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Myoglobin is an endogenous protein that can become nephrotoxic under 

certain conditions such as crush injuries, drug overdose, and seizures where 

prolonged contraction of muscle leads to cell death and leakage of myoglobin.  

The mechanism of myoglobin-induced nephrotoxicity is not fully understood.  

The purpose of this study was to characterize the sequence and mechanistic 

events associated with the in vitro toxicity of myoglobin in renal cortical slices.  

Renal tissue was isolated from Fischer 344 rats.  Slices of renal cortex were 

prepared by freehand.  These slices were then incubated for 60-180 minutes with 

myoglobin (0-12 mg/mL) pretreated with 4 mM ascorbic acid.  Cytotoxicity was 

determined by measuring lactate dehydrogenase (LDH) release, pyruvate-

stimulated gluconeogenesis, and lipid peroxidation.  In addition, glutathione (total 

and oxidized) and ATP levels were measured.  Toxicity was evident at one hour 

by changes in gluconeogenesis, lipid peroxidation, and glutathione levels.  LDH 

release and a decline in ATP levels were not observed until two hours of 

incubation with myoglobin.  In short, oxidative events (namely lipid peroxidation 

and changes in glutathione levels) and deficit of cell function (decreased 

gluconeogenesis) preceded loss of viability by one hour.  

Pretreatment of the slices with deferoxamine (DFX) afforded protection 

against oxidative events and loss of membrane integrity, but not of the decrease 

in cell function.  This finding suggested an early bifurcation in the toxicity 

pathway with loss of cell function residing in one path and iron-dependent 

oxidative events followed by loss of membrane integrity in the other.  

Pretreatment of the slices with exogenous reduced glutathione provided 

  
 
 



protection of all toxic events, suggesting an underlying oxidative mechanism for 

the loss of gluconeogenesis that is iron-independent.  Furthermore, the lack of 

protection against LDH release and loss of gluconeogenesis by pretreatment with 

dimethylthiourea indicated an absence of hydroxyl radicals in the mechanism of 

myoglobin toxicity in the slice model.  Similar to DFX, pyruvate induced a general 

increase in the total glutathione levels and protection against lipid peroxidation.  

However, in contrast to DFX, pyruvate did not provide protection against the 

myoglobin-induced decline in total glutathione levels with respect to the control 

group.  The protection provided by pyruvate appears to involve detoxification of 

radical pathways.   

A comparison of the toxicity of myoglobin with its components suggested 

that the iron is mostly involved with the loss of membrane integrity and slightly 

involved with the loss of cell function.  Because DFX can detoxify ferryl 

myoglobin as well as chelate free iron, the protection of lipid peroxidation, 

changes in glutathione levels, and LDH release suggest that ferryl myoglobin also 

might participate in the oxidative events leading to loss of membrane integrity.  In 

contrast, the heme portion of myoglobin might target the mitochondria, initiate 

the production of radicals, and lead to loss of cell function indicated by loss of 

gluconeogenesis.    

In contrast to mitochondrial-substrate stimulation of gluconeogenesis, 

cytosolic-substrate stimulation of gluconeogenesis was not affected by the 

presence of myoglobin.  Taken together, the experiments presented in this study 

suggest that myoglobin targets mitochondria and produces toxicity 

  
 
 



predominately through oxidative damage.  Moreover, this study establishes three 

unique events concerning myoglobin toxicity.  First, early and late effects of 

myoglobin toxicity have been delineated.  Other studies have reported LDH 

release, lipid peroxidation, and alterations in glutathione and ATP levels, but 

none has ever evaluated these parameters as a function of time.  Secondly, this 

study establishes iron-dependent and iron-independent components of 

myoglobin toxicity.  Lastly, because myoglobin toxicity was demonstrated in a 

renal model that has collapsed lumens, this suggests toxicity can occur 

independently of luminal events.  
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INTRODUCTION 
 

Myoglobin is a 17kD protein consisting of eight α-helices conjugated to a heme 

group.  The synthesis of myoglobin involves production of the protein portion and the 

heme portion separately.  The construction of heme occurs in the cytosol and the 

mitochondria with the final steps encompassing the insertion of iron into protoporphyrin 

IX by ferrochelatase.  In muscle cells, the iron in the heme group is maintained in the 

reduced ferrous (Fe2+) state (Moore et al., 1998).  However, it is estimated that at any 

given time in vivo, 1-2% of human hemoglobin is in the ferric (Fe3+) form (Antonini and 

Brunori, 1971).  This ferric form is capable of redox cycling to a ferryl form ([Fe=O]2+) 

which can initiate lipid peroxidation (Hogg  et al., 1994 and Patel  et al., 1996).   Human 

myoglobin is similar in sequence to other mammalian myoglobins with the exception of 

a unique cysteine at position 110.  No other species of known myoglobin has a cysteine 

residue (Hubbard et al., 1990.)   

Myoglobin is found in cytosol of muscle cells in varying concentrations with 

smooth muscle having virtually none (except the uterus) and skeletal muscle averaging 

0.5mmole per kg tissue weight (Wittenberg, 1970).   Diving animals have up to 10-fold 

more myoglobin which is thought to provide an extension of diving time when pulmonary 

ventilation ceases (Guyton et al., 1995).  In cardiac muscle, myoglobin serves as a 

short-term oxygen reservoir by supplying the muscle with oxygen from one contraction 

to the next (Millikan, 1937). Myoglobin and hemoglobin play a vital role in the acquisition 

and utilization of oxygen.  Specifically, myoglobin is proposed to deliver oxygen to the 

mitochondria (Wittenberg, 1970).  Studies with transgenic mice lacking myoglobin 

surprisingly resulted in a benign phenotype with exercise, reproductive, cardiac, and 
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skeletal capabilities largely unaltered (Garry et al., 1998).  This was accomplished by 

maintenance of function by various compensating mechanisms such as an increase in 

vascularization of the muscle, coronary blood flow, and hematocrit (Gödecke et al., 

1999).   

Rhabdomyolysis by definition is the injury of muscle with release of myoglobin 

and other cellular contents.  Rhabdomyolysis may occur in various circumstances 

including: crush injuries; fallen elderly who have lain for several hours; drug abuse; 

physical abuse such as spouse or child abuse; and strenuous exercise such as 

marathon running and football.  In fact, 39% of the Marine Corps recruit population in 

the 70’s exhibited symptoms of rhabdomyolysis (Olerud et al., 1975).  This is of no 

surprise since skeletal muscle is the largest organ in the body, comprising 40-50% of 

total body weight (Abassi et al., 1998).   

The sarcolemma (the membrane of the muscle cells) is normally impermeable to 

the extracellular fluid (ECF), protecting the cytosol by maintaining cellular contents and 

ion balance (Better et al., 1992).  Generally, minor sarcolemma disruptions are 

compensated for by Na+-K+-ATPase pumps that maintain the electronegativity of the 

cell by sequestering potassium ions and extruding sodium ions.  However, excessive 

sarcolemma damage causes an overwhelming two-way leak.  Calcium ions, sodium 

ions, and water leak into the cell causing depletion of ECF while potassium ions, 

phosphates, purines, and myoglobin leak out of the cell (Better et al., 1997).  The 

myoglobin that spills into the ECF enters the blood and is readily filtered by the kidney 

(Ratcliffe et al., 1986).  When the filtered load exceeds the absorptive capacity, then 

myoglobin can precipitate in the tubular lumen and subsequently release iron into the 
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lumen (Bunn and Jandl, 1969 and Zager, 1992).  Both the iron and the myoglobin are 

nephrotoxic.  In fact, it is estimated that a third of all rhabdomyolysis patients will 

develop acute renal failure (ARF) (Gabow et al., 1982).  In addition, rhabdomyolysis 

accounts for 5-7% of all ARF cases- certainly no trivial matter (Grossman et al., 1974).  

Overall, the total manifestation of myoglobin toxicity can be described as three 

basic events: vasoconstriction, tubular obstruction, and pigment nephropathy.  A 

decrease in renal perfusion is consistently reported in experimental models of 

myoglobin-ARF (Zager, 1996b; Vetterlein et al., 1995).  The vasoconstriction 

component is thought to be due to several factors including release of endothelin.  

Endothelin is a potent renal vasoconstrictor and serum levels were found to be elevated 

in rhabdomyolysis (Kohan, 1997; Brooks, 1997).  Also, isoprostanes, other potent renal 

vasoconstrictors, were found to be elevated in the urine of patients with rhabdomyolysis 

(Holt et al., 1999).  Besides the direct effect of vasoconstrictors on the kidney, 

myoglobin has the ability to chelate nitric oxide (NO) and to induce nitric oxide synthase 

(iNOS) (Lieberthal, 1997; Rubinstein et al., 1998).  This chelation of a vasodilatory 

factor would potentiate the induced vasoconstriction resulting in decreased glomerular 

filtration rate (GFR).  The reduction in GFR can hasten the tubular obstruction 

component of myoglobin toxicity.  The tubular obstruction occurs in the distal tubules 

and arises from the deposition of the ferric (Fe3+) redox form of myoglobin (Moore et al., 

1998) in addition to the debris from necrotic proximal tubule cells.  Together, these 

precipitates give rise to a heme cast in the distal nephron with the blockage further 

hindering urine flow through the nephron.  Aside from the contributing hemodynamic 

events such as vasoconstriction and tubular obstruction, myoglobin itself is toxic to 
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proximal tubular cells.  This component of the toxicity is often termed pigment 

nephropathy.  Upon microscopic examination of renal tissue from subjects with 

rhabdomyolysis, necrosis occurred specifically in the S3 segment (Heyman et al., 1997; 

Zager, 1989) in addition to prominent brush border injury (Zager, 1989) and detachment 

of epithelial cells from the basement membrane (Zager, 1996b).   

 Treatment of rhabdomyolysis begins with massive replacement of fluids, 12 L per 

day.  Sodium bicarbonate is given to reverse the metabolic acidosis and to reduce the 

toxic effect of the myoglobin.  Reportedly, the entire 14 L of ECF can be sequestered 

into crushed muscles within hours of injury (Schaller et al., 1990).  Mannitol is 

administered to osmotically pull the excess water from the injured muscle.  This reduces 

the intracellular volume as well as replenishes the ECF.   Mannitol has an additional role 

of increasing the GFR, thus increasing urine flow and decreasing the precipitation of 

proteins.  Generally, with treatment, urinary myoglobin disappears after three days.  In 

the case of crush injuries, if treatment is started within six hours of injury, myoglobin-

induced ARF can be completely prevented even in those buried for up to 32 hours.  This 

drastically contrasts with the 100% mortality associated myoglobin-ARF in those 

extricated after 3-4 hours in London during World War II (Abassi et al., 1998). 

Few experimental models have been used to investigate myoglobin toxicity.  The 

most widely applied model of myoglobin-ARF is the glycerol in vivo model.  Following a 

24-hour water deprivation, animals are injected into the hind limb with a hypertonic 

solution of glycerol (generally 10 mL per kg body weight).  After injection into muscle, 

virtually all rats develop ARF and a urine concentration of 35 mg/mL of myoglobin is 

typically observed (Zager, 1989; Zager et al., 1991).   At various times post-injection (4-
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24 hours), the toxicity was assessed.  Many of the experiments use the 4-hour post-

glycerol injection time.  At this time point, cell injury is noted by brush border blebbing.  

However, necrosis remains to be seen until a later time point (Zager et al., 1995).  

Zager and associates often use a hybrid model referred to as an in vivo-in vitro model.  

In this model, the animals are injected with glycerol followed by an isolation of the 

proximal tubules for further incubations.  Aside from the glycerol model, another in vivo 

model is the perfusion model where myoglobin is directly perfused into the animal 

kidney.  Heyman et al. (1997) reported a marked decrease in GRF and a three-fold 

increase in plasma creatinine accompanied by a 30% drop in creatinine clearance 

following perfusion.  Previous in vitro studies have used both freshly isolated proximal 

tubules and cultured HK-2 cells.  HK-2 cells are immortalized proximal tubule cells 

derived from normal human kidney.  Incubations are typically performed over 24 hours.  

Because of different experimental conditions with the different models, there is much 

variability among the findings.  Despite this, a few themes have prevailed throughout the 

years.   

One hypothesis concerning the mechanism of myoglobin toxicity is the 

involvement of free radicals.  One of the classic findings concerning myoglobin toxicity 

is the elevated level of H2O2.  In fact, the glycerol model has been used to study various 

aspects of H2O2 toxicity (Salahudeen et al., 1991).  H2O2 can liberate iron from the 

heme proteins (Gutteridge, 1986).  This iron could have a critical role in the formation of 

free radicals.  Other findings suggest that indeed, a radical mechanism is involved.  

Shah and Walker (1988) reported that rats treated with glycerol produced increased 

malondialdehyde levels, indicative of lipid peroxidation.  In addition, Moore et al. (1998) 
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reported an increase in urinary excretion of F2-isoprostanes in rats with rhabdomyolysis.  

More specifically, the levels of F2-isoprostanes esterfied in renal lipids were markedly 

increased which localized oxidant injury to the kidney.  This provided more evidence 

that lipid peroxidation in the kidney is a feature of myoglobin toxicity.   

The protection afforded by deferoxamine, a free Fe2+ chelator, lends more 

support to the free radical hypothesis.  Deferoxamine (DFX) has been shown to 

decrease renal injury in the glycerol model and to prevent cytotoxicity of myoglobin on 

cultured proximal tubule cells in vitro (Paller, 1988; Zager and Burkhart, 1997).  The 

protective effect of iron chelators, such as DFX, has generally been taken as evidence 

for participation of hydroxyl radicals.  However, none of the studies agreed on the 

involvement of hydroxyl radicals.  Some studies suggested that the ferryl redox form of 

the myoglobin was the main culprit (Holt et al., 1999; Hogg et al., 1994; Patel et al., 

1996).   

 The mitochondria also have been implicated in the formation of free radicals.  In 

rats three hours post-glycerol injection, impaired respiration was detected in 

mitochondria; whereas, at 24 hours post-glycerol injection, respiratory failure was 

observed (Nath et al., 1998).  Zager (1996a) implicated the terminal mitochondrial 

transport chain as the origin of free radicals that initiated injury; in effect, stating that the 

mitochondria was the site of initial insult.  He further concluded that the mitochondrial 

transport chain was a critical mediator in myoglobin induced cell death in addition to 

being a determinant of lipid peroxidation (Zager and Burkhart, 1997).  If the 

mitochondria were indeed targets for myoglobin toxicity, then it would be logical to 

detect drops in ATP levels prior to loss of viability.  Trifillis et al. (1981) showed a 
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decrease in ATP content in renal cortex of rats with glycerol-induced rhabdomyolysis.  

Zager (1996a) also reported a decline in ATP levels, albeit accounted for by increased 

cell membrane permeability as measured by LDH release.  Thus, the mitochondria may 

be targeted in a way that does not rapidly deplete ATP levels.  

Several studies have investigated the glutathione system in response to 

myoglobin challenge.  Abul-Ezz et al. (1991) reported that injection of glycerol in rats 

produced a significant and early depletion of renal glutathione.  Total renal glutathione 

was diminished below control values within one hour post-injection.  Unfortunately, no 

rise in glutathione disulfide levels was noted as these levels decreased in parallel to 

total glutathione levels.  In addition, administration (i.v.) of reduced glutathione led to a 

significant overall improvement of renal function as measured by blood urea nitrogen 

(BUN) concentration, creatinine levels, and histological examination by light microscopy.  

Likewise, depletion of glutathione with L-buthionine-(S,R)-sulfoximine (BSO) 

significantly exacerbated toxicity.  Zager et al. (1995) reported similar findings in the 

glycerol-injection, in vivo-in vitro model.  Reduced glutathione was directly incubated 

with post-glycerol, isolated proximal tubule segments.  A weak cytoprotection as 

measured by LDH release was noted.  However, the incubation with glutathione 

markedly increased lipid peroxidation as indicated by a dramatic rise in 

malondialdehyde levels.  Zager and Burkhart (1998) further investigated the role of 

exogenous glutathione administration using the HK-2 cell culture model.  Incubation of 

the HK-2 cells with 4 mM glutathione before or during the 24-hour myoglobin (10 

mg/mL) challenge resulted in increased LDH release.  In addition, glutathione depletion 
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via BSO conferred cytoprotection.  Overall, the role of glutathione in the mechanism of 

myoglobin toxicity is incompletely understood.   

It cannot be overstated that many discrepancies (such as radical identity and 

glutathione involvement) in the data exist in previous studies depending upon the 

models used.  These discrepancies could be explained by the complexities of the 

models.  For example, the glycerol in vivo model has the unfortunate problem of 

hemodynamic events affecting the results.  Isolated and cultured cell models pose 

several potential problems.   Both in vitro models involve a non-intact environment due 

to the anatomical destruction of the nephron.  The freshly isolated cells give rise to the 

question of true viability.  It could be possible that cell selection inadvertently occurs 

when the most injured cells are not ‘selected’ during the isolation protocol.  The 

immortalized, cultured cells are altered in a way that can affect metabolism, transport, 

and mechanisms of toxicity in those cells.   

 The in vitro model used in this study is a renal cortical slice model.  This model 

was chosen for its multiple advantages over the previously used models.  Unlike the in 

vivo models, the slice model would eliminate any confounding factors owing to 

hemodynamic events, such as the release of endothelin and/or elevation of 

isoprostanes.  In contrast to cell cultures, the slice model provides an intact cortical 

nephron to study the toxicity.  Although the lumen in the nephron is collapsed, this is 

advantageous as it allows one to assess whether myoglobin must enter through the 

brush border, which has been suggested as a route of entry (Clyne et al., 1979).  

Because in this model the lumen is inaccessible, this question would be resolved.  Male 

Fischer 344 rats were used in this study because they are more sensitive to renal 
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toxicants (Kacew et al., 1995) and often react comparably to renal toxicants, as humans 

do.  Male rats were used to eliminate any confounding results due to cycling of hormone 

levels.    

Several measures of toxicity were employed in this study including: lactate 

dehydrogenase (LDH) release, gluconeogenesis, lipid peroxidation, glutathione levels 

(total and glutathione disulfide), and ATP levels.  LDH release is indicative of 

irreversible cell damage (Lash and Tokarz, 1989) and was used to assess viability of 

the tissues when exposed to myoglobin for various times. Gluconeogenesis is an 

informative measure of toxicity for two fundamental reasons.  In the kidney, the proximal 

tubules contain high levels of enzymes for gluconeogenesis with low levels of enzymes 

for glycolysis (Guder and Ross, 1984; Gesek et al., 1987; Schoolwerth et al., 1988; 

Lash and Tokarz, 1989).  Thus, within the kidney, gluconeogenesis occurs exclusively 

in the proximal tubule cells and any decreases in gluconeogenesis could be 

extrapolated to injury specifically to the proximal tubules.  Furthermore, 

gluconeogenesis is a very sensitive marker for toxicity, as changes in gluconeogenesis 

can be detected early and can indicate changes in cell function.  In addition, the 

stimulation with cytosolic or mitochondrial substrates can help to elucidate the site of 

toxicity by allowing a partial determination of the cellular location of dysfunction.  Further 

studies examined lipid peroxidation and changes in glutathione levels to assess the 

involvement of a radical mechanism.  Lastly, ATP levels were measured to characterize 

alterations in adenine nucleotides as a function of myoglobin concentration and duration 

of exposure.  The five parameters of toxicity aforementioned were used to characterize 
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myoglobin toxicity in the in vitro slice model as well as to set up a time frame for 

mechanistic events.   

