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Abstract 

We have previously reported that aging in the Fisher 344 X Brown Norway (FBN) rat aorta is 

characterized by increased levels of ROS and alterations in cell signaling. Acetaminophen was 

found to scavenge free radicals in recent ischemia-reperfusion studies. Here we examined if 

chronic treatment with a therapeutic dose of acetaminophen attenuates age-associated increase in 

aortic ROS accumulation and signaling. FBN rats (27 month old; n=8) were subjected to 6 

months of treatment with a therapeutic dose of acetaminophen (30mg/kg/day), with age-matched 

untreated FBN rats as controls. Protein oxidation levels were altered in control and treated aortae 

compared to aortae from 6 month animals. Immunoblotting analysis revealed that activated 

levels of c- Jun-N-Terminal kinase (JNK), Erk1/2 and AMPK levels were altered with aging and 

treatment. Activated p38-MAPK levels were altered with aging. Our data suggest that chronic 

acetaminophen treatment alters age associated ROS signaling in FBN rat aorta. (148 words) 
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Chapter 1 

Introduction 

 Life expectancy has nearly doubled since the beginning of the 20th century with the 

fastest growing segment of the United States population being those aged 65 years and older. 

Indeed, those > 65 years constitute 14% of the population and will account for > 20% in the next 

half century [1]. Heart disease, comprising ischemic heart disease and congestive heart failure, is 

not only the leading cause of death and lost life expectancy in most western countries but also 

one of the most important causes of morbidity and health care costs. Over two- thirds of current 

health care costs are for treating chronic illnesses; among older Americans, almost 95% of health 

care expenditure is for chronic diseases [2]. Alzheimer’s disease alone, for example, costs the 

nation more than $50 billion each year in Medicare and Medicaid expenditures. As the 

population ages and this devastating disease becomes more prevalent, these costs are projected to 

rise by as much as 54% by 2010 [2]. The development of interventions designed to mitigate the 

problems and costs associated with heart disease is required to prevent the burden of health care 

costs from increasing exponentially in the coming years [3]. 

 The blood vessel wall is divided into three regions, the adventitia, media and intimal 

layers. The intrinsic aging change in thickness on the arterial wall is predominantly in the media. 

Atherosclerosis, in contrast, is an intimal disease. Throughout life, elastin fibers undergo 

progressive disorientation, fragmentation, and degeneration, with subsequent collagen 

deposition, calcification, and/or cystic degeneration [4]. As a result, the central elastic arteries 

dilate and become tortuous. Age-related increases in arterial stiffness, which results in a doubling 

of pulse wave velocity in the aorta, a quadrupling of ascending aorta impedance, and a 

progressive rise in systolic pressure [4] greatly increasing the risk of heart disease.  
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 Aging, defined as a gradual decline of the fighting ability of the organism against stress, 

damage and diseases, is intuitively considered invincible; however recent studies are attempting 

to shed new light on some of the possible mechanisms of aging [5-7]. One of the most accepted 

theories on aging is the oxidative stress theory which postulates that the overproduction of free 

radicals damage lipids, proteins, and DNA [6, 7]. Since Harman (1956) proposed the free radical 

theory of aging a half century ago, there has been growing evidence that suggests reactive 

oxygen species may play a crucial role in aging [8, 9]. This conclusion has been supported by 

many studies, but two most important questions still remain unanswered: (1) How aging 

processes progresses in completely healthy humans who do not suffer from any pathological 

disorders? (2) And if we agree that free radicals play a major role in aging, then how free 

radicals initiate aging processes in healthy organisms under physiological conditions is not much 

known.  

Recent data indicate that increased oxidative stress caused by the enhanced production of 

reactive oxygen species (ROS) is an important contributor to vascular dysfunction in heart 

disease and that ROS levels are an independent predictor of future cardiovascular events [10]. 

Why ROS increases the risk of heart disease is not well understood. A critical component of 

eukaryotic signal transduction is the activation of protein kinases which phosphorylate a host of 

cellular substrates, including transcription factors which control the induction of various genes 

[11]. Mitogen activated protein kinases (MAPK) are an evolutionarily conserved family of 

enzymes that form a highly integrated network required to achieve specialized cell functions 

including cell differentiation, cell proliferation, and cell death [12]. In addition to the MAPK 

proteins, another ROS sensitive molecule is the AMP-activated protein kinase (AMPK). The 

AMPK is viewed as an energy sensor that acts to modulate glucose uptake and fatty acid 
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oxidation in skeletal muscle. Recent study has shown that a strong association exists between the 

amount of ROS and aging in the F344/NXBN rat aorta and that this increased ROS was 

correlated with the altered regulation of several proteins thought to be associated with cellular 

signaling cascades [13]. Whether these differences in protein signaling play a role in regulating 

age associated cardiovascular dysfunction is not clear.  

Acetaminophen is a widely used drug that is a standard antipyretic and analgesic agent 

for the treatment of mild to moderate pain. Acetaminophen is a phenol, that may have 

antioxidant properties [14, 15]. For example Recent ischemia - reperfusion studies suggested that 

acetaminophen has antioxidant properties that are cardio protective and antiarrhythmic under 

conditions of increased free radical production [16]. Whether acetaminophen exhibits similar 

functions, when given chronically and in the aging animal has not been investigated. 
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Purpose of study 

The purpose of this study is to determine how aging and acetaminophen treatment alters 

multiple, previously identified markers of oxidative stress in the F344NXBN rat aorta. The 

working hypothesis of this study is that chronic treatment with therapeutic dose of 

acetaminophen will decrease the age-associated increases in oxidative stress and alter the 

expression and/or regulation of age-associated indices of oxidative stress. 
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Specific Aims and Hypotheses 

Specific Aim 1 

To determine if aging in the F344/NXBN aorta is associated with increased ROS. 

Hypothesis 

We hypothesize that aging will be associated with increased indices of aortic ROS. 

 

Specific Aim 2 

To determine how aging affects multiple, previously identified markers of oxidative 

stress in the F344/NXBN rat aorta. 

Hypothesis 

We hypothesize that age-associated increases in ROS will be strongly associated with 

indices of oxidative stress in the aging F344/NXBN aorta.  

 

Specific Aim 3 

To determine how chronic acetaminophen treatment alters the regulation of previously 

identified markers of oxidative stress in the F344/NXBN rat aorta. 

Hypothesis 

We hypothesize that acetaminophen treatment will alter the regulation of previously 

identified markers of oxidative stress in the aging F344/NXBN rat aorta.  
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Chapter 2 

 

Review of Literature 

 

 

Introduction 

A review of the pertinent literature concerning the present study will be presented in the 

following chapter. The following areas will be addressed:  1) Effects of aging on aortic structure 

and function, 2) Aging and oxidative stress and 3) Indices of Reactive Oxygen levels and 4) 

Acetaminophen.    

 

Effects of aging on aortic structure and function 

It is estimated that by the year 2035, nearly one in four individuals will be 65 years of age 

or older [17]. In the United States, cardiovascular disease e.g., atherosclerosis and hypertension, 

is the leading cause of mortality, accounting for over 40 percent of deaths in those aged 65 years 

and above [17]. One symptom of aging is the gradual impairment of vascular function in arteries. 

There is a substantial set of people experiencing the enlargement of aorta over the age of 60 

years [18]. Arterial distensibility decreases with aging and hypertension in both humans and rats 

[19]. Mechanical and structural properties of arteries have been studied extensively with respect 

to the development and treatment of hypertension. Aging is associated with an increase in wall 

thickness of medium and large-sized arteries [20]. This increase in wall thickness is due to 

smooth muscle hypertrophy, which results in a thickening of the intima and medial layer [21]. 

6 
 



 
 

Age-related increases in arterial wall thickness are observed in the absence of atherosclerosis and 

hypertension in Fisher 344 X Brown Norway (F344XBN) rats [21], but the exact mechanisms of 

arterial wall thickening  have not been determined. The aortic wall thickness also increases with 

age in the male rats [13, 22]. Gerontologists have developed a considerable amount of 

quantitative data on the structural and functional changes in the vasculature of apparently healthy 

human populations. Principal among their findings are age-associated increases in vessel wall 

thickness [23] mainly due to intima medial thickening [24], with luminal dilation and reduced 

compliance [25]. Few studies have directly addressed age-associated changes in vessel 

contractility in humans, although there is evidence of endothelial dysfunction with aging [26] 

with attenuation of endothelium-dependent dilation due to altered nitric oxide (NO) synthase 

activity and increased formation of reactive oxygen species [27].  

 

Aging and oxidative stress 

Reactive oxygen species (ROS), including superoxide (·O2
–), hydrogen peroxide (H2O2), 

and hydroxyl anion (OH⎯), and reactive nitrogen species, such as nitric oxide (NO) and 

peroxynitrite (ONOO–), are biologically important O2 derivatives that are increasingly 

recognized to be important in vascular biology through their oxidation/reduction (redox) 

potential [28]. ROS are known to come from two major categories including endogenous and 

exogenous sources. The exogenous factors include γ- and UV-irradiation, ultrasound, food, 

drugs, pollutants, xenobiotics and toxins while endogenous factors are comprised of neutrophils, 

enzymes, and mitochondria [29]. A natural consequence of aerobic metabolism is the production 

of reactive oxygen species (ROS), including free radicals, which are capable of oxidizing vital 

cellular components. There are three major types of ROS: superoxide anions, hydrogen peroxide 
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and lipid peroxides. The amount of ROS in cells and tissues are normally held in check by a 

system of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione 

peroxidase (GPX), respectively). Reactive oxygen species from mitochondria and other cellular 

sources were traditionally considered as injurious cellular by-products with the potential to 

damage lipids, proteins and DNA [29]. However, there is now convincing evidence that ROS are 

not only toxic consequences of cellular metabolism but also essential participants in cell 

signaling and regulation [30-33]. Oxidative stress in tissues has been a topic of intense 

investigation both in the basic science laboratory and in clinical research in recent years [34, 35]. 

Taking basic discoveries in oxidative stress to a clinical application, i.e., translational research, is 

of significant contemporary interest [36, 37].  

