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ABSTRACT 

 

NON - PREEMPTIVE SHUNTING IN M/M/1 AND 

DYNAMIC SERVICE QUEUEING SYSTEMS  

 

By Steven Lacek 

 

We provide a study of two queueing systems, namely, an M/M/1 queueing system in 

which an incoming customer shunts, or skips line, and a dynamic server in an infinite 

capacity system moving among service nodes.  In the former, we explore various aspects 

of the system, including waiting time, and the relationships between shunting and 

position in queue and rate of service.  Through use of global balance equations, we find 

the probability that an arriving non-priority customer, finding customers waiting in the 

system, will shunt to a position other than behind the queue.  In the latter, we explore a 

system in which a server with infinite capacity moves among indexed linear service 

nodes, receives customers at various nodes, and transports the customers to other indexed 

nodes in the hierarchy.  We determine the expected waiting times at the nodes, expected 

service times, expected number of customers at a given node, expected number in the 

system, and expected number in service.  The probabilities that an arrival finds n 

customers at a particular node, and in the entire system are obtained. 
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CHAPTER 1 
 

Introduction 
 

Whether it is waiting in line at the supermarket, waiting for traffic to clear, or waiting for 

a bus, waiting is unavoidable and has become pert of unavoidable human activity.  

Customers do not enjoy waiting and may find other ways of obtaining service when they 

are forced to wait too long. Because of this, those who offer service have a great interest 

in minimizing waiting time while maximizing server utilization.  This is one of the 

driving forces behind queueing theory.  An extensive bibliography of early work in 

queueing theory is provided by Doig [3].   

 Two types of queuing models are discussed in this work.  In our first model, 

customers needing some type of service enter the system one at a time at a mean rate 

λ.  A single server, working at a mean rate µ attends to customers one at a time.  The 

server will attend to customers on a first come – first serve basis.  If an arriving customer 

finds no other customers in the system, he enters into service immediately.  Otherwise, he 

spends time in service, and exits after service completion.  When customers enter the 

system and find a customer already in service, a queue forms behind the service node.  In 

our model, customers are not lost to the system, that is, once a customer enters the 

system, he will not leave the system without being served.  Also, we will not place a limit 

on the number of customers that the system can hold.  This basic model is examined at 
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length by Gross and Harris [5], Ross [12], and Takács [14] and Kleinrock [10], among 

others.   

 However, none of these authors, nor any other references in the literature, had 

discussed the results of a customer arriving at such a system who does not enter the 

system at the end of the queue, but instead jumps to a position within the queue.  This act 

is referred to as shunting.  Our model will allow for non – preemptive shunting, meaning 

that a customer may shunt as long as he does not interrupt the service of the customer 

being served. In other words, he cannot shunt directly into service. 

 We explore how the allowance of shunting affects the customers in queue at the 

time of the shunting.  We will use some of the general results discussed in Chapter 2 to 

compare the customers’ waiting time after the shunting to their waiting time before the 

shunting.  We will also examine how the position that the shunting customer takes in line 

affects the waiting time of the customers in line.  Using global balance equations, we also 

find the probability that a customer will be the victim of shunting. 

 Our second model consists of a set of independent service nodes.  At each of these 

nodes, customers arrive one at a time and wait for service from a single server who is 

moving among the nodes.  When the server arrives at a node, it takes into service all 

customers who are waiting at that node.  The service being offered consists of the 

transportation to another node in the hierarchy.  Once customers reach their destination, 

they exit the system.  When the server reaches the highest indexed node, all remaining 

customers exit and the server makes an empty return to the first node.  
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 Under these conditions, we will find the expected time in service of a customer 

who enters the network at a given point, the expected length of a particular queue in the 

network, and waiting time of a customer at a given queueing point.  We also obtain the 

expected number of customers in the entire network. 

 Jackson [7] and Jackson [8] provides key findings in the area of queueing 

networks.  Our system here is similar to Jackson’s model, in that there is a series of nodes 

or, as Jackson referred to them, departments.  However, in Jackson’s model, customers 

enter at a node, receive service, move to another node, and receive service again. While 

Jackson’s model provides multiple servers in tandem, our system has a movable or 

dynamic server, who provides services to arriving customers throughout the system.  In 

other words, our system minimizes cost in service and personnel.   