In the early 1940’s, Bywaters and Bealle (1941) gave the classic definitive 

description of crush syndrome.  They described the precipitation of myoglobin in the 

tubules and its presence in the urine.  However, it was not until 1944 that myoglobin 

was first incriminated, albeit not exclusively, as the causative agent in the development 

of acute renal failure following crush injuries (Bywaters and Stead, 1944).  Myoglobin 

toxicity is not a trivial affair.  As stated before, rhabdomyolysis accounts for 5-7% of all 

ARF cases (Grossman et al., 1974).  In addition, globin nephrotoxicity is the main 

obstacle in the development of therapeutic blood substitutes (Pool, 1990).  Since the 

1940’s, scientists have sought to uncover the underlying mechanism of myoglobin (and 

other globins) toxicity.  Nearly sixty years later, the definitive mechanism is still unclear.  

This study seeks to characterize myoglobin toxicity in the rat renal cortical slice model 

and use the information to develop the time frame for mechanistic events. 
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CHAPTER 1.  CHARACTERIZATION AND BASIC MECHANISM OF MYOGLOBIN 
TOXICITY IN RENAL CORTICAL SLICES 

 
 
1.1. INTRODUCTION   

Myoglobin toxicity has been studied for almost 60 years.  Despite this, many 

unanswered questions remain concerning the mechanism of toxicity.  Most studies 

reported that both reactive and non-oxygen based radicals are critical in the 

pathogenesis of various renal diseases including Myoglobin-ARF (Zager, 1996b) as 

evidenced by increased lipid peroxidation and depletion of glutathione.  Elevated levels 

of H2O2 can liberate iron from the heme proteins (Gutteridge, 1986) and this free iron, in 

addition to being toxic, may have a critical role in the formation of radicals.  The 

protection afforded by deferoxamine (DFX), a free Fe2+ chelator, lends more support to 

the free radical hypothesis as it is often associated with iron-dependent radicals such as 

hydroxyl radicals.  In addition to chelating free iron, DFX can detoxify the ferryl form of 

myoglobin (Turner et al., 1991) and some studies suggested the ferryl redox form of the 

myoglobin is a major radical in myoglobin toxicity (Holt et al., 1999; Hogg et al., 1994; 

Patel et al., 1996).   Taken together, clearly there is an underlying radical mechanism in 

myoglobin toxicity.   

The mitochondria have been implicated in the formation of oxygen-based free 

radicals and as a site of myoglobin toxicity.  Using mouse proximal tubular segments 

(PTS) and the HK-2 cell model, Zager (1996a; et al., 1997) implicated the terminal 

mitochondrial transport chain (notably site 3) as the origin of free radicals that initiate 

injury and later concluded that the mitochondrial transport chain was a critical mediator 

in myoglobin induced cell death in addition to being a determinant of lipid peroxidation.  
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Later in 1998, Nath et al. measured a ten-fold increase in heme content in the 

mitochondria three hours post-glycerol injection into rats, at a time when impaired 

respiration was detected in mitochondria. 

Several studies have investigated the glutathione system in response to 

myoglobin challenge.  Glutathione is a tri-peptide occurring in high concentrations in 

virtually all mammalian cells and is the most prevalent intracellular thiol (Meister, 1983, 

1984a, 1984b, 1986).  Glutathione exists in both the cytosolic and mitochondrial 

compartments with mitochondrial glutathione accounting for approximately 10% of total 

glutathione.   Glutathione metabolism in the kidney is distinguished from metabolism in 

other organs by rapid turnover (Sekura and Meister, 1974; Rankin et al., 1985).  The 

protective effect of glutathione in oxidant injury to freshly isolated proximal tubule cells 

has been shown in several in vitro studies with other toxicants (Lash and Tokarz, 1990; 

Messana et al., 1988; Hagen et al., 1998).   

 As outlined before, many discrepancies in previous findings exist which may be 

explained by the underlying complexities of the different models used to study 

myoglobin toxicity.  In this study, the model used is the renal cortical slice model with its 

many advantages over the other models as previously detailed.  This chapter will 

characterize the in vitro toxicity of myoglobin to renal cortical slices.  Following 

myoglobin incubation with the slices, several assays were performed to assess the 

toxicity.  LDH release was used to determine membrane integrity and gluconeogenesis 

was employed to investigate early cell function.  Lipid peroxidation and glutathione 

levels were measured to address oxidative events.  The amount of ATP was used to 

evaluate energetics.  The incubations were performed with various incubation times in 
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order to place each measure of cytotoxicity within a time frame.  Tangent experiments 

investigated possible targets for toxicity and initial radical formation.   

Protection assays were used to further probe the basic time frame of toxicity for 

mechanistic events.  A separate series of experiments examined the effect of an iron 

chelator (DFX), α-ketoacid (pyruvate), and a thiol-containing agent (reduced 

glutathione).  In previously published studies by other investigators, iron chelators, such 

as DFX, have been consistently found to protect against myoglobin toxicity.  

Reproducing this protection in our model would validate our model.  Furthermore, 

investigation of the DFX protection at various time points would give deeper insight to 

the mechanism of myoglobin toxicity.  Pyruvate was chosen for the protection assays 

for two basic reasons.  Because it was used to stimulate gluconeogenesis, pyruvate 

could potentially affect interpretation of the data if it provided any protection or 

detriment.  In addition, pyruvate has the capacity to detoxify radical pathways.  

Therefore, the use of pyruvate would suggest which time points could involve radical 

mechanisms.  Exogenous reduced glutathione (GSH) application was used to further 

investigate the mechanism of toxicity and to complement examination of glutathione 

levels following myoglobin exposure.   
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1.2. MATERIALS AND METHODS 

 
1.2.1 Chemicals / equipment and animals 
  

Chemicals / equipment and sources  
(Company and catalog number) 
 
Horse skeletal muscle myoglobin (Sigma, M-0630) 

Ascorbic acid (Fisher Scientific, A-61)  

Deferoxamine mesylate (Sigma, D-9533)  

Reduced glutathione (Sigma, G-6529)  

Glutathione disulfide (Sigma, G-6654)  

2-vinylpyridine (Aldrich, 13229-2) 

Lactate dehydrogenase kit (Sigma, 228)  

Infinity glucose reagent (Sigma, 18)  

Pyruvic acid (Sigma, P-2266)  

d-Glucose-6-phosphate (Sigma, G-7879) 

d-Fructose-1,6-biphosphate (Sigma, 752-1) 

Malondialdehyde (Aldrich, 12960-7) 

2-Thiobarbituric acid (Sigma, T-5500)   

Adenosine 5’ triphosphate (Sigma, A2383) 

Glutathione reductase  (Sigma, G-3664) 

0.45 µm syringe filter (Durapore; Millex-HV) 

Radial-Pak C18 cartridge (8mmx10 mM) (Waters Inc.; Milford, Massachusetts). 

5,5’-dithiobis(2-nitrobenzoic acid)  (Aldrich, D21820-0) 

Cytochrome C  

Dubnoff metabolic shaker (Precision Scientific; Chicago, IL) 

Sorval MC12V centrifuge 
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Animals    

Male Fischer 344 rats (200-250 g) were obtained from Hilltop Lab Animals Inc. 

(Scottsdale, PA, USA). Animals were maintained under a controlled ambient 

temperature (21-23oC), humidity  (40-55%) and light cycle (lights on 0600-1800 h). 

Animals were provided free access to tap water and Purina Rat Chow (chunks). All rats 

were given a minimum 5-day acclimation period prior to initiation of any experiments.  

This was the only animal model used throughout this study. 

 

1.2.2 Incubation of renal slices. 
 

Animals were anesthetized with diethyl ether. The abdominal aortae were cut to 

exsanguinate the animals.  The kidneys were decapsulated, excised, quartered and 

immediately placed in 5 mL ice-cold Krebs Ringer buffer kept on ice. Renal cortical 

slices were prepared freehand as described previously (Valentovic et al., 1992) and 

placed in 10 mL ice-cold Krebs-Ringer buffer. The slices from one animal were 

transferred to 5 mL oxygenated Krebs-Ringer buffer in a 30-mL beaker. The slices were 

rinsed two times in 5 mL oxygenated Krebs-Ringer buffer each for three minutes at 

25oC in an oxygen environment with constant shaking (100 cycles/minute) in a gabled 

Dubnoff metabolic shaker.  The tissue (50-100 mg) was evenly distributed in 2 mL of 

oxygenated Krebs in designated Erlenmeyer flasks and equilibrated for 10 minutes at 

37oC under 100% oxygen and constant shaking (100 cycles/minute). Renal tissue was 

incubated for 60-120 minutes with a final concentration of 0, 4, 10 or 12 mg/mL 

myoglobin added as a 1 mL aliquot with a total incubation volume of 3 mL (see 

Appendix I for preparation of myoglobin solution). Gluconeogenesis was stimulated by 
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the addition of pyruvate (100 µL, final bath concentration 10 mM) and tissues were 

incubated an additional 30 minutes. Media and tissue were collected to measure LDH 

leakage and glucose generation.  

Other experiments required a pretreatment of renal slices at 37oC with 30 µL 

distilled water, 1mM reduced glutathione (GSH), or 0.1mM deferoxamine. The durations 

of pretreatments were 30 minutes for glutathione and 15 minutes for deferoxamine. 

Upon completion of the pretreatment period, myoglobin was added at a final bath 

concentration of 0, 4, 10 or 12 mg/mL.  Tissues were incubated for 90 minutes at 37oC 

under 100% oxygen and constant shaking (100 cycles/minute).   At the end of the 90-

minute incubation, gluconeogenesis was stimulated by addition of 100 µL of pyruvate 

(10 mM final concentration, in Krebs) and the tissue was incubated an additional 30 

minutes.  

Additional studies were conducted with glutathione to ensure that no physical 

interaction was occurring extracellularly between myoglobin and glutathione. Renal 

slices were pretreated for 30 minutes with 1mM glutathione at 37oC under a flow of 

100% oxygen and constant shaking.  The tissues were then removed from the media 

and placed in fresh buffer without glutathione. Myoglobin (final concentration 0, 4, 10 or 

12 mg/mL) was added and tissues were incubated for 90 minutes, followed by addition 

of pyruvate (10 mM final concentration) and incubation of the tissues for an additional 

30 minutes.   

Because pyruvate was used to stimulate gluconeogenesis, additional studies 

addressed the possibility of any influence on the resulting toxicity.   Renal slices (50-100 

mg) were incubated with pyruvate  (10 mM final concentration) and myoglobin (final 
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concentration 0, 4, 10 or 12 mg/mL) for two hours at 37oC under 100% oxygen and 

constant shaking (100 cycles/minute).      

 

1.2.3 LDH and glucose assays.  

Upon completion of incubation, tissues were blotted, weighed and added to 10% 

Triton X-100 in buffer to release tissue LDH.  The amount of LDH in the media and 

tissue was determined using a spectrophotometric kinetic assay (Sigma, Kit #228).  

LDH release into the media was expressed as percent of total LDH.  Experiments in 

which control tissue LDH leakage exceeded 15% were discarded and not used in the 

final data analysis. 

Glucose was measured in the media using a hexokinase enzymatic assay 

(Sigma, Kit #18).  Myoglobin standards were done in order to calculate the background 

absorbance due to myoglobin from the samples.  For all gluconeogenesis data, the 

background was subtracted.  Pyruvate-stimulated gluconeogenesis was expressed as 

mg glucose/g tissue.  

 

1.2.4 Adenine nucleotides.  

Upon completion of incubation, renal tissue was blotted, weighed and 

homogenized in 1mL of Krebs-Ringer buffer. The homogenate was vortexed and 250 µL 

was combined with 125 µL of 3 N perchloric acid. The sample was vortexed and 

allowed to equilibrate for five minutes. The samples were centrifuged for 10 minutes at 

2000 g in a Sorval MC12V centrifuge.  A 300 µL aliquot of supernatant was removed 

and adjusted to pH 7 with KOH. The samples were vortexed, centrifuged for 10 minutes 
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at 2000 g.  The supernatant was filtered through a 0.45 µm syringe filter. The levels of 

ATP were determined using an HPLC method adapted from Lash and Jones (1996). A 

100 µL aliquot of sample was injected into a Beckman 126 model HPLC with a 100 µL 

injector loop equipped with a Beckman 166 variable wavelength detector.   The mobile 

phase was a gradient of two solutions:  Solvent A:  100 mM potassium phosphate, 

pH6.0 and Solvent B: methanol.  The gradient was 7.5 minutes at 100%A / 0%B; 7.5-

minute linear gradient to 90%A / 10%B; 15-minute linear gradient to 75%A / 25%B; 0.5-

minute linear gradient to 100%A / 0%B; 10-minute re-equilibration at initial conditions.  

The flow rate of the mobile phase was 1.3mL/minute. The column was a Radial-Pak 

C18 cartridge (8 mm x 10 mM). The wavelength for detection was 254 nm. ATP values 

were calculated from a standard curve of ATP (0.94 to 9.4 nmol).  ATP levels as low as 

1nmole could be detected and were linear with respect to the standard curve.  In 

addition, a set of standards was treated as samples to ascertain the extraction 

efficiency.  The efficiency was determined to be approximately 80%.   

 

1.2.5 Glutathione determination. 

Renal cortical slices (50-100 mg) were incubated with 0, 4, 10 or 12 mg/mL 

myoglobin for 60, 90 or 120 minutes, as described above. Tissues were weighed and 

then homogenized in 0.5% sulphosalicylic acid in a 1mL total volume.  Total glutathione 

was determined by an enzymatic reaction with glutathione reductase using 5,5’-

dithiobis(2-nitrobenzoic acid) and NADPH (Tietze, 1969; Andersen, 1985). Glutathione 

disulfides (GSSG) were measured on samples derivatized with 2-vinylpyridine (Griffith, 
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1980) prior to enzymatic measurement of glutathione. Values were expressed as nmol/g 

tissue.  See Appendix I for detailed methods.  

 

1.2.6 Lipid peroxidation.  

Renal cortical slices were prepared and equilibrated as described above. Renal 

slices were incubated in 3 mL oxygenated Krebs-Ringer buffer in an oxygen 

atmosphere and constant shaking (100 cycles/minute) at 37oC.  Lipid peroxide 

generation was measured in renal slices exposed to 0, 4, 10 or 12 mg/mL myoglobin for 

60, 90 or 120 minutes. The slices were blotted, weighed and homogenized in 1mL 

Krebs-Ringer buffer. The homogenizer probe was rinsed with 1mL Krebs-Ringer buffer 

and adjusted to 2 mL. A 1.5 mL aliquot of the homogenate was added to an equivalent 

volume of 15% trichloroacetic acid dissolved in 0.25 N HCl.  Protein was precipitated for 

15 minutes on ice, and the supernatant was collected following centrifugation (2000 g at 

4oC, 10 minutes). The supernatant was heated for 15 minutes at 90oC with an equal 

volume of 0.67% thiobarbituric acid (Ueda and Shah, 1996). The absorbance was 

measured at 535 nm, and the amount of malondialdehyde (MDA) was calculated based 

on a standard curve using MDA (0-40 nmoles) and expressed as nmol MDA/g tissue. 

 

1.2.7 Microsome incubation with myoglobin 

Liver microsomes were isolated from male Fischer 344 rats (see Appendix 1 for 

isolation protocol).  To each 30 mL beaker, the following was added: 250 µL phosphate 

buffer or microsomes; 10 µL glucose-6-phosphate dehydrogenase; 750 µL myoglobin; 2 

mL NADPH generating system (2 mM glucose-6-phosphate, 13 mM NADP).  Following 
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incubation for 15 minutes at 37°C, the samples were combined with 250 µL of 

cytochrome C.  The absorbance at 549 nm was recorded at various time intervals (0-90 

sec).  A change in absorbance would indicate a conversion of NADPH to NADP and 

thus detoxification of a radical.   

 

1.2.8 Statistical analyses  

(Sokal and Rohlf, 1969) 
 

All statistical calculations were performed using SigmaStat software package 

(version 2.03).  Values were reported as mean ± SEM.  Paired t-tests were used to 

analyze the microsomal data.  The remaining experiments were analyzed using a one-

way analysis of variance (ANOVA) or a one-way repeated-measures analysis of 

variance (RM-ANOVA).  Differences between groups within a treatment were analyzed 

using a repeated-measures analysis of variance (RM-ANOVA) followed by a Newman-

Keuls test at a 95% confidence interval.  To compare differences between treatments, 

an analysis of variance (ANOVA) followed by a Newman-Keuls test at a 95% 

confidence interval was used.  All groups consisted of 4-7 animals.  
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1.3.  RESULTS 

1.3.1 Concentration-response study 

Myoglobin was toxic when added to renal cortical slices.  The concentrations of 

myoglobin selected initially were 1-12 mg/mL.  These concentrations were relevant to 

levels reported in the literature for plasma levels measured in individuals with 

rhabdomyolysis (Hamilton et al., 1989; Shigemoto et al., 1997).  Myoglobin induced 

concentration and time-dependent changes in renal cortical slices.  Myoglobin produced 

a concentration-dependent loss of membrane integrity as indicated by an increase in 

the percentage of LDH release (Figure 1), which was seen with concentrations as low 

as 2 mg/mL myoglobin.  Because concentrations of 0, 4, 10, and 12 mg/mL myoglobin 

produced the best concentration-dependent effect, these concentrations were chosen 

as the test concentrations for the remainder of the study.   

As in other labs, myoglobin was pretreated with ascorbic acid to achieve the 

ferrous (Fe2+) form, as this valence is reportedly the toxic form (Zager and Foerder, 

1992; Zager and Burkhart, 1997).  In this study, omission of pretreatment of the 

myoglobin with ascorbic acid greatly affected the toxicity.  LDH release failed to rise 

above baseline if the myoglobin was not pretreated with ascorbic acid (Figure 2).  

However, pretreatment of the myoglobin with the ascorbic acid once again produced a 

concentration-dependent increase in the LDH release.  For the remainder of the study, 

myoglobin was pretreated with 4 mM ascorbic acid and all studies denoted as 

myoglobin-treated were performed in this manner.   
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1.3.2 Time-course study 

In order to evaluate a time course for myoglobin toxicity, incubations were 

conducted for 60-120 minutes.  Myoglobin required a two-hour incubation to increase 

LDH release (p<0.05) in a concentration-dependent manner (Figure 3).  In addition to 

LDH release, gluconeogenesis was chosen as a second measure for evaluating the 

basic time frame for the development of toxicity.  A significant, concentration-dependent 

loss of gluconeogenesis was observed within a one-hour myoglobin incubation (Figure 

4).  Notably, this was one hour prior to significant LDH leakage.  As incubation times 

increased, gluconeogenesis was nearly abolished.  In general, all tissue samples 

including controls, displayed a gradual decrease in gluconeogenesis.  To eliminate the 

possibility that the decline was not simply myoglobin interference in the glucose assay, 

standard curves of glucose in the presence of varying concentrations of myoglobin were 

compiled.   Myoglobin shifted the glucose curves upwards with respect to increasing 

concentrations.  To accommodate this, the myoglobin background at each 

concentration was subtracted from the results.  Moreover, as further evidence, the 

decline of levels of gluconeogenesis was more pronounced in the presence of 

myoglobin (Figure 4).  Taken as a whole, the time study of myoglobin exposure to renal 

slices revealed loss of gluconeogenesis occurring as early as one hour, while significant 

LDH leakage did not occur until two hours. 

The remaining three measures of toxicity, namely ATP levels, lipid peroxidation, 

and, glutathione levels, were employed to investigate further the time course and 

possible events of myoglobin toxicity.  ATP levels remained unchanged from control at 

60 and 90 minutes of incubation (Figure 5).  Conversely, at two hours, the ATP levels 
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significantly (p<0.05) declined with a concentration-dependent trend in the myoglobin 

treated as compared to the respective control.  This time frame coincides with 

significant LDH release by myoglobin.   

