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Abstract 

Atmospheric pollution was previously considered as a 'Brown Cloud’ phenomenon 

restricted to industrialized urban regions. Studies in field stations and satellite 

observations made since the last decade revealed that it now spans continents and ocean 

basins world wide. The objective of this research investigation is to assess atmospheric 

pollutants in the troposphere and their spectral characteristic signatures by using high-

spectral and spatial resolution Earth Observation System (EOS) satellite imaging sensor 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and 

to find correlations with ground sensor observations. Ground sensor data are imported 

into a geodatabase for spatial reference. Raw ASTER data are georegistered and 

geocorrected by image-to-image registration with a known geo-corrected image. Data 

Fusion, Principal Component Analysis (PCA), Density Slicing, Band Ratioing, and Band-

pass Filtering techniques are applied to extract features in the ASTER datasets. Spectral 

signatures in graphical form of the atmospheric features are obtained in ER-Mapper 7.1 

geospatial software (ER-Mapper, 2006) and compared both in short wave infra-red 

(SWIR) and thermal infra-red (TIR) bands. It is observed that the impact of air pollutants 

from polluting sources are not just confined to the areas under investigation but extend 

further as pollutants are transported by wind to greater distances. Correlation between 

ground sensor pollution level and ASTER image pollutants pixel digital numbers are 

obtained by creating a general linear model in the PROC-GLM program in Statistical 

Analysis System (SAS) user software. Despite broader bandwidth of ASTER as 

compared to hyperspectral satellite systems, an excellent high correlation is observed in 

spectral response of all TIR bands and moderate correlation with SWIR bands of ASTER 
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with ground sensor monitoring in all the three areas, i.e. San Francisco Bay area and Los 

Angeles, in California, and in Charleston in West Virginia. Future investigation is 

envisioned to study the subtle differences in spectral signatures of air pollutants by using 

hyperspectral satellite data and nanotechnology based sensors. 
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Chapter 1 

Introduction to Atmospheric Smog Modeling  

1.1. Air Pollutants   

Atmospheric pollution was previously considered as a 'Brown Cloud’ phenomenon 

restricted to industrialized urban regions. Studies in field stations and satellite observations 

made since the last decade  revealed  that brown cloud (haze or smog) phenomenon which is 

normally associated with urban regions now spans continents and ocean basins worldwide 

(Ramanathan and Ramanna, 2003). Smog has potentially large impact on both radiative 

heating and the regional gas phase chemistry of the region. (Lelieveld, J. et al., 2001). 

Anthropogenic activities are considered to be as the primary cause of pollution in the 

atmosphere. Gaseous air pollutants, like NOx, SO2, CO, and CH4, are some of the primary air 

pollutants in urban and industrial areas. Secondary pollutants are created from the primary 

pollutants by complex photochemical reactions in the presence of ultra-violate (UV) radiation 

forming free radicals in the atmosphere (UNEP- United Nations Environmental Program, 2005). 

Sulfur and oxides of nitrogen (NOx) from industrial emissions transforms into ammonium 

sulfate and nitrate. In the presence of atmospheric moisture, NOx transforms into HNO3 and 

HNO2 (WHO, 2000). Air pollutants can be found in all three physical phases: solid, liquid or 

gaseous. When pollutants are in fine solid state floated in the atmosphere, they are called 

aerosols or particulates, which depending on their diameter, can be non-respirable particles 

(of dimension greater than 10μ m), respirable particulate matter (PM_10 of dimension less 

than 10μ m), or inhalable particulate matter (PM_2.5  of  dimension less than 2.5 μ m). 
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PM_10 and PM_2.5 can remain in suspension in the air for hours or days and can be 

transported by the wind to significant distances.  Both particulate matters (PM) categories 

have been shown to cause health effects but the latter (i.e. PM_2.5) are the most damaging 

because they can penetrate into much deeper parts of the respiratory tract, namely the alveolar 

regions of the lungs (WHO, 2000). Epidemiological studies have shown a strong and 

consistent correlation between adverse health effects and air pollution (Pope, 2000). 

Generally, the atmospheric aerosol is a complex mixture of chemical species consisting of 

organic and elemental carbon, mineral dust, sulfates, nitrates, dust and fly ash particles, 

natural aerosols such as sea salt and water (Satheesh and Ramanathan (2001). In North-

America and Europe urban fine aerosols typically contain 28% sulfates, 31% organics, 9% 

BC, 8% ammonium, 6% nitrate and 18% other material with mean mass 32μ g/m3) (UNEP 

Assessment Report, 2004).  Aerosols are emitted by anthropogenic sources, biogenic sources, 

and significant industrial emissions. Burning of both fossil fuel and biomass contributes 

significantly to aerosols or PM concentrations that form smog in the atmosphere (Ramanathan 

and Ramanna, 2003). In-situ measurements of aerosol chemistry from aircraft and surface 

stations found that anthropogenic sources (e.g. Biomass burning, fossil-fuel combustion) 

contribute as much as 75% to the observed aerosol concentration (Ramanathan et al., 

INDOEX, 2001 and Lelieveld et al. 2000). Observatory and satellite data revealed that 

organic carbon, carbon black  and fly ash contribute more to haze in Asia than SO2 (Lee et al. 

2004). The biomass burning creates aerosols, which seldom deposited dry, are instead 

activated in cloud and cloud nucleating properties. These aerosols control cloud albedo. 

Scattering albedo increases, as pollution increases, with backscatter fraction decreasing. There 

is observational evidence that these aerosols can alter cloud properties (Lee et al. 2004). 
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Aerosol radiative forcing depends on hygroscopicity, which in turn depends on aerosol photo-

chemistry. Condensation of secondary organic aerosols on nucleation can reduce the 

hygroscopic properties of particles causing the slow conversion of cloud droplets into 

precipitation, allowing the convective energy to accumulate and eventually trigger violent 

storms. Similarly, reducing aerosol pollution, or reversing the effect of the small pollution 

aerosols by introducing large hygroscopic elemental aerosols can accelerate the early onset of 

rain (Petaja et al. 2005). Smog is particularly a severe problem in big cities in tropical regions.  

SO2 and other Green House Gases (GHGs) contribute to a lesser extent to the formation of 

smog than aerosols. The entire South Asia SO2 emission is only 25% of the total United 

States (US) SO2 emission, but in South Asia haze is prevalent even in small cities, due to 

relatively longer dry seasons (Ramanathan and Ramanna, 2003).  