Reactive oxygen species are implicated in many intracellular signaling pathways leading 

to changes in gene transcription and protein synthesis and consequently in cell function. Under 

physiological conditions, ROS are produced in a controlled manner at low concentrations and 

function as signaling molecules regulating vascular smooth muscle cell (VSMC) contraction–

relaxation and VSMC growth [38-41]. However, under pathological conditions increased ROS 

production has been associated with endothelial dysfunction, alterations in vessel contractility, 

VSMC growth and apoptosis, monocyte migration, lipid peroxidation, inflammation, and 

increased deposition of extracellular matrix proteins [38]. These findings are significant as each 

of these processes is thought to be risk factors for the development of cardiovascular disease. In 

addition, systemic and vascular ROS production lead to reduced endothelial NO bioactivity, 

increased expression of cell surface adhesion molecules, and inflammatory changes that 

contribute to microvascular and macrovascular damage [42-46]. ROS mediate the proliferation 

of VSMCs, which can lead to thickening of the aorta [38, 47-49].  
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Oxidative stress occurs when the antioxidant system is unable to cope with the 

production of ROS, resulting in cell damage that may underlie numerous pathological conditions. 

Oxidative stress is believed to play an important role in the aging process [9, 50]. Age-related 

damage from oxidative stress could be elicited through increased ROS, decreased antioxidant 

enzyme activity, or a combination of both. Free radical oxidation of proteins also increases with 

age [51]. Several investigations have shown an increase in production of ROS in various tissues 

of older animals [52, 53]. In contrast, age-associated reduction of antioxidant enzymes has been 

demonstrated in many tissues [48, 54, 55]. Although there are many approaches to evaluate the 

existence of ROS in biochemical reactions, the only direct ways to measure ROS are electron 

spin resonance that measures relatively stable radicals, and the spin trapping method [56]. 

However, due to the difficulty of direct ROS detection, the quantification of oxidative damage 

markers known as the fingerprint method is often utilized e.g. the introduction of carbonyl 

groups to proteins [51, 57]. Additionally, excessive superoxide and nitric oxide can produce 

highly reactive peroxynitrite and can disturb homeostatic regulation by interacting with 

macromolecules [56].  

Recent data suggest that active oxygen species may play a role in the progression of 

atherosclerosis and development of restenosis following balloon angioplasty. Epidemiological 

studies show a correlation between antioxidant therapy and a decreased incidence of coronary 

events in both men and women [58, 59]. The beneficial effects of antioxidants may be related to 

altered vessel redox, as demonstrated by findings that aortas from hyperlipidemic rabbits[60] and 

coronary arteries from balloon-injured pigs[61] generate increased levels of O2
⎯ compared with 

control vessels. The effects of aging-associated increases in ROS may affect VSMC 

independently by causing lipid peroxidation and DNA damage. These modifications may 
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ultimately contribute to VSMC dysfunction and disease progression [62]. Whether antioxidant 

therapy is able to decrease age-associate increases in ROS levels is not well understood. 
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Indices of Reactive Oxygen levels 

Cells respond to extracellular stimuli by activating signal transduction pathways, which 

culminate in changes in gene expression. The particular genetic program activated determines, in 

large part, the response of the cell (e.g., growth versus growth arrest versus apoptosis; 

differentiation versus dedifferentiation). A critical component of eukaryotic signal transduction 

is the activation of protein kinases which phosphorylate a host of cellular substrates, including 

transcription factors which control the induction of various genes [11]. Mitogen activated protein  

kinases (MAPK) are an evolutionarily conserved family of enzymes that form a highly integrated 

network required to achieve specialized cell functions including cell differentiation, cell 

proliferation, and cell death [12]. On activation of MAPK, transcription factors present in the 

cytoplasm or nucleus are phosphorylated and activated which lead to the expression of target 

genes resulting in a biological response. The multiple interactions between the different MAPK 

cascades serve to integrate responses and to moderate outputs. Indeed, it has been demonstrated 

that MAPK have overlapping substrate specificities and that the phosphorylation of regulatory 

sites is shared among multiple protein kinases [63-65]. All eukaryotic cells possess multiple 

MAPK pathways, each of which is preferentially recruited by distinct sets of stimuli, thereby 

allowing the cell to respond coordinately to multiple divergent inputs [12].  

MAPKs can be activated by a wide variety of different stimuli, but in general, ERK1 and 

ERK2 are preferentially activated in response to growth factors, phorbol esters, exogenous H2O2 

and by endogenously generated ROS in SMCs [49]. c-Jun N-terminal kinases (JNKs) and p38 

MAPK, are also sensitive to redox modulation [66] however these molecules are more 

responsive to stress stimuli such as osmotic shock and ionizing radiation to cytokine stimulation 

11 
 



 
 

[67]. Activation of ERKs has also been implicated in vascular endothelial growth factor 

(VEGF)–induced EC survival [68]. In contrast to ERKs, JNKs and their downstream target c-

Jun, have been implicated in H2O2 and other stress-induced apoptosis of ECs [69]. Moreover, 

p38 MAPK has been implicated in EC upregulation of intercellular adhesion molecule-1 and, 

therefore, endothelial dysfunction. In SMCs, redox-sensitive activation of p38 MAPK mediates 

Angiotensin II–induced hypertrophy and has also been implicated in SMC migration [70-72]. It 

is known that ROS-mediated MAPK activation is involved in smooth muscle cell hypertrophy 

and that the inhibition of MAPK by antioxidants may affect signal transduction [73]. 

 Because both O2
- and H2O2 cause VSMC growth yet only O2

- activates MAPK, it is 

intriguing to speculate regarding the site(s) of action of these reactive oxygen species. More 

research is needed to further address this question. In addition to the MAPK proteins, another 

ROS sensitive molecule is AMP-activated protein kinase (AMPK). The AMPK is viewed as an 

energy sensor that acts to modulate glucose uptake and fatty acid oxidation in skeletal muscle. 

Given that protein synthesis is a high energy-consuming process, it may be transiently depressed 

during cellular energy stress. AMPK responds to changes in the ratio of ATP/AMP as well as 

phosphocreatine/ creatine [74, 75]. Changes in the cellular energy state activate AMPK through 

various mechanisms involving allosteric regulation of AMPK, activation by an upstream AMPK 

kinase, and diminished activity of phosphatases [76]. AMPK activation increases glucose uptake 

and fatty acid oxidation in muscle [77] as well as up-regulates expression of various metabolic 

genes. There has been no agreement as to the direction that AMPK regulates cell proliferating 

pathways. Some investigators showed that AMPK upregulates p38 MAPK activity in a rat liver 

cell line (clone 9 cells) [78], whereas others showed that it downregulates Akt/PKB in skeletal 

muscle cells [79]. Conversely, Fryer et al., [80] reported that the p38 MAPK pathway is not 
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affected by AMPK in skeletal muscle cells, and We [81] and Ido et al., [82] have shown that Akt 

signaling is upregulated by AMPK in endothelial cells. The reasons for discrepancies between 

studies are not clear but could be due to differences in the methods or materials used for 

investigation.  

AMPK activation has been shown to inhibit skeletal muscle protein synthesis [79], likely 

because protein synthesis is a bioenergetically expensive process. Suppression of protein 

synthesis by AMPK suggests that this signaling protein may also regulate skeletal muscle 

hypertrophy. There is some indication of such a role for AMPK in cardiac muscle, where 

mutations in the gene encoding the gamma subunit of AMPK are associated with pathological 

hypertrophy [83], and AMPK activation has been shown to inhibit cultured cardiac myocyte 

growth [84]. AMPK expression differs in vascular smooth muscle compared with striated 

muscles and that activation and inactivation after metabolic stress occur rapidly and are 

associated with signaling pathways that may regulate smooth-muscle contraction [85]. Igata  et 

al., (2005) reported that activation of AMPK effectively suppressed cell cycle progression in 

primary human VSMCs and isolated rabbit aortas [86]. Several investigators have shown that 

AMP-activated protein kinase (AMPK) is also a redox-sensitive enzyme [87-89].  Kukidome et 

al., (2006) reported that AMPK activation decreases hyperglycemia-induced mitochondrial ROS 

production [90]. A recent study from our lab suggests that vascular aging in the F344/NXBN rat 

is associated with an increase in superoxide which is highly correlated with changes in the 

expression and/or regulation of AMPK-α [13]. Therefore it is of interest to examine the redox-

sensitive AMPK activation as a good indicator of ROS levels. 

Programmed cell death is a genetically controlled response of individual cells that are no 

longer needed to commit suicide. High levels of ROS can lead to necrotic cell death, whereas 
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low levels of ROS have been shown to induce apoptotic cell death [91, 92].  Apoptosis generally 

involves changes in the expression of pro-apoptotic and anti-apoptotic genes and gene products 

including both the tumor suppressor gene p53 as well as the proapoptotic protein of the Bcl-2 

family Bcl-2 associated protein X (Bax) [93-95]. Programmed cell death is regulated through 

different mechanisms including the expression of the members of the Bcl2 protein family 

consisting of pro- and antiapoptotic peptides interacting with each other by forming homo- and 

heterodimers. Bcl-2 is thought to act as negative regulator of apoptosis and has been thought to 

protect cells from ROS, although the mechanism by which this latter event occurs remains 

unclear. Conversely, Bax has been implicated to promote or accelerate cell death with recent data 

showing that Bax may be able to induce apoptosis by both caspase-dependent and -independent 

mechanisms [96]. It has been proposed that cell viability may depend on the ratio of the level of 

Bcl-2 to that of Bax [97]. Previous data from our lab suggests that Bcl-2 and Bax are upregulated 

with aging to a similar degree. Given the role that Bcl-2 may play in protecting the cell against 

elevated ROS [98], it is conceivable that age-related increases in Bcl-2 may be a mechanism 

employed with aging to protect the cell against elevated O2
-. As the ratio of Bcl-2 to Bax is 

thought to regulate cell viability, our findings that the regulation of Bax parallel to that of Bcl-2 

suggest that this strategy may act as a means to ensure constancy of the Bcl-2 to Bax ratio. Such 

a mechanism, if present, may act to minimize unnecessary cell death. 