In contrast to ATP levels, lipid peroxidation and changes in glutathione levels 

occurred at one hour.  Lipid peroxidation, as measured by the amount of 

malondialdehyde per gram tissue, was elevated by myoglobin exposure of renal slices 

relative to control (Table 1).   At each additional incubation time, lipid peroxidation levels 

continued to be significantly different in the treated group compared to control.  

However, no significant concentration dependence of this response was detected at any 

of the incubation times.  At two hours, the highest myoglobin concentration yielded lipid 

peroxidation levels of ~140nmol/g tissue in the myoglobin treated tissue and 

~114nmol/g tissue in the control group.   

Similar to lipid peroxidation, myoglobin-induced changes in glutathione levels 

occurred prior to LDH release.  At one hour, total glutathione levels, expressed as nmol 

per gram tissues, were significantly decreased in the myoglobin groups as compared to 

control (Table 2).  No difference in total glutathione was detectable between the various 

myoglobin concentrations.  Myoglobin treatment was associated with an overall 

decrease in total glutathione levels over time.  The amount of glutathione disulfide 

(GSSG), as measured by %GSSG of total glutathione, did not significantly increase until 

90 minutes (Table 2).  At two hours, the high concentration of myoglobin (12 mg/mL) 

produced a two-fold increase in GSSG compared to control.  Taken together, the 

measures of toxicity established a basic time course for myoglobin toxicity.   

Gluconeogenesis, lipid peroxidation, and changes in glutathione levels were detected 
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as early as one hour whereas LDH release and changes in ATP levels were detected at 

two hours.   

 

1.3.3 Protection assays 

 Protection assays were used to probe the basic time frame, providing possible 

mechanistic events.   Deferoxamine (DFX) pretreatment partially protected renal cortical 

slices from myoglobin toxicity.  Pretreatment of renal cortical slices for 15 minutes with 

DFX, followed by a two-hour incubation with myoglobin resulted in a significant 

attenuation of LDH release (Figure 6).  The levels of LDH release in the presence of 

myoglobin were not significantly different from control within the DFX treatment.  

Moreover, at 12 mg/mL myoglobin, a significant reduction in LDH release was evident 

as compared to myoglobin and vehicle-treated tissue. The gluconeogenesis data 

revealed an opposite finding.  Pretreatment of the slices with DFX failed to protect 

against the loss of gluconeogenesis induced by myoglobin (Figure 7).  The decrease in 

pyruvate-stimulated gluconeogenesis was indistinguishable between DFX and DFX-

vehicle-treated groups.   

 Pretreatment of the slices for 30 minutes with exogenous reduced-glutathione 

(GSH), followed by a two-hour incubation, resulted in protection from myoglobin-

induced LDH release and loss of gluconeogenesis.   Myoglobin produced no significant 

increase in LDH release within the GSH pretreated group (Figure 8).  At all levels 

except control, the amount of LDH release was significantly lower in the GSH pretreated 

as compared to tissue pretreated with vehicle.  Furthermore, the pretreatment with GSH 

prevented the loss of gluconeogenesis (Figure 9).  The glucose levels in the presence 
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of myoglobin were not significantly different within the GSH pretreated group.  At the 

higher concentrations of myoglobin, there was a significant reduction in toxicity in the 

GSH-pretreated group as compared to the GSH-vehicle-pretreated group.    

Because of the potential for GSH to detoxify myoglobin before it enters the cell 

and thus result in protection, a separate study with exogenously applied GSH was 

undertaken.  Once pretreated for 30 minutes with GSH, the slices were removed and 

placed in fresh pre-warmed buffer lacking GSH.  The renal slices were then incubated 

with myoglobin.  The GSH and myoglobin were not permitted to incubate together in the 

extracellular media.  Under these limiting conditions, GSH still provided remarkable 

protection.  LDH release was not altered by myoglobin in the GSH pretreated tissue 

(Figure 10).  Also, there was a significant difference in the highest concentration of 

myoglobin between the GSH + rinse treated versus the vehicle.  Analogous results were 

obtained for gluconeogenesis (Figure 11).    

 Pyruvate treatment was chosen as another means to probe the mechanism of 

toxicity.  With the concurrent treatment of pyruvate, LDH release in response to 

myoglobin was slightly increased above controls (Figure 12) in the pretreated group.  In 

addition, in tissues exposed to 10 and 12 mg/mL myoglobin, LDH release was 

significantly lower in the pyruvate-treated group relative to the pyruvate-vehicle group.   

 

1.3.4 Intracellular targets 

 Pyruvate was the selected substrate for mitochondrial stimulation of 

gluconeogenesis throughout this study.  A separate set of experiments evaluated the 

effect of stimulating gluconeogenesis with cytosolic substrates, namely fructose-1,6-
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diphosphate and glucose-6-phosphate.  Evaluation of gluconeogenesis in the presence 

of 4 mg/mL myoglobin or control revealed different results between the cytosolic and 

mitochondrial substrates.  Myoglobin had no detrimental effect on gluconeogenesis 

when it was stimulated with fructose-1,6-diphosphate or glucose-6-phosphate (Figure 

13).  This was in contrast to the stimulation with pyruvate that resulted in significant loss 

of gluconeogenesis.   

 

1.3.5 Spontaneous radical formation 

 As delineated in the introduction, a free radical mechanism is thought to be 

responsible for myoglobin toxicity.  A microsomal assay was conducted in order to 

ascertain if a free radical is spontaneously produced or if it requires activation by 

microsomal enzymes.  The change in absorbance at 549 nm would indicate an 

oxidation of the NADPH to NADP and thus detoxification of a radical.  In the absence of 

microsomes, 4 mg/mL myoglobin, as compared to control, failed to produce any change 

in the absorbance per minute (Table 3).   The addition of microsomes had no effect.  In 

fact, all levels (with and without microsomes) were not significantly different.  
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Figure 1.  LDH release in response to various concentrations of myoglobin  
 
Renal slices were incubated with myoglobin (0-12 mg/mL pretreated with 4 mM ascorbic 

acid) for 120 minutes at 37°C. LDH release data are expressed as percent of total LDH.  

Values represent mean ± SEM with n=4 animals.  Concentrations with dissimilar 

superscripts are statistically (p<0.05) different from one another. 
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Figure 2.  LDH release in response to ascorbate pretreatment of myoglobin  
 
Renal slices were incubated with myoglobin (0-12 mg/mL pretreated with 0 mM or 4 mM 

ascorbic acid (asc)) for 120 minutes at 37°C. LDH release data are expressed as 

percent of total.  Values represent mean ± SEM with n=4 animals.  Groups with 

dissimilar superscripts are statistically (p<0.05) different from one another within each 

treatment. 

 
 
 
 
 
 
 

 28 
 
 



 

Time
(min)

90 120

LD
H

 re
le

as
e 

(%
)

0
2
4
6
8

10
12
14
16
18
20

0   mg/mL
4   mg/mL
10 mg/mL
12 mg/mL

A

A A A

a
b

c

d

 
 
 
 
 
Figure 3.  Time course of myoglobin-induced LDH release 
 
Renal slices were incubated with myoglobin (0-12 mg/mL) for 90 or 120 minutes at 

37°C. LDH release data are expressed as percent of total.  Values represent mean ± 

SEM with n=4 animals.  Groups with dissimilar superscripts are statistically (p<0.05) 

different from one another within each incubation period. 
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Figure 4.  Time course of myoglobin-induced loss of gluconeogenesis 
 
Renal slices were incubated with myoglobin (0-12 mg/mL) for 60-120 minutes at 37°C.  

To stimulate gluconeogenesis, pyruvate (10 mM final) was added during the last 30 

minutes of incubation.  Gluconeogenesis data are expressed as amount glucose (mg) 

per gram (g) tissue.  Values represent mean ± SEM with n=4 animals.  Groups with 

dissimilar superscripts are statistically (p<0.05) different from one another within each 

incubation period. 
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Figure 5.  Time course of myoglobin-induced alterations in ATP levels 
 
Renal slices were incubated with myoglobin (0-12 mg/mL) for 60-120 minutes at 37°C.  

Samples were extracted and analyzed for ATP.  Data are expressed as amount ATP 

(nmol) per gram (g) tissue. Values represent mean ± SEM with n=4-6 animals.  Groups 

with dissimilar superscripts are statistically (p<0.05) different from one another within 

each incubation time.    
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Table 1.  Time course of myoglobin-induced lipid peroxidation  
  

Myoglobin (mg/mL) 
Incubation 

(min) 
0 4 10 12 

  
nmol/g tissue 

 
nmol/g tissue 

 
nmol/g tissue 

 
nmol/g tissue 

 
60 

  
  75.73 ± 5.38A 

 
110.48 ± 18.09B 

  
  98.56 ± 15.57B 

 
115.41 ± 20.59B 

 
90 

  
  60.30 ± 1.94A 

  
  81.07 ±   5.07B 

  
  91.01 ±   1.95B 

  
   84.21 ±   1.03B 

 
120 

 
114.20 ± 3.76A 

 
145.23 ±   9.09B 

 
135.60 ±   3.92B 

 
 140.50 ±   6.34B 

 

Renal slices were incubated with myoglobin (0-12 mg/mL) for 60-120 minutes at 37°C.  

Lipid peroxidation was measured as described in methods.  Data are expressed as 

amount MDA (nmoles) per gram (g) tissue.  Values represent mean ± SEM with n=4-7 

animals. Groups with dissimilar superscripts are statistically (p<0.05) different from one 

another within each incubation period.  
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Table 2.  Time course of myoglobin-induced changes in glutathione levels 

 
Myoglobin (mg/mL) 

  
 

Incubation 
(min) 

 
0 

 
4 

 
10 

 
12 

Total      
(nmol/mg 
tissue) 

 
60 

 
0.635 ± 0.042A 

  
0.544 ± 0.029B 

  
0.498 ± 0.022B 

  
0.490 ± 0.035B 

  
90 

 
0.528 ± 0.052A 

 
 0.361 ± 0.038B 

 
 0.319 ± 0.022B 

 
 0.286 ± 0.015B 

  
120 

 
0.486 ± 0.035A 

  
0.422 ± 0.033A 

  
0.358 ± 0.018B 

 
0.308 ± 0.028B 

      
GSSG      
(%GSSG/total)  

60 
 

8.956 ± 1.192A 
 

7.969 ± 0.882A 
  
 7.651 ± 1.153A 

  
 7.069 ± 1.102A 

  
90 

 
8.768 ± 0.484A 

 
10.557 ± 0.336B 

 
10.084 ± 0.396B 

 
10.604 ± 0.425B 

  
120 

 
7.079 ± 0.755A 

 
10.209 ± 0.942A 

 
11.653 ± 1.085B 

 
16.020 ± 1.677C 

      
 

Renal slices were incubated with myoglobin (0-12 mg/mL) for 60-120 minutes at 37°C.  Samples were 

extracted and analyzed for glutathione content as described in methods.  Total glutathione levels are 

expressed as nmoles total per (mg) tissue.  Glutathione disulfide (GSSG) levels are expressed as 

%GSSG of total glutathione.  Values represent mean ± SEM with n=4 animals. Groups with dissimilar 

superscripts are statistically (p<0.05) different from one another within each incubation period.   
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Figure 6.  Effect of DFX on myoglobin-induced LDH release 
 
Renal slices were pretreated with 0.1mM DFX for 15 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  LDH release data are expressed as percent of total.  Values represent 

mean ± SEM with n=4 animals.  Groups with dissimilar superscripts are statistically 

(p<0.05) different from one another within each treatment.  
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Figure 7.  Effect of DFX on myoglobin-induced loss of gluconeogenesis 
 
Renal slices were pretreated with 0.1mM DFX for 15 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  To stimulate gluconeogenesis, pyruvate (10 mM final) was added during 

the last 30 minutes of incubation.  Gluconeogenesis data are expressed as glucose 

(mg) per gram (g) tissue.  Values represent mean ± SEM with n=4 animals.  Groups 

with dissimilar superscripts are statistically (p<0.05) different from one another within 

each treatment.  
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Figure 8.  Effect of GSH on myoglobin-induced LDH release 
 
Renal slices were pretreated with 1mM glutathione for 30 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  LDH release data are expressed as percent of total.  Values represent 

mean ± SEM with n=4 animals.  Groups with dissimilar superscripts are statistically 

(p<0.05) different from one another within each pretreatment.  An asterisk (*) indicates 

statistical (p<0.05) difference between pretreatments within corresponding 

concentrations of myoglobin. 
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Figure 9.  Effect of GSH on myoglobin-induced loss of gluconeogenesis 
 
Renal slices were pretreated with 1mM glutathione for 30 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  To stimulate gluconeogenesis, pyruvate (10 mM final) was added during 

the last 30 minutes of incubation.  Gluconeogenesis data are expressed as glucose 

(mg) per gram (g) tissue.  Values represent mean ± SEM with n=4 animals.  Groups 

with dissimilar superscripts are statistically (p<0.05) different from one another within 

each pretreatment.  An asterisk (*) indicates statistical (p<0.05) difference between 

treatments, within corresponding concentrations of myoglobin.   
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Figure 10.  Effect of GSH+ rinse on myoglobin-induced LDH release 
 
Renal slices were pretreated with 1mM glutathione for 30 minutes at 37°C.  Following 

pretreatment, the tissues were placed in pre-warmed Krebs-Ringer buffer (lacking GSH) 

and incubated an additional 90 minutes with myoglobin (0-12 mg/mL).  LDH release 

data are expressed as percent of total.  Values represent mean ± SEM with n=4 

animals.  Groups with dissimilar superscripts are statistically (p<0.05) different from one 

another within each treatment. 
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Figure 11.  Effect of GSH + rinse on myoglobin-induced loss of gluconeogenesis 
 
Renal slices were pretreated with 1mM glutathione for 30 minutes at 37°C.  Following 

pretreatment, the tissues were placed in pre-warmed Krebs-Ringer buffer (lacking GSH) 

and incubated an additional 90 minutes with myoglobin (0-12 mg/mL).  To stimulate 

gluconeogenesis, pyruvate (10 mM final) was added during the last 30 minutes of 

incubation.  Gluconeogenesis data are expressed as glucose (mg) per gram (g) tissue.  

Values represent mean ± SEM with n=4 animals.  Groups with dissimilar superscripts 

are statistically (p<0.05) different from one another within each treatment. 
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Figure 12.  Effect of pyruvate on myoglobin-induced LDH release 
 
Renal slices were incubated with pyruvate (10 mM final) and myoglobin (0-12 mg/mL) 

for 120 minutes at 37°C.  LDH release data are expressed as percent of total.   Values 

represent mean ± SEM with n=4 animals.  Groups with dissimilar superscripts are 

statistically (p<0.05) different from one another within each treatment.  An asterisk (*) 

indicates statistical (p<0.05) difference between treatments, within corresponding 

concentrations of myoglobin.   
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Figure 13.  Stimulated gluconeogenesis with various substrates in the presence 

of myoglobin 
 
Renal slices were incubated with myoglobin (0 or 4mg/mL) for 120 minutes at 37°C.  

Gluconeogenesis was stimulated by the addition of various substrates (10 mM final): 

pyruvate (Pyr), fructose-1,6-diphosphate (F-1,6-P), or glucose-6-phosphate (G-6-P) for 

the last 30 minutes of incubation.  Gluconeogenesis data are expressed as glucose 

(mg) per gram (g) tissue.  Values represent mean ± SEM with n=4 animals.  Groups 

with dissimilar superscripts are statistically (p<0.05) different from one another within 

each substrate. 
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Table 3.  Microsomal assay 
  

Myoglobin (mg/mL) 
Microsomes 0 4 
  

AU/min 
 

AU/min 
 

+ 
  
0.0200 ± 0.00117A   

 
0.0250 ± 0.00257A   

 
- 

  
0.0191 ± 0.00192A   

 
0.0265 ± 0.00270A   

 

Incubations were performed in the presence or absence of 

microsomes with 0 or 4 mg/mL myoglobin.  Data are 

expressed as change in absorbance (AU) per minute to 

indicate a potential detoxification of radicals.  Values 

represent mean ± SEM with n=4. Groups with dissimilar 

superscripts are statistically (p<0.05) different from one 

another.   
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1.4.  DISCUSSION 

The mechanism of myoglobin toxicity is not completely understood.  The goal of 

this study was to characterize myoglobin toxicity in a renal cortical slice model and to 

develop a hypothesis to explain the basic mechanism of toxicity.  The chosen slice 

model should serve the purpose by eliminating many confounding factors.  In order to 

make any substantial conclusions about mechanisms, the myoglobin toxicity first must 

be characterized in the slice model.  The experiments in this chapter were designed to 

address this issue in addition to providing some basic mechanistic information.  

Concentration-response and time-course studies, as well as protection assays, were 

employed.  Moreover, other experiments addressed questions concerning intracellular 

sites of toxicity. 

 

1.4.1 Concentration-response study 

Previous in vitro investigations have used concentrations of 0-40 mg/mL 

myoglobin.  Final concentrations in this study ranged from 0-12 mg/mL myoglobin.  This 

level was well within the previous clinical and experimental studies and in keeping with 

the solubility of myoglobin.  This concentration range, when applied to slices for two 

hours, caused loss of membrane integrity as measured by LDH release (Figure 1).  A 

significant loss of membrane integrity was observed with concentrations as low as 2 

mg/mL myoglobin.  These findings corresponded with previous literature that reports 

concentrations above 4 mg/mL, when incubated with HK-2 cells, were lethal.  In one 

study, 1 mg/mL of myoglobin produced no death, only growth arrest (Iwata, 1996).  This 

suggests that the renal slice model is at least as sensitive as the HK-2 cell model; or 
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possibly more sensitive based on the fact the myoglobin as low as 2 mg/mL caused 

LDH release.  Because concentrations of 0, 4, 10, and 12 mg/mL myoglobin 

demonstrated the best concentration-dependent effect, these concentrations were 

chosen as the test concentrations for the remainder of the study.   

The myoglobin used in this study was predominately the metmyoglobin form 

(Fe3+) as purchased.  Ascorbic acid was used for the reduction of the iron to the ferrous 

form.  Pretreatment of the metmyoglobin with 0 or 4 mM ascorbic acid greatly affected 

the toxicity.  LDH release failed to rise above baseline if the myoglobin was not 

pretreated with ascorbic acid (Figure 2).  However, pretreatment with ascorbic acid, 

once again produced a concentration-dependent increase in the LDH release.  Other 

investigators (Zager and Foerder, 1992; Zager et al., 1997) reported that myoglobin 

must be pretreated with ascorbic acid to induce toxicity.  This indicated that incubation 

with the ferrous form (Fe2+) of the myoglobin was required and thus, pretreatment of 

myoglobin with ascorbic acid must be done to ensure the myoglobin is in the reduced 

form when presented to the tissues.  For the remainder of the study myoglobin was 

pretreated with 4 mM ascorbic acid.    

Taken as a whole, the concentration study also indirectly answered a question 

concerning the basic mechanism of toxicity.  Prior evidence suggested that intraluminal 

mechanisms due to the increased concentrations of myoglobin in the urine were 

responsible for myoglobin toxicity (Clyne et al., 1979).  The slice model provided an 

ideal physiological environment to address this question.  Because, the tubules in the 

slice model were collapsed, any toxicity demonstrated would not be dependent on 
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intraluminal events.  Therefore, these experiments indicated intraluminal events were 

not necessary to induce toxicity. 

