
are more informative. An error of magnitude 0.01 in estimating a parameter with true value 1.00 is
more severe than a situation where the parameter’s true value is 10.0. This fact is revealed through

SBias and/or SMSE than the actual bias and/or MSE.
3.1 The ZIP Distribution

In order to set the stage for the simulation study for the Zero Inflated Poisson (ZIP) distribution,
we fix A = 3 and vary 7 from 0.1 to 0.8 with an increment of 0.1 for n = 25. The constrained
optimization algorithm “L-BFGS-B” is implemented to obtain the maximum likelihood estimators

(MLESs) of the parameters A and 71, and the MMEs are obtained by solving a system of equations



and imposing appropriate restrictions on the parameters. In order to compare the performances

of the MLEs with that of the MMESs, we plot the absolute standardized biases (SBias) and stan-

dardized MSE (SMSE) of these estimators obtained over the allowable range of 7. The SBias and

SMSE plots are presented in Figure 3.1.
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Figure 3.1: Plots of the absolute SBias and SMSE of the MMEs and MLEs of m; and A (from ZIP
distribution) plotted against m; for A = 3 and n = 25. The solid line represents the absolute SBias
or SMSE of the corrected MME. The dashed line represents the absolute SBias or SMSE of the
MLE. (a) Comparison of absolute SBias of 7; estimators. (b) Comparison of absolute SBias of A
estimators. (c) Comparison of SMSE of m; estimators. (d) Comparison of SMSE of A estimators.

In Figure 3.1(a), we see that for the values of 71 from 0.1 until about 0.18, MLE outperforms
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MME with respect to SBias. However, MME outperforms the MLE from about 0.18 until around
0.35. From this point until about 71 = 0.6, MLE slightly outperforms the MME. After this point,
SBias of MME can no longer be calculated. The Sbias seems to be the smallest for MME at 0.2
and for MLE at around 0.4. In Figure 3.1(b), we see that MLE uniformly outperforms the MME
until 0.6, after which again SBias of MME can no longer be calculated. They are both essentially
unbiased since the SBias seems to be basically zero for MLE and around .01 or less for MME. In
Figure 3.1(c), MLE consistently outperforms MME at all points until 0.6 where they both seem to
have nearly the same SMSE. After 0.6, SMSE of MME cannot be calculated anymore. For both
MLE and MME, the SMSE starts off at their highest values and then decreases rapidly until it
reaches nearly zero. SMSE of MLE consistently outperforms that of MME in Figure 3.1(d). They
both start off at their lowest values, and at this point, both MME and MLE has nearly the same
SMSE. Again, SMSE of MME cannot be calculated after 0.6. It appears that SMSEs for both
MME and MLE increase as values of m; get higher.

So we see for the ZIP distribution, the MLEs of the parameters m; and A perform better than
the MMEs almost everywhere over a certain range of w1, namely 0.1 - 0.6, when the sample size is
25. We note that MLEs of both parameters have smaller absolute SBias and SMSE as compared

to those of MMEs.
3.2 The ZTIP Distribution

In the case of the Zero-Two Inflated Poisson (ZTIP) distribution we have three parameters to
consider, namely 71, mo and A. For fixed A = 3 we vary m; and w9 one at a time for sample size n
= 25. Figure 3.2 presents the six comparisons for fr%ww), frg?MM) and 5\8)“/1) with Ty(arr), T2z
and 5\( Mmr) in terms of absolute standardized bias and standardize MSE for n = 25, varying 7 from
0.1 to 0.4 and keeping o and A fixed at 0.15 and 3 respectively.

In Figure 3.2(a), MLE outperforms MME at all points with respect to absolute SBias. Both
start above zero and decrease slightly until 0.2. Absolute SBias of MLE increases linearly until
0.3, but absolute SBias of MME stays same until this point. However, after 0.3 absolute SBias
of both MME and MLE is increasing until the end. In Figure 3.2(b), we see that the MLE is

essentially unbiased for all values of 71, and absolute SBias of MME vary a lot and is always more

11
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Figure 3.2: Plots of the absolute SBias and SMSE of the MMEs and MLEs of my, 3 and A (from
ZTIP distribution) by varying m for fixed my = 0.15, A = 3 and n = 25. The solid line represents
the absolute SBias or SMSE of the corrected MME. The dashed line represents the absolute SBias or
SMSE of the MLE. (a)-(¢) Comparisons of absolute SBiases of 71, 2 and A estimators respectively.
(d)-(f) Comparisons of SMSEs of 71, my and A estimators respectively.
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than that of MLE. Thus for all permissible values of 7, MME performs more poorly than MLE,
except at m; = 0.2, where both are unbiased. Again in Figure 3.2(c), we see the same trend. MLE
is unbiased throughout and MME is performing very poorly. In Figure 3.2(d), MME starts of with
a lower SMSE than MLE. Both intersect at about m; = 0.15. After this point, MLE consistently
outperforms the MME with respect to MSE. Both decrease until about 0.3 before going up, but
SMSE of MLE stays below that of MME. In Figures 3.2(e) and 3.2(f), SMSE of MLE stays constant
at 0.6 and 0.04 respectively for all permissible values of 1. Also MME performs way worse for
both the cases.