Taken together, these data suggest that ROS generated within VSMCs and ECs can either 

induce cell growth or death, thereby leading to vascular dysfunction. The available literature 

suggest that smooth muscle cells proliferation and hypertrophy are due, at least in part, to the 

increased ROS [71]. Whether or how alterations in ROS may be associated with age-associated 

vascular dysfunction is not well understood.  
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Acetaminophen 

 Acetaminophen is one of the most commonly used over-the-counter analgesics and 

antipyretics. Acetaminophen was introduced into Western medicine more than 100 years ago, 

and its pain-relieving and temperature-lowering actions have been under investigation for several 

decades [99, 100]. For more than 50 years in the United States, acetaminophen, when used 

appropriately at therapeutic doses, has been shown to be extremely safe in virtually all patient 

populations. Despite this remarkable time-tested safety profile, in recent years, some healthcare 

providers have questioned the safety of acetaminophen use by alcoholic patients and patients 

who drink alcohol [99]. These initial, presumably well-intentioned yet scientifically unproven 

concerns spread rapidly in both the medical literature and the lay press. This unsubstantiated 

concern that therapeutic doses of acetaminophen, less than or equal to 4 g/day, may cause life-

threatening hepatotoxicity and fulminant hepatic failure led to an unfounded belief that alcoholic 

patients and patients who drink alcohol should avoid acetaminophen. When taken in overdose, 

particularly large intentional overdose, acetaminophen can cause fulminant hepatic failure and 

death. In recent years, retrospective case reports and case series have suggested that alcoholic 

patients may be at risk of acetaminophen-induced hepatic injury and even death following the 

ingestion of recommended therapeutic doses of acetaminophen [101].  

Potential cardiovascular properties of acetaminophen have gone undiscovered, in part, 

because no one has made an effort to do the experiments. This might have been influenced by 

standard textbooks of pharmacology that report that acetaminophen lacks efficacy in the 

cardiovascular system of mammals [102]. Increased use of acetaminophen by an aging 

population justifies a more indepth exploration into the unknown mechanisms of action of this 

15 
 



 
 

compound. The recent literature, however, suggests that investigators are beginning to fill this 

void. For example, Nakamoto et al. [103] reported beneficial effects of acetaminophen against 

gastric mucosal injury caused by ischemia-reperfusion in the rat. Farquhar et al. [104] reported 

reduced renal dysfunction in the stressed human kidney in the presence of acetaminophen versus 

ibuprofen, while Colletti et al., (1999) found that ibuprofen caused significantly greater renal 

arterial vasoconstriction than acetaminophen in sodium-depleted dogs [104, 105]. Merril (2002) 

and others [100, 106, 107] reported that acetaminophen has antioxidant and cardiovascular 

protective properties.  For example, it has been reported that acetaminophen has cardioprotective 

properties in the isolated guinea pig heart exposed to hypoxia and reoxygenation [107].  In 

addition, Merril et al., [16, 108] reported that acetaminophen has antiarrhythmic properties in 

isolated hearts of guinea pigs and dogs. During regional myocardial ischemia and reperfusion in 

dogs, acetaminophen markedly and significantly reduced tissue necrosis and infarct size [109]. 

Merrill [100] have reported that the content of protein carbonyls in the injured myocardium 

treated with acetaminophen was significantly less during ischemia than was seen in vehicle-

treated hearts and concluded that the isolated, perfused guinea pig heart exposed to low-flow 

global myocardial ischemia and reperfusion, acetaminophen is cardioprotective. Golfetti et al., 

[110] have reported that acetaminophen-treated hearts were more functional at the end of 

reperfusion than hearts treated either with uric acid or vehicle. In the other study with chronic 

administration of acetaminophen for 10 days Golfetti et al., (2003) [106] found that the release of 

creatine kinase is reduced, the production of peroxynitrite/ its precursors is attenuated, and that 

reperfusion-induced mechanical failure is less evident or absent in the presence of 

acetaminophen. It should be noted that all of these studies were acute in nature. Whether chronic 

acetaminophen treatment exhibits similar cardiovascular effects is unknown. Further, whether 
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acetaminophen is capable of attenuating age-associated increases in ROS has not been 

investigated. 
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Chapter 3 

 

Chronic Acetaminophen Treatment Influences Indices of Reactive Oxygen Species 

Accumulation in the Aging Fisher 344 X Brown Norway rat Aorta 
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Abstract: 

Age associated cardiovascular disease is thought to be caused in part by the gradual oxidative 

damage to biomolecules. We have previously reported that aging in the Fisher 344 X Brown 

Norway (FBN) rat aorta is characterized by increased levels of ROS and alterations in cell 

signaling. Acetaminophen was found to scavenge free radicals in recent ischemia-reperfusion 

studies. It remains unknown if chronic acetaminophen administration influences ROS 

accumulation and signaling in the aging aorta. Here we examine if chronic treatment with a 

therapeutic dose of acetaminophen attenuates age-associated increase in aortic ROS 

accumulation and signaling. FBN rats (27 month old; n=8) were subjected to 6 months of 

treatment with a therapeutic dose of acetaminophen (30 mg/kg/day), with age-matched untreated 

FBN rats as controls (n=8). Immunoblotting and immunohistochemical analysis were used to 

examine protein oxidation, protein nitration and various indices of oxidative stress in the aorta. 

Protein oxidation levels were 30.25 ± 1.33% lower in treated aortae as compared to controls. 

Immunoblotting analysis revealed that activated levels of cJun-N-Terminal kinase (JNK) were 

74.73 ± 3.15% and 87.39 ± 3.14% respectively in control and treated aortae. Phospho-Erk1/2 

levels were 78.7 ± 0.49%, 99.45 ± 1.85%, activated p38-MAPK levels were 65.03 ± 1.65%, 

67.65 ± 1.96% and activated AMPK levels were 88.62 ± 2.26%, 106.86 ± 3.89% respectively in 

aortae from control and treated animals. Our data suggest that chronic acetaminophen treatment 

alters age associated ROS signaling in FBN rat aorta. (237 words) 

Key words: aging; aorta; acetaminophen; ROS; cell signaling 
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Introduction: 

It is estimated that by year 2035, nearly one in four individuals will be 65 years of age or 

older [17]. Cardiovascular diseases, such as coronary artery disease, Atherosclerosis and 

hypertension, and resultant chronic heart failure [17] reach epidemic proportions among older 

persons. An emerging hypothesis described as the free radical theory of aging suggests that aging 

occurs through the gradual accumulation of free radical damage to biomolecules [111]. Inherent 

to this theory is that oxidative stress increases with advancing age. It is thought that oxidative 

stress both promotes and is induced by vascular disease and risk factors that lead to vascular 

disease. Earlier reports from our laboratory have reported that aging in the F344/N X BN aorta is 

characterized by increased levels of ROS and alterations in metabolic stress indicators (AMPK), 

apoptotic regulators (Bax and Bcl-2) and MAPK signal transduction pathways  [13].  

Acetaminophen (APAP) is one of the most widely used of all drugs, with a wealth of 

experience clearly establishing it as the standard antipyretic and analgesic for mild to moderate 

pain states. APAP is a phenol, and many phenols have antioxidant properties [14, 15]. Recent 

ischemia - reperfusion studies suggested that APAP has antioxidant properties that are cardio 

protective and might be antiarrhythmic under selected conditions of the generation and release of 

free radicals [16]. It seems reasonable, therefore, to speculate that in the presence of increased 

oxidative stress, APAP might offer preservation of tissue structure and function.  

The function and activity of specific mitogen activated protein kinases (MAPKs), such as 

p38 kinase, extracellular signal regulated kinase 1/2 (ERK 1/2-p44/p42), as well as the c-Jun N-

terminal kinase (JNK) have been found to be regulated by ROS in vascular tissues [12, 73, 112]. 

Src family kinases are also activated by reactive oxygen species [113]. Already identified other 
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markers of oxidative stress like AMP- activated protein kinase (AMPK), apoptotic regulators 

like Bcl-2 and BAX are also altered with aging and reactive oxygen species [13, 87]. APAP is 

also involved in the regulation of MAPKs and Apoptotic regulators in hepatocytes [114-116]. 

But how APAP regulates these molecules in the aging aorta is not well studied.  

The purpose of this study is to determine how aging and acetaminophen treatment alters 

the production of ROS and activation of the markers of oxidative stress in the aging F344NXBN 

rat aorta. Here we hypothesize that chronic treatment with therapeutic dose of APAP would 

decrease the age associated increase in ROS and alters age associated changes in signaling 

pathways. 
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Materials and Methods: 

Animals  

All procedures were performed in accordance with the Marshal University Institutional 

Animal Care and Use Committee (IACUC) guidelines, using the criteria outlined by the 

American Association of Laboratory Animal Care (AALAC) as proclaimed in the Animal 

Welfare Act (PL89-544, PL91-979, and PL94-279).  Fischer 344/NNiaHSD x Brown 

Norway/BiNia (FBN) rats aged 6 and 27 months, were purchased from the National Institute on 

Aging colony at Harlan. Animals were housed two per cage in an AALAC approved vivarium 

with a 12 hour light-dark cycle and temperature maintained at 22 ± 2°C, and fed ad libitum. All 

animals were allowed to acclimatize for 2 weeks before initiation of any treatment or procedures. 

All animals were examined for precipitous weight loss, failure to thrive or unexpected gait 

alterations and animals with apparent abnormalities or tumors were removed from the study. 

Periodic weight measurements were taken throughout the duration of the study.  

 

Materials 

Acetaminophen tablets or pure compound used in the study was provided by McNeil 

Pharmaceuticals (Fort Washington, PA). Antibodies against Bax, Bcl-2, and mouse IgG, goat 

IgG and rabbit IgG antibodies were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, 

CA). Antibodies against AMPK-α, p44/42(ERK1/2-MAPK), p38-MAPK, SAPK/JNK - MAPK, 

p-AMPK-α (Thr 172), p-p44/42 (Thr 202/Try 204), p-p38 (Thr 180/Try 182), p-SAPK/JNK (Thr 183/Tyr 185), 

biotinylated protein ladder, mouse and rabbit IgG antibodies were purchased from Cell Signaling 

Technology (Beverly, MA). Precast 10% SDS-PAGE gels were procured from Cambrex 
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Biosciences (Baltimore, MD) and enhanced chemiluminescence (ECL) western blot detection 

reagent was acquired from Amersham Biosciences (Piscataway, NJ). Restore western blot 

stripping buffer was obtained from Pierce (Rockford, IL) and 3T3 cell lysates were from Santa 

Cruz Biotechnology (Santa Cruz, CA). All other chemicals were purchased from Sigma (St 

Louis, MO).  