 

1.4.2 Time-course study 

 The concentration-response study was done at an arbitrarily chosen incubation 

time period.  Because of the relatively short lifespan of the renal slices, two hours was 

estimated to be a sufficient incubation time to realize any detectable toxicity.  In order to 

evaluate a time frame for myoglobin toxicity, incubation times other than two hours were 

performed.  LDH release was used to designate loss of viability.  At two hours 

incubation, as previously shown in Figure 1, a significant concentration-dependent 

increase in LDH release was observed.  The time frame corresponds with the in vivo 

time frame reported by Zager et al. (1995).  Tubules were harvested four hours post-

glycerol or sham injection, at a time when urine myoglobin levels approximated 40 

mg/mL.  These tubules were incubated for 90 minutes to determine the rate of in vitro 

expression of the toxicity as measured by LDH release.  At 75 minutes, LDH release in 

the glycerol treated samples was approximately 30% whereas the controls were about 

10%.  Although this was earlier than two hours, the difference may be attributed to the 

significantly greater concentration of myoglobin.    However, the difference may also be 

due to the hemodynamic effects and precipitation of myoglobin within the lumen.  In 

addition, the release of phosphates, calcium ions, and organic acids with the glycerol 

model could modify the results. 

In addition to LDH release, gluconeogenesis was chosen as a second measure 

of toxicity for evaluating the basic time frame.  When slices were treated with myoglobin, 
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a significant, concentration-dependent loss of gluconeogenesis, as measured by the 

amount of glucose per gram tissue, was observed as early as one hour of incubation 

(Figure 4).  Notably, this loss of cell function was one hour prior to loss of viability.  As 

incubation times increased, gluconeogenesis was essentially abolished.  Myoglobin did 

not induce a decline in gluconeogenesis by interfering with the glucose assay as 

myoglobin shifted the glucose curves with respect to concentration (Figure 5).  This 

observation indicated that myoglobin was not interacting with the reagents of the assay 

and therefore, could be subtracted as background.  Moreover, as further evidence, the 

decline of levels of gluconeogenesis was more pronounced in the presence of 

myoglobin (Figure 4).  Taken as a whole, the time-course study revealed loss of cell 

function occurring as early as one hour while significant loss of viability did not occur 

until two hours.  This outlined a basic time frame from which to work with loss of 

gluconeogenesis occurring much earlier than LDH release.   

The remaining three measures of toxicity, namely ATP levels, lipid peroxidation, 

and glutathione levels, were employed to investigate further the time frame and possible 

associated events of toxicity.  Because gluconeogenesis was affected, myoglobin could 

have been acting to decrease the energy as noted by ATP levels.  Examination of ATP 

levels would address this possibility and answer a more general question– what 

happens to nucleotide levels during myoglobin toxicity?  Previous literature has reported 

varying results concerning alterations in ATP levels.  Trifillis et al. (1981) showed a 

decline in ATP content in renal cortex of rats with glycerol-induced rhabdomyolysis.  

Zager (1996a) also reported a drop in ATP levels in proximal tubules segments isolated 

from glycerol-injected mice, but concluded that the decline was due to LDH release and 
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loss of viability.  However, a slight change in the ATP/ADP ratio was noted.  In this 

study, when slices were incubated with myoglobin, ATP levels remained unchanged 

from control at 60 and 90 minutes of incubation (Figure 5).  Conversely, at two hours, 

the levels significantly declined with a concentration-dependent trend.  This time frame 

coincided with significant loss of viability.  In consideration of the relationship between 

LDH release and ATP changes, the decline in ATP levels seemed to have been caused 

by cell death.  Two pieces of evidence supported this conclusion.  The percentage of 

LDH release above control in the myoglobin-treated group was the same percentage of 

decline below control in ATP levels.  Lastly, as detailed in Chapter 2, when renal slices 

were incubated with pyruvate, the percent of LDH release over control with the 12 

mg/mL myoglobin treatment was ~30%, as was the percentage of ATP decline in the 12 

mg/mL myoglobin treated versus control.    

 In opposition to ATP levels, lipid peroxidation and changes in glutathione levels 

occurred before the loss of viability.  Lipid peroxidation, as measured by 

malondialdehyde levels, was assessed to determine any possibility of radical 

involvement.  The occurrence of myoglobin-induced lipid peroxidation in vitro and in vivo 

has been widely recounted (Shah and Walker, 1988; Moore et al., 1998; Holt et al., 

1999).  Illustration of myoglobin-induced lipid peroxidation in the slice model would 

further confirm the model as well as provide mechanistic and time-frame information.  

Slices incubated with myoglobin for one hour manifested a significant elevation in lipid 

peroxidation over controls (Table 1).  Similar to gluconeogenesis, the effect was one 

hour prior to loss of viability.  This sequence of events corresponded to those reported 

by Zager et al. (1995).  As outlined before, tubules were harvested four hours post-
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glycerol or sham injection, at a time when urine myoglobin levels approximated 40 

mg/mL.  These tubules were incubated for 90 minutes to determine the rate of in vitro 

expression of the toxicity as measured by LDH release.  A significant increase in MDA 

levels at time 0 (of a 90 minute incubation) reportedly preceded a rise in LDH release 

occurring at 75 minutes in the glycerol-treated group.  Taken together, these data 

suggest lipid peroxidation could be a mediator in loss of viability given that it occurred 

well in advance of LDH release.  Furthermore, this implicated free radical involvement 

as a component of the toxicity.   

  Like lipid peroxidation, changes in glutathione levels occurred by one hour.  

Because lipid peroxidation was first evident at one hour, changes in glutathione levels 

were evaluated to confirm the involvement of free radicals.  Slices treated for one hour 

with myoglobin showed a significant decrease from control in the total glutathione 

levels, as expressed as nmol per gram tissue (Table 2).  If the reduction was due to 

detoxification of radicals, then theoretically, the percentage of glutathione disulfide 

levels should have increased.  The amount of glutathione disulfide (GSSG), as 

measured by %GSSG of total glutathione, did not significantly increase until 90 minutes 

(Table 2).  However, due to the low detection limit of the GSSG, it was possible that the 

levels actually increased earlier.  Overall, the changes in glutathione levels, total and 

GSSG, validated the lipid peroxidation at one hour and confirmed the involvement of 

radicals in myoglobin toxicity.  Moreover, these findings agreed with previous findings 

concerning depletion of glutathione in the glycerol model of myoglobin toxicity.  Abul-

Ezz et al. (1991) reported that injection of glycerol into rats produced a significant and 

early depletion of glutathione.  In this study, the time study of glutathione levels and lipid 
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peroxidation indicated free radical generation events preceded loss of viability; and 

thus, may have been causally linked to the ultimate demise of the tubules.    

Taken together, the basic measures of toxicity established a time course for the 

events of myoglobin toxicity.  Gluconeogenesis, lipid peroxidation, and changes in 

glutathione levels were detected as early as one hour whereas LDH release and 

changes in ATP levels were detected at two hours.  In other words, the early insult was 

oxidative in nature and may have played a major role in the loss of membrane integrity 

and decline of ATP levels one hour later. 

 

1.4.3 Protection assays 

 Protection assays were utilized to further probe the time frame for clues to 

mechanistic events.  Three protection assays are presented in this chapter.  The 

protective effect of a thiol-containing agent (GSH), an iron chelator (DFX), and an α-

ketoacid (pyruvate) were chosen for various reasons. Because changes in glutathione 

levels and thus possibly free radicals are implicated in the mechanism of toxicity, the 

application of exogenous reduced glutathione (GSH) was used as an attempt to inhibit 

the toxicity.  Slices were pretreated with GSH for 30 minutes prior to a two-hour 

incubation with myoglobin.  The pretreatment attenuated myoglobin toxicity as 

measured by LDH release (Figure 8) and gluconeogenesis (Figure 9).  GSH produced a 

significant reduction in the LDH release and a significant increase in gluconeogenesis at 

all concentrations of myoglobin.  The protection of gluconeogenesis not only alluded to 

the involvement of a radical, but when taken with the DFX effect on gluconeogenesis 
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(Figure 7), implied that this part of the mechanism of toxicity is oxidative and iron-

independent.   

To exclude any possibility of a media interaction of GSH with myoglobin and thus 

detoxification, the protection assay was repeated with a rinse between the GSH and 

myoglobin incubations.  Slices were pretreated for 30 minutes with GSH.  Prior to a two-

hour incubation with myoglobin, the slices were placed into fresh pre-warmed buffer.  

GSH continued to provide protection against loss of viability with only a 30-minute 

loading period  (Figure 10).  Moreover, GSH maintained protection of gluconeogenesis 

(Figure 11).    These results indicated that the protection mediated by GSH was not due 

to an extracellular interaction and thus possible detoxification of myoglobin in the media.  

Furthermore, slices loaded with GSH for only 30 minutes, were capable of maintaining 

viability.   

 Previous literature agreed that deferoxamine (DFX) could guard against 

myoglobin toxicity (Paller, 1988; Zager and Burkhart, 1997).  This finding was the only 

one that was consistent among all the experimental models.  Therefore, this study 

sought to investigate the protective effect of DFX to verify the slice model as a relevant 

model for studying myoglobin toxicity.  Furthermore, the use of DFX would allow 

investigation of individual toxic events along the constructed time line.  Slices were 

pretreated for 15 minutes with DFX prior to a two-hour incubation with myoglobin.  LDH 

release in the presence of DFX treatment was not significantly different in the myoglobin 

group as compared to control.  In addition, at the high concentration of myoglobin, DFX-

pretreated tissue had less LDH release than vehicle treated slices.  On the contrary, 

DFX pretreatment did not provide protection against myoglobin-induced changes in 
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gluconeogenesis.  In fact, the fall in glucose levels was indistinguishable between DFX 

and DFX-vehicle pretreated tissues exposed to myoglobin.  The effects of DFX 

suggested several conclusions concerning gluconeogenesis and myoglobin toxicity.  

For one, the loss of gluconeogenesis was iron-independent.  This also suggested a lack 

of participation of hydroxyl radicals because their formation is propagated via Fenton 

reactions which involve iron.  Moreover, because DFX can detoxify ferryl myoglobin 

radicals, the results suggested that the effect on gluconeogenesis was not via the ferryl 

radical.  It is possible that oxygen radicals, produced in the mitochondria, could have 

been causing the compromise of gluconeogenesis in addition to initiating oxidative 

events.  Zager (1996a) implicated the terminal mitochondrial transport chain as the 

origin of free radicals that initiate injury in myoglobin toxicity.  Also, because there was 

dramatic loss of gluconeogenesis with retention of membrane integrity, loss of 

gluconeogenesis probably was not a major contributing factor to loss of viability.  In 

general, the effect of DFX on LDH release and the lack of DFX protection on myoglobin-

induced changes in gluconeogenesis indicated that the mechanism of myoglobin toxicity 

was iron-dependent, but that not every aspect of the toxicity was iron-dependent. 

The protective effect of pyruvate was investigated for two basic reasons.  First, 

because pyruvate was used to stimulate gluconeogenesis, it was possible that pyruvate 

affected toxicity.  In addition, pyruvate can detoxify radical pathways by scavenging 

H2O2 and previous literature consistently reports that H2O2 levels are elevated in 

myoglobin toxicity.  Co-incubation of the slices with pyruvate and myoglobin for two 

hours revealed that pyruvate, indeed, was affecting toxicity.  Myoglobin-induced LDH 

release was significantly reduced in the pyruvate-treated groups as compared to 
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vehicle-treated group (Figure 12).  At the 10 and 12 mg/mL concentrations of 

myoglobin, LDH release was significantly lower in the pyruvate-treated group than in the 

vehicle-treated group.  Because of the free radical implications, pyruvate was further 

addressed in detail in this study and the results of which are reported in Chapter 2. 

 

1.4.4 Intracellular targets 

Previous studies have investigated potential targets of myoglobin toxicity.  

Previous literature reports that myoglobin induces necrotic cell death as opposed to 

apoptosis.  One study indicated that the nucleus was not a target as indicated by a lack 

of TUNNEL positive proximal tubule cells, no structural evidence of apoptosis, no 

oxidative damage to DNA, and no DNA laddering (Nath et al., 1998).  However, several 

investigators reported that the mitochondria were targets for myoglobin (Nath et al., 

1998, 100; Zager, 1996a).  This study sought to investigate if effects of toxicity could be 

localized to the cytosol, mitochondria, or both.  Gluconeogenesis begins in the 

mitochondria and continues in the cytosol.  By possessing irreversible steps in each 

compartment, gluconeogenesis becomes a tool for answering the nature of targets of 

myoglobin toxicity.  To better ascertain the effect of myoglobin on gluconeogenesis, 

three different substrates were used, two cytosolic (fructose-1,6-diphosphate and 

glucose-6-phosphate)  and one mitochondrial (pyruvate). The low concentration of 

myoglobin was chosen as the test concentration because of the desire to detect subtle 

changes.  If the higher concentrations were chosen, the toxicity may have overwhelmed 

cellular function and made the results difficult to interpret.  When gluconeogenesis was 

stimulated with pyruvate, the myoglobin toxicity was evident by the decrease in the 
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amount of glucose per gram tissue (Figure 13).  However, when fructose-1,6-

diphosphate or glucose-6-phosphate was used to stimulate gluconeogenesis in the 

presence of zero or 4mg/mL myoglobin, there was no difference. Furthermore, 

stimulation with oxaloacetate, the first cytosolic substrate in the pathway, was not 

affected by myoglobin.  Because these cytosolic steps of gluconeogenesis were not 

affected by myoglobin, the site of toxicity appeared to be in the mitochondria, thus 

implicating mitochondria as a target.   

 

1.4.5 Spontaneous radical formation 

The previous data illustrate the involvement of free radicals in myoglobin toxicity.  

The question then becomes, regardless of what type of radical, was the radical 

spontaneously or enzymatically formed from the myoglobin?  To address this, 

microsomal assays were performed to determine if myoglobin could induce a change in 

absorbance at 549 nm to signify oxidation of NADPH to NADP thus indicating 

detoxification of a radical.  The assay was done in the presence and absence of 

microsomes to illustrate if any perceived effect was spontaneous or enzymatic.  Under 

all conditions, there was no significant effect observed (Table 3), suggesting that in the 

presence of myoglobin alone, free radicals were not spontaneously or enzymatically 

(microsomal) generated.   

 In summary, myoglobin toxicity occurred in the renal cortical slice model.  Early 

toxic events were lipid peroxidation and diminished glutathione levels.  Late events 

involved loss of membrane integrity and a decline in ATP levels.  The toxicity appeared 

to be localized in the mitochondria and to involve oxidative damage.  Pretreatment with 
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DFX indicated that the toxicity has both an iron-dependent and iron-independent 

component. 

CHAPTER 2.  PYRUVATE PROTECTION 
 
 
2.1.  INTRODUCTION 

One of the classic findings concerning myoglobin nephrotoxicity is the elevated 

level of H2O2 in tissue.  Increased levels of H2O2 have been seen repeatedly in the 

glycerol in vivo model (Guidet and Shah, 1989; Paller, 1988).  In fact, the glycerol model 

has been used to study various aspects of H2O2 toxicity (Salahudeen et al., 1991).  

Zager (1993) further reported that myoglobin loaded proximal tubular segments, when 

combined with exogenous H2O2, exhibit increased injury.  Zager and Burkhart (1997) 

also reported that catalase could protect proximal tubular cells exposed directly to 

myoglobin.  These findings support the involvement H2O2 in myoglobin toxicity.     

H2O2 could be contributing to myoglobin toxicity in a number of ways.  Heme 

proteins in the presence of H2O2 will liberate iron (Gutteridge, 1986).  Also, H2O2 could 

be participating in the initiation of free radicals by means of the Fenton reactions.  

Varying results have been reported for the involvement of hydroxyl radicals in 

myoglobin toxicity.  Shah and Walker (1988) reported in the in vivo glycerol model using 

male Sprague Dawley rats, hydroxyl radical scavengers, such as dimethylthiourea 

(DMTU), provide marked protection against renal injury and more specifically, rises in 

malondialdehyde levels.  However, Zager et al. (1995) using proximal tubular segments 

isolated four hours after glycerol injection into male Sprague Dawley rats reported that 

DMTU and benzoate did not reverse LDH release or MDA levels.  In fact, using a 

salicylate trap method to measure the amount of hydroxyl radicals, Zager et al. (1995) 
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reported a smaller amount of hydroxyl radicals in the glycerol-injected group as 

compared to the vehicle-injected group.  Zager and Burkhart (1997) later incubated   

HK-2 cells with myoglobin in the presence and absence of DMTU or benzoate.  In these 

studies, no protective effect was observed for the hydroxyl radical scavengers against 

myoglobin toxicity.    

 The ability of DMTU to scavenge hydroxyl radicals has been well established in 

in vitro studies (Fox, 1984).  Also, deferoxamine (DFX) has been shown to directly 

scavenge hydroxyl radicals in in vitro systems (Halliwell and Gutteridge, 1986), in 

addition to being capable of scavenging hydroxyl radicals.  Actually, the protective effect 

of iron chelators has been taken as evidence of hydroxyl radical participation in tissue 

injury.  This conclusion was reached because iron is critical in the generation of the 

hydroxyl radical in the Fenton reactions.  Other chemicals can detoxify hydroxyl 

radicals.  Simple carbohydrates have been found to have antioxidative properties 

(Wehmeier, 1994).  In fact, glucose in physiological concentrations can act to scavenge 

hydroxyl radicals (Sagone et al., 1983).  Mannitol infusion (i.v.) is part of the treatment 

regimen for rhabdomyolysis.  Although mannitol is a sugar, it does not act as an 

antioxidant, but rather as an osmotic diuretic (Zager et al., 1991).  α-Ketoacids can also 

detoxify hydroxyl radicals, albeit in an indirect way.  α-Ketoacids such as pyruvate can 

react directly with H2O2 (Equation 1) (Constantopoulos and Barranger, 1984).  The 

reaction is rapid and stoichiometric (Bunton, 1949; Melzer and Schmidt, 1988).   

Because pyruvate exists both in the cytosolic and mitochondrial compartments, it is 

capable of scavenging H2O2 throughout the cell.  
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Equation 1.  Decarboxylation of α-ketoacids by H2O2 

 

Pyruvate is easily transported into the cells and mitochondria (Murer and 

Burckhardt, 1983; Halestrap et al., 1980) with intracellular concentrations of pyruvate 

varying among tissues.  The kidney has 30 µM pyruvate and the liver has 500 µM 

pyruvate as an approximate concentration (Veech et al., 1979; Hems and Brosnan, 

1971).  Previous studies have investigated pyruvate and the potential for protection.  

Salahudeen et al. (1991) incubated Sprague Dawley rat kidney homogenate with H2O2 

(4 mM) and pyruvate (4 mM).  He reported a decrease in lipid peroxidation in the 

samples containing pyruvate.  In addition, Salahudeen reported that chromium loaded 

LLC-PK1 cells incubated with H2O2 and various concentrations of pyruvate 

demonstrated a decrease in concentration-dependent release of chromium, indicative of 

loss of viability.   

Pyruvate and glucose protection was also explored in the in vivo glycerol model 

using male Sprague Dawley rats.  Pyruvate (8% solution, 2.5 mL/kg) or glucose (8% 

solution, 2.5 mL/kg) was injected three times: just before and at 8 and 16 hours post-

glycerol injection.  Renal function was evaluated 8 hour following the last injection.  

Serum creatinine was significantly decreased in those treated with pyruvate as 

compared to glucose or control.  Also, there was a reduction in structural injury with 

pyruvate treatment.  It was concluded that pyruvate provided functional and structural 

protection (Salahudeen et al., 1991).  Zager and Burkhart (1998) went on to specifically 
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investigate pyruvate protection on HK-2 cells.  LDH release reportedly was decreased in 

HK-2 cells co-incubated with myoglobin and pyruvate as compared to the cells 

incubated with myoglobin alone.  Pyruvate protection also was analyzed in a different 

model, an ischemia-reperfusion model in cardiac tissue (DeBoer et al., 1993).  It was 

demonstrated that pyruvate protected against ATP depletion and concluded that the 

protection occurred through two possible mechanisms: 1) metabolic effect -possibly via 

action as a substrate or 2) free radical detoxification. 