In our second scenario which is presented in Figure 3.3, we vary my keeping 71 and A fixed at 0.15
and 3 respectively. In Figures 3.3(a) and 3.3(c), we see that MLE outperforms MME throughout
with respect to absolute SBias. Moreover MLE is unbiased at mo = 0.2 in Figure 3.3(a) and almost
so at all values of 7 in Figure 3.3(c). However in Figure 3.3(b), absolute SBias of MME starts
off quite high, then it sharply decreases until mo = 0.2. After that MME performs nearly as well
as the MLE. From Figures 3.3(d), 3.3(e) and 3.3(f), it is clear that MLE outperforms MME with
respect to SMSE for all permissible values of mo. Thus we observe that the MLEs of the all three

parameters perform better than the MMEs in terms of the both absolute SBias and SMSE.

3.3 The ZOTIP Distribution

For the Zero-One-Two Inflated Poisson (ZOTIP) distribution we have four parameters to consider,

namely 71, mo, m3 and A. For fixed A = 3 we vary my, mo, and w3 one at a time for sample

© a0 a0 450

MMy Tovnry T3 (MM) with

size n = 25. Thus we have eight comparisons for 7
Ty ML)s To(MmL)s T3(mr) and 5\( mr)- These comparisons in terms of absolute standardized bias and
standardize MSE are presented in Figures 3.4-3.6.

In the first scenario of ZOTIP distribution, which is presented in Figure 3.4, we vary m; keeping
w9, m3 and A fixed at 0.2, 0.2 and 3 respectively. From Figure 3.4(a, b, ¢, d), we see that the MMEs
of all the four parameters perform consistently worse than the MLEs. Also, the MLEs seem to be
unbiased for all permissible values of m1. Moreover absolute SBias as well as SMSE of MME of

A become infinite (or cannot be calculated) after m; = 0.2, which is evident from boxes (d) and

(h). Also from the boxes in Figure 3.4 concerning the SMSE, we notice that the MMEs of all the
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Figure 3.3: Plots of the absolute SBias and SMSE of the MMEs and MLEs of 7y, 3 and A (from
ZTIP distribution) by varying mo for fixed m; = 0.15, A = 3 and n = 25. The solid line represents
the absolute SBias or SMSE of the corrected MME. The dashed line represents the absolute SBias or
SMSE of the MLE. (a)-(¢) Comparisons of absolute SBiases of 71, 2 and A estimators respectively.
(d)-(f) Comparisons of SMSEs of 71, my and A estimators respectively.

14



9 Q:\\\\< o 27
8w 8w
[ 7 m ]
n 7 n 3
2 de------ - - === B------ 8- ---- - 0 © Jg------ R B------ 8- - - - o
e M T T T T e M T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(@) (b)
o < 7 o < 7
[ [ © o~
& i, —mm™ & ]
[z~ . Z2—
> JB------ a------- G------ 8------- > 4 B------ a------- G------ g----=-- - o
e M T T T T e M T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(c) (d)
N
— 7 -
3 .3 e —
5 ] 5 o]
1 T A e .
o J g_e a = a
T T T T T
0.1 0.2 0.3 0.4 0.5
(e) ®
QZM 7
w — w ™M | o0——e
2 3 3 345
n ] o oA e B------ a------- o
dg------ a------- o ------ 8- - - - - -+ o > 4
© T T T T T °© T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(@) (h)

Figure 3.4: Plots of the absolute SBias and SMSE of the MMEs and MLEs of w1, m, w3 and A
(from ZOTIP distribution) by varying m; for fixed my = w3 = 0.2 and A = 3 and n = 25. The solid
line represents the absolute SBias or SMSE of the corrected MME. The dashed line represents the
absolute SBias or SMSE of the MLE. (a)-(d) Comparisons of absolute SBiases of 7y, 7o, w3 and A
estimators respectively. (e)-(h) Comparisons of SMSEs of 71, w2, m3 and A estimators respectively.
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parameters perform consistently worse than the MLEs.
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Figure 3.5: Plots of the absolute SBias and SMSE of the MMEs and MLEs of 71, mo, m3 and A
(from ZOTIP distribution) by varying my for fixed 73 = 73 = 0.2 and A = 3 and n = 25. The solid
line represents the absolute SBias or SMSE of the corrected MME. The dashed line represents the
absolute SBias or SMSE of the MLE. (a)-(d) Comparisons of absolute SBiases of 71, 7, m3 and A
estimators respectively. (e)-(h) Comparisons of SMSEs of 71, w2, m3 and A estimators respectively.