 

APAP Treatment: 

FBN rats (27 month old; n=8) were subjected to 6 months (Upto 33 months of age) of 

treatment with a therapeutic dose of acetaminophen i.e.,30 mg/kg/day administered through 

drinking water. Age-matched FBN rats were maintained under the same environmental 

conditions without any drug treatment as controls (n=8). 

 

Vessel collection: 

  Rats were anesthetized with a ketamine-xylazine (4:1) cocktail (50 mg/kg IP) and 

supplemented as necessary for reflexive response. In a sterile aseptic environment, the ventral 

surface of the thorax was shaved and the superficial musculature was exposed by means of a 

transverse incision through the skin distal to the thoracic cavity. After midline laparotomy and 

perforation of the heart, the aorta was isolated and removed from the left ventricle to the renal 

arch and placed in Krebs-Ringer bicarbonate buffer (KRB) containing; 118mM NaCl, 4.7mM 

KC1, 2.5mM CaCl2, 1.2mM KH2PO4, 1.2mM MgSO4, 24.2mM NaHCO3 and 10mM a-D-

glucose, (pH 7.4) equilibrated with 5% CO2 / 95% O2 and maintained at 37°C. Isolated aortae 

were cleaned of connective tissue, weighed and immediately snap frozen in liquid nitrogen. 
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 Histology and oxidative fluorescent microscopy: 

Aortic specimens were serially sectioned (8 µm) using an IEC Microtome cryostat and 

collected on poly-lysine coated slides. After fixing in acetone, (22°C for 2 min) sections were 

stained with hematoxylin and eosin, mounted and cover slipped. Morphometric evaluation was 

performed with the use of a computerized imaging analysis system (Image J). Medial thickness 

in micrometer was calculated from the average of eight different points of cross section. 

Hydroethidine (HE), an oxidative fluorescent dye, was used to visualize superoxide production 

in situ [117, 118]. HE is freely permeable to cells and in the presence of O2
˙ ¯ is oxidized to Et 

bromide, where it is trapped by intercalating with the DNA [119]. Because Et is impermeable to 

cell membranes, extracellular O2
˙ ¯ would not be expected to significantly contribute to the 

observed cellular fluorescence [120]. Neither hydroxyl radical, ˙NO, peroxynitrite, H2O2, 

hypochlorite, nor singlet O2 significantly oxidizes HE, as such, an increase in Et fluorescence is 

thought to specifically indicate O2
˙ ¯ generation within the fluorescing cell. Briefly, aortic 

sections were incubated for 30 min at 37°C with 5mM HE. After extensive washing with PBS 

and mounting (permount) tissue was visualized under fluorescence using an Olympus 

fluorescence microscope (Melville, NY) and analyzed using imaging software (AlphaEaseFC). 

The intensity of fluorescent Et-stained nuclei as calculated by digitizing images and then 

determining the average pixel intensity of six randomly positioned regions (1000 mm2) per 

arterial cross section. Six images per vessel were analyzed with ≥500 nuclei per vessel examined.  
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Immunoblot analysis: 

Tissues were pulverized in liquid nitrogen using a mortar and pestle until a fine powder 

was obtained. After washing with ice cold PBS, pellets were lysed on ice for 15 minutes in T-

PER (2mL/1g tissue weight) (Pierce, Rockford, IL) and centrifuged for 10 minutes at 2000 X g 

to pellet particulate matter. Protein concentrations of homogenates were determined in triplicate 

via the Bradford method (Pierce) using bovine serum albumin as a standard. Samples were 

diluted to a concentration of 2.0µg/µl in SDS loading buffer and boiled for 5 min. 40 µg of total 

protein for each sample was separated on a 10% SDSPAGE gel. Transfer of protein onto 

nitrocellulose membranes was performed using standard conditions [121]. To verify transfer of 

proteins and equal loading of lanes the membranes were stained with Ponceau S. For 

immunodetection, membranes were blocked in 5% Milk TBST for 1 h at room temperature and 

then incubated with the appropriate primary antibody overnight. After washing in TBST, the 

membranes were exposed to horseradish peroxidase-labeled IgG secondary antibody for 1 h and 

protein bands were visualized with ECL (Amersham Biosciences). Exposure time was adjusted 

to keep the integrated optical densities (IODs) within a linear and nonsaturated range. Band 

signal intensity was quantified by densitometry using a flatbed scanner (Epson Pefection 3200 

PHOTO) and Imaging software (AlphaEaseFC). Molecular weight markers (cell signaling) were 

used as molecular mass standards and NIH 3T3 cell lysates were included as positive controls. A 

total of three SDS-PAGE gels were run for each experimental set to evaluate changes in 

dependent variable tissue content and basal phosphorylation where applicable. Immunoblots 

were stripped with restore western blot stripping buffer as described by the manufacturer to 

obtain direct comparisons between expression and phosphorylation levels of different signaling 

molecules. After verifying the absence of residual HRP activity by treating the membrane with 
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the ECL reagent, membranes were washed and reprobed. To minimize potential experimental 

error associated with membrane stripping, the order of antibody incubation was randomized 

between experiments. 

OxyBlot™ Analysis: 

To identify carbonyl groups that are introduced into the amino acid side chain after 

oxidative modification of proteins, 2D-oxyblot analysis was performed, as previously described 

[122]. The level of protein oxidation was determined by an Oxidized Protein Detection Kit 

(Oxyblot, Chemicon Cat# S7150-Kit).  Oxyblot kit derivatizes carbonyl groups to a 2, 4-

dinitrophenylhydrazone (DNP) moiety. The DNP moiety can then be detected using anti-DNP 

antibodies and is a method to assay for one form of oxidative damage to a protein. The proteins 

are derivatized as per the protocol given in the kit. These proteins are separated on 10% SDS-

PAGE gels and transferred onto nitrocellulose membrane. After the transfer, membranes were 

blocked with 2.5% BSA (in Tris Buffered Saline [TBS] with 0.2% Tween-20) for 1 h at room 

temperature. The nitrocellulose membrane was exposed to a primary rabbit anti-DNPH protein 

antibody from Chemicon Oxyblot (1:200 working dilution) for 1 hour, and then to a secondary 

antibody (Goat Anti-Rabbit IgG (HRP-conjugated) diluted in the blocking solution 1:500 for 1 h 

at room temperature. Membranes were washed after every step in washing buffer (TBS with 

0.2% Tween-20). Protein bands were visualized with ECL (Amersham Biosciences). Band signal 

intensity was quantified by densitometry using a flatbed scanner (Epson Pefection 3200 PHOTO) 

and Imaging software (AlphaEaseFC). 
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Results: 

Aortic wall thickness, ·O2 ¯ and protein oxidation are altered with aging 

The tunica media thickness in aortae from 33-month control is 38.48 ± 7.23% more than 

aortae from 6-month animals (p≤0.05) (Fig 1). Ethidium (Et) fluorescence was seen throughout 

the aortic cross section with prominent signal in both the endothelial and medial portions (Fig 2). 

Levels of superoxide anion O2
˙ ¯, as determined by oxidation of HE to Et and the quantification 

of Et fluorescence were 91.81 ± 31.08% more in 33-month control aortae compared to the levels 

determined in the 6-month aortae (p ≤0.05) (Fig 2). To estimate the levels of oxidized proteins in 

the aging aortae we performed an OxyBlot assay. We found that when compared to 6 month 

aortae the level of protein oxidation was 7.09 ± 2.31% higher in 33-month control aortae (p 

≤0.05) (Fig. 3). 

 

Phosphorylation of the metabolic sensor protein AMPK-α is altered with aging 

To determine whether aging influenced the total amount of AMPK-α present in the aorta, 

gel electrophoresis and immunoblot analysis using antibodies that recognize both the 

unphosphorylated and phosphorylated forms of AMPK-α was performed. There were no 

differences between 6- and 33-month control aortae in the total content of AMPK- α (Data not 

shown). Because AMPK- α is activated by phosphorylation it is important to determine that 

whether aging is characterized by changes in the basal phosphorylation level of AMPK- α. 

Compared to 6-month control animals, the basal phosphorylation levels of AMPK- α was 11.38 

± 6.73% lower in 33-month control (p ≤0.05) (Fig. 4). 
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Total content and basal phosphorylation of the signaling molecules, p44-p42 (ERK 

1/2)-, p38-, and JNK-MAPK altered with aging 

The MAPK proteins play an important role in propagating the external stimuli into the 

cytoplasm and nucleus. The p38-MAPK content was 19.12 ±7.45% less in 33-month control 

aorta and when compared to aortae from 6-month animals (p < 0.05) (Fig. 5). No change in the 

total level of the p44 (ERK 1) - MAPK was observed with aging, but the p42 (ERK 2) - MAPK 

content was 11.79 ± 3.35% lower in 33-month control, compared to 6- month aortae (p ≤0.05) 

(Fig. 5). The JNK-1 MAPK levels in 33- month control aortae were 19.03 ± 9.12% less than 6-

month aortae (p ≤0.05) (Fig 5) while JNK-2 MAPK levels were 29.12 ± 5.41% lower in 33-

month control when compared to 6 month aortae. The JNK-3 MAPK levels in 33-month aortae 

were not significantly different from 6- month levels (Fig 5). 

The phosphorylated p38- MAPK content in 33-month control aortae was 43.19 ± 12.30% 

less than that observed in 6-month aortae (p ≤0.05) (Fig. 6). The activated levels of p44 (ERK 1) 

- MAPK and p42 (ERK 2) - MAPK of 33-month control aortae were 21.30 ± 3.27%  and 26.96 ± 

2.11% lower than 6-month aortae, respectively (p ≤0.05) (Fig. 6).  Compared to 6-month control 

animals the phosphorylated levels of JNK- 1 and JNK- 3 MAPKs were 25.26 ± 5.67% and 22.64 

± 3.34% less than that found in 33-month control animals (p ≤0.05) (Fig.7).  