Previous data in Chapter 1 indicated that pyruvate did protect against myoglobin 

toxicity as evident by attenuation of myoglobin-induced LDH release (Figure 12).  The 

protection afforded by pyruvate could suggest two possible mechanisms of protection.  

Pyruvate could be detoxifying a free radical or it could be providing a substrate for 

energy production.  As an attempt to address the first of the two possibilities, lipid 

peroxidation and glutathione levels were measured after one and two hours of 

incubation in the presence of pyruvate. In addition, DMTU was used to simulate 

protection by chelation of hydroxyl radicals.  The use of DMTU also would indicate any 

involvement of hydroxyl radicals in the mechanism of toxicity.  In order to address the 

energy substrate possibility, ATP levels were measured to indicate any protection 

against the decline of ATP levels.  In addition, the toxicity in the presence of high and 

low concentrations of glucose was compared to that in the presence of pyruvate.  

Together, the results would help delineate the mechanism for protection afforded by 

pyruvate.   
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2.2.  MATERIALS AND METHODS 
 
 
2.2.1 Chemicals and sources 
  
(Company and catalog number) 
 
Dimethylthiourea (Aldrich, D18870-0) 

 

2.2.2 Incubation of renal slices. 
 

Because pyruvate was used to stimulate gluconeogenesis, studies addressed 

the possibility of any influence on myoglobin toxicity.   Renal slices (50-100 mg) were 

co-incubated with pyruvate (10 mM final concentration) and myoglobin (final 

concentration 0, 4, 10 or 12 mg/mL) for two hours at 37oC under 100% oxygen and 

constant shaking (100 cycles/minute) in a Dubnoff metabolic incubator.  Upon 

completion of the incubations period, samples were analyzed for LDH release, lipid 

peroxidation, glutathione levels, or ATP levels.  Parameters were assessed as 

described previously in Chapter 1 Materials and Methods.   

To investigate if pyruvate was acting as an energy substrate, experiments were 

performed with glucose treatment in place of pyruvate.   Renal slices (50-100 mg) were 

co-incubated with glucose (10 mM or 1.67 mM final concentration) and myoglobin (final 

concentration 0, 4, 10 or 12 mg/mL) for two hours at 37oC under 100% oxygen and 

constant shaking (100 cycles/minute).  Because high concentrations of glucose can 

function as radical scavengers (Sagone et al., 1983; Wehmeier and Mooradian, 1994), 

two concentrations were chosen.  The lower concentration of the glucose applied, 1.67 

mM, was the average amount that was measured in the control slices upon completion 

of a two-hour incubation.  This amount was the maximum amount of glucose the slices 

 58 
 
 



produced under control conditions.  Upon completion of the incubations period, samples 

were analyzed for LDH release and gluconeogenesis. 

Other experiments investigated the effect of the hydroxyl radical scavenger, 

dimethylthiourea (DMTU).  Renal slices (50-100 mg) were co-incubated with DMTU 

(final concentration 0.1mM) and myoglobin (0, 4, 10 or 12 mg/mL final concentration) for 

90 minutes at 37oC under 100% oxygen and constant shaking (100 cycles/minute).  At 

the end of the 90-minute incubation, gluconeogenesis was stimulated by addition of 100 

µL of pyruvate (10 mM final concentration, in Krebs) and the tissue was incubated an 

additional 30 minutes.   Upon completion of the incubations period, samples were 

analyzed for LDH release and gluconeogenesis. 
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2.3.  RESULTS 

As illustrated in Figure 14, pyruvate imparted protection against myoglobin 

toxicity.  A concurrent incubation of 10 mM pyruvate with myoglobin for 120 minutes 

demonstrated protection against LDH release.  When pyruvate was present for the last 

30 minutes, a hint of protection was evident, albeit not significant.  When pyruvate was 

present for the entire two-hour incubation, the protection was significant.  Clearly, 

pyruvate attenuated LDH release.   

 

2.3.1  Alternative  substrate for energy 

One possible mechanism for pyruvate mediated protection was that pyruvate 

served as an energy substrate.  The effects of pyruvate on LDH release were compared 

to those of glucose.  A two-hour co-incubation with glucose (10 mM) and myoglobin  (0-

12 mg/mL) resulted in a decrease of LDH release in the treated group as compared to 

the vehicle group (data not shown).  However, a more relevant concentration of glucose 

(1.67 mM) failed to provide protection against myoglobin-induced LDH release (Figure 

15).  Furthermore, the concentration-dependent effect of myoglobin on LDH release 

was comparable between vehicle and glucose co-incubated tissues.  Although the LDH 

release levels were significantly above control, there was a significant protection at the 

medium and high concentrations of myoglobin in the presence of pyruvate.  In addition, 

pyruvate-treated tissue did not develop the myoglobin concentration-dependent rise in 

LDH release.   

To address further the mechanism of pyruvate protection, ATP levels were 

measured in response to pyruvate treatment.  Pyruvate induced increases in ATP levels 
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by five-fold even in the absence of myoglobin (Figure 16).  However, slices concurrently 

treated with pyruvate and myoglobin, demonstrated incomplete protection of the decline 

of ATP levels of the myoglobin-treated group as compared to the control group.  The 

ATP levels in the pyruvate-treated group incubated with 4 or 10 mg/mL myoglobin were 

not different from the pyruvate-treated control group.   However, the pyruvate-treated 

group when incubated with 12 mg/mL demonstrated decreased ATP levels from the 

pyruvate-treated control group.   

 

2.3.2  Detoxification of radical pathways 

 Another possible mechanism of pyruvate protection was that pyruvate was acting 

as a radical scavenger similar to dimethylthiourea (DMTU).   The effect of myoglobin on 

LDH release and gluconeogenesis were investigated in the presence of DMTU.  Slices 

concurrently treated with DMTU and myoglobin for two hours, continued to exhibit 

toxicity as measured by LDH release (Figure 17).  A significant myoglobin 

concentration-dependent increase in LDH release was observed.  Additionally, DMTU 

failed to protect against loss of gluconeogenesis (Figure 18).  In the presence of DMTU, 

myoglobin still induced a loss of gluconeogenesis in a significant concentration-

dependent manner.  In fact, the levels of glucose were basically indistinguishable 

between DMTU and vehicle treated groups exposed to myoglobin.   

 The effects of pyruvate on myoglobin-induced lipid peroxidation and changes 

glutathione levels were investigated.  Concurrent treatment of the slices with myoglobin 

and pyruvate revealed a significant protection against lipid peroxidation (Table 4).  

Pyruvate alone did not alter lipid peroxidation in the absence of myoglobin.  In the 
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presence of pyruvate, lipid peroxidation was not increased in the myoglobin-treated 

group as compared to the control group.  In addition, at myoglobin concentrations of 4, 

10, and 12 mg/mL lipid peroxidation was significantly less in the presence of pyruvate 

than in the absence of pyruvate.   

The effect of pyruvate on glutathione levels was more interesting.  In the 

presence of pyruvate total glutathione levels in the myoglobin-treated group, continued 

to be significantly lower than control at one and two hours (Figure 19).  However, 

comparison of the glutathione levels in the pyruvate and vehicle groups revealed a key 

finding:  at one hour, the level of the pyruvate-treated control was significantly higher 

than that of the vehicle-treated control.  At two hours, all the total glutathione levels of 

the pyruvate-treated group were greater than those levels of the vehicle-treated control.  

Pyruvate acted to increase the levels of total glutathione.  Pyruvate also affected the 

levels of the glutathione disulfide (GSSG) in renal slices.  At one hour, in the presence 

of pyruvate there was a decrease in the GSSG levels, albeit not a significant one 

(Figure 20).  At two hours, though, pyruvate inhibited the myoglobin-induced elevation 

of GSSG levels.  The levels of GSSG in the vehicle-treated group were twice that of the 

pyruvate-treated group at 12 mg/mL myoglobin.  The pyruvate studies taken as a whole, 

demonstrated protection against myoglobin-induced LDH release, lipid peroxidation, 

and changes in glutathione levels.   Although the levels of ATP in the pyruvate-treated 

groups were five times those in the vehicle treated groups, ATP levels continued to 

decline in the presence of myoglobin regardless of treatment. 
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Figure 14.  Effect of pyruvate on myoglobin-induced LDH release  
 
This figure is a compilation of Figures 3 and 12.  Renal cortical slices were incubated 

with myoglobin (0-12 mg/mL) for a total of 120 minutes at 37°C.  Pyruvate (pyr, 10 mM 

final) was present for 0 minutes, the last 30 minutes, or the entire 120 minutes of 

incubation.  LDH release data are expressed as percent of total.   Values represent 

mean ± SEM with n=4 animals.  Groups with dissimilar superscripts are statistically 

(p<0.05) different from one another within each treatment. 
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Figure 15.  Effect of pyruvate or glucose on myoglobin-induced LDH release 
 
Renal slices were incubated with pyruvate (10 mM final) or glucose (1.67mM final) and 

myoglobin (0-12 mg/mL) for 120 minutes at 37°C.  LDH release data are expressed as 

percent of total.  Values represent mean ± SEM with n=4 animals.  Groups with 

dissimilar superscripts are statistically (p<0.05) different from one another within each 

treatment. 
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Figure 16. The effect of pyruvate on myoglobin-induced changes of ATP levels 
 
Renal slices were co-incubated with pyruvate (10 mM final) and myoglobin (0-12 

mg/mL) for 120 minutes at 37°C.  Samples were extracted and analyzed for ATP.  Data 

was expressed as amount ATP (nmol)/ g tissue. Values represent mean ± SEM with 

n=4-6 animals.  Groups with dissimilar superscripts were statistically (p<0.05) different 

from one another within each treatment.    
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Figure 17.  Effect of DMTU on myoglobin-induced LDH release  
 
Renal slices were co-incubated with DMTU (0.1mM final) and myoglobin (0-12 mg/mL) 

for 120 minutes at 37°C.  LDH release data are expressed as percent of total.  Values 

represent mean ± SEM with n=4 animals.  Groups with dissimilar superscripts are 

statistically (p<0.05) different from one another within each treatment. 
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Figure 18.  Effect of DMTU on myoglobin-induced loss of gluconeogenesis 
  
Renal slices were co-incubated with DMTU (0.1mM final) and myoglobin (0-12 mg/mL) 

for 120 minutes at 37°C.  To stimulate gluconeogenesis, pyruvate (10 mM final) was 

added during the last 30 minutes of incubation.  Gluconeogenesis data are expressed 

as amount glucose (mg) per gram (g) tissue.  Values represent mean ± SEM with n=4 

animals.  Groups with dissimilar superscripts are statistically (p<0.05) different from one 

another within each treatment. 
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Table 4.  Effect of pyruvate on myoglobin-induced lipid peroxidation  

 
Myoglobin (mg/mL) 

 
 

Pyruvate 
(mM) 

 
0 

 
4 

 
10 

 
12 

  
nmol/g tissue 

 
nmol/g tissue 

 
nmol/g tissue 

 
nmol/g tissue 

 
0 

 
114.20 ± 3.76A 

 
145.23 ± 9.09B 

 
135.60 ± 3.92B 

 
140.50 ± 6.34B 

 
10 

  
  95.63 ± 7.82A 

 
108.92 ± 5.05A* 

 
110.78 ± 8.89A* 

 
111.58 ± 7.53A* 

 

Renal slices were co-incubated with pyruvate (0 or 10 mM final) and myoglobin (0-12 

mg/mL) for 120 minutes at 37°C.  Lipid peroxidation was measured as described in 

methods.  Data are expressed as amount MDA (nmoles) per gram (g) tissue.  Values 

represent mean ± SEM with n=4-6 animals. Groups with dissimilar superscripts are 

statistically (p<0.05) different from one another within each incubation period. An 

asterisk (*) indicates statistical (p<0.05) difference between treatments with 

corresponding concentrations of myoglobin. 
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Figure 19.  Effect of pyruvate on myoglobin-induced changes in total glutathione 

levels  
 
Renal slices were co-incubated with pyruvate (0 or 10 mM final) and myoglobin (0-12 

mg/mL) for 60 or 120 minutes at 37°C.  Samples were extracted and analyzed for 

glutathione content as described in methods.  Total glutathione data are expressed as 

nmol/ mg tissue.  Values represent mean ± SEM with n=4-6 animals.  Groups with 

dissimilar superscripts are statistically (p<0.05) different from one another within each 

incubation period. 
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Figure 20.  Effect of pyruvate on myoglobin-induced changes in GSSG levels  
 
Renal slices were co-incubated with pyruvate (0 or 10 mM final) and myoglobin (0-12 

mg/mL) for 60 or 120 minutes at 37°C.  Samples were extracted and analyzed for 

GSSG content.  Data are expressed as %GSSG of total glutathione.  Values represent 

mean ± SEM with n=4-6 animals.  Groups with dissimilar superscripts are statistically 

(p<0.05) different from one another within each incubation time.    
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2.4.  DISCUSSION 

As illustrated in Figure 14, pyruvate protected against myoglobin toxicity.  

Pyruvate significantly reduced myoglobin toxicity when pyruvate was co-incubated with 

myoglobin and renal slices for two hours.  Although there was no significant protection 

when pyruvate was present for only 30 minutes; clearly, pyruvate attenuated myoglobin-

induced LDH release with respect to the amount of time that it was present in the 

incubation media.  Two possibilities for the mechanism of pyruvate protection were 

originally proposed: pyruvate could be serving as an energy source or it could be 

detoxifying radical pathways.   

 

2.4.1 Alternative substrate for energy 

 One possible mechanism of protection was that pyruvate acted as a substrate for 

energy production.  This was addressed in protection assays with glucose and 

evaluation of ATP levels in the presence of pyruvate.   For the protection assays with 

glucose, slices were concomitantly treated with myoglobin and glucose.  A 

concentration of 10 mM glucose provided protection of myoglobin-induced LDH release 

(data not shown). Because at high concentrations, glucose can function as a radical 

scavenger (Sagone et al., 1983; Wehmeier and Mooradian, 1994), a lower, more 

physiological concentration was chosen.  The second concentration of the glucose 

applied, 1.67 mM, was the average content that was measured in the media of controls.  

This was the maximum amount of glucose the slices produced under control conditions.  

The effect of this concentration of glucose on myoglobin-induced LDH release was 

compared to those of pyruvate and vehicle.  During a two-hour co-incubation with 
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glucose, myoglobin produced a concentration-dependent release of LDH (Figure 15).   

Furthermore, glucose failed to significantly reduce the LDH release of the myoglobin-

treated group as compared to the vehicle-treated group, thus providing no protection 

against loss of membrane integrity. In addition, the myoglobin-induced concentration-

dependent increase in LDH release of the glucose-treated group was comparable to the 

vehicle-treated group.  With the pyruvate-treated tissue, there was significant protection 

at medium and high doses of myoglobin, whereas glucose did not afford protection. It is 

unlikely that the lack of protection at the low concentration of glucose was due to 

inaccessibility to glucose transporters in the lumen because glucose may be taken into 

the cells via a sodium-independent glucose transporter on the basolateral membrane 

(Silverman, 1986; Mullin et al., 1989).  Although pyruvate may have slightly contributed 

to energy preservation, the data suggested another mechanism for protection.   

 To address further the mechanism of protection via an energy possibility, ATP 

levels were measured in response to pyruvate treatment (Figure 16).  The overall five-

fold increase of ATP levels in the pyruvate-treated group as compared to vehicle-treated 

group was an unexpected finding.  Because pyruvate induced a five-fold increase in 

ATP levels, it is possible that this increase was one basis for the mechanism of pyruvate 

protection.  However, slices concurrently treated with pyruvate and myoglobin, 

demonstrated incomplete protection against the decline of the ATP levels (Figure 16).  

At 4 and 10 mg/mL myoglobin, there was no difference in ATP levels of the pyruvate-

treated group as compared to the pyruvate-treated control group.  However, at 

12mg/mL myoglobin, there was a significant decrease in the ATP levels as compared to 

control within the pyruvate-treated group.  Pyruvate provided limited protection from 
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LDH release and the decline of ATP levels at the high concentration of myoglobin. The 

percentage of LDH release above control was the same percentage of decline below 

control in ATP levels when slices were incubated with pyruvate and myoglobin.  This 

mimicked the experiments in the absence of pyruvate in that the percentage of LDH 

release above control in the myoglobin treated was the same percentage of decline 

below control in ATP levels.  In consideration of the relationship between LDH release 

and ATP changes, the decline in ATP levels seems to have been caused by loss of 

membrane integrity.  When taken with the glucose experiments, the changes in ATP 

levels indicated that pyruvate might have slightly acted to sustain energy, but also 

suggested an additional mechanism for protection.    

 

2.4.2 Detoxification of radical pathways 

As a second possibility, pyruvate could be acting to detoxify radical pathways.   

Because H2O2 levels are elevated in myoglobin toxicity and part of the mechanism is 

iron-dependent, hydroxyl radicals could be the major radical contributing to toxicity.  

Previous literature has reported variable results for the possible role of hydroxyl radical 

in myoglobin toxicity (Shah and Walker, 1988; Zager et al., 1995; Zager and Burkhart, 

1997).  To ascertain the possibility that a hydroxyl radical is generated and to better 

explain the protection by pyruvate, assays were performed with a known hydroxyl 

radical scavenger, dimethylthiourea (DMTU).   Slices were co-incubated with myoglobin 

and DMTU for two hours.  DMTU did not afford any significant protection against LDH 

release and thus loss of viability (Figure 17).  Furthermore, DMTU had no significant 

protective effect on gluconeogenesis.   It is doubtful that the concentration of DMTU was 
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not sufficient to produce results, as the concentration used was within the range used in 

other in vitro studies (Zager and Burkhart, 1997).  Overall, the lack of protection 

suggested that hydroxyl radicals were not involved in myoglobin toxicity in renal cortical 

slices within the selected time period.  In addition, because pyruvate protected against 

LDH release and DMTU did not, these experiments suggested the mechanism of 

pyruvate protection did not involve detoxification of hydroxyl radicals.  The previous 

DFX and GSH protection experiments together indicated that the loss of 

gluconeogenesis might be due to an iron-independent radical.  This excluded the 

hydroxyl radical as a potential culprit.  The lack of effect of DMTU to reduce myoglobin 

mediated effects on gluconeogenesis lent further support to a lack of hydroxyl radical 

involvement.  This is to say that in the short-term exposure of myoglobin to renal cortical 

slices, hydroxyl radicals do not appear to have a role.  However, the possibility remains 

that hydroxyl radicals may be involved at some point in rhabdomyolysis. 

 If pyruvate was acting to detoxify other radicals, the effect on lipid peroxidation 

and glutathione levels should reveal this.  A two-hour incubation period was chosen 

although lipid peroxidation was first demonstrated at one hour.  The rationale for this 

selection was: first, pyruvate may have increased the amount of time necessary for 

myoglobin to induce lipid peroxidation.  Thus, an extra hour of incubation would allow 

more time to detect increases in lipid peroxidation.  Second, at one hour, the variability 

of the data may have masked any protection.  Co-incubation of the slices with 

myoglobin and pyruvate for two hours led to a significant decrease in lipid peroxidation 

as compared to control and vehicle-treated tissues (Table 4).  This suggested that 
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pyruvate might be acting to detoxify radicals that are responsible for the lipid 

peroxidation in general.   

The glutathione levels revealed a more interesting finding.  A closer look at the 

glutathione data revealed an increase in total glutathione as compared to vehicle at all 

concentrations of myoglobin at both incubation times.  Both a one and two-hour 

incubation with myoglobin and pyruvate continued to result in a decline of total 

glutathione levels as compared to control (Figure 19).  This data suggested that 

perhaps, pyruvate was serving to increase the levels of total glutathione thus enabling 

the tissues to better manage oxidative damage.  Pyruvate has been reported to 

enhance the endogenous glutathione system in myocardium (Tejero-Taldo et al., 1999; 

Mallet, 2000).  The increase in ATP levels in the presence of pyruvate could also 

contribute to the beneficial changes in total glutathione levels, by providing sufficient 

ATP to catalyze the conversion of oxidized glutathione to reduced glutathione.    