In our second scenario which is presented in Figure 3.5, we vary mo keeping 71, m3 and A fixed
at 0.2, 0.2 and 3 respectively. As before we see that the MLEs of all four parameters perform better
than their MME counterparts with respect to both absolute SBias and SMSE. In particular the

MME of X\ performs the worst as its SBias and SMSE become infinite after m; = 0.2
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Figure 3.6: Plots of the absolute SBias and SMSE of the MMEs and MLEs of w1, m, w3 and A
(from ZOTIP distribution) by varying 3 for fixed 7 = m2 = 0.2 and A = 3 and n = 25. The solid
line represents the absolute SBias or SMSE of the corrected MME. The dashed line represents the
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estimators respectively. (e)-(h) Comparisons of SMSEs of 71, w2, m3 and A estimators respectively.
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In the third scenario which is presented in Figure 3.6, we vary w3 keeping 71, mo and A fixed
at 0.2, 0.2 and 3 respectively. Here also we observe similar results as the first two cases of ZOTIP
distribution, MLEs being unbiased for all the four parameters and uniformly outperforming MMEs.
Also as before MLEs uniformly outperform MMEs of all the four parameters with respect to SMSE.
SBias and SMSE of MME of A become infinite just after m; = 0.1 as such performs even worse than
both the previous cases.

Thus from our simulation study it is evident that MLE has an overall better performance than
MME for all the GIP models. So in the next chapter, we consider an example where we fit an

appropriate GIP model to a real life data set.
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CHAPTER 4
AN APPLICATION OF GIP DISTRIBUTION

In this chapter, we revisit the Swedish fertility data presented in Table 1.1. The objective here
is to fit a suitable GIP. Melkersson and Rooth [7] proposed a ZTIP model for the dataset. But,
our analysis shows that perhaps a ZTTIP (‘Zero-Two-Three Inflated Poisson’) is more suitable.
Since our simulation study points out that the MLE has an overall better performance, all of our
estimations of model parameters are carried out using this approach. For the sake of completeness,
we have also included the MMEs. The details of our model fitting is presented below.

For various values of 71, mo, and w3, we plotted the log-likelihood function of the ZTTIP for
A, as presented in Figure 4.1. Figure 4.1 demonstrates that for each value of m; there exists one
global maximum for A. Therefore, we can conclude that using the MLE is a justified approach for
estimating for A. The same procedures were also carried out for each m;, and in each case, there
exists only one global maximum for each parameter.

Table 1.1 shows significantly high frequencies at the values 0, 1, 2 and 3. Therefore, we tried
all possible combinations of GIP models. First, we try with single-point inflation at each of these
four values (i.e., 0, 1, 2 and 3). In this first phase, an inflation at 2 seems most plausible as it gives
the highest p-value. Next, we try two-point inflations at {0, 1}, {0, 2}, {0, 3}, {1, 2}, etc. At this
stage, {2, 3} inflation seems the most appropriate going by both the p-value as well as AIC and
BIC. This disproves the claim made by Melkersson and Rooth [7] that ZTIP, {0, 2}, is the best
among the two-point inflated models. Table 4.1 gives the details from our model fitting. Table 4.1
includes all possible inflated Poisson models, chi-square goodness of fit test statistics, degrees of
freedom (= number of categories in Table 1.1 - number of parameters in GIP model), p-values and
AIC and BIC values. Note that the last three categories of Table 1.1 are collapsed into one due to
small frequencies.

In the next stage, we try three-point inflation models, and here we note that a GIP with inflation
set {0, 2, 3} significantly improves over the earlier {2, 3} inflation model (i.e., TTIP). This ZTTIP

significantly improves the p-value while maintaining a low AIC and BIC. We fitted the full {0, 1,
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Figure 4.1: The graphs of the Log-Likelihood Function of a Zero-Two-Three Inflated Poisson with

varying values of 71, m, and ms.
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2, 3} inflated model too, but since it does not enhance the p-value, AIC and BIC, we fall back on
Z'TTIP. This model seems quite reasonable given the Swedish fertility dataset. What it says is that
a high percentage of Swedish women were found to be childless (for social and/or medical reasons).
Those who have had children settled for mostly with two or three children; maybe the one-child
pattern was not too attractive to the Swedish women.