 

Aging alters aortic content of the apoptotic regulator Bax, but not Bcl-2  

Bax and Bcl-2 are important regulators of apoptosis. With aging the level of expression 

of Bax was decreased by 28.42 ± 9.96% in 33-month control compared to 6-month aortae (p 

≤0.05) (Fig. 8). Bcl-2 levels are not altered with aging. 
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Treatment alters aortic wall thickness, ·O2 ¯ and protein oxidation 

The tunica media thickness in the treated aortae was 12.52 ± 4.09% less than aortae from 

33-month control animals (p≤0.05) (Fig. 1). No significant differences in the levels of superoxide 

anion (O2˙ ¯) were found between 33-month control and APAP treated aortae (Fig. 2). The 

levels of oxidized proteins determined by OxyBlot assay, were 30.25 ± 1.33% less in 33- month 

APAP aortae (p ≤0.05) (Fig. 3). 

 

Treatment alters total content and basal phosphorylation of metabolic and signaling 

molecules AMPK-α, p44-p42 (ERK 1/2)-, p38-, and JNK-MAPK  

There were no differences in the total content of AMPK- α between 33-month control 

and 33- month APAP treated aortae (Data not shown). Compared to 33- month control aortae the 

basal phosphorylation levels of AMPK- α were 20.59 ± 6.16% more in the 33-month APAP 

aortae (p ≤0.05) (Fig. 4). The MAPK proteins play an important role in propagating the external 

stimuli into the cytoplasm and nucleus. The p38- MAPK content in the 33-month control aortae 

was 24.42 ± 8.06% less than aortae from APAP treated animals (p ≤0.05) (Fig. 5). The p44 and 

p42- MAPK levels are 20.83 ± 7.27% and 18.94 ± 2.85% lower in 33 month APAP, compared to 

33-month control aortae, respectively (p ≤0.05) (Fig. 5). There was no significant difference in 

the expression of total JNK-1 MAPK levels between 33-month control and 33-month APAP 

aortae (Fig. 5). The JNK-2 MAPK levels in APAP treated aortae were 22.84 ± 4.45% higher than 

33-month control aortae (p ≤0.05). The JNK-3 MAPK levels in APAP treated aortae were 14.89 

± 4.56% lower than in 33-month control aortae (p ≤0.05) (Fig. 5).  
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The phosphorylated p38- MAPK content in 33-month APAP aortae were 20.37 ± 7.81% 

more than in 33-month control aortae (p ≤0.05) (Fig. 6). The activated levels of p44 (ERK 1) - 

MAPK and p42 (ERK 2) - MAPK were 26.37 ± 2.36% and 15.90 ± 2.71% higher with treatment, 

respectively (p ≤0.05) (Fig. 6).  Compared to 33-month control animals the phosphorylated 

levels of JNK- 1 and JNK- 3 MAPKs were 16.93 ± 6.30% and 41.75 ± 3.15% higher in APAP 

treated aortae (p ≤0.05) (Fig. 7).  

 

Aortic content of the apoptotic regulator Bcl-2 was altered with treatment, but not 

Bax 

With treatment the level of Bcl-2 protein was decreased by 13.51 ± 4.38% in 33-month 

APAP compared to 33-month control (p ≤0.05) (Fig. 8). Bax levels were not altered with 

treatment. 
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Discussion: 

Previous work from our lab has suggested that aging is associated with increased levels 

of oxidative stress [13]. Here we investigate if acetaminophen treatment affects the regulation of 

previously identified indices of oxidative stress in the aging F344XBN rat aorta. Our findings 

suggest that chronic treatment with a therapeutic dose of acetaminophen alters aortic morphology 

and the level of aortic oxidative stress. 

 

Alterations in Aortic tunica media thickness and ROS  

It has been generally accepted that increases in vascular ROS are linked to VSMC 

proliferation and hypertrophy [38, 47-49, 71, 123] and therefore, may act as a 

hypertrophic/hyperplastic effector to thicken the arterial wall. Similar to previous reports tunica 

media thickness was found to significantly increase with age in the present study [124, 125]. 

This age-associated increase in aortic media thickness is believed to reflect the smooth muscle 

cell hypertrophy. APAP treatment appeared to significantly decrease age-related increases in 

aortic wall thickness (Fig. 1). The mechanism(s) underlying this response are not clear but could 

be due to the antioxidant properties of acetaminophen [100, 105-107].  

In present study we used dihydroethidium (HE) staining of the aortic cross sections to 

examine the efficacy of acetaminophen treatment in attenuating aortic ROS levels [126]. Our 

data suggest that aging in F344XBN rat aorta is characterized by a marked elevation of super 

oxide anion and that the amount of superoxide anion is unaltered with acetaminophen treatment 

(Fig. 2). In addition to superoxide levels, other ROS indices include the level of protein 

oxidation. Peroxynitrite because of its highly diffusible nature across phospholipid membranes 
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[127] is known to initiate oxidative modification of proteins. In our present study protein 

oxidation in the rat aorta determined by OxyBlot™ analysis found to be elevated with age. This 

elevation of protein oxidation with age is consistent with the previous data [128].  The elevation 

in the protein oxidation was decreased with acetaminophen treatment (Fig. 3). Why 

acetaminophen decreases protein oxidation levels but not the amount of superoxide is unclear. 

We suspect that decreases in protein oxidation with acetaminophen treatment can be attributed to 

the antioxidant properties of the acetaminophen molecule as it may function as a ROS scavenger 

[16]. 

 

Alterations in AMPK activity with age and APAP treatment 

AMP-activated protein kinase (AMPK) is a stress-activated protein kinase that works as a 

metabolic sensor of cellular ATP levels. Several investigators have shown that AMP-activated 

protein kinase (AMPK) is also a redox-sensitive enzyme [87, 129]. AMPK is thought to be 

activated by phosphorylation when the ratio of ATP: ADP falls. Once activated, AMPK switches 

on catabolic pathways that generate ATP while switching off ATP-consuming processes such as 

protein synthesis [130]. Our data suggest that aging is associated with a decrease in AMPK-α 

(Thr 172) phosphorylation. The decrease in AMPK-α (Thr 172) phosphorylation we show with 

aging is similar to the change in AMPK phosphorylation one would expect to see in cells 

undergoing hypertrophy [131]. With acetaminophen treatment AMPK-α (Thr 172) 

phosphorylation appears to be increased (Fig. 4). This increase in phosphorylation of AMPK-α 

(Thr 172) would be expected to decrease protein synthesis and may help to explain why 

acetaminophen treatment is associated with decreased age-associated increases in aortic medial 

thickness.
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Alterations in ERK 1/2, p38-, and JNK-MAPK with acetaminophen treatment 

The mitogen-activated protein kinase (MAPK) family has been shown to be activated by 

exogenous H2O2 and by endogenously generated ROS in VSMCs stimulated with growth factors 

[49]. The extracellular signal-regulated kinase (ERK)-MAPK proteins play a major role in cell 

proliferation and differentiation as well as survival mediated by various growth factors [132]. 

The ROS sensitivity of MAPK proteins has been subject to controversy, since some groups have 

found these proteins to be sensitive [133, 134] while others have found them to be insensitive to 

ROS [135, 136]. In our present study the amount of phosphorylated ERK1/2-, p38, and c-Jun N-

terminal kinase (JNK) –MAPK were lowered with age but increased with acetaminophen 

treatment (Figs. 6, 7). The reason(s) why acetaminophen may increase the phosphorylation of 

MAPK proteins in the aging FBN aorta is not known. Because increases in MAPK 

phosphorylation have been implicated in causing cell apoptosis it is possible that the treatment 

induced decrease in aortic wall thickness we observe may be due to increased levels of age-

related VSMC apoptosis.  

 

Effect of ROS and APAP on apoptotic regulators Bcl-2 and Bax  

To investigate the possibility that acetaminophen diminishes age-associated aortic wall 

thickening by causing increased levels of apoptosis we examined how acetaminophen treatment 

affected the ratio of Bcl-2 to Bax. Bcl-2 is an evolutionary conserved protein that blocks 

apoptosis [137]. Conversely, Bax is a pro-apoptotic signaling protein of Bcl-2 family this has 

been proposed to promote cell death by dimerizing with anti-apoptotic proteins. It is thought that 

the susceptibility of a cell to apoptotic signals is regulated by the ratio of anti- to pro-apoptotic 
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proteins [138, 139]. In the present study we observed that acetaminophen treatment decreased 

the amount of Bcl-2 which is consistent with an increase in apoptosis.  

In summary, our data indicate that acetaminophen treatment decreases age-associated 

increases in aortic wall thickening and protein oxidation. These changes were associated with 

alterations in AMPK and MAPK signaling and are consistent with the anti-oxidant properties of 

acetaminophen. Further experiments will be necessary to determine the exact mechanisms 

through which acetaminophen acts to improve vascular health during aging. 

 

 

 

34 
 



 
 

 

Chapter 4 

Conclusions 

1. Aging increased aortic wall thickness however this process appeared to be attenuated with 

acetaminophen treatment. 

2. Age associated increase in protein oxidation is decreased with acetaminophen treatment. 

3. Acetaminophen treatment increased the levels of phosphorylated AMPK  

4. APAP treatment is associated with increased phosphorylation of the ERK1/2-, p38- and JNK-

MAPK proteins. 

5. The Bcl-2 to Bax ratio is also altered with APAP treatment. 

6. Although not measured directly, we suspect that acetaminophen-induced decreases in age-

related aortic wall thickening are associated with decreases in vascular smooth muscle cell 

protein synthesis and increased apoptosis. 

7. These alterations in vascular structure and signaling with acetaminophen treatment may be due 

to the antioxidant properties of acetaminophen. 
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Future directions 

             Future directions for research based on this study should focus on the mechanisms 

underlying the alterations in age- associated aortic wall thickening and protein oxidation with 

acetaminophen treatment. Recent data has suggested that acetaminophen has antioxidant and 

cardioprotective properties[16, 100, 106, 108, 110, 140]. In the present study we found decreased 

protein oxidation with acetaminophen treatment without having effect on the superoxide 

production. The exact mechanism underlying this is unknown. Future research concerning how 

APAP is reducing the protein oxidation and why it is not effective on superoxide production 

would be very helpful. 