Concerning the glutathione disulfide (GSSG) levels, the overall increase of total 

glutathione may partially explain the reduction in the percentage GSSG with a two-hour 

incubation (Figure 20).  Increasing the levels of total glutathione would decrease the 

percentage of GSSG as compared to total.   In summary, pyruvate might have been 

working in conjunction with reduced glutathione to detoxify radicals and decrease lipid 

peroxidation.  However, the decline in the total glutathione levels in the myoglobin 

treated versus control refuted this.  Additionally, pyruvate appeared to increase 

glutathione levels and ATP levels, allowing greater capacity to deal with oxidative stress 

and perhaps to help fuel repair systems. 
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CHAPTER 3.  THE ROLE OF IRON AND OTHER COMPONENTS OF MYOGLOBIN 
IN TOXICITY 

 

3.1.  INTRODUCTION 

Iron is essential for many processes in the body; yet, it also plays a role in the 

formation of radicals that can attack biological molecules.  Thus, control of iron levels is 

achieved via a tightly regulated system the body has developed.  This control 

mechanism includes unique proteins for the transport (transferring) and storage (ferritin) 

of iron. The normal blood level of iron is 10µM (Ferreira et al., 1999).  In muscle cells, 

iron is maintained in the ferrous (Fe2+) form and is unable to participate in redox cycling 

(Moore et al., 1998).  Under certain circumstances the iron in the heme group can redox 

cycle between the ferric (Fe3+) and the ferryl ([Fe=O]2+) forms.  The latter of which may 

directly initiate lipid peroxidation (Hogg et al., 1994; Patel et al., 1996).  The existence of 

the ferryl form has been questioned.  However, recent evidence suggests that it does 

exist.   Holt et al., (1999) described evidence to indicate ferryl myoglobin exists in vivo.  

The heme present in the urine of rhabdomyolytic patients was cross-linked to protein.  

This process only occurs during the formation of the ferryl form.  In order for the iron to 

redox cycle, it must first exist in the ferric (Fe3+) form.  Interestingly, it is estimated that 

at any given time in vivo, 1-2% of human hemoglobin is in the ferric form (Antonini and 

Brunori, 1971). 

  When the filtered load of myoglobin or hemoglobin exceeds absorptive capacity 

of the proximal tubules, the reabsorption of water results in an increase in the 

concentration of the globin.  Together, this process results in the precipitation of 

proteins within the lumen and subsequent release of iron (Bunn and Jandl, 1969; Zager, 
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1992).  The redox form deposited is metmyoglobin (Fe3+) (Moore et al., 1998).  This 

metmyoglobin deposition could provide a mechanistic basis to explain how 

myoglobinuria can cause lipid peroxidation independent of free iron and conventional 

Fenton reactions (Moore et al., 1998).  Of course, this premise is based on the ability of 

the metmyoglobin to deposit in the lumen, thus initiating the toxicity.  In the in vitro slice 

model, the lumen is collapsed.  Any toxicity noted would preclude the necessity of 

deposition of metmyoglobin or the release of iron within the lumen for initiation of 

toxicity.  Furthermore, the role of iron in lipid peroxidation in vivo is questionable 

because the body has developed comprehensive mechanisms to bind free iron and 

prevent toxicity.   

 An alternative first step in the free radical pathway is proximal tubule cell 

transport and accumulation of porphyrin molecules.  In cells, the porphyrin rings can 

undergo degradation and result in iron release with the released iron being eliminated 

over several weeks (Bunn and Jandl, 1969).   The iron can be liberated by various 

means including H2O2 (Gutteridge, 1986) and heme oxygenase.  Heme oxygenase 

(HO) is a stress protein found predominately in the distal tubules.  HO serves to break 

down heme and liberates free iron.  It is increased in response to any stimulus 

producing oxidative stress.  The HO-1 gene is upregulated exclusively in distal parts of 

the nephron while the proximal tubule sustains the damage.  HO is rapidly upregulated 

in myoglobin-ARF and the induction or suppression can change the severity of glycerol-

ARF (Nath et al., 1992).    Nath et al. (1992) reported that induction of HO with small 

concentrations of myoglobin protected renal function from subsequent rhabdomyolysis 

in the glycerol model using male Sprague Dawley rats.  Likewise, Zager et al. (1995) 
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verified that incubation with an HO inhibitor could block the in vitro expression of 

increased MDA and LDH release levels following glycerol injection.  Later, Zager and 

Burkhart (1997) further demonstrated that co-incubation of HK-2 cells with an HO 

inhibitor induced a concentration dependent cytoprotection suggesting that inhibition of 

the breakdown of myoglobin could enlist cytoprotection.   

 Tin protoporphyrin IX (SnPP) is a competitive inhibitor of HO.  Studies have used 

SnPP to confer protection against myoglobin toxicity.  Zager et al. (1995) reported that 

SnPP protected proximal tubule cells isolated from glycerol-injected animals from lipid 

peroxidation and cell death.  He further reported that adding SnPP only during the in 

vitro part of the study still induced cytoprotection.  Zager and Burkhart (1997) also 

investigated SnPP effects on myoglobin toxicity in HK-2 cells.  He demonstrated a 

concentration-dependent cytoprotection when the cells were co-incubated with 

myoglobin and SnPP.    

The proposed mechanism of protection of the SnPP is the inhibition of HO and 

thus prevention of the degradation of myoglobin and subsequent release of free iron. 

Many investigators suggest that free iron is the main cause of the myoglobin toxicity.  

However, the source of this free iron is debatable.  Zager  (1993) reported that following 

a myoglobin infusion of the kidney; 25 µg of heme per mg total protein in proximal 

tubular segments (PTS) was loaded into the proximal tubules.  A bleomycin analysis 

revealed that ‘catalytic’ free iron was double the heme content.  Zager concluded there 

was a secondary release of iron from intracellular stores.     

Iron chelators, such as DFX, have been shown consistently to protect against 

myoglobin toxicity.  In addition to the chelation of free iron, the protective effect has 
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been taken generally as evidence for participation of hydroxyl radicals.  DFX has been 

shown to directly scavenge hydroxyl radicals in in vitro systems (Halliwell and 

Gutteridge, 1986).  However, it is unlikely that DFX was acting in this capacity because 

DFX probably was not present in sufficient concentrations intracellularly to be intimately 

associated with the site of production of hydroxyl radicals, as hydroxyl radical 

scavengers must be, due to the extremely fast rate of reduction of the radical (Halliwell 

and Gutteridge, 1986).  DFX has conferred protection in in vivo and in vitro models of 

myoglobin toxicity (Paller, 1988; Zager and Burkhart, 1997).  Specifically, rats infused 

with myoglobin demonstrated a 24% drop in ATP levels that was blocked by the 

administration of DFX.  It was concluded that myoglobin depleted adenylate pools via 

an iron-dependent mechanism (Zager, 1991).   This conclusion may not be entirely 

accurate because DFX has another potential mechanism of protection.  DFX is capable 

of reducing the ferryl form of myoglobin and its associated globin radical to the ferric 

form (Turner et al., 1991).  Regardless of the specific mechanism, DFX protection can 

provide insight into the mechanism of myoglobin toxicity.  Either way, the use of DFX 

can indicate free radical mechanisms that involve an iron-dependent pathway.   

As outlined in Chapter 1, DFX use in this study agreed with previous literature in 

that it conferred protection as seen by the attenuation of LDH release (Figure 6).   The 

ability of DFX to reduce myoglobin toxicity was further assessed using ATP levels, GSH 

levels, gluconeogenesis, and lipid peroxidation.  Moreover, to better dissect the role of 

iron in the toxicity, assays were conducted in the presence of equimolar amounts of 

ferric chloride as compared to myoglobin.   The free iron solution was prepared in a 

manner similar to myoglobin.  More specifically, an equimolar amount of ferric chloride 
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was prepared in the presence of 4 mM ascorbic acid, as used to reduce the myoglobin 

to the ferrous form.  Previous literature as well as experiments performed in this study 

indicated that only the reduced form of myoglobin was toxic (Figure 2; Zager and 

Foerder, 1992; Zager and Burkhart, 1997).  In a study by Zager and Foerder (1992), a 

mixture of Fe2+/Fe3+ (4 mM total) was added to proximal tubular segments for 45 

minutes.  The addition of Fe2+/Fe3+ produced marked cytotoxicity as defined by LDH 

release and lipid peroxidation.  Fe2+ or Fe3+ alone each induced massive lipid 

peroxidation, but only Fe2+ caused LDH release.  This study will compare the toxicity of 

the myoglobin to that of equimolar amounts of iron. 

Myoglobin nephrotoxicity cannot be attributed solely to tissue iron loading (Zager, 

1991).  It has been shown that endocytotic protein uptake and not necessarily cell iron 

loading is largely responsible for nephrotoxicity of heme proteins (Zager et al., 1987).  

Heme may be involved in toxicity since the heme content in the mitochondria was 

increased ten-fold following glycerol injection into rats (Nath et al., 1998).  Clearly, the 

potential for heme to contribute to the toxicity does exist.  This study will investigate this 

potential further.  Equimolar amounts of SnPP were used in place of myoglobin.  The 

toxicity will be compared to that of the myoglobin in its entirety and to the iron.  

Evaluating the toxicity of myoglobin as a whole and its components will give insight into 

the mechanism of myoglobin toxicity.  In addition, protection studies with SnPP and 

DFX will strengthen the findings regarding the role of myoglobin and its components.  
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3.2.  MATERIALS AND METHODS 
 
3.2.1 Chemicals and sources 
  
(Company and catalog number) 
 
Sn(IV) Protoporphyrin IX (Frontier Scientific; Porphyrin Products, Sn749-9)  

FeCl3 (Fisher Scientific, I-88)  

Protoporphyrin IX (Sigma, P8293) 

 
3.2.2 Incubation of renal slices. 
 

Renal cortical slices (50-100 mg) were pretreated for 10 or 15 minutes with DFX 

(0.1mM final concentration).  Note: the pretreatment was 10 minutes for the LDH 

release and gluconeogenesis data, while 15 minutes with the other parameters of 

toxicity.  Upon completion of the pretreatment period, myoglobin was added at a final 

bath concentration of 0, 4, 10 or 12 mg/mL.  Tissues were incubated for two hours at 

37oC under 100% oxygen and constant shaking (100 cycles/minute) in a Dubnoff 

metabolic incubator.  For the gluconeogenesis experiments, pyruvate  (10 mM final 

concentration) was present for the last 30 minutes of incubation.  Upon completion of 

the incubation, LDH release, pyruvate-stimulated gluconeogenesis, ATP levels, 

glutathione status, or lipid peroxidation were measured in vehicle and myoglobin-treated 

tissue.  Parameters were assessed as described previously in Chapter 1 Materials and 

Methods.   

Other experiments were designed as a component analysis of myoglobin.  Renal 

slices (50-100 mg) were incubated with ferric chloride, protoporphyrin IX (PP9), or tin 

protoporphyrin (SnPP) at equimolar concentrations to myoglobin (0-12 mg/mL) for 90 

minutes at 37oC under oxygen and constant shaking (100 cycles/minute).  At the end of 
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the 90-minute incubation, gluconeogenesis was stimulated by addition of 100 µL of 

pyruvate (10 mM final concentration, in Krebs) and the tissue was incubated an 

additional 30 minutes. See Appendix I for details on preparation of ferric chloride, PP9, 

and SnPP solutions in addition to detailed incubation procedures. 

Additional studies investigated the pretreatment of renal slices with SnPP (0.03 

mM final concentration) for 30 minutes prior to addition of myoglobin.  Following 

pretreatment, myoglobin (0, 4, 10 or 12 mg/mL final concentration) was added and the 

slices were incubated for 90 minutes at 37oC under oxygen and constant shaking (100 

cycles/minute).  At the end of the 90-minute incubation, gluconeogenesis was 

stimulated by addition of 100 µL of pyruvate (10 mM final concentration, in Krebs) and 

the tissue was incubated an additional 30 minutes.  
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3.3.  RESULTS 

Pretreatment with deferoxamine (DFX) did lend protection against myoglobin 

toxicity.  Pretreatment of the slices for 15 minutes with DFX, followed by a two-hour 

incubation with myoglobin resulted in a significant attenuation of LDH release (Figure 6).  

The levels in the presence of myoglobin were not significantly different from control 

within the DFX treatment.  Moreover, at 12 mg/mL myoglobin, a significant reduction in 

LDH release was evident as compared to vehicle treated.    The gluconeogenesis data 

revealed an opposite finding.  Pretreatment of the slices with DFX failed to protect 

against the loss of gluconeogenesis (Figure 7).  The concentration-dependent decrease 

in gluconeogenesis induced by myoglobin was basically indistinguishable between the 

DFX and vehicle pretreated groups.  Because DFX has varying effects of myoglobin 

toxicity, the role of DFX in the mechanism of myoglobin toxicity was further investigated 

by evaluating the effect on ATP levels, lipid peroxidation, and glutathione levels.  

 

3.3.1  The effect of DFX on the parameters of myoglobin toxicity 

Pretreatment of the slices with DFX for 10 minutes prior to a two-hour incubation 

with myoglobin prevented a decline of ATP levels (Figure 21).  ATP levels were 

decreased at 10 and 12 mg/mL myoglobin in the absence of DFX.  DFX pretreatment 

had a similar effect on myoglobin-induced effects on lipid peroxidation.  In the presence 

of DFX, lipid peroxidation was markedly and significantly decreased as compared to 

control (Table 5).  Furthermore, protection was afforded by DFX at all concentrations of 

myoglobin compared to vehicle-treated groups.  At the high concentration of myoglobin, 

the levels of MDA were approximately 140nmoles per gram tissue whereas in the DFX 
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treated the levels were only about 100nmoles per gram tissue.  Even the control values 

were significantly reduced: approximately 114nmoles per gram tissue in vehicle treated 

whereas about 84nmoles per gram tissue in the DFX pretreated group.  Like lipid 

peroxidation, glutathione levels were dramatically protected.  Myoglobin failed to 

decrease total glutathione levels below control in the presence of DFX (Figure 22).  

Additionally, the DFX pretreatment lead to a significant increase in levels of total 

glutathione at each concentration with respect to vehicle treated.  Notably, this was 

similar to pyruvate protection as it increased total glutathione at all concentrations of 

myoglobin (Figure 19).  The exception was a significant concentration-dependent 

decrease in total glutathione levels below control with the pyruvate treatment.   

DFX also afforded protection of the rise in GSSG levels (Figure 22).   In the 

presence of DFX, GSSG levels of the myoglobin treated were not significantly different 

from control.  At 4, 10, and 12 mg/mL myoglobin, DFX pretreatment produced a 

significant decrease in the GSSG levels as compared to the DFX-vehicle group.  In fact, 

at the high concentration of myoglobin, DFX pretreatment resulted in a striking four-fold 

decrease in the GSSG levels from the DFX-vehicle-pretreated group.  Again, this result 

was similar to pyruvate protection, except the decrease was only two-fold (Figure 20).  

Also, there was a non-significant trend for all the GSSG levels of the DFX treated to be 

lower than the DFX-vehicle control group values.   

 

3.3.2  Component analysis 

As a part of the component analysis of myoglobin, ferric chloride (FeCl3) was 

used to simulate the free iron contribution.  Slices were incubated two hours with 
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equimolar amounts of FeCl3 pretreated with ascorbic acid as compared to myoglobin.  

Incubation with FeCl3 produced a significant concentration-dependent increase in LDH 

release (Figure 23.)  The levels within each concentration of FeCl3 were similar to those 

demonstrated with equimolar concentrations of myoglobin, albeit slightly lower.  A 

difference between the treatments at each concentration was not evident until the 

highest concentration of myoglobin.  At the high concentration, myoglobin produced a 

significantly elevated LDH release.  However, remarkable differences in toxicity profiles 

between iron and myoglobin was revealed in the gluconeogenesis data (Figure 24).   

FeCl3 produced a significant concentration-dependent compromise of gluconeogenesis; 

however, not as pronounced as observed for myoglobin.  Additionally, at all 

concentrations of treatment (with the exception of the control group) there was a 

significant decrease in gluconeogenesis with the myoglobin treated as compared to the 

FeCl3 treated groups.  Although FeCl3 resulted in a slight compromise, gluconeogenesis 

predominately was maintained which was in great contrast to the effect of myoglobin on 

gluconeogenesis.  These results supported an iron-independent component to 

myoglobin toxicity. 

 Another part of the component analysis involved tin (Sn) protoporphyrin (IX) 

(SnPP) in place of myoglobin to simulate the heme component in the absence of iron.  

Protoporphyrin IX was originally chosen to simulate the heme component of myoglobin.   

However, due to solubility problems at levels comparable to 1mg/mL myoglobin, the 

studies were conducted with SnPP instead.  Incubation of the renal slices with SnPP 

produced effects varying from those with myoglobin.  The concentrations of SnPP used 

ranged from 0 to 0.227mM.  These concentrations were equimolar to 0, 1, 2, 4mg/mL 
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concentrations of myoglobin.  Incubation of the renal slices with SnPP produced a 

significant concentration-dependent decrease in LDH release in the treated groups as 

compared to control (Figure 27).  This effect was in direct contrast to the myoglobin-

induced increase in LDH release.  To determine if SnPP was interfering with the LDH 

assay, the total levels of LDH were calculated.  SnPP failed to have any effect on the 

total LDH values (Table 6).   

The effects of SnPP on gluconeogenesis were similar to those effects of 

myoglobin.  SnPP incubation of the renal slices produced a significant concentration-

dependent decrease in gluconeogenesis, as did myoglobin treated (Figure 28).  Note: 

the levels of myoglobin shown in the figure were 0-12 mg/mL because there were no 

gluconeogenesis data for 1 or 2 mg/mL myoglobin.  The controls for the SnPP-treated 

group were lower than the myoglobin treated group, although not significant.  Notably, 

the vehicle for the SnPP control was DMSO whereas the myoglobin vehicle was Krebs-

Ringer buffer.   

The third and final element of the component analysis was the utilization of SnPP 

in protection assays.  SnPP inhibits heme oxygenase, the enzyme responsible for the 

breakdown of myoglobin as well as other globins.  A thirty-minute pretreatment of slices 

with SnPP followed by a two-hour incubation with myoglobin, produced a significant 

concentration-dependent release of LDH as compared to control group values (Figure 

25).  However, the amount of LDH release was slightly lower in the SnPP treated as 

compared to the vehicle treated group.  Specifically, at four and 10 mg/mL of myoglobin, 

there was a significant difference between the treatments.  The protection lent by SnPP 

was more pronounced in the gluconeogenesis data (Figure 26).  Within the SnPP 
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treated, the levels of gluconeogenesis in the presence of myoglobin were not 

significantly different from control.  Furthermore, pretreatment with SnPP produced a 

significant rescue of the loss in gluconeogenesis at all levels of myoglobin as compared 

to SnPP-vehicle pretreatment.  In summary, SnPP produced a slight protection of LDH 

leakage with a dramatic protection of gluconeogenesis.  