 

1.2 Radiative Forcing   

Smog affects the earth's energy budget directly by scattering and absorbing radiation 

and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties 

(Yu et al. 2005). The appearance of a pollution layer with more absorption and scattering of 

solar radiations, particularly long-wave infrared radiations, decreases the atmospheric 

transmission factor, and changes the radiation fluxes, not only at the ground surface, but also 

at the top of the atmosphere, thereby significantly perturbing the atmospheric absorption of 

solar radiation (Ramanathan & Ramanna, 2003). These aerosol-induced changes in the 

radiation budget are referred to as ‘radiative forcing’ Furthermore, the pollution layer in 

atmosphere absorbs as well as emits radiance thus causing a change of the upwelling 
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radiation. A relatively small proportion of aerosols can play a dominant role not only from 

reduction in surface solar radiation but also from latent heat fluxes, atmospheric stability and 

the strength of convection currents (Menon et al 2002). Although uncertainties remain 

regarding the magnitude of the radiative forcing impact, it is believed that the single scattering 

albedo of aerosols is sufficiently high to lead to a net cooling, the antithesis of global warming 

(Lee et al. 2004). But climate models for the past 10,000 years and measurements made in 

GHGs in glacial and polar ice current, suggests a trend in global warming, the antithesis of 

hypothesis of Lee (OSU-Climate Group, 2003). Aerosol climate forcing is one of the hardest 

problems for climate modelers due to unavailability of forcing details (Chung and 

Ramanathan, 2003).  

 

1.3 Spectral Signature of Common Atmospheric Pollutants: 

 Spectral signatures of molecules have become major sources of knowledge of the 

earth’s atmosphere. IR absorption spectroscopy has played an important role in the 

identification of trace pollutants in both ambient air and synthetic smog systems. In 

absorption spectroscopy, solar radiation transfers its energy to molecules. Molecular vibration 

and rotation occur when the frequency of rotation and vibration are equal to frequency of 

solar radiation directed to the molecules. Molecular vibration and rotation causes molecule to 

absorb the radiation energy.  

In this research spectral signatures of common atmospheric pollutants are collected 

from Jet Propulsion Laboratory (JPL)’s ASTER (Advanced Spaceborne Thermal Emission 

and Reflection Radiometer) spectral Library, HITRAN (High-resolution Transmission 
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Molecular Absorption) Database, and USGS (United States Geological Survey) spectral library. 

Some of the common air pollutants spectral absorption frequencies along with associated 

ASTER bands are shown in table1.  

 

Table1: Spectral Signatures (absorption frequencies of common air pollutant, and 
corresponding ASTER bands (JPL, USGS, HITRAN, Herzberg, 1950). 
 

Air Pollutants Absorption Frequency in μ m ASTER corresponding Band
Carbon Monoxide 2.30-2.34 7,8,9

HNO3 11 14
CH3OH 8.1 10

Hydroxyl Radical 2.1, 2.3-2.34 5,7,9
Zn,Fe-Sulfide 2.3 7

Arsenite 2.1-2.5 5,6,7,8,9
Formaldehyde 5.3 -

SO2 8.1 9,10,11
Cirrus Cloud 2.1 5

Atm. Water Vapor 1.67 4
CaCO3 5.3-12.0 10,11,12,13,14

Particulate Matters 6.0 - 13.0 10,11,12,13,14
Methane 4.6 -

 

 

1.4 Satellite Remote Sensing   

The Satellite Remote Sensing era started with the launch of Landsat MSS-I (Multi-

Spectral Scanner) in 1972 and subsequent Landsat MSS series and Landsat Thematic Mapper 

(TM) series of satellite revolutionized earth observation from space. Satellite image data has 

traditionally been unexploited for atmospheric pollution studies. Only in recent years has 

satellite observation of atmospheric parameters become a prime concern due to increased risk 

of global climate change (Ramanathan and Ramanna, 2003). Satellite image data consists of 

earth radiances observed by its sensors in different bands. For thermal infra-red (TIR) bands 
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the radiances represent a function of the temperature, emissivity of the ground surface and the 

atmospheric column above and it’s surrounding (ASTER Manual, NASA, 2000). Satellite 

image data can aid in detection, tracking and understanding of pollutant sources and transport 

by providing observations over large spatial domains, with three dimensional models (3-D 

Models). It is now possible to acquire, display, and assimilate these valuable sources of data 

into the air quality assessment process (Belsma, 2004). Satellite data can be used 

quantitatively to validate air quality models. The pollution assessment of optical atmospheric 

effects can be quantified in terms of aerosol optical thickness (AOT) of particles with 

diameter between 0.1 and 2.5 μ m, which can be carried out with an optimal resolution of 

500m x 500m over cloud-free part of any satellite images (USGS-Landsat, 1998). With the 

launch of NASA’s Terra satellite system, a part of Earth Observing System (EOS), in 

December 1999, satellite observation of atmospheric parameters are easier to acquire. 

  

1.5 Previous investigations of Atmospheric Smog modeling  

In most of the previous investigations of Atmospheric Smog modeling,  satellite 

images are used to extract air pollution by calculating optical thickness in, either visible 

spectral ranges or low spectral resolution short-wave infra red (SWIR) and thermal infra red 

(TIR) ranges (Retalis, 1999) and (Schafer et. al , 2002).  Ramanathan and Ramanna (2003) 

tried to model aerosols in tropical regions of Asia, by low spatial resolution and high spectral 

resolution, NASA’s Moderate Resolution Imaging Spectro-radiometer (MODIS) instrument. 

Their main concern was the impact of aerosols in regional radiative forcing, and precipitation.  

Sifakis and Soulakellis (2001) tried to find optical thickness in VNIR and near-IR bands, in 
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order to monitor haze with low spatial and spectral resolution MODIS data by the 'blurring 

effect due to scattering and backscattering induced by the aerosols. Ung et al. (2003) tried to 

investigate the strength of linear relationship between satellite-made observations and air 

quality parameters using Landsat low spatial and spectral resolution with very few channels. 

They did not use any image processing software to process images.  Ahmad and Hashim 

(2000) tried to correlate with low resolution NOAA 14 AVHRR (Advanced Very High 

Resolution Radiometer) data in VNIR bands using regression model.  