 Our study suggests that chronic acetaminophen treatment decreases age-associated 

increases in aortic wall thickness. This decrease in wall thickness may be due to decreased 

protein synthesis or increased apoptosis, or a combination of each. In the present study, 

acetaminophen was associated with increased AMPK- α phosphorylation which is associated 

with decreases in protein synthesis. The mechanism underlying this finding is not known. To 

answer this, further investigation of different protein synthesis pathways would be helpful. This 

can be done by studying the expression and activation of the p70s6k, mTOR and Akt signaling 

pathways.  

 In the present study we found a decrease in the expression of anti- apoptotic signaling 

protein Bcl-2 with acetaminophen treatment without any change in the expression of the pro- 

apoptotic protein Bax. This change has been found to be permissive for apoptosis and is 

consistent with our finding of acetaminophen-associated decreases in aortic wall thickness. 

Further study of apoptosis in the aorta with acetaminophen treatment would be helpful. This can 
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be studied employing TUNEL staining of the aortic sections. Further study of expression and 

activation of caspases would be helpful in understanding the apoptosis, if present, that may be 

associated with acetaminophen treatment in the aorta. Along with caspases, the study of the 

expression and activation of different pro- and anti- apoptotic signaling proteins of Bcl-2 family 

would also be helpful in this investigation. 
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Appendix 
 

Appendix A 

Figure legends 
 
Figure 1. Aortic medial thickness is altered with aging and APAP treatment 

The medial thickness of aortae from 6 month, 33 month control and 33 month APAP treated rats.  

Data are presented as means ± SE.  Insets: representative H & E stained aortic sections. (*) 

indicates significant difference from adult (6 month) value (P<0.05). (†) indicates significant 

difference from 33 month control value (P<0.05). n = 8 for all groups. Scale Bar = 50 µm. 

 

Figure 2. Alterations in ROS with aging and APAP treatment 

Detection of vascular superoxide by dihydroethidium (hydroethidine) with aging in the aortae of 

6-month, 33-month control and 33-month APAP treated F344/N X BN rat. The increase in 

superoxide involves all layers within the vessel wall. Scale Bar = 50µm. Quantification of aortic 

ROS as determined by intensity of fluorescent Et-stained nuclei. Results are expressed as percent 

of the 6 month integrated optical density (IOD) value. An asterisk (*) indicates significant 

difference from the 6 month value (P<0.05), (†) indicates significant difference from 33 month 

control value (P<0.05).  n = 8 for all groups. 

 

Figure 3.  Alterations in Protein oxidation with aging and APAP treatment  

Protein isolates from the aortae excised from 6-month, 33-month control and 33-month APAP 

treated F344/N X BN rats were analyzed by immunoblotting for changes in Protein oxidation. 

Data are presented as means ± SE.  Insets: representative blots for Protein oxidation. An asterisk 
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(*) indicates significant difference from the 6 month value, p < 0.05, (†) indicates significant 

difference from 33 month control value (P<0.05).  n = 8 for all groups. 

 

Figure 4. Aging and APAP treatment alters phosphorylation status of signaling protein  

AMPK α 

Protein isolates from the aortae excised from 6-month, 33-month control and 33-month APAP 

treated F344/N X BN rats were analyzed by immunoblotting for changes in phosphorylated 

AMPK α. Data are presented as means ± SE.  Insets: representative blots for phosphorylated 

AMPK α. An asterisk (*) indicates significant difference from the 6 month value, p < 0.05, (†) 

indicates significant difference from 33 month control value (P<0.05).  n = 8 for all groups. 

 

Figure 5. Aging and APAP treatment differentially affects the concentration of proteins 

involved in aortic signaling 

Protein isolates from the aortae excised from 6-month, 33-month control and 33-month APAP 

treated F344/N X BN rats were analyzed by immunoblotting for changes in total p44/p42 (ERK 

1/2), p38 and Jnk protein expression. Data are presented as means ± SE. Insets: representative 

blots for total p44/p42 (ERK 1/2), p38 and Jnk. An asterisk (*) indicates significant difference 

from the 6 month value, p < 0.05, (†) indicates significant difference from 33 month control 

value (P<0.05).  n = 8 for all groups. 
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Figure 6. Aging and APAP treatment alters phosphorylation status of signaling proteins 

p38 and p44/p42 (ERK 1/2)  

Protein isolates from the aortae excised from 6-month, 33-month control and 33-month APAP 

treated F344/N X BN rats were analyzed by immunoblotting for changes in phosphorylated p38 

and p44/p42 (ERK 1/2) protein expression. Data are presented as means ± SE. Insets: 

representative blots for phosphorylated p44/p42 (ERK 1/2), p38 and Jnk. An asterisk (*) 

indicates significant difference from the 6 month value, p < 0.05, (†) indicates significant 

difference from 33 month control value (P<0.05).  n = 8 for all groups. 

 

Figure 7. Aging and APAP treatment alters phosphorylation status of signaling protein 

Jnk-MAPK  

Protein isolates from the aortae excised from 6-month, 33-month control and 33-month APAP 

treated F344/N X BN rats were analyzed by immunoblotting for changes in phosphorylated Jnk-

MAPK protein expression. Data are presented as means ± SE. Insets: representative blots for 

phosphorylated Jnk-MAPK. An asterisk (*) indicates significant difference from the 6 month 

value, p < 0.05, (†) indicates significant difference from 33 month control value (P<0.05).  n = 8 

for all groups. 
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Figure 8. Aging and APAP treatment alters basal levels of apoptotic regulators BAX and 

Bcl-2 

Protein isolates from the aortae excised from 6-month, 33-month control and 33-month APAP 

treated F344/N X BN rats were analyzed by immunoblotting for changes in BAX and Bcl-2 

protein expression. Data are presented as means ± SE. Insets: representative blots for BAX and 

Bcl-2. An asterisk (*) indicates significant difference from the 6 month value, p < 0.05, (†) 

indicates significant difference from 33 month control value (P<0.05).  n = 8 in all groups. 
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Figure 1. Aortic medial thickness is altered with aging and APAP treatment in F344/N X 
BN rat  
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Figure 2. Alterations in ROS with aging and APAP treatment in F344/N X BN rat Aorta 
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Figure 3. Alterations in Protein oxidation with aging and APAP treatment in F344/N X BN 
rat Aorta 
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Figure 4. Aging and APAP treatment alters phosphorylation status of signaling protein 
AMPK α in F344/N X BN rat Aorta 
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Figure 5. Aging and APAP treatment differentially affects the concentration of proteins 
involved in aortic signaling 
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Figure 6. Aging and APAP treatment alters phosphorylation status of signaling proteins 
p38 and p44/p42 (ERK 1/2) in F344/N X BN rat Aorta 
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Figure 7. Aging and APAP treatment alters phosphorylation status of signaling protein 
Jnk- MAPK in F344/N X BN rat Aorta 

 

48 
 



 
 

 

Figure 8. Aging and APAP treatment alters basal levels of apoptotic regulators BAX and 
Bcl 2 in F344/N X BN rat Aorta 
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Appendix B 
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Raw data 
This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho AMPK in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 25.4 26.49524 33.42388 
%C 31.2 23.78646 31.33971 
%C 31.4 27.42639 27.94329 
%C 25.7 26.15665 33.50107 
%C 29.3 24.20971 32.49758 
%C 31.8 26.83384 28.09767 
N 6 6 6 
Mean 29.13333 25.81805 31.13387 
SD 2.907691 1.476882 2.535672 
SEM 1.300359 0.660482 1.133987 
    
reletive expression level  1 0.886203 1.068668 
SEM 0.044635 0.022671 0.038924 
    
%RE 100 88.6203 106.8668 
SE 4.463475 2.2671 3.892404 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 9 in McNeil Aorta ROS (Normalized) 
 
Normality Test: Passed (P = 0.070) 
 
Equal Variance Test: Passed (P = 0.364) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 29.133 2.908 1.187  
33m CON 6 0 25.818 1.477 0.603  
33m APAP 6 0 31.134 2.536 1.035  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 86.502 43.251 7.603 0.005  
Residual 15 85.327 5.688    
Total 17 171.830     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.005). 
 
Power of performed test with alpha = 0.050: 0.851 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
33m APAP vs. 33m CON 5.316 3 5.459 0.004 Yes  
33m APAP vs. 6 m CON 2.001 2 2.055 0.167 No  
6 m CON vs. 33m CON 3.315 2 3.405 0.030 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

ERK 1 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 37.1 30.21981 20.91887 
%C 24 33.26719 28.32925 
%C 34.2 30.30446 23.15742 
%C 39.6 27.51103 21.45921 
%C 25.6 31.7435 28.48363 
%C 35.2 30.05051 22.61708 
N 6 6 6 
Mean 32.61667 30.51609 24.16091 
SD 6.348674 1.921186 3.384119 
SEM 2.839214 0.85918 1.513424 
    
reletive expression level  1 0.935598 0.740754 
SEM 0.087048 0.026342 0.0464 
    
%RE 100 93.55979 74.07536 
SE 8.704794 2.634176 4.640033 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 1 in McNeil Aorta ROS  
 
Normality Test: Passed (P = 0.687) 
 
Equal Variance Test: Passed (P = 0.169) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 32.617 6.349 2.592  
33m CON 6 0 30.516 1.921 0.784  
33m APAP 6 0 24.161 3.384 1.382  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 232.601 116.300 6.292 0.010  
Residual 15 277.244 18.483    
Total 17 509.845     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = 0.010). 
 