 In summary, DFX protected against the early events including lipid 

peroxidation and changes in glutathione levels in addition to the late events of LDH 

release and alterations of ATP levels.  Ferric chloride produced a similar increase in 

LDH release as myoglobin, albeit, the levels were slightly lower.  However, incubation of 

renal slices with SnPP yielded a protection of gluconeogenesis as compared to 

myoglobin treated.  Pretreatment of the renal slices with a small concentration of SnPP 

prior to incubation with myoglobin demonstrated only a slight protection of LDH release 

with a considerable protection of gluconeogenesis.   Incubation of the renal slices with 

higher concentrations of SnPP in the absence of myoglobin resulted in a significant 

decrease in LDH release and a similar loss of gluconeogenesis as compared to 

myoglobin treated tissue.  
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Figure 21. Effect of DFX on myoglobin-induced changes in ATP levels 
 
Renal slices were pretreated with 0.1mM DFX for 10 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  Samples were extracted and analyzed for ATP.  Data are expressed as 

ATP (nmol) / g tissue. Values represent mean ± SEM with n=4-6 animals.  Groups with 

dissimilar superscripts are statistically (p<0.05) different from one another within each 

treatment. 
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Table 5.  Effect of DFX on myoglobin-induced lipid peroxidation    

 
Myoglobin (mg/mL) 

 
 

DFX 
 (mM) 

 
0 

 
4 

 
10 

 
12 

  
nmol/g tissue 

 
nmol/g tissue 

 
nmol/g tissue 

 
nmol/g tissue 

 

0 

 

114.20 ± 3.76A 

 

145.23 ± 9.09B 

 

135.60 ± 3.92B 

 

140.50 ± 6.34B 

 

0.1 

  

  84.29 ± 3.23A* 

   

  91.26 ± 5.36A* 

 

  92.36 ± 7.45A* 

   

  99.96 ± 5.75A* 

 

Renal slices were pretreated with 0.1mM DFX for 10 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL). Data are expressed as nmoles MDA per gram (g) tissue.  Values 

represent mean ± SEM with n=4-6 animals. Groups with dissimilar superscripts are 

statistically (p<0.05) different from one another within each treatment. An asterisk (*) 

indicates statistical (p<0.05) difference between treatments within corresponding 

concentrations of myoglobin. 
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Figure 22.  Effect of DFX on myoglobin-induced changes in glutathione levels 
 
Renal slices were pretreated with 0.1mM DFX for 10 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  Samples were extracted and analyzed for glutathione content as 

described in the methods.  Total glutathione data are expressed as nmoles of total per 

(mg) tissue.  Within total glutathione levels, groups with dissimilar superscripts are 

statistically (p<0.05) different from one another.  Glutathione disulfide (GSSG) data are 

expressed as %GSSG of total GSSG.  Values represent mean ± SEM with n=4 animals. 

Within GSSG levels, groups with dissimilar superscripts are statistically (p<0.05) 

different from one another within each pretreatment. An asterisk (*) indicates statistical 

(p<0.05) difference of GSSG levels between treatments within corresponding 

concentrations of myoglobin.  
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Figure 23.  Comparison of LDH release in response to myoglobin or FeCl3 

incubation    
  
Renal slices were incubated 120 minutes with myoglobin (0-12 mg/mL) or FeCl3 (0-

0.680 mM pretreated with 4 mM ascorbic acid).  LDH release data are expressed as 

percent of total.  Values represent mean ± SEM with n=4 animals.  Groups with 

dissimilar superscripts are statistically (p<0.05) different from one another within each 

treatment.  
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Figure 24.  Comparison of gluconeogenesis in response to myoglobin or FeCl3 

incubation     
 
Renal slices were incubated for 120 minutes with myoglobin (0-12 mg/mL) or FeCl3 (0-

0.680 mM pretreated with 4 mM ascorbic acid).  To stimulate gluconeogenesis, 

pyruvate (10 mM final) was added during the last 30 minutes of incubation.  

Gluconeogenesis data are expressed as amount glucose (mg) per gram (g) tissue.  

Values represent mean ± SEM with n=4 animals.  Groups with dissimilar superscripts 

are statistically (p<0.05) different from one another within each treatment.  An asterisk 

(*) indicates statistical (p<0.001) difference between treatments within corresponding 

concentrations.   
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Figure 25.  Effect of SnPP on myoglobin-induced LDH release 
  
Renal slices were pretreated with 0.03 mM SnPP for 30 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  LDH release data are expressed as percent of total.  Values represent 

mean ± SEM with n=4 animals.  Groups with dissimilar superscripts are statistically 

(p<0.05) different from one another within each pretreatment. 
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Figure 26.  Effect of SnPP on myoglobin-induced loss of gluconeogenesis  
  
Renal slices were pretreated with 0.03 mM SnPP for 30 minutes at 37°C.  Following 

pretreatment, the tissues were co-incubated an additional 120 minutes with myoglobin 

(0-12 mg/mL).  To stimulate gluconeogenesis, pyruvate (10 mM final) was added during 

the last 30 minutes of incubation.  Gluconeogenesis data are expressed as amount 

glucose (mg) per gram (g) tissue.  Values represent mean ± SEM with n=4 animals.  

Groups with dissimilar superscripts are statistically (p<0.05) different from one another 

within each treatment. An asterisk (*) indicates statistical (p<0.05) difference 

between pretreatments within corresponding concentrations of myoglobin. 
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Figure 27.  LDH release in response to incubation with myoglobin or SnPP  
    
Renal slices were incubated 120 minutes with myoglobin (0-12 mg/mL, buffer vehicle) 

or SnPP (0-0.227 mM, DMSO vehicle).  LDH release data are expressed as percent of 

total.  Values represent mean ± SEM with n=4 animals.  Groups with dissimilar 

superscripts are statistically (p<0.05) different from one another within each treatment.  
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Table 6.  Total LDH following incubation of renal slices with SnPP  
 

 
SnPP 
(mM) 

 
Total LDH  

(Units) / mg tissue 
 

0 
 

25.7 ± 1.6A 
 

0.056 
 

25.5 ± 1.7 A 
 

0.114 
 

27.0± 1.7 A 
 

0.227 
 

27.3 ± 0.8 A 
 
Renal slices were incubated for 120 minutes with SnPP (0-0.227 mM).  

Total LDH was measured.  Data are expressed as total LDH (units) per 

gram (g) tissue.  Values represent mean ± SEM with n=4 animals.  

Groups with dissimilar superscripts are statistically (p<0.05) different 

from one another within each treatment. 
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Figure 28.  Gluconeogenesis in response to incubation with myoglobin or SnPP   
    
Renal slices were incubated 120 minutes with myoglobin (0-12 mg/mL, vehicle water) or 

SnPP (0-0.227mM, vehicle DMSO).   Note: SnPP levels are equimolar to 0,1,2 or 4 

mg/mL myoglobin.  To stimulate gluconeogenesis, pyruvate (10 mM final) was added 

during the last 30 minutes of incubation.  Gluconeogenesis data was expressed as 

amount glucose (mg) per gram (g) tissue.  Values represent mean ± SEM with n=4 

animals.  Groups with dissimilar superscripts were statistically (p<0.05) different from 

one another within each treatment.  
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3.4.  DISCUSSION   

Some form of iron has been shown repeatedly to be an important component of 

myoglobin toxicity.  This chapter was designed to investigate this role as well as the role 

of the other components of myoglobin.   

 

3.4.1 The effect of DFX on the parameters of myoglobin toxicity 

Iron chelators, such as DFX, have been shown to protect against myoglobin 

toxicity in in vivo and in vitro models (Paller, 1988; Zager and Burkhart, 1997).  The 

present  study sought to investigate the protection with DFX to verify the slice model as 

a relevant model for studying myoglobin toxicity.  Furthermore, the use of DFX would 

allow investigation of individual toxic events along the constructed time line in relation to 

iron involvement.  DFX was an ideal iron chelator to use for this study for two reasons.  

Not only can DFX chelate free ferrous iron, but DXF is also capable of reducing the 

ferryl form of myoglobin and the associated globin radical to the ferric form (Turner et 

al., 1991).  In addition, DFX can directly scavenge hydroxyl radicals in in vitro systems 

(Halliwell and Gutteridge, 1986) or it can chelate iron used in the production of hydroxyl 

radicals.  Regardless of the specific mechanism, DFX protection can provide insight into 

the iron-related mechanisms of myoglobin toxicity and the involvement of radicals.   

DFX attenuated myoglobin toxicity (Figure 6).  It was unlikely that DXF was 

directly scavenging hydroxyl radicals because it probably was not present in sufficient 

concentrations intracellularly to be intimately associated with the site of production of 

hydroxyl radicals.   As a second possibility, DFX could have been chelating free iron, 

thus preventing the production of hydroxyl radicals propagated via Fenton reactions.  
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However, taken with the DMTU protection results, it is unlikely that DFX was functioning 

to decrease hydroxyl radicals in this way because the results with DMTU suggested 

hydroxyl radicals were not involved in myoglobin toxicity in the renal cortical slice model.    

On the contrary, DFX pretreatment did not provide protection from myoglobin-

induced decreases in gluconeogenesis (Figure 7).  In fact, the fall of the glucose levels 

was basically indistinguishable between DFX and DFX-vehicle pretreated groups.  The 

effects of DFX suggested several things concerning gluconeogenesis and myoglobin 

toxicity.  For one, the loss of gluconeogenesis was not iron-dependent.  Moreover, 

because DFX can detoxify ferryl myoglobin radicals, the results suggested that the 

effect on gluconeogenesis was not ferryl radical related.  Also, because there was a 

dramatic loss of gluconeogenesis with retention of membrane integrity, loss of 

gluconeogenesis probably was not a major contributing factor to loss of viability.  In 

general, the effect of DFX on LDH release indicated that the mechanism of toxicity was 

iron-dependent and based on the observed effects on gluconeogenesis, a component of 

the myoglobin toxicity was iron-independent.   

Because there was lack of protection of one of the early indicators of toxicity, 

namely gluconeogenesis, the effect of DFX on the other early measures of toxicity was 

investigated.  Together, lipid peroxidation and decreased glutathione levels implied the 

involvement of radicals.  If these radicals were iron dependent, DFX should lend 

protection.  Slices incubated with myoglobin following a 10-minute pretreatment with 

DFX were evaluated for lipid peroxidation.  DFX significantly protected at all 

concentrations of myoglobin in addition to the controls (Table 5).  The effect of DFX on 

glutathione levels mimicked that of lipid peroxidation.  In the presence of DFX, slices 
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demonstrated an overall increase in total glutathione levels with a reduction in GSSG 

levels as compared to vehicle-treated group values (Figure 22).  This was similar to the 

effect of pyruvate (Figure 19).  However, whereas pyruvate did not protect against a 

decline of total glutathione levels within the treated groups, DFX provided significant 

protection.  Like pyruvate, DFX prevented the increase in GSSG levels (Figure 22).  At 

the high concentration of myoglobin, pyruvate (Figure 20) provided a two-fold reduction 

in the GSSG levels as compared to control; whereas, DFX afforded a four-fold 

reduction.  Notably, pyruvate and DFX acted similarly, but not synonymously.  Together, 

these results suggested that unlike pyruvate, DFX might have been acting to detoxify 

free radicals.  This detoxification could have resulted in elevated total glutathione levels, 

as there were no more free radicals to detoxify.   

The protection from lipid peroxidation and depletion of glutathione levels in the 

presence of DFX suggested these events were iron-dependent.  In addition, the results 

implied that the radicals involved could have been the ferryl myoglobin radicals and/or 

other iron-dependent radicals barring hydroxyl radicals.   

A study by Zager (1991) reported that myoglobin depleted adenylate pools via an 

iron-dependent mechanism.  To determine if iron played a role in the decline of ATP 

levels, slices pretreated with DFX prior to a two-hour incubation with myoglobin were 

evaluated for changes in ATP levels.   DFX provided protection against the decline of 

ATP levels.  This suggested the decline in ATP levels was iron-dependent or 

downstream from an iron-dependent event.  In addition, the results indicated that loss of 

gluconeogenesis was not responsible for the decline in ATP levels as DFX protected 

the decline of ATP levels without protecting the loss of gluconeogenesis.  In 
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consideration of the time frame for the decline in ATP levels, the decline of ATP levels 

must involve the iron-dependent pathway and be downstream from oxidative events as 

indicated by lipid peroxidation and changes in glutathione levels.   

 

3.4.2 Component analysis 

The experiments in this section were designed to determine if myoglobin as a 

whole or which components of myoglobin were responsible for the toxicities observed 

thus far.  Several studies had suggested that the iron in the myoglobin was the 

determinant for toxicity.  To simulate the iron component, ferric chloride (FeCl3) was 

used.  The ferric chloride was also pretreated with ascorbic acid to achieve ferrous 

(Fe2+) iron.  Incubation with iron in equimolar amounts to myoglobin produced a 

concentration-dependent increase in LDH release (Figure 23).  The concentration-

dependent LDH release with the FeCl3 group was very similar to the myoglobin treated 

group, albeit the LDH release levels were slightly lower.  The levels of LDH release 

were basically indistinguishable between the treatment groups with respect to 

concentrations. This might have suggested that complete release of iron (Fe2+) from 

myoglobin occurred, thus causing toxicity that was indistinguishable from Fe2+-induced 

LDH release.  Zager and Foerder (1992) reported similar results with iron treatment, in 

that incubation of freshly isolated proximal tubule segments with iron (2mM Fe2+/2mM 

Fe3+) demonstrated a significant increase in LDH release above control.  Although the 

levels of iron were two-fold higher than the concentration of iron in this study, the levels 

were equimolar to those levels achieved in Zager’s glycerol-induced rhabdomyolysis 

model.  Moreover, Zager (1993) concluded that there was a secondary release of iron 

 101 
 
 



from intracellular stores in addition to myoglobin.  Therefore, it cannot be stated that the 

iron-induced loss of viability in the iron-treated group approximated the release of iron 

from myoglobin, but suggested that the total iron component was largely responsible for 

loss of viability.   

 In contrast to the LDH release results, gluconeogenesis was not as diminished in 

the presence of iron treatment as with myoglobin treatment (Figure 24), suggesting that 

the free iron component of myoglobin had only a slight effect on the loss of 

gluconeogenesis.  This agreed with the DFX experiments that indicated the loss of 

pyruvate-stimulated gluconeogenesis was not iron-dependent.  Furthermore, this 

suggested that the heme and/or protein portion of the myoglobin were responsible for 

the loss of gluconeogenesis.   As evidence that the probable cause was heme-related, 

the results reported by Nath et al. (1998) demonstrated a ten-fold increase of heme 

levels in the mitochondria following glycerol injection into rats.   

 In a further attempt to analyze myoglobin toxicity, a small amount of SnPP was 

used to inhibit HO, thus preventing the breakdown of myoglobin into protein, heme, and 

free iron.  Previous studies have shown that SnPP conferred cytoprotection against 

myoglobin toxicity in HK-2 cells and isolated proximal tubular segment from glycerol-

treated rats (Zager et al., 1995; Zager and Burkhart, 1997).  Pretreatment of renal slices 

with SnPP provided slight protection against loss of viability (Figure 25).  This 

suggested that the breakdown of myoglobin into components was not required to induce 

toxicity, possibly implicating the ferryl form of myoglobin as an accomplice to free iron in 

relation to lipid peroxidation and glutathione changes upstream from loss of membrane 

integrity.   It is unlikely that the lack of protection against LDH release was due to 
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insufficient SnPP or low levels of expression of HO, because a dramatic result was 

noted in the gluconeogenesis measure of toxicity. 

 The effects of SnPP-pretreatment on myoglobin-induced changes in 

gluconeogenesis were different from the effects on LDH release.  Gluconeogenesis was 

not compromised in renal slices pretreated with SnPP (Figure 26).    This indicated that 

the breakdown of myoglobin into components was required to alter gluconeogenesis 

and thus cell function, furthermore, refuting the ferryl form of myoglobin as being 

responsible.  The experiments with DFX supported this conclusion in that DFX did not 

confer protection against loss of gluconeogenesis (Figure 7); yet, DFX has the ability to 

detoxify the ferryl form of myoglobin (Turner et al., 1991).  The protection afforded by 

SnPP also suggested that the heme or protein component of myoglobin could be 

responsible for loss of gluconeogenesis.  Perhaps, intact myoglobin does not enter the 

mitochondria but the heme and/or protein does and thus causes the loss of 

gluconeogenesis. 

 As a final attempt to analyze the components of myoglobin resulting in toxicity, 

renal slices were incubated with protoporphyrin IX (PP9) in place of myoglobin to 

simulate the protoporphyrin component of myoglobin. However, at equimolar 

concentrations of 1mg/mL myoglobin, the PP9 would not remain in solution.  SnPP was 

chosen as an alternative to PP9.  In keeping with solubility parameters, concentrations 

of 0.057, 0.114, and 0.227 mM SnPP were used as these concentrations were 

equimolar to 1, 2, 4 mg/mL concentrations of myoglobin.  Furthermore, the low and 

medium concentrations of SnPP represented 25% and 50% released heme from 4 

mg/mL myoglobin by HO.  Incubation of renal slices with SnPP resulted in a decrease of 

 103 
 
 



LDH release (Figure 27).  This was in direct contrast to the myoglobin-induced increase 

in LDH release.  To eliminate the possibility of interference in the LDH assay, the sum of 

LDH in the media and tissue was calculated.  The total LDH per gram tissue was not 

significantly different, indicating the results were not an artifact of the assay.  In turn, the 

results suggested that the protoporphyrin portion of myoglobin was not responsible for 

the loss of viability.  The protoporphyrin or tin appeared to have a protective effect.  

Nevertheless, the protoporphyrin portion of myoglobin is unlikely to be involved with the 

loss of membrane integrity.   

 Contrary to LDH release, the effect of SnPP on gluconeogenesis was toxic.  

Renal slices incubated with SnPP lost gluconeogenesis capacity in a concentration-

dependent manner (Figure 28).  This was similar to the myoglobin-induced loss of 

gluconeogenesis.  The overall levels of gluconeogenesis were lower in the SnPP 

treated as compared to the myoglobin treated.  This could be accounted for by different 

vehicles.  The vehicle in myoglobin treatment was buffer, whereas in SnPP treatment, it 

was DMSO.  DMSO is toxic yet can also serve as an antioxidant.  Pretreatment with 

GSH demonstrated protection (Figure 9) against loss of gluconeogenesis, implicating 

radicals in the toxicity.  Because DMSO has antioxidant properties, this could account 

for the difference in severity of the loss of gluconeogenesis in the SnPP treated as 

compared to the myoglobin treated.  Taken with the slight iron-induced loss of 

gluconeogenesis, the experiments with SnPP implied that the heme portion of the 

myoglobin could be responsible for loss of gluconeogenesis.  Again, this was supported 

by the report by Nath et al. (1998) that demonstrated a ten-fold increase of heme levels 

in the mitochondria following glycerol injection into rats.   
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 In summary, the experiments with DFX suggested that gluconeogenesis was the 

only parameter of toxicity where changes were iron-independent.  This also indicated 

that multiple factors contribute to the pathway of myoglobin toxicity with 

gluconeogenesis following an iron-independent course and both lipid peroxidation and 

glutathione alteration following an iron-dependent one.  When placing this in the basic 

time frame of toxicity, it became apparent that loss of viability and alterations in ATP 

levels were downstream from the oxidative events.  Furthermore, the component 

analysis revealed that free iron and possibly the ferryl form of myoglobin were 

responsible for the loss of viability; whereas, the heme and/or protoporphyrin portion of 

myoglobin was accountable for the compromise of gluconeogenesis.   
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DISCUSSION 
 
 
 Myoglobin was found to be toxic to rat renal cortical slices.  This toxicity was 

concentration-dependent with toxic concentrations falling within previously reported 

clinical and experimental values.   Moreover, the toxicity was time-dependent and in 

keeping with other reported experimental periods.  The time frame for myoglobin toxicity 

consisted of early and late events.  Loss of membrane integrity as measured by LDH 

release occurred at two hours in conjunction with a decline in ATP levels.  Earlier events 

were oxidative in nature and were evidenced by lipid peroxidation, glutathione changes, 

and a compromise of gluconeogenesis capacity.   In effect, loss of cell function and 

increases in oxidative damage preceded loss of viability by one hour.   