 

1.6 Objective of the Research Investigation 

 For satellite systems with high spatial and spectral resolution and sophisticated 

hardware and software, it is now possible to accurately measure the level of air pollution by 

using TIR and SWIR bands. Hence, the objective of this research investigation is to extract air 

pollutant data from satellite images, using high spectral and spatial resolution ASTER band in 

SWIR and TIR ranges. This to correlate ASTER satellite based measurements, in terms of 

raster pixel digital numbers, in comparison with the criteria pollutants EPA ground based 

data.  This research can demonstrate the greater potential benefit of ASTER data for the 

detection of emissions and transport of air pollutants. 
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Chapter 2 

Methods and Techniques 

2.1 Study Area 

This research investigated three locations, where high pollution concentrations are 

reported by air quality monitoring agency and general media. These locations are 

subsequently studied. Firstly San Francisco Bay is a unique land feature, absolutely land  

 

Figure 1: GIS vector map of mainland USA, showing San Francisco Bay Are and, Los 
Angeles area in California, and Charleston, in West Virginia (WV), created in ESRI ArcGIS 
9.1 software. 
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locked by mountain ranges, although having maritime climatic conditions. Due to rapid 

industrialization since the Second World War, it has multiple air pollutant sources. In 2000 

the Bay area recorded CO and PM _10 concentrations, exceeded federal standards, by 110% 

and 117% respectively (South Coast Air Quality Management District, Annual Report, 2000). 

Also the California Air Resource Board reported prolonged high PM_10 emission, 

particularly, at Berkeley in the San Francisco Bay Area (cited in Pacific Steel Casting 

Company’s proposed odor control plan report, 2005). 

Secondly Los Angeles has been a concern for environmentalists for air pollution since 

the industrialization that accompanied the Second World War. In the early 1950's Professor 

Haagen-Smit of the California Institute of Technology demonstrated that a key feature of Los 

Angeles smog involved photochemical reactions that occur on a mixture of hydrocarbon 

vapors and oxides of nitrogen, with subsequent formation of aldehydes, HNO3, peroxy-acyle 

nitrates (PAN) and particulate matter (PM). Los Angeles contains a number of oil fields, 

petroleum refineries and power plants that need to supply all of southern California and parts 

of Nevada and Arizona (UNEP Assessment Report, 2004).  In Los Angeles County, Lynwood 

and Burbank’s PM_10 concentrations recorded in the year 2003, exceeded Federal standard 

for 30 days (California Air Resource Board report, 2003). Los Angeles now is ranked as the 

most polluted US city (in smog and particulates), by American Lung Association (ALA) 2004 

report.  

Thirdly Charleston, the capital of West Virginia, is known as the city of chemical 

industries. It is situated in the Kanawha valley in the mountain state of West Virginia, where 

there are chemical industries, smelting industries, and two big power plants. Charleston is also 
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ranked as the sixteenth most polluted city (PM_2.5 species) in USA by the ALA 2005 report.

  

2.2 Data Acquisition 

2.2.1 Satellite Image Sensor’s Data 

 ASTER raw level-1 (L1A) data of Los Angeles (acquired on October 17, 2003 

at 10:23 am local time), San Francisco Bay Area (acquired on March 10, 2000 at 10:21 am 

local time), and Charleston (acquired on September 19, 2005 at 10:26 am local time), WV are 

collected from the United States Geological Survey (USGS).  Satellite images were taken 

during fairly dry seasons and cloud free condition in order to accurately assess the 

atmospheric smog.  

 

2.2.1.1 Sensors 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an 

imaging instrument flying on Terra satellite which was launched in December 1999 as part of 

NASA's Earth Observing System (EOS). It is a cooperative effort between USA’s NASA and 

Japan’s Ministry of Economy and Industry (METI) formerly known as Ministry of 

International Trade and Industry (MITI), with collaboration of scientific and industrial 

organizations in both countries (ASTER user handbook, JPL, 2000). Terra is orbiting the 

earth at 705 km altitude, in a sun-synchronous orbit 30 minutes behind the Landsat ETM+. It 

crosses the equator   at about 10:30 am local solar time.  The orbit inclination is 98.3 degrees 

from the Equator. Orbit time is 98.88 minutes, and ground track repeat cycle is 16 days. 
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ASTER has 14 bands in the visible and near infra-red (VNIR), the short wave infra-red 

(SWIR) and the thermal infra-red (TIR).  ASTER is the only high spatial resolution 

instrument on Terra System; therefore it acts like a ‘zoom lens’ for the other instruments in 

Terra. There are three visible and near infra-red (VNIR) bands having 15 m spatial resolution 

in 0.52μ m – 0.86μ m range, six SWIR bands having 30 m spatial resolutions in1.6μ m – 

2.43μ m range, and five TIR bands having 90 m spatial resolution in 8.125μ m-11.65μ m 

range.  

The VNIR subsystem of ASTER consists of a 5000 element silicon charged-coupled 

detector (CCD).  In SWIR subsystem, the detector in each of the six bands is a Platinum 

Silicide-Silicon (PtSi-Si) Schottky barrier linear array. Six optical band pass filters are used to 

provide spectral separation. The TIR subsystem uses 10 Mercury-Cadmium-Telluride 

(HgCdTe) detectors in a staggered array with optical band-pass filters over each detector 

element.  

 

2.2.1.2 Data Type 

All data products are stored in a specific implementation of Hierarchical Data Format 

called HDF-EOS.  ASTER L1A data are formally defined as reconstructed, unprocessed 

instrument data at full resolution. They consist of the image data, the radiometric coefficients, 

the geometric coefficients, and other auxiliary data without applying the coefficients to the 

image data, thus maintaining the original data values. ASTER raw level-1 (L1A) data of Los 

Angeles, San Francisco Bay Area, and Charleston, WV are used in this research in order to 

accurately assess the atmospheric smog.  
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2.2.2. Digital Raster Graphics and other GIS Data 

           Georegistered Digital Orthophoto Quarter-Quadrangles (DOQQ’s) and ESRI 

shapefiles of road network, rivers, and basemap of the respective sites were used in this 

investigation. DOQQ’s and ESRI shapefiles are provided by California Spatial Information 

Library, Sacramento, CA, and West Virginia GIS Technological Center, Morgantown, West 

Virginia. 

 

2.2.3. Air Quality Data 

 Air Quality Monitoring data and facilities emission data has been acquired from the 

United States Environmental Protection Agency (US-EPA) regional centers. The EPA data 

consists mainly of NOx, CO, SO2, PM namely, PM_10 and PM_2.5. EPA monitoring stations 

collect air pollutants concentrations on an hourly basis. For this research US EPA provided 

data on the same day, on an hourly basis, as that of the satellite sensor data acquisition.  