The estimated value of the parameters are (with k1 = 0,ke = 2,k3 = 3): 71 = 0.01872974,
w9 = 0.20984665, 73 = 0.06938253, and A = 2.18828104 using Maximum Likelihood Estimation
approach. Using Method of Moments Estimation with m = 3,k = 0, k2 = 2, and k3 = 3, we obtain

the following system of four equations in four unknowns.

29 + 3m3 + M1 — 7 —my —7m3) = 2.164103
4772+97T3+)\(1—|-)\)(1—7T1—71'2—71'3) = 6.463248
8y + 27m3 + A1+ 3N+ A (1 — 7y —m —7m3) = 24.23077

167y + 8173 + A(1 + TA+ 602 + X3)(1 — 71 —mg —m3) = 116.2991 (4.1)

Solving these equations in Mathematica, we obtain estimated values as 71 = .137431, 7o = .521204,
73 = .15034, and A\ = 3.51094.

Based on the chosen ZTTIP model, we then compute the ‘observed Fisher Information matrix’
denoted by I as follows.

Let 0 = (04,02,03,04) = (71,72, 73, A) for notational convenience. Then,

Y
I=— Z((aaj In f(Xl|0)))4X4|9=éML
=1
0%
- _((Tajl ))|9:éjuL

(4.2)

where [* is the log-likelihood function given in (2.9).
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The asymptotic dispersion matrix of Opr1 is the inverse of Iie.,

0.0001331583 0.0000550534 0.0000189737 0.0003585604
A o 0.0000550534 0.0000412525 0.0000566233  0.0001748525
0.0000189737 0.0000566233 0.0002306987 —0.000121804
0.0003585604 0.0001748525 —0.000121804 0.0039695545

Since our n = 1170 is sufficiently large, the above estimate of the dispersion matrix of Onrr
should be valid for making inference. We note also that the ML estimates of the ZTTIP parameters
(1, ma, T3, A) are asymptotically efficient with low variance. We compute asymptotic t-test statistics
to test the null hypotheses that each parameter can be taken as zero. The four asymptotic t-test
statistics are:
tr1 = 1.623109, 0 = 10.331817,t,3 = 4.568016, t) = 34.732193.

We note that according to the asymptotic t-test, we reject the null hypotheses that the inflated
probabilities 71, w9, 3 and the mean parameter A are equal to zero.

The above t-statistic values are obtained by dividing the estimate of each parameter by its
standard error (which is the square-root of the corresponding diagonal element of the asymptotic
dispersion matrix). While all t-statistic values are substantially large, thereby implying that the
corresponding parameter is nonzero, the t-statistic value for m; may look as a potential suspect.
Note that m is the extra (inflated) probability at k&1 = 0. Note that in GIP, we can only test a
parameter to be zero against the one-sided alternative that the parameter be greater than zero
(since no parameter under GIP can be negative). Using the normal curve as an approximation
to t1166 (because the df = n - number of parameters in ZTTIP = 1170 - 4 = 1166), we get the
p-value corresponding to the t-statistic value of 1.623109 as 0.052, which is not large, but rather a
borderline case. Therefore, based on the Swedish fertility data, we conclude that all ZTTIP model

parameters are significant, and the model is a good fit as evident from Figure 4.2.
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Figure 4.2: The graph of the observed frequencies compared to the estimated frequencies for the
Zero-Two-Three Inflated Poisson.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

This work deals with a general inflated Poisson distribution (GIP) which appears to be a very
natural generalization of the regular Poisson distribution. This model can be effective in modeling
a dataset where it seems plausible that certain count values may have higher probabilities due to
natural reasons. We have used the GIP to model the fertility data of Swedish women, and found
that the ZTTIP model appears to these data quite well. Because of the extra parameter(s), the
GIP seems to be much more flexible in model fitting than the regular Poisson. Our simulation
study indicates that MLEs are overall better than the corrected MMEs in estimating the model
parameters. In performing the simulation, we note that for certain ranges of the inflated prob-
abilities in all GIP models, the computation algorithm for calculating MLEs does not converge.
Nonetheless, we selected all permissible values and compared the overall performance of the MLEs
and CMMEs for three special cases of GIP. In the future, we would like to continue working on
finding a computation algorithm for calculating MLEs that would converge. Towards this end we

would further investigate the widely used parametric and non-parametric bootstrap algorithms.
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APPENDIX B
Algebraic Solutions for the Method of Moments Estimators