 The DFX data indicated a bifurcation of the early events with iron-independent 

gluconeogenesis changes residing on one fork while iron-dependent lipid peroxidation 

and glutathione changes occupied another.   Moreover, DFX-induced protection of LDH 

release and alterations in ATP levels suggested these parameters were iron-dependent 

or downstream from iron-dependent events.  Because gluconeogenesis remained 

drastically compromised regardless of DFX treatment while LDH release was 

prevented, gluconeogenesis appeared to not play a major role in the loss of viability and 

thus probably was not upstream from LDH release.  Taken together, these results 

generate a basic time frame of mechanistic events (Figure 29).    

 Of the early events, gluconeogenesis was maintained in renal slices pretreated 

with GSH.  Furthermore, substrate-stimulation of gluconeogenesis indicated the site of 

toxicity to be in the mitochondria.  Together, these findings suggested that the loss of 

gluconeogenesis was free radical-induced in addition to being mitochondrial.  
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Pretreatment of renal slices with DFX indicated that radical generation was not iron-

dependent.  This finding eliminated the possibility of a hydroxyl radical contributing to 

myoglobin toxicity since hydroxyl radicals are propagated in an iron-dependent manner.  

In addition, concurrent treatment of the slices with myoglobin and DMTU resulted in a 

decrease of gluconeogenesis, supporting the conclusion that the radical species was 

not a hydroxyl radical.  Because DFX can detoxify ferryl myoglobin and the associated 

globin radical, this form of myoglobin was also doubtfully responsible for the loss of 

gluconeogenesis capacity. 

Oxygen radicals are the probable cause for the myoglobin-induced loss of 

gluconeogenesis.  Zager (1996a) reported that myoglobin affected the respiratory chain.  

He postulated that the respiratory chain (site 3) was the principal source of free radicals 

that initiated heme-protein-associated lipid peroxidation.  Later in 1997, Zager and 

Burkhart further reported that the treatment of HK-2 cells with myoglobin and Antimycin 

A resulted in a protection of viability as indicated by dye exclusion, thus indicating that 

the terminal respiratory chain was a mediator of both lipid peroxidation and myoglobin-

induced cell death.   

The SnPP data suggested that the heme portion of the myoglobin was the likely 

candidate for the loss of gluconeogenesis.  Pretreatment of the renal slices with SnPP 

to block HO prior to incubation with myoglobin, produced a protection of 

gluconeogenesis.  This indicated that the breakdown of myoglobin and thus release of 

the components was required to alter gluconeogenesis.  In addition, incubation of the 

renal slices with iron or SnPP in place of myoglobin to simulate the iron and 

protoporphyrin portion of the protein resulted in a compromise of gluconeogenesis 
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capacity.   Surprisingly, incubation with FeCl3 did not produce the same effect on 

gluconeogenesis.  Again, this suggested that either the heme or the protoporphyrin 

component of the myoglobin caused the loss of gluconeogenesis and not free iron.  

Reports in the literature indicate that high levels of heme occur in the mitochondria 

isolated from glycerol-injected rats (Nath et al., 1998).   

 The other early events, namely lipid peroxidation and glutathione changes, were 

greatly affected with the DFX pretreatment.  Because these parameters indicated 

oxidative injury, the protection afforded by DFX gave rise to three potential mechanisms 

that could be responsible for initiating the damage.  First, a hydroxyl radical could be 

involved in the myoglobin toxicity.  However, this was refuted by the experiments with 

DMTU that revealed the lack of participation of a hydroxyl radical.  A second possibility 

was the formation of the ferryl form of myoglobin and the associated globin radical.  This 

mechanism cannot be ruled out without further study.  Thirdly, free iron released from 

myoglobin could have been inducing toxicities.  Although, it was probable that the ferryl 

form of myoglobin worked in conjunction with the free iron to instigate damage.                                     

 Lipid peroxidation and changes in glutathione preceded the later events of loss of 

membrane integrity and alterations in ATP levels.  These later events appear to directly 

result from oxidative events.  Everything that afforded protection of the oxidative events 

provided protection of loss of membrane integrity and alterations in ATP levels.  

Furthermore, a severe compromise of gluconeogenesis did not always lead to the 

occurrence of the later events of ATP decline and LDH release.  For example, 

pretreatment of renal slices with DFX protected against myoglobin-induced LDH release 

without protecting loss of gluconeogenesis capacity.   
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In consideration of the relationship between LDH release and ATP changes, the 

decline in ATP levels seems to be caused by leakage.  Two pieces of evidence 

supported this.  The percentage of LDH release above control in the myoglobin-treated 

group was the same percentage of decline below control in ATP levels.  Furthermore, 

when renal slices were incubated with pyruvate, the percent of LDH release over control 

with the 12 mg/mL myoglobin treatment was ~30%, as was the percentage of ATP 

decline in the 12 mg/mL myoglobin- treated versus control.  

The protection of myoglobin-induced LDH release by pyruvate was investigated 

further.  To eliminate the possibility that pyruvate was simply acting as a substrate for 

energy, the experiments were repeated using glucose in place of pyruvate.  Because 

glucose did not provide the same protection as pyruvate, it was concluded that 

conversion to glucose was not the protective mechanism of pyruvate.  Previous studies 

had reported increased levels of H2O2 in rhabdomyolysis.  To insure that pyruvate was 

not acting to scavenge H2O2 and prevent hydroxyl radical formation, experiments with 

DMTU, were performed.  DMTU failed to provide protection of LDH release, indicating 

that pyruvate was not acting to decrease hydroxyl radical formation.   

Investigation of the other parameters of toxicity revealed that pyruvate lent 

protection to the oxidative events and those events downstream from oxidative events.  

A close evaluation of the pyruvate effect on glutathione levels exposed a possible 

explanation for pyruvate protection.  In renal slices concomitantly treated with pyruvate 

and myoglobin, the total glutathione levels were increased significantly above the level 

measured in the untreated control group.  In effect, the presence of pyruvate induced an 

increase in total glutathione levels, enabling the tissue to deal more efficiently with 
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oxidative stress.  The pyruvate-induced increase in ATP levels would supplement the 

protective effect of increased total glutathione levels by providing sufficient ATP for the 

cycling of oxidized glutathione to reduced glutathione and for the fueling of repair 

systems. 

Another part of this study addressed the role of myoglobin and its components 

that may be contributing to the toxicities.   Incubation of renal slices with equimolar 

amounts of FeCl3 as compared to myoglobin revealed that the iron portion of the 

myoglobin was involved mostly with loss of membrane integrity.  Gluconeogenesis was 

compromised in the presence of iron but not to the extent of myoglobin-induced 

decrease in gluconeogenesis.  Prior to incubation with myoglobin, pretreatment of renal 

slices with SnPP to inhibit HO led to a modest protection of gluconeogenesis without 

affecting LDH release much.  This observation suggested that the breakdown of 

myoglobin was somewhat required to compromise gluconeogenesis but not membrane 

integrity.  Furthermore, treatment of the renal slices with SnPP in place of myoglobin to 

simulate the heme portion of the protein resulted in decreased gluconeogenesis 

capacity.  The effect of SnPP on LDH release was more difficult to interpret as it 

decreased LDH release below control group levels in a concentration-dependent 

manner.   This effect may have been a result of the tin portion instead of the 

protoporphyrin.  Regardless, SnPP affected gluconeogenesis without causing LDH 

release, implicating the heme component as the cause for loss of gluconeogenesis.   

In summary, the mechanism of myoglobin toxicity appeared to involve iron-

independent and dependent radical events that preceded loss of viability.  The initial 

events of toxicity included heme-induced loss of gluconeogenesis and iron-dependent 
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oxidative damage.  Furthermore, the protection afforded by pyruvate resulted from an 

overall increase in total glutathione and ATP levels.   
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Figure 29.  Time frame for mechanistic events of myoglobin toxicity. 
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FUTURE STUDIES 
 
 

 The current study addressed many aspects of myoglobin toxicity in the renal 

cortical slice model, which can be extrapolated to the pigment nephropathy component 

of the clinical manifestation of rhabdomyolysis.  However, the current study also raises 

additional questions concerning myoglobin toxicity in this model.  These questions, as 

well as future studies to address them, are discussed as follows. 

 This study indicates that free iron and the ferryl from of myoglobin are associated 

with the oxidative events of lipid peroxidation and alterations in glutathione levels.  

However, the specific contribution of each component remains to be elucidated.  Future 

studies could directly investigate the role of free iron on lipid peroxidation and 

glutathione changes, to complement the data containing the effects on LDH release and 

gluconeogenesis.   To dissect the role of ferryl myoglobin, experiments would be 

conducted at a lower pH.   Previous literature reports that myoglobin-induced ARF is 

potentiated by acidosis (Heyman et al., 1997; Abassi et al., 1998; Holt and Moore, 

2000).  In addition, previous literature has reported that the ferryl from of myoglobin is 

more stable in an acidic environment and that at a higher pH the ferryl form becomes 

unstable and thus unable to induce lipid peroxidation (Moore et al., 1998; Holt and 

Moore, 2000).  The current study was performed in Krebs-Ringer buffer, pH 7.4.  

Additional studies would be performed at a lower pH and compared to those studies 

performed at pH 7.4.  Hypothetically, during a two-hour incubation with myoglobin, the 

amount of lipid peroxidation should increase in the myoglobin treated tissue as 

compared to the control tissue at lower pH such as 6.0.  The amount of change would 
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implicate the ferryl from of myoglobin and indicate the relative amount of participation in 

the overall toxicity. 

   To complete the component analysis, additional studies would be performed 

using SnPP in place of myoglobin in the incubations.  To supplement the LDH release 

and gluconeogenesis data, lipid peroxidation and glutathione levels would be measured.  

Hypothetically, SnPP should not affect these measures to toxicity following incubation of 

renal slices with myoglobin.  However, because these parameters indicate oxidative 

injury and because SnPP may possess anti-oxidative properties, the toxicities may be 

decreased making the interpretation of the data difficult.   

 The effects of pyruvate were interesting yet perplexing.  Additional studies need 

to address how pyruvate induces an increase in total glutathione levels.  Using BSO 

and BCNU, inhibitors of glutathione synthesis and redox cycling respectively, would 

indicate if the effect is synthesis or redox cycle related.  Because pyruvate is present in 

both the cytosolic and mitochondrial compartments, other studies would address the 

cytosolic and mitochondrial glutathione independently to elucidate the relative location 

of the effect.  Studies using other α-ketoacids such as oxaloacetate could indicate if the 

effect was specific to pyruvate or the result of a more general α-ketoacid effect.   
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APPENDIX 1: Detailed Methods 

 

Krebs Ringer buffer 

(126.4 mM NaCl; 6.0 mM Na2HPO4; 5.2 mM KCl; 1.3 mM MgSO4; 1.3 mM CaCl2) 

Into approximately 800 mL of deionized distilled water, the following salts were added:  

7.39 g NaCl; 852 mg Na2HPO4; 385 mg KCl; 318 mg MgSO4; 149 mg CaCl2.  The pH 

was adjusted to 7.4 with HCl and/or KOH.   The volume was brought to 1 L with 

deionized distilled water, followed by a final pH check.  

 

Phosphate buffer for HPLC 

To approximately 900 mL of deionized distilled water, 13.6 g KPO4 was added.  The pH 

was adjusted to 6.0 with HCl and KOH.  The volume was brought to 1 L with deionized 

distilled water, followed by a final pH check.  The buffer was filtered through a Millipore 

pre-filter (AP15, 47 mm).      

 

Thiobarbituric acid (TBA) 

TBA (167 mg) was dissolved in water and brought to 25 mL.  The flask was wrapped in 

foil and warmed to ~90 oC.   

 

Preparation of myoglobin 

Horse skeletal muscle myoglobin (Sigma, M-0630) was used for all the studies.  Various 

amounts of myoglobin (0, 60, 150, 180 mg) were dissolved in 5 mL Krebs-Ringer buffer.  

To each beaker, 100 µL of ascorbic acid (35.2 mg/mL water) was added.  The beakers 
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were covered and sonicated for a minimum of 30 minutes.  A color change from brown 

to red indicated successful reduction of the iron in the myoglobin.   

 

Preparation of ferric chloride (FeCl3) 

Ferric chloride (Aldridge, I-88) was used for all FeCl3 studies.  To 5 mL of Krebs-Ringer 

buffer, 20 mg of FeCl3 was added.  Various amounts of this FeCl3 solution (0, 231, 577, 

690 µL) were brought to 5 mL with Krebs-Ringer buffer.  To each beaker, 100 µL of 

ascorbic acid (35.2 mg/mL water) was added.  The beakers were covered and 

sonicated for a minimum of 30 minutes. 

 

Preparation of Sn(IV) Protoporphyrin IX (SnPP)  

(For incubation studies with SnPP only) 

Sn(IV) Protoporphyrin IX (Frontier Scientific; Porphyrin Products , Sn749-9) was used 

for all SnPP studies.  Various amounts of SnPP (1.28 mg, 2.56 mg, 5.11 mg) were 

brought to 1 mL with DMSO.  Flasks were vortexed on high for one minute followed by a 

sonication for a minimum of 30 minutes. 

 

Preparation of Protoporphyrin IX (PP9) 

Protoporphyrin IX (Sigma, P8293) was used for all PP9 studies.  Various amounts of 

PP9 (3.83 mg, 9.60 mg, 11.63 mg) were brought to 1 mL with DMSO.  Flasks were 

vortexed on high for one minute followed by a sonication for a minimum of 30 minutes. 
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Incubation of renal slices with SnPP 

Following the rinse, renal slices (total weight range 50-100 mg) were placed in 3 mL 

oxygenated Krebs-Ringer buffer and allowed to warm for 10 minutes at 37°C under a 

100% oxygen atmosphere and constant shaking (100 cycles/minute).  Upon 

equilibration of the slices, 20 µL of (35.2 mg/mL water) ascorbic acid was added to each 

flask in addition to 100 µL of SnPP (final concentration 0-0.227 mM SnPP and 1.33 mM 

of ascorbic acid).  The slices were incubated for 90 minutes at 37°C under a 100% 

oxygen atmosphere and constant shaking (100 cycles/minute). Directly following the 90-

minute incubation, 100 µL of pyruvate (165 mg/5 mL water; 10 mM final) was added to 

stimulate gluconeogenesis.  Upon completion of an additional 30-minute incubation, the 

media was decanted and the tissue was blotted and weighed.  Toxicity was assessed 

as described. 

 

Incubation of renal slices with FeCl3  

Following the rinse, renal slices (total weight range 50-100 mg) were placed in 2 mL 

oxygenated Krebs-Ringer buffer and allowed to warm for 10 minutes at 37°C under a 

100% oxygen atmosphere and constant shaking (100 cycles/minute).  Upon 

equilibration of the slices, a 1 mL aliquot of the FeCl3 / ascorbic acid solution was added 

to the 2 mL of buffer containing the tissue slices (final concentration of 0-0.69 mM FeCl3 

and 1.33 mM of ascorbic acid).  The slices were incubated for 90 minutes at 37°C under 

a 100% oxygen atmosphere and constant shaking (100 cycles/minute). Directly 

following the 90-minute incubation, 100 µL of pyruvate (165 mg/5 mL water; 10 mM 

final) was added to stimulate gluconeogenesis.   Upon completion of an additional 30-
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minute incubation, the media was decanted and the tissue was blotted and weighed.  

Toxicity was assessed as described. 

 

Incubation of renal slices with PP9 

Following the rinse, renal slices (total weight range 50-100 mg) were placed in 3 mL 

oxygenated Krebs-Ringer buffer and allowed to warm for 10 minutes at 37°C under a 

100% oxygen atmosphere and constant shaking (100 cycles/minute).  Upon 

equilibration of the slices, 20 µL of (35.2 mg/mLwater) ascorbic acid was added to each 

flask in addition to 100 µL of PP9 (final concentration 0-0.69 mM PP9 and 1.33 mM of 

ascorbic acid).  The slices were incubated for 90 minutes at 37°C under a 100% oxygen 

atmosphere and constant shaking (100 cycles/minute). Directly following the 90-minute 

incubation, 100 µL of pyruvate (165 mg/5 mL water; 10 mM final) was added to 

stimulate gluconeogenesis.  Upon completion of an additional 30-minute incubation, the 

media was decanted and the tissue was blotted and weighed.  Parameters were 

assessed as described previously in Chapter 1 Materials and Methods.   

 

Total glutathione  levels  

Following incubation, the tissues were rinsed in 3 mL of Krebs-Ringer buffer, blotted 

and weighed.  Once weighed, the tissues were placed in 500 µL of 20% sulfosalycilic 

acid and homogenized followed by a rinse of the homogenizer shaft with an additional 

500 µL of 20% sulfosalycilic acid.  The mixture was centrifuged at 9000 g for 10 minutes 

at 4°C.  The supernatant was decanted and saved.  For total glutathione levels, 25 µL of 

supernatant was combined with 175 µL water and 700 µL of 0.3 mM NADPH.  Following 
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a 10-minute incubation at 30°C, 100 µL of 6 mM DTNB and 100 µL of glutathione 

reductase (16 units/mL) were added.  The samples were placed immediately into the 

spectrophotometer set at 412 nm and read at 0,15,30,60, and 90 seconds.  Values were 

calculated using a standard curve of reduced glutathione.   

 

Disulfide glutathione levels 

(Tietze, 1969; Andersen, 1985) 

Following incubation, the tissues were rinsed in 3 mL of Krebs-Ringer buffer, blotted 

and weighed.  Once weighed, the tissues were placed in 500 µL of 20% sulfosalycilic 

acid and homogenized followed by a rinse of the homogenizer shaft with an additional 

500 µL of 20% sulfosalycilic acid.  The mixture was centrifuged at 9000 g for 10 minutes 

at 4°C.  The supernatant was decanted and saved.  For disulfide glutathione levels, 25 

µL of supernatant was combined with 175 µL water.  To this, 2 µL of triethylamine and 4 

µL of 4-vinylpyridine were added and the mixture was incubated for 30 minutes at room 

temperature.  Following the incubation, 700 µL of 0.3 mM NADPH was added with an 

additional 10-minute incubation at 30°C.  After this incubation, 100 µL of 6 mM DTNB 

and 100 µL of glutathione reductase (16 units/mL) were added.  The samples were 

placed immediately into the spectrophotometer set at 412 nm and read at 0,15,30,60, 

and 90 seconds.  Values were calculated using a standard curve of disulfide 

glutathione. 
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Isolation of microsomes 

Male Fischer 344 rats were anesthetized with ethyl ether and the livers were removed, 

wrapped in foil, and placed on ice.  From each liver, approximately 4 g of tissue was 

weighed and placed into 4 mL of phosphate buffer (0.067 M, pH 7.4).  The tissue was 

homogenized and the shaft was rinsed with an additional 1mL of phosphate buffer.  The 

mixture was placed into an ice-cold 25 mL graduated cylinder.  Phosphate buffer was 

used to adjust the volume to four times the recorded weight.  The homogenate was 

centrifuged for 15 minutes at 10,000 g, 4°C.   The supernatant was placed into a 

polycarbonate centrifuge tube, counterbalanced, and ultra-centrifuged for one hour at 

100,000 g (40,000 rpm), 4°C.   The supernatant was discarded and the glycogen pellet 

was removed.  The remaining pellet was re-suspended with 2 mL phosphate buffer and 

kept on ice.  A Bradford assay was performed to determine the protein content 

(Bradford, 1976).  The protein concentration was adjusted to 4 mg/mL.  Aliquots (250 

µL) were stored at -70°C. 
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