EPA’s facility emission data of Charleston, WV, for the respective years, are also used in this 

investigation.  The air quality standards refer to respirable suspended particulate matter 

(PM_10). The air quality standards for PM_10 typically range from 10-150 μ g/m3 are 

annually averaged depending on particle composition and national legislation.  The USA 

Federal standard for PM_10 is 50 μ g/m3 and its Hazardous Standard is 150 μ g/m3. For 

Carbon monoxide (CO) federal standard is 9.0 Parts per Million (ppm). While that of federal 

NOx is 54 ppm, and that for sulfate is 24 μ g/m3.  
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2.2.3.1. Air Quality Monitoring Instruments 

Currently EPA monitoring stations use particle mass analysis instruments namely, 

Tapered Element Oscillating Microbalance (TEOM), Continuous Ambient Mass Monitor 

(CAMM), or Beta Attenuation Method Sampler (BAMS), (EPA and Air resources Board, 

2005). The detection technologies employed in particle mass analysis instruments include 

Beta gauges, piezoelectric crystals and harmonic oscillating elements. These technologies 

were designed for real-time mass analysis of particles in size ranging up to 10μ m. The 

sensors use imaging and elemental analysis techniques which provide both morphological and 

chemical composition information respectively. These are microprocessor-based units which 

accommodate most of the analysis requirements. These provide internal data storage, 

advanced analog and serial data input/output capabilities. Nanotechnology based sensors 

present opportunities to create new and better products for orbital image and ground sensor 

initiatives. In December 2004, EPA’s Science Policy Council (SPC) formed a cross-Agency 

Nanotechnology Work group for examining potential implication and application of 

nanotechnology to improve assessment, management, and prevention of environmental risks.  

Nanotechnology based sensors are nanoparticles and nanotube based devices, where in some 

cases carbon nanotubes (CNTs) connect two metal electrodes and conductance between them 

is observed as a function of gate bias voltage (Vaseashta and Irudayaraj, 2005). Since 

electrical characteristics are influenced by the atomic structure, any change such as 

mechanical deformation and chemical doping, induce change in conductance, thus rendering 

such devices sensitive to their chemical and mechanical environment (Vaseashta and 

Irudayaraj, 2005) Nanostructured based sensors have lower material costs, reduced weights 
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and power consumption of the sensors (Vaseashta et al, Springer, 2005). Nanotechnology 

offers the potential to improve exposure assessment by facilitating collection of a large 

number of measurements at a lower cost and improved specificity (Vaseashta et al, 2006).  
 

 2.2.4. Climatic Data 

  For this investigation, Wind speed, direction, precipitation and humidity data 

of San Francisco Bay area, Los Angeles area, and Charleston are collected from National 

Oceanic and Atmospheric Administration (NOAA) - National Climatic Data Center, Reno, 

Nevada.  The climate data gave appropriate information about possible transport of pollutants 

to longer distances. 

  

2.3. Data Processing 

2.3.1. Satellite Data Processing 

ASTER L1A raw data, of the respective sites, has been geometrically corrected and geo-

registered in Universal Transverse Mercator (UTM) coordinate system, and WGS84 datum, 

by image-to-image registration process with DOQQ in ER-Mapper 7.1 software.  

Georegistered ASTER images are combined with respective DOQQs by the Data Fusion (DF) 

technique in ER-mapper 7.1 software. The Principal Component Analysis (PCA) Technique 

has been applied to extract atmospheric smog in the imagery in ER-Mapper 7.1 software. 

Density Slicing (DS), Band Ratioing (BR), and Spatial Filtering (SF) techniques are also 

employed to enhance atmospheric pollutants in the imagery in ER-mapper 7.1 software.  
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2.3.1.1. Data Fusion  

Data fusion is the combination of multi source data, having different characteristics 

such as spatial, spectral and radiometric characteristics, to acquire high quality image. The 

integration of spectrally and spatially complementary remote multisensor data facilitates 

visual and enhanced image interpretation (Jensen, J. Prentice Hall, 2005). To effectively 

utilize the high spectral resolution and moderate spatial resolution ASTER images, data fusion 

techniques has been applied, with the high spatial resolution of 1 meter  DOQQ’s, using ER-

Mapper 7.1 software. It effectively combines multi source images into one composite color 

image of greater quality and preserved spectral characteristics whilst increasing spatial 

resolution of images. 

 

2.3.1.2. Principal Component Analysis 

The PCA technique involves a mathematical procedure for simplifying a dataset by 

reducing multidimensional datasets to lower dimensions by analysis. It transforms a number 

of (possibly) correlated variables into a (smaller) number of uncorrelated variables called 

principal components (PC). PC axes and bands of ASTER can be presented in a covariance 

matrix with highest variability in the image data loaded in the first PC axis and the least in the 

last PC axis (Jensen, 2003). The PCA algorithm function uses each image band as a variable 

and rotates the multivariable axes about the statistical grand mean from the image dataset. 

This transforms the data axes to maximize the variability in the first PC (PC1) with the each 

successive component of the variability, such as second PC (PC2) and so on, loaded into each 

successive axis orthogonal to the previous axis (Figure 2). The first principal component  
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Figure 2: Principal Component Analysis:  Rotation of data swarm axis about statistical grand 
mean of each axis (band). Resultant data acquires more variability. 

 

accounts for as much of the variability in the data as possible, and each succeeding 

component accounts for as much of the remaining variability as possible. This maximizes the 

supportability of the feature and enhances the features for extraction and pattern recognition 

in the image (Brumfield et. al, 1991).  In order to extract features in the image data set PCA 

technique has been applied in 1-14 bands of the resultant images (with DOQQ as an intensity 

layer). Red green and blue (RGB) color composites images are made using PC1, PC2, and 

PC3. 
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2.3.1.3. Density Slicing   

Density slicing is a form of selective one-dimensional classification. The continuous 

pseudocolor scale of the resultant image is "sliced" into a series of classifications based on 

ranges of brightness values. All pixels within a "slice" are considered to be the same 

information class. This method is especially useful when a given surface feature has a unique 

and generally narrow set of digital number (DN) values (Jensen, J.  2005).  Density slicing 

technique has been applied on the resultant dataset in band 14 for HNO3 absorption band at 11 

μ m, band 7 for Carbon monoxide and carbonate absorption band at 2.3 μ m, band 5 for 

cirrus cloud (ice crystal) absorption band at 2.1 μ m, and band 4 for water vapor absorption 

band at 1.67 μ m. 