Using Mathematica, the general solution to equation (2.6) is as follows:
1= %( 24(m})? — 21(my)? + m) (8 4 50my — 14my —

2m173m2+m )

6\/20 (m))2 — 44mmi 4 21(m})2 + 12mmy — 10mymy + (my)?) — mag(—4 + my +

\/20 (m))2 — 44m/m}y + 21(mh)% + 12mmy — 10mymy + (m5)2) + my(—12 + 10my + 5

\/20(m3)2 — 44mmy + 21(my)? + 12mimy — 10mgmy + (m3)2))

o = L(—4m) + 5my — my — \/20(m'1)2 — 44m my + 21(mgy)? 4+ 12mimy — 10mymy + (mg)?)

5\ _ —2m/1+3m/2—m;—i—\/QO(m/l)2—44m/17/n/2+21/(m,2)2+12m/1mg—lOm;m;—‘r(mé)Q
4m; —2m,
Likewise, the general solution to equation (2.7) is as follows:
71 = (=376(m})* + 514(my)* + 432(m3)> + 50(my)* — 216(ma)?my — 14(ma)>my + 36mg(my)* +
(mig)?(my)? — 2(m’4) + 4(m)? (108 + 5O5m/2 302ms + 65my) — (my)3(2662 4 870my + 111my) —
Moy (286(my)® — 4(mg)?(—594 + my) — 12m3m4<66 + m4> + (mg)2(66 + my)) + (my)?(679(my)? —
6m21(121+4m/4)+6m3(726+17m4)) 2(m)? (1729(m2) +606(1mz )2 — 24my (27 +11my) +m., (108 +
)
(

25m4)+m2(1188 2112m3+496m4 )+m1(1587(m2) 332(m;) +3(m;) (12+m:l)+36(m;))2(36+
Tmy) — 2mgmiy (2164 25m) )+ (m 5)%(4356 — 3206m3+1005m4)+m2(1872(m3) +3myy (264 +35m,,) —
4m;(1188+257m;))))/( (6m) — 11m2 +6m3 my)?)
o = (40(my)® + 5(my)® + (mg) (= 7m3 + my) — 4(my)?(3Tmy — 21my + 5my) — (m 2)? (15Tn3
13m;)+m’2(20(m3) +6m3m4 (my)?) +2m (67(my)? — Tdmgmy +18(my)? + 22mgmy — 10mamy +
(m;)Q))/( 6m1 + 11m2 - 6m3 + m4)2
g = —2(my)?— 2(m2)2+(/7713)2_377’2mill+mll(5m/2_2m;+mil)

/ ) 2(/6m1711m2+6m37m4)
5\ _ —6m1+11m2—6m3+m4

! ! !
2mq —3mgy+mg
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e Marshall University: Graduated May 2011
Bachelor of Science in Computer Science
Minor in Mathematics
GPA(4.0 scale): 3.97 (Graduated Summa Cum Laude)
Capstone: Calculating Cardiovascular Risk Factors Based on the Carotid Intima-Media Thick-
ness

e Concord University: January 2006 to June 2006
Taken while in high school
GPA(4.0 scale): 4.0

Graduate-Level Math Classes Taken

e Modern Algebra I and II

e Probability and Statistics I and II
e Number Theory

e Time Series Forecasting

e Time Scale Calculus

e Advanced Calculus I and II

e Numerical Analysis

e Game Theory

e Advanced Mathematical Statistics
e Multivariate Statistics

e Biostatistics
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Programming Languages
I have knowledge in the following programming languages

R

Python

Java

C++
Mathematica

SAS

Teaching Experience

Marshall University

Teaching Assistant 2012-Present

Primary instructor for College Algebra-Expanded (5 credit hour class) for 2 semesters and
Mathematics Skills II (3 credit hour class) for 2 semesters and a mathematics tutor for 4
semesters.

Awards and Distinctions

Pi Mu Epsilon, Honour Society

Phi Kappa Phi, Honour Society

Golden Key, Honour Society

John Marshall Scholarship Recipient

West Virginia Engineering Science and Technology Scholarship Recipient
West Virginia Promise Scholar

AP Scholar

Marshall University Dean’s list (All Semesters from Fall 2007 to Spring 2011)

Conferences Attended

iPED: Inquiring Pedagogies Teaching Conference, August 2012
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