Power of performed test with alpha = 0.050: 0.756 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m APAP 8.456 3 4.818 0.010 Yes  
6 m CON vs. 33m CON 2.101 2 1.197 0.411 No  
33m CON vs. 33m APAP 6.355 2 3.621 0.022 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

ERK 2 in Aorta 

Raw IOD values (relative percentage)  

 
 6 m CON 33m CON 33m APAP 
%C 36.6 29.62727 21.84517 
%C 32.2 29.45797 25.55036 
%C 33 29.79657 24.62406 
%C 35.8 30.30446 21.99955 
%C 31 29.96587 25.93631 
%C 33.6 29.20402 24.62406 
N 6 6 6 
Mean 33.7 29.72603 24.09659 
SD 2.138224 0.387604 1.76187 
SEM 0.956243 0.173342 0.787932 
    
reletive expression level  1 0.882078 0.715032 
SEM 0.028375 0.005144 0.023381 
    
%RE 100 88.20779 71.50322 
SE 2.837515 0.514367 2.338078 

 
 

56 
 



 
 

 
Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 2 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.452) 
 
Equal Variance Test: Passed (P = 0.094) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 33.700 2.138 0.873  
33m CON 6 0 29.726 0.388 0.158  
33m APAP 6 0 24.097 1.762 0.719  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 279.417 139.709 53.553 <0.001  
Residual 15 39.132 2.609    
Total 17 318.549     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m APAP 9.603 3 14.564 <0.001 Yes  
6 m CON vs. 33m CON 3.974 2 6.027 <0.001 Yes  
33m CON vs. 33m APA    5.629     2 8.537   <0.001     Yes
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

JNK 1 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 27 29.96587 29.02397 
%C 36.3 26.49524 25.08721 
%C 34.3 25.81805 27.17138 
%C 28.3 28.01893 29.87308 
%C 34.5 24.04041 28.63801 
%C 32.6 21.92418 31.95725 
N 6 6 6 
Mean 32.16667 26.04378 28.62515 
SD 3.712501 2.84687 2.34307 
SEM 1.660281 1.273159 1.047853 
    
reletive expression level  1 0.809651 0.889901 
SEM 0.051615 0.03958 0.032576 
    
%RE 100 80.96512 88.9901 
SE 5.161496 3.958007 3.257573 
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Statistics 
 
 
One Way Analysis of Variance  
 
Data source: Data 4 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.462) 
 
Equal Variance Test: Passed (P = 0.554) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 32.167 3.713 1.516  
33m CON 6 0 26.044 2.847 1.162  
33m APAP 6 0 28.625 2.343 0.957  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 113.391 56.696 6.213 0.011  
Residual 15 136.887 9.126    
Total 17 250.278     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = 0.011). 
 
Power of performed test with alpha = 0.050: 0.749 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 6.123 3 4.965 0.008 Yes  
6 m CON vs. 33m APAP 3.542 2 2.872 0.061 No  
33m APAP vs. 33m CON 2.581 2 2.093 0.160 No  
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Raw data 
This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

JNK 2 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 34.6 25.2255 27.48014 
%C 37.3 24.04041 26.47665 
%C 31.3 22.93997 32.11163 
%C 29.4 25.31015 31.41691 
%C 35.8 22.60137 28.86959 
%C 33.9 23.27857 29.79589 
N 6 6 6 
Mean 33.71667 23.89933 29.35847 
SD 2.91439 1.162709 2.194554 
SEM 1.303355 0.519979 0.981435 
    
reletive expression level  1 0.708828 0.870741 
SEM 0.038656 0.015422 0.029108 
    
%RE 100 70.88284 87.07405 
SE 3.865609 1.542203 2.910829 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 5 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.860) 
 
Equal Variance Test: Passed (P = 0.252) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 33.717 2.914 1.190  
33m CON 6 0 23.899 1.163 0.475  
33m APAP 6 0 29.358 2.195 0.896  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 290.352 145.176 29.705 <0.001  
Residual 15 73.308 4.887    
Total 17 363.661     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 9.817 3 10.878 <0.001 Yes  
6 m CON vs. 33m APAP 4.358 2 4.829 0.004 Yes  
33m APAP vs. 33m CON 5.459 2 6.049 <0.001 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

JNK 3 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 30.6 30.38911 25.78193 
%C 34.2 29.37332 24.00653 
%C 33.4 27.00314 26.86261 
%C 30 30.81236 25.93631 
%C 33.8 31.06631 22.69428 
%C 28.8 30.47376 27.17138 
N 6 6 6 
Mean 31.8 29.853 25.40884 
SD 2.280351 1.511095 1.730477 
SEM 1.019804 0.675782 0.773893 
    
Relative expression level  1 0.938774 0.79902 
SEM 0.032069 0.021251 0.024336 
    
%RE 100 93.87736 79.90201 
SE 3.206931 2.125102 2.433625 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 6 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.084) 
 
Equal Variance Test: Passed (P = 0.241) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 31.800 2.280 0.931  
33m CON 6 0 29.853 1.511 0.617  
33m APAP 6 0 25.409 1.730 0.706  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 128.777 64.388 18.435 <0.001  
Residual 15 52.390 3.493    
Total 17 181.166     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 0.999 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m APAP 6.391 3 8.377 <0.001 Yes  
6 m CON vs. 33m CON 1.947 2 2.552 0.091 No  
33m CON vs. 33m APAP 4.444 2 5.825 0.001 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

p38 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 28.2 26.74919 31.03095 
%C 27.3 22.00883 36.04839 
%C 33.3 25.81805 27.94329 
%C 29.7 26.072 30.49061 
%C 30.2 22.51672 33.34669 
%C 35.4 25.7334 26.39946 
N 6 6 6 
Mean 30.68333 24.81636 30.87657 
SD 3.095427 2.016302 3.511997 
SEM 1.384317 0.901717 1.570613 
    
relative expression level  1 0.80879 1.006298 
SEM 0.045116 0.029388 0.051188 
    
%RE 100 80.87897 100.6298 
SE 4.511625 2.938786 5.118782 

 

66 
 



 
 

 
Statistics 

 
 
 
One Way Analysis of Variance  
 
Data source: Data 8 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.671) 
 
Equal Variance Test: Passed (P = 0.545) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 30.683 3.095 1.264  
33m CON 6 0 24.816 2.016 0.823  
33m APAP 6 0 30.877 3.512 1.434  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 142.369 71.185 8.220 0.004  
Residual 15 129.906 8.660    
Total 17 272.276     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = 0.004). 
 
Power of performed test with alpha = 0.050: 0.884 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
33m APAP vs. 33m CON 6.060 3 5.044 0.008 Yes  
33m APAP vs. 6 m CON 0.193 2 0.161 0.911 No  
6 m CON vs. 33m CON 5.867 2 4.883 0.004 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho ERK 1 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 32.5 24.20971 30.10465 
%C 32.1 24.29436 30.25903 
%C 28 24.54831 33.19231 
%C 32.9 24.04041 29.87308 
%C 31.5 24.71761 30.33623 
%C 29.5 24.97155 31.72567 
N 6 6 6 
Mean 31.08333 24.46366 30.91516 
SD 1.925011 0.346959 1.292351 
SEM 0.860891 0.155165 0.577957 
    
relative expression level  1 0.787035 0.99459 
SEM 0.027696 0.004992 0.018594 
    
%RE 100 78.70346 99.45896 
SE 2.769623 0.49919 1.859379 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 10 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.728) 
 
Equal Variance Test: Passed (P = 0.200) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 31.083 1.925 0.786  
33m CON 6 0 24.464 0.347 0.142  
33m APAP 6 0 30.915 1.292 0.528  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 170.941 85.470 46.652 <0.001  
Residual 15 27.481 1.832    
Total 17 198.422     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 6.620 3 11.980 <0.001 Yes  
6 m CON vs. 33m APAP 0.168 2 0.304 0.833 No  
33m APAP vs. 33m CON 6.452 2 11.675 <0.001 Yes  
 
 

70 
 



 
 

 
Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho ERK 2 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 35.1 25.2255 27.09419 
%C 33.7 25.0562 28.32925 
%C 33.1 23.44787 30.25903 
%C 34.3 25.3948 27.48014 
%C 33.7 24.88691 28.48363 
%C 32.8 24.04041 29.95027 
N 6 6 6 
Mean 33.78333 24.67528 28.59942 
SD 0.830462 0.764192 1.279376 
SEM 0.371394 0.341757 0.572155 
    
relative expression level  1 0.730398 0.846554 
SEM 0.010993 0.010116 0.016936 
    
%RE 100 73.03981 84.65541 
SE 1.09934 1.011614 1.6936 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 11 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.847) 
 
Equal Variance Test: Passed (P = 0.463) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 33.783 0.830 0.339  
33m CON 6 0 24.675 0.764 0.312  
33m APAP 6 0 28.599 1.279 0.522  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 250.457 125.228 129.081 <0.001  
Residual 15 14.552 0.970    
Total 17 265.009     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 9.108 3 22.651 <0.001 Yes  
6 m CON vs. 33m APAP 5.184 2 12.892 <0.001 Yes  
33m APAP vs. 33m CON 3.924 2 9.759 <0.001 Yes  

72 
 



 
 

 

73 
 



 
 

 
Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho Jnk 1 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 32.9 21.58558 32.11163 
%C 34.7 26.15665 26.55385 
%C 31.4 26.57989 28.63801 
%C 33.8 22.00883 31.03095 
%C 35.5 25.81805 26.32227 
%C 30.7 26.57989 29.25555 
N 6 6 6 
Mean 33.16667 24.78815 28.98538 
SD 1.869403 2.338171 2.33049 
SEM 0.836022 1.045662 1.042227 
    
relative expression level  1 0.747381 0.873931 
SEM 0.025207 0.031527 0.031424 
    
%RE 100 74.73813 87.39309 
SE 2.52067 3.15275 3.142393 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 12 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.388) 
 
Equal Variance Test: Passed (P = 0.932) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 33.167 1.869 0.763  
33m CON 6 0 24.788 2.338 0.955  
33m APAP 6 0 28.985 2.330 0.951  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 210.599 105.299 21.948 <0.001  
Residual 15 71.964 4.798    
Total 17 282.563     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 8.379 3 9.370 <0.001 Yes  
6 m CON vs. 33m APAP 4.181 2 4.676 0.005 Yes  
33m APAP vs. 33m CON 4.197 2 4.694 0.005 Yes  
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Raw data 
This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho Jnk 2 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 15.8 20.23119 46.54642 
%C 33.2 29.88122 24.39249 
%C 31.9 26.74919 28.09767 
%C 15.4 21.07769 46.08327 
%C 33.2 29.96587 24.2381 
%C 32.6 27.34174 27.01699 
N 6 6 6 
Mean 27.01667 25.87448 32.72916 
SD 8.857182 4.25599 10.62946 
SEM 3.961052 1.903337 4.753638 
 6 m CON 33m CON 33m APAP 
relative expression level  1 0.957723 1.211443 
SEM 0.146615 0.07045 0.175952 
 6 m CON 33m CON 33m APAP 
%RE 100 95.77229 121.1443 
SE 14.66151 7.045047 17.5952 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 13 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.294) 
 
Equal Variance Test: Passed (P = 0.580) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 27.017 8.857 3.616  
33m CON 6 0 25.874 4.256 1.738  
33m APAP 6 0 32.729 10.629 4.339  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 161.848 80.924 1.159 0.341  
Residual 15 1047.742 69.849    
Total 17 1209.590     
 
The differences in the mean values among the treatment groups are not great enough to exclude 
the possibility that the difference is due to random sampling variability; there is not a statistically 
significant difference  (P = 0.341). 
 