 

2.3.1.4. Band Ratioing 

Band Ratioing is a process by which brightness values of satellite image pixels in one 

band are divided by the brightness values of their corresponding pixels in an another band in 

order to create an enhanced new output image. This technique is useful when there are subtle 

differences in signature of features in the dataset (Jensen, 2005, Prentice Hall). In this 

investigation band ratioing technique was found necessary only in Charleston area where all 

other image processing techniques were unable to distinguish cloud properties, and 

atmospheric pollution signatures.  
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2.3.1.5. High-pass Spatial Filtering 

High-pass filtering is a digital technique based on a convolution process. A filter is 

defined by a kernel, which is a small array applied to each pixel and its neighbors within an 

image. The convolution may be applied in either the spatial or frequency domain. Within the 

spatial domain, the first part of the convolution process multiplies the elements of the kernel 

by the matching pixel values when the kernel is centered over a pixel. The elements of the 

resulting array are averaged, and the original pixel value is replaced with this result. A high 

pass filter tends to retain the high frequency information within an image while reducing the 

low frequency information. This enhances the interfaces among features, and can be used to 

distinguish features in the atmosphere. 

 

 2.3.2. In-situ Data Processing 

EPA air quality pollutants concentration data in tabular form has been converted into a 

.dbf files of dBase 4 in Microsoft Excel worksheet, and loaded into ESRI ArcGIS 9.1 

software. This point feature is used to locate the monitoring stations in DOQQ’s and the 

image dataset from the respective sites. These monitoring stations are then located in the 

ASTER processed imagery  to find the reflectance digital numbers of  the respective 

monitoring station pixel values in order to find correlation with EPA monitoring data.  
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Chapter 3 

                        Results and Discussion 

 3.1. Study Area I: San Francisco Bay Area:  

 Accurate knowledge of spatial distribution of the atmospheric pollutants over a city is 

currently very difficult due to limited number of monitoring stations. A GIS map of EPA  

 

Figure 3: GIS map of industries location and EPA Air quality Monitoring Pollutant 
concentrations measured at 6:00am on the day of satellite data acquisition on March 10, 
2000 in the San Francisco. EPA monitoring concentrations of CO are shown in green, NOx in 
yellow, PM_10 in red bar graphs.  Industry location information is provided by South Coast 
Air Quality Management District data and California Air Resources Board data, 2005. 
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monitoring stations (Figure 3) in San Francisco Bay area created in ESRI ArcGIS 9.1 

software, shows limited opportunity to assess air pollutant from in-situ data provided by EPA. 

The data for CO in EPA monitoring stations shows relatively high concentration in Redwood 

City (4.4 ppm), Fremont (4.2 ppm), and the San Jose (3.8 ppm) area, but is much below the 

hazardous health related standard of 9.0 ppm (EPA, 1998). Remote Sensing of CO has been 

achieved in TIR using the absorption band at 4.6 μ m and in SWIR at 2.3-2.34 μ m (Maziere 

M. De et al. 2005). The data for PM_10 (Figure 3) in EPA monitoring stations in the San 

Francisco Bay area show that the PM_10 concentrations in Fremont (54ppm), Livermore 

(54ppm), and San Jose (48ppm) had high concentrations at early morning hours. NOx 

concentration was found highest at Freemont (0.383 μ g/m3, followed by San Jose (0.361 

μ g/m3) at early morning hours. The facilities data provided by South Coast Air Quality 

Management District data and California Environment Protection Agency, Air Resources 

Board, October, 2005 report shows that there are multiple air pollutant sources in the Bay 

area.  

Climatic condition data monitored on March 10, 2000, from the NOAA National 

Climatic Data Center data, are shown in ASTER RGB 14-7-2 bands in Figure 4.  There were 

variable wind patterns existing during morning, afternoon, evening and night periods (note 

Figure 4).   
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Figure 4: Wind pattern on March 10, 2000 at San Francisco Bay area shown in four time 
intervals. a)  4:00 am -7:00 am, directed towards the bay. b) 8:00am -10:00am directed 
towards land, except at Fremont, directed towards bay. c) 3:00 pm-midnights: directed 
towards SE, except at San Francisco where it is towards north. (d) 10:00am-3:00pm directed 
towards land in all the three monitoring stations. 
 

ASTER datasets acquired on March 10, 2000, at local time 10:31 in the San Francisco 

Bay Area are processed according to the methods mentioned before in this manuscript.  PCA 

image bands 1-14 of March 10, 2000 (Figure 5a) show, cloud patterns in different tones of 

blue in the San Francisco Bay area atmosphere, but the PCA image of bands 1-9 (Figure 5b) 

does not show different tones in pink. The Density sliced image in pseudo color with DOQQ  
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Figure 5: March 10, 2000 San Francisco Bay area ASTER processed images: a) PCA images 
in all 14 bands. b) PCA image B-1-9 bands.  c): Density sliced band 14. d): Density sliced 
band 7. 
 

as intensity layer in Figure 5c, displays different tones of brown, due to absorption in band 14 

(HNO3 absorption band), but in band 7 (carbonates absorption band), in Figure 5d, the cloud 

patterns do not show different tones in blues very clearly.  

Spectral signatures of freshly emitted industrial pollutants, in all SWIR bands 4-9, and 

all TIR bands 10-14, are detected by a traverse technique (Roy et. al., 2006) in ER-Mapper 

7.1 and  compared (Figures 6a and 6b).  
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Figure 6: Spectral signatures of freshly emitted air pollutant over a steel casting company in 
Berkeley, in San Francisco Bay area: a) All SWIR B-4-9 compared, shows variations in 
absorption. b) All TIR bands B-10-14 compared shows variations in absorption. 
 

Figures 6a and 6b show spectral signatures of freshly emitted air pollutant over a steel casting 

company in Berkeley area in the ASTER image. It is observed in the Figures 6a and 6b that 

the SWIR band 7 behaves abnormally compared to other bands.  Spectral signatures, of TIR 

bands 10-14 (Figure 6b) shows almost similar behavior except bands 10 and 14 where more 

absorption is observed. TIR bands 14 and 10, at 11.0 μ m and 9.0 μ m, are associated with 

HNO3 and Methanol absorption band respectively. 
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In view of observed slight differences in spectral signatures in band 7, a band ratio 

image composite is created of the ASTER image of the Bay area, with red band ratioed as 

14/10 , green band ratioed as 3/5 and blue band ratioed as 3/2.  

 

Figure 7: Band ratio composite image in RGB bands 3/2, 7/5, 14/10 of San Francisco Bay 
area separates regular cloud and suspected pollutants in the cloud pattern. 
 