Power of performed test with alpha = 0.050: 0.069 
 
The power of the performed test (0.069) is below the desired power of 0.800. 
Less than desired power indicates you are less likely to detect a difference when one actually 
exists. Negative results should be interpreted cautiously. 
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho Jnk 3 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 28.2 23.02462 34.50456 
%C 30.5 24.20971 31.57129 
%C 30.9 22.34743 33.03792 
%C 28 23.27857 34.27299 
%C 31.5 23.87111 31.10814 
%C 30.9 22.51672 32.88354 
N 6 6 6 
Mean 30 23.20803 32.89641 
SD 1.507315 0.734875 1.375149 
SEM 0.674092 0.328646 0.614985 
    
relative expression level  1 0.773601 1.096547 
SEM 0.02247 0.010955 0.0205 
    
%RE 100 77.36009 109.6547 
SE 2.246973 1.095486 2.049951 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 14 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.738) 
 
Equal Variance Test: Passed (P = 0.519) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 30.000 1.507 0.615  
33m CON 6 0 23.208 0.735 0.300  
33m APAP 6 0 32.896 1.375 0.561  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 296.770 148.385 94.652 <0.001  
Residual 15 23.515 1.568    
Total 17 320.285     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
33m APAP vs. 33m CON 9.688 3 18.954 <0.001 Yes  
33m APAP vs. 6 m CON 2.896 2 5.666 0.001 Yes  
6 m CON vs. 33m CON   6.792    2     13.287 <0.001       Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho p38 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 32.5 24.20971 30.02746 
%C 39.3 20.40049 28.25206 
%C 32.2 25.0562 29.48712 
%C 47.4 20.90839 21.5364 
%C 32.7 24.12506 30.02746 
%C 50.6 18.62285 21.15045 
N 6 6 6 
Mean 39.11667 22.22045 26.74682 
SD 8.16466 2.592399 4.237169 
SEM 3.651347 1.159356 1.894919 
 6 m CON 33m CON 33m APAP 
relative expression level  1 0.568056 0.683771 
SEM 0.093345 0.029638 0.048443 
 6 m CON 33m CON 33m APAP 
%RE 100 56.80558 68.37706 
SE 9.334504 2.963842 4.844276 
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Statistics 

 
 
One Way Analysis of Variance  
 
Data source: Data 21 in McNeil Aorta ROS(Normalized).SNB 
 
Normality Test: Passed (P = 0.214) 
 
Equal Variance Test: Passed (P = 0.108) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 39.117 8.165 3.333  
33m CON 6 0 22.220 2.592 1.058  
33m APAP 6 0 26.747 4.237 1.730  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 917.966 458.983 15.076 <0.001  
Residual 15 456.679 30.445    
Total 17 1374.645     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 0.996 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 16.896 3 7.501 <0.001 Yes  
6 m CON vs. 33m APAP 12.370 2 5.491 0.002 Yes  
33m APAP vs. 33m CON 4.526 2 2.009 0.176 No  
 

82 
 



 
 

 

 

83 
 



 
 

 
Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho Src 416 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 36.9 24.04041 26.86261 
%C 38.2 19.13075 30.33623 
%C 43.5 23.53252 22.15394 
%C 33.8 23.61717 29.6415 
%C 39.8 18.8768 29.25555 
%C 44.1 23.36322 21.84517 
N 6 6 6 
Mean 39.38333 22.09348 26.6825 
SD 3.952425 2.404995 3.812245 
SEM 1.767578 1.075546 1.704888 
 6 m CON 33m CON 33m APAP 
relative expression level  1 0.560985 0.677507 
SEM 0.044881 0.02731 0.04329 
 6 m CON 33m CON 33m APAP 
%RE 100 56.09855 67.75074 
SE 4.488138 2.730968 4.328958 

 

84 
 



 
 

 
Statistics 

 
One Way Analysis of Variance  
 
Data source: Data 17 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.400) 
 
Equal Variance Test: Passed (P = 0.451) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 39.383 3.952 1.614  
33m CON 6 0 22.093 2.405 0.982  
33m APAP 6 0 26.682 3.812 1.556  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 962.619 481.309 40.177 <0.001  
Residual 15 179.694 11.980    
Total 17 1142.313     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m CON 17.290 3 12.236 <0.001 Yes  
6 m CON vs. 33m APAP 12.701 2 8.988 <0.001 Yes  
33m APAP vs. 33m CON  4.589    2 3.248    0.037      Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Phospho Src 527 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 33.3 29.37332 24.70125 
%C 37.7 25.31015 25.08721 
%C 34.2 28.95007 24.3153 
%C 32.5 29.71192 25.08721 
%C 36 25.98735 25.70474 
%C 34.3 29.03472 24.2381 
N 6 6 6 
Mean 34.66667 28.06126 24.85564 
SD 1.891736 1.900184 0.552337 
SEM 0.84601 0.849788 0.247013 
 6 m CON 33m CON 33m APAP 
relative expression level  1 0.809459 0.716989 
SEM 0.024404 0.024513 0.007125 
 6 m CON 33m CON 33m APAP 
%RE 100 80.94593 71.69895 
SE 2.440414 2.451312 0.712536 
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Statistics 

 
 
 
One Way Analysis of Variance  
 
Data source: Data 18 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.576) 
 
Equal Variance Test: Passed (P = 0.361) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 34.667 1.892 0.772  
33m CON 6 0 28.061 1.900 0.776  
33m APAP 6 0 24.856 0.552 0.225  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 300.328 150.164 60.110 <0.001  
Residual 15 37.472 2.498    
Total 17 337.800     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m APAP 9.811 3 15.205 <0.001 Yes  
6 m CON vs. 33m CON 6.605 2 10.237 <0.001 Yes  
33m CON vs. 33m APAP 3.206 2 4.968 0.003 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Bcl-2 in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m APAP 
%C 27.1 33.77509 25.39597 
%C 27.1 29.71192 29.17835 
%C 23.8 32.50535 29.10116 
%C 33.7 31.48955 22.4627 
%C 30.8 29.71192 26.32227 
%C 26.6 29.88122 29.33274 
N 6 6 6 
Mean 28.18333 31.17917 26.96553 
SD 3.502808 1.707876 2.764559 
SEM 1.566504 0.763785 1.236348 
 6 m CON 33m CON 33m APAP 
relative expression level  1 1.106298 0.95679 
SEM 0.055583 0.027101 0.043868 
 6 m CON 33m CON 33m APAP 
%RE 100 110.6298 95.67901 
SE 5.558262 2.71006 4.386807 
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Statistics 

 
 
 
One Way Analysis of Variance  
 
Data source: Data 20 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.169) 
 
Equal Variance Test: Passed (P = 0.636) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 28.183 3.503 1.430  
33m CON 6 0 31.179 1.708 0.697  
33m APAP 6 0 26.966 2.765 1.129  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 2 56.426 28.213 3.707 0.049  
Residual 15 114.146 7.610    
Total 17 170.572     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = 0.049). 
 
Power of performed test with alpha = 0.050: 0.446 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
33m CON vs. 33m APAP 4.214 3 3.742 0.046 Yes  
33m CON vs. 6 m CON 2.996 2 2.660 0.080 No  
6 m CON vs. 33m APAP 1.218 2 1.081 0.457 No  
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Raw data 
This section represents the raw data tables produced from spot densitometry of the 

immunoblot films.  

Bax in Aorta 

Raw IOD values (relative percentage)  

 6 m CON 33m CON 33m 
APAP 

%C 36.3 26.74919 24.77844 
%C 29.3 25.3948 31.41691 
%C 42 29.45797 17.90841 
%C 39.8 24.12506 24.46968 
%C 29.5 24.97155 31.72567 
%C 43.9 27.34174 18.44875 
N 6 6 6 

Mean 36.8 26.34005 24.79131 
SD 6.264822 1.926896 5.99483 

SEM 2.801714 0.861734 2.680969 
    

relative expression level 1 0.715762 0.673677 
SEM 0.076134 0.023417 0.072852 

    
%RE 100 71.57623 67.36769 
SE 7.613353 2.341669 7.285243 
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Statistics 
 

One Way Analysis of Variance  
 
Data source: Data 15 in McNeil Aorta ROS(Normalized) 
 
Normality Test: Passed (P = 0.662) 
 
Equal Variance Test: Passed (P = 0.082) 
 
Group Name N  Missing Mean Std Dev SEM  
6 m CON 6 0 36.800 6.265 2.558  
33m CON 6 0 26.340 1.927 0.787  
33m APAP 6 0 24.791 5.995 2.447  
 
Source of Variation  DF   SS         MS    F    P   
Between Groups 2 512.036 256.018 9.735 0.002  
Residual 15 394.495 26.300    
Total 17 906.530     
 
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference  (P = 0.002). 
 
Power of performed test with alpha = 0.050: 0.939 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
6 m CON vs. 33m APAP 12.009 3 5.736 0.003 Yes  
6 m CON vs. 33m CON 10.460 2 4.996 0.003 Yes  
33m CON vs. 33m APAP 1.549 2 0.740 0.609 No  
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