The resultant image (Figure 7) clearly distinguished regular cloud patterns with 

atmospheric pollutants in different tones of red and brown. 
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3.2. Study Area Los Angeles: 

The GIS map of Los Angeles area (Figure 8) is created in ArcGIS 9.1 software. The 

DOQQ is used as a base map, overlaid in ESRI ArcGIS 7.1 software, with Los Angeles area 

county boundary, highways, water body and airport ESRI shapefiles. EPA monitoring 

concentrations of CO are shown in green, NOx in yellow, PM_10 in red bar graphs.  Industry 

location information is provided by the EPA and California Air Resources Board data, 2005. 

 

Figure 8: GIS map of industries location and EPA Air quality Monitoring Pollutant 
concentrations measured at 6:00am on the day of satellite data acquisition on October 17, 
2003 in the Los Angeles area. EPA recorded concentrations of CO are shown in green, NOx 
in yellow, PM_10 in red bar graphs. Industry locations are shown in light blue. 
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The GIS map of Los Angeles shows that among all of the seven locations in the dataset, the 

Lynwood (4.6 ppm) area had fairly high CO concentration. The NOx concentration was 

highest in the downtown Los Angeles (0.34 μ g/m3) followed by Lynwood (0.33 μ g/m3). It 

is also observed that PM_10 concentration on October 17, 2003 in Lynwood was extremely 

high at 121 ppm. Industries locations in the image also suggest that there are multiple sources 

of air pollution in the area. 

 The wind pattern data collected from NCDC of NOAA is shown in ASTER image,  

 

Figure 9. Wind pattern on October 17, 2003 in Los Angeles area: (a) early morning till 
6:00am blowing almost southward. (b) 6:00am-9:00am variable winds. (c) 9:00am-1:00pm 
high speed wind from west. (d) 1:00 pm-midnights also from west. 
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acquired on October 17, 2003, of Los Angeles area on false color image in RGB bands 14-7-2 

(Figure 9). It shows that there were variable wind patterns during midnight till morning and 

there after blew towards land. High relative humidity and mixing of pollutants by variable 

winds may cause transport of air pollutants from their source to long distances. 

The PCA image bands 1-14 of October 17, 2003 (Figure 10a) shows cloud patterns in  

 

Figure 10: October 17, 2003 Los Angeles area ASTER processed images: (a) PCA images in 
all 14 bands. (b) PCA image B-1-9 bands. (c): Density sliced band 14. (d): Density sliced 
band 7. 
 
different tones of blue in the atmosphere of Los Angeles area, but the PCA image of bands 1-

9 (Figure10b) is unable to show any cloud pattern. Similar phenomenon observed in the 
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density sliced image in pseudo color with DOQQ as intensity layer in band 14 (HNO3 

absorption band) Figure 10c, where cloud patterns are shown in different tones of blue, but in 

band 7 (carbonates absorption band), the density sliced image (figure 10d), the cloud patterns 

are not observed. 

Spectral signature in the entire industrial belt in Commerce and Lynwood area is 

obtained by traversed technique in ER-Mapper 7.1 software is shown in Figure 11. The SWIR  

 

Figure 11: Spectral signatures of air pollutant over Lynwood in Los Angeles area: (a) All 
SWIR B-4-9 are compared, shows variations in absorption. (b) All TIR bands B-10-14 are 
compared shows variations in absorption. 
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bands 9 and 5 behaves in a different way than other SWIR bands (Figure 11a), but it shows 

strong absorption in all ASTER TIR bands 10-14 (Figure 11b). 

The Band Ratio image of Los Angeles area (Figure 12) shows patterns, in different 

tones of blue throughout the image. It was unable to distinguish regular cloud patterns and 

other land and atmospheric features. Even the ocean water is also shown in blue. Therefore 

band ratio image in this particular band combination of 3/2 7/5, 14/10 in RGB is not giving 

much information about atmospheric pollution in Los Angeles area.  

 

Figure 12: Band ratio image in RGB bands 3/2, 7/5, 14/10 of Los Angeles area unable to 
highlight plume over the city.  
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3.3. Study Area Charleston:  
 

GIS map of Charleston (fig. 13a) is created in ERSRI- ArcGIS 9.1 software with 

DOQQ’s as a base map, overlayed with highways, railroads, EPA monitoring data and 

industry shapefiles. It shows EPA monitoring stations recorded very high concentration of 

NOX in South Charleston (0.212 ppm federal standard is 0.54 ppm) on the day of satellite  

 

Figure 13: (a) Charleston EPA monitoring station locations in DOQQ, created in ArcGIS 9.1 
showing CO, NOx, and PM_10 concentration level on September 19, 2005. (b) Industrial 
facilities PM_10 annual emission 2005 (Source WVDEP, Charleston).  
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data acquisition, high concentrations of PM_10 in all EPA monitoring stations (very near to 

federal high standard of 50 μ g/m3).  Facilities annual emission data from WVDEP (Figure 

13b), shows that a substantial part of PM_10 emitted by all the industries in Kanawha valley 

is emitted by  John E. Amos Power plant (59%) and Kanawha River power plant (23%). Most 

of the industries shown in Figure13a, Charleston area, emit toxic chemicals such as Vinyl 

Chloride, Methylene Chloride, Benzene, CCl4, in addition to common industrial pollutants 

like Acetaldehyde, Benzene, Formaldehyde etc (WVDEP, 2005 Report). 

Wind patterns on September 19, 2005 in Charleston as recorded by NOAA monitoring 

station shows the day was calm since early morning till 3:00pm, and thereafter wind was 

blowing at 7miles per hour from the west (Figures 14a and 14b). 

 

Figure 14: Wind pattern and speed on September 19, 2005, in Charleston area, recorded at 
NOAA weather station at Charleston airport (NOAA National Climatic Data Center, 2005). 
 

PCA is applied with all ASTER bands (Bands 1-14) as well as with VNIR and SWIR 

bands (B-1-9). In resultant images, the cloud mask over the city behaves in a similar way 
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(Figure 15a and 15b). Also density sliced images in ASTER bands 14 and 7 show very little 

differences in cloud pattern in different tones of brown (Figure15c and 15d). 

 

Figure 15: September 19, 2005, Charleston, WV area ASTER processed images: (a) PCA 
images in all 14 bands. (b) PCA image B-1-9 bands.  (c): Density sliced band 14. (d): Density 
sliced band 7. 

 

Spectral signatures of SWIR in bands 5, 7, and 8 shows little variations (Figure16a). 

TIR bands 13 and 14 shows much absorption and variations (Figure16b).  
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Figure 16: Spectral signatures of air pollutant over Gutherie Agricultural center in 
Charleston, WV area: (a) All SWIR B-4-9 are compared, shows variations in absorption. (b) 
All TIR bands B-10-14 are compared shows variations in absorption. 
 

Band ratioing is applied with blue in TIR bands 14/10, green in SWIR bands 7/5 and 

red in VNIR bands 3/2 in the ASTER image of Charleston area, and the resultant image 

(Figure 17) shows different tones of yellow in the cloud mask over the city   
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Figure 17: Band ratio image in RGB bands 3/2, 7/5, 14/10 of Charleston area highlighted 
plume over the city in different tone of yellow. 
 

3.4. Statistical Analysis  

3.4.1 Analysis of Variance: 

Analysis of variance, or ANOVA, typically refers to partitioning the variation in a 

variable's values into variation among and within several groups or classes of observations. 

ANOVA is used to uncover the main interaction effects of categorical independent variables 

(called "factors") on an interval dependent variable.  
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 ASTER pixel values in SWIR and TIR bands, of the EPA monitoring stations 

of each city are used as a dependant variable and EPA measurements of pollutants are as 

independent variables. Their statistical relations are established. There are different number of 

EPA monitoring station’s air quality data, seven in Los Angeles, seven in San Francisco, and 

three in Charleston. Therefore there is unequal number of sample members per city; hence it 

is an unbalanced design. Therefore statistical procedure, 'Analysis of Variance’ (ANOVA) by 

a ‘general linear model’ called 'PROC GLM' (general linear model) in SAS software 

(www.sas.com) is used in this investigation. The GLM procedure is generally used to perform 

simple or complicated ANOVA for balanced or unbalanced data (ANOVA Tutorial). 

 

3.4.1.1. General Linear Model:   

A linear model has been used in order to fit EPA in-situ data into ASTER pixel digital 

numbers data, (DNs) that include each ‘City’ as a blocking factor. The linear model 

relationship created is as follows: 

(ASTER DNs) = A +B* (EPA Pollutant Concentration) + C * (City effect) + Residue 

Where A = Intercept 

 B= Slope 

 C= Regional shift 

All pixel values and pollutants concentrations levels are fed into PROC-GLM program 

in ‘SAS’ software and to establish a linear relationship.  The interactions (Pollutant * City) 

were tested, with all SWIR and TIR bands (VNIR exception due to lower absorption 
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coefficient), with observed significance levels (p-value) in order to determine if the data 

meets an acceptance level of error (p-value equal to 0.005 as 95% probability).  

 

Table-2: Probability error level of in ASTER reflectance value in correspond to the EPA 
pollutants monitoring of CO, NOx and PM_10 and respective cities effect (from ‘ANOVA’ 
ProcGLM, Program in SAS software. This table contains p-values; non-significant (showed 
as dash in the table, if p>0.05. non-significant value type of data has no statistically 
significant effect on overall mean. 
 
 

 

        ASTER Bands         
               Short-wave Infrared Bands Thermal Infrared Bands 

Source 

B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12 B-13 B-14 
CO - - 0.0162 - - 0.0004 0.0003 0.0005 0.0005 0.0003 
City 
Effect 

0.0039 0.0036 0.0007 0.0094 0.0131 - 0.0177 0.0019 0.0013 0.0001 

                      
NOx 0.009 0.0044 0.0007 0.0041 0.0032 0.0001 0.0001 0.0001 0.0001 0.0001 
City 
Effect 

- - - - - 0.0015 0.0024 0.0007 0.0002 0.0001 

                      
PM_10 - - - - - 0.0164 0.0193 0.0466 0.0332 0.0236 
City 
Effect 

0.0133 0.0057 0.0098 0.0293 0.0233 0.0296 0.0147 0.0071 0.0044 0.001 

 
 
The lower the p-values, the more likely the effect is significant.  Values were removed from 

these models where they were not significant. All of the assumptions were tested for all 

models, and only channel 9 data had to be log-transformed in order to meet the assumptions 

of the ANOVA. 

The statistical term ‘Coefficient of Determination (R-Square) is a statistical term, 

which signifies total percentage of variations explained by the independent variable in the 

regression line, and rest of the variations is explained by another factor (not a linear 

relationship).  Results from PROC GLM program in SAS software obtained were shown in 
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the Table-2. It is observed that there is significant city effect, which the results are not 

consistent among the cities (all channels for PM_10, all except Ch10 for CO, channels 10-14 

for NOx).  If the city effect is non-significant, the spectral response to the pollutant is 

consistent no matter where samples were found, and the data is collected (Ch10 for CO and 

channels 10-14 for NOx). In SWIR bands ASTER Channels 5 – 9 (Table2) shows no 

correlation with PM_10 concentrations, channel 7 was found weakly correlated with CO 

concentrations. 

 

Table-3: Coefficient of Determination (R-Square) values and Coefficient of Variance values 

from 'ANOVA'  results of ASTER SWIR bands 5 through 9 reflectance values, and TIR bands 

10 through 14, reflectance value in corresponds to the EPA pollutants monitoring of CO, NOx 

and PM_10 in respective cities (as block) (from ‘ANOVA’ ProcGLM, Program in SAS  

software). 

 

 

 

All 5 SWIR channels indicate correlations with NOx levels. In TIR bands, ASTER 

channel 10-14, the relationship between spectral values and CO or NOX were highly 

significant.  
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 PROC-GLM runs in all channels with blocking and interaction terms, and shows the 

Coefficient of Determination (R-Square’s) (Table 3) in SWIR channel 7 and 14 has higher 

values.  In channel 7, R-Square found for CO, NOx, and PM_10 were nearly the same.  In 

Channel 14, R-Square is found in PM_10 is nearly significant, while that of CO and NOx are 

more highly significant, showing sensitivity of band 14 for CO and NOx. 

 Both ANOVA results and scatter plot of pollutants with ASTER DNs shows no 

correlation in SWIR 5-9 bands with  EPA monitored PM_10 concentrations and it is also 

evident from the fact that there is no absorption band for PM_10 in any of the ASTER bands. 

Very weak absorption band of CO at 2.31 μ m and weak correlation in ANOVA result in 

channel 7 with EPA CO concentrations was expected. With correlations observed by all 5 

SWIR channels with NOx levels and spectral signature of the nine components of NOx, it is 

difficult to say about which component of NOX, as they are most unstable, is active in the 

atmosphere (Winnewisser et al., 2004). In TIR bands, ASTER channel 10-14, NOX and CO 

were found highly significant, although there is a strong absorption band for HNO3 at 11μ m 

in ASTER band 14, but there is no absorption band for CO in ASTER TIR bands. Therefore 

in view of ANOVA results, there could be something similar to CO in the sample. Weak 

correlation of PM_10 in ANOVA result with TIR channels but high absorption bands of 

PM_10 in the 10-13μ m band, contradicts smog detection with other techniques mentioned in 

the manuscript. It may be due to the fact that there were fewer number of EPA monitoring 

stations and monitoring is far away from the source. The possible wind factor that causes 

transport of pollutant over longer distances may provide for photochemical mix and dilution 

of samples.  
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3.4.2 Scatter Plot of Variance:  

Scatter plots of Pollutant concentration with ASTER pixel digital data numbers are  
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Figure 18: Scatter plot of EPA pollutant Concentration level at San Francisco Bay 
area, Los Angeles area, and at Charleston area against respective sites ASTER digital 
numbers in bands 14 and 7: (a1) and (a2)  CO in band 7 and 14 respectively. (b1) and 
(b2) NOx in bands 7 and 14 respectively. (c1) and (c2) PM_10 in bands 7 and 14 
respectively. 

 

created for, CO, NOx and PM_10 of in bands 7 and 14, where high correlations were 

observed. Results shown in the scatter plots (Figure18) suggest city wise regional shifts in 

correlation of data swarm. For CO in band 7, Los Angeles and San Francisco Bay area are 

weakly correlated (Figure 18a1). Band 14 shows a high correlation in San Francisco area, but 

a very weak negative correlation for Los Angeles and Charleston (Figure 18 a2). For NOx in 

band 7 San Francisco and Charleston are highly correlated (Figure18 b1), but in Los Angeles 

very weak correlation is observed. NOx in band 14, Los Angeles and San Francisco are 

negatively correlated with different correlation lines. In Charleston for band 14, no prediction 

can be made due to fewer numbers (only 3) of monitoring station data.  PM_10 for band 10, 

San Francisco, Los Angeles and Charleston are not correlated in a linear model (Fig.18c1).  

PM_10 for band 14 there is a weak negative correlation observed in Los Angeles, but very 

low correlation in both Charleston and San Francisco. 

 

3.5 High-frequency Filtering 

Analysis of variance suggests that TIR band 14 is highly correlated with EPA 

concentration in NOx and PM_10. Also SWIR band 7 is correlated with EPA CO 

concentration level. 
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Figure 19: High band-pass filter, with ASTER digital numbers in band 14, 7, and 3, applied 
on ASTER images: (a1) San Francisco Bay area in RGB 3,7and14 without filter.  (a2) San 
Francisco in RGB 3,7, 14  after filter is applied. (b1) Los Angeles area in RGB 3,7, 14 
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without filter. (b2) Los Angeles area in RGB 3,7, 14  after filter is applied. (c1) Charleston 
area in RGB 3,7, 14 without filter. (c2) Charleston area in RGB 3,7, 14  after filter is applied. 
 

Therefore a spatial filtering technique is applied with those bands pixel digital numbers to 

enhance high frequency local variations. A very rough convolution mask of 3x3 kernel size 

has been used with a center value as the digital number of the pixel in TIR band 14, SWIR 

band7, and VNIR band 3 in all the image data set. The resultant images are shown in Figures 

19 (a1 through c2). The entire filtered images interface between regular cloud pattern and 

plumes are almost distinguishable. Also in Bay area filtered image (Figure19 (a2)) coastal 

water pollutants are slightly distinguishable.  

 In the Los Angeles image before filtering (Figure 19-b1) does not show pollution 

patterns over West Los Angeles. It shows only in Lynwood area and Los Angeles downtown 

area. The filtered image (Figure 19-b2) shows a plume pattern in West Los Angeles. In 

Charleston different tones of cloud pattern (Fig. 19-c2) in the atmosphere are highlighted in 

the filtered image suggesting cloud pollution mixing due to prevailing wind patterns through 

the valley. 
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Chapter 4 

Summary and Conclusion 

This research investigation presents a methodology to assess atmospheric pollution from a 

multi-spectral satellite platform. Several image processing techniques were used to extract 

features for pattern recognition. In the research investigation resolves differences in pollution 

absorption patterns with the relatively wide wavelength bands of ASTER. PCA, density 

slicing. Band ratioing, spectral signatures in different bands, and High-pass band filtering 

images, demonstrated many different kinds of pollutant patterns in different cities under 

investigation. The GIS map of San Francisco Bay area with EPA monitoring sites suggests 

that there are multiple sources of air pollutants there. Variable wind speed and direction in a 

high land-locked area of San Francisco Bay may cause the transport of air pollutants from 

their source to longer distances. The PCA image of San Francisco with all ASTER bands 

using density sliced image in band 14, absorption differences of pollutants in TIR band 14 is 

observed. The absorption difference was found to be weak in ASTER band 7. Also variations 

detected in spectral signatures were stronger in TIR and weaker in SWIR. Separation of 

regular cloud patterns and pollution sources plumes of CCN in the band ratio images and 

other evidence given above, suggest that there may be PM_10 and some carbonates in the 

cloud pattern over San Francisco Bay area on March 10, 2000.  

The GIS map of Los Angeles area and EPA monitoring data suggest that there are 

multiple sources of air pollutants there. Variable wind speed and direction in Los Angeles 

may cause the transport of air pollutants from their source to longer distances eastward. The 

PCA image, Density sliced images, spectral signatures in SWIR and VNIR bands of Los 
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Angeles suggest that there is high concentration of PM_10 in the atmosphere over the 

Commerce, Lynwood and Los Angeles commercial district. More accurate and detailed 

information on air pollutants patterns can be assessed using hyperspectral data. Future 

research investigations will focus on hyperspectral studies in order to find the subtle 

differences in spectral signature of atmospheric constituents and pollutants.  

The GIS map of the Charleston area with industry data from WVDEP and EPA 

monitoring data, indicate multiple sources of air pollutants. With wind patterns in a valley 

area as Kanawha Valley in Charleston West Virginia, suggests that air pollutant emission 

from various sources may remain confined to the valley and eventually go back to the earth 

surface with precipitation. The PCA image, Density sliced image, spectral signatures in SWIR 

and VNIR bands of Charleston area suggest that there is high concentration of PM_10 and 

carbonates in the atmosphere over Charleston area. 

Statistical analysis support different feature extraction patterns of different kinds of air 

pollutants in the atmosphere of San Francisco, Los Angeles and Charleston. More accurate 

and detailed information on air pollutants patterns can be assessed using hyperspectral data. 

Future research will focus on hyperspectral research to investigate the subtle differences in 

spectral signature of atmospheric pollutant patterns using feature extraction and pattern 

recognition techniques in advanced satellite sensor image systems and nanotechnology based 

sensors. 
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