 Closer to our work is the model proposed by Afanassieva et al [1].  In their work, 

they presented three different models, starting with a most theoretical model that has 

infinite waiting space and infinite server capacity such as ours.  Their systems 

accommodate feedbacks, where customers are allowed to either move to a higher node, 

or to a lower node.  Also, one of their systems has no queue waiting time, whereas, our 

system has a waiting line at each node. 

 Taube-Netto [13] and Iravani et al. [6] both offer works that deal with tandem 

queues, in which a single server moves between two queues.  In their work, customers are 

not actually moving between the two service nodes, but are exiting after being served.  

Taube-Netto [13] gives a thorough analysis of such a system in which the server stays at 

a stage until the queue is cleared, and then switches to the other stage.  Iravani et al. [6] 
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further develops Taube-Netto’s work by offering optimal switching policies for such a 

system. 
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CHAPTER 2 

 

Preliminaries 
 

2.1 General Results 

 A queueing system (herein, referred to as system) is any model in which a service 

is being offered and customers arrive to receive that service.  Customers may be able to 

enter service directly, or they may have to wait for service.  In either case, once the 

customer is served, he/she will either leave the system, or return to the system to be 

served again.  A customer may become tired of waiting and decide to leave the system 

without being served.  In such a case, the customer is said to be lost to the system.  We 

will characterize queueing systems using the notation widely credited to Kendall [9]:  

A/S/n, where A is the probability distribution of the time between arrivals of customers, or 

interarrival times to the system, S is the probability distribution of service times, and n is 

the number of servers in the system.  Chapter 3 refers to the M/M/1 system, this indicates 

a Markovian arrival, memoryless service, and a unit or single server. 

 Throughout this work, we will identify the rate at which customers enter the 

system as λ and the average service rate of one server as µ.  In a system with c servers, 

the congestion, or traffic intensity of the queuing system is expressed by 
µ
λ

ρ
c

= .  Since 

ρ  is a measure of server utilization, we can find fraction of time that the server is idle by 

ρ−1 .  This quantity also measures the probability of finding the system empty.  Notice 
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that when the average arrival rate is greater than or equal to the average service rate, 

then 1>ρ .  In such a case, the servers cannot keep up with the incoming customers, and 

such a system is said to be unstable.  In the case where 1=ρ , the server works exactly as 

fast as customers enter the system.  Therefore, if at the time when the server began 

working, a queue had already formed, then the queue will always be there, thus we say 

that when 1=ρ , the system is also unstable. 

When 1<ρ , if the system is operational for a long time, the system tends toward 

steady state conditions.  When in steady state, we denote the number of customers in the 

entire system as N, the number of customers in queue as Nq, and the number of customers 

in service as Ns.  For a system in transient state, the quantities are measured with respect 

to time, t.  We then denote the number of customers in the system at time t as N(t), the 

number of customers in queue at time t as Nq(t), and the number of customers in service 

at time t as Ns(t).   

When the system is in steady state, we will denote the probability that nN =  as 

np , and the probability that ntN =)(  as )(tpn  when the system is not in steady state. 

The expected number of customers in the system at steady state is denoted by 

[ ]NEL = ,  where, 

  

  (2.1) 

 Similarly, the expected number of customers in queue is denoted as [ ]qq NEL = .  

The total number of customers in queue is equal to the total number of customers in the 

[ ] ∑
∞

=

⋅==
0n

npnNEL
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system minus the number of customers in service.  So when the system has c servers, we 

have that, 

   ( )∑
∞

+=

⋅−=
1cn

nq pcnL  (2.2) 

 

Other measures of great interest are the amount of time spent in the system, T, the 

amount of time spent in queue, Tq, and the time in service, S.  The quantities T, Tq, and S 

are random variables, and we can readily see that STT q += .  Using these random 

variables, we now introduce the expected, or mean waiting time, [ ]TEW = , and the 

expected, queue waiting time, [ ]qq TEW = .  Thus we have that, 

[ ] [ ] [ ]
[ ]SEWW

SETETE

STT

q

q

q

+=

+=

+=

 

If the mean service rate is µ , then the mean service time is 
µ
1
, so that, 

   
µ
1

+= qWW  (2.3) 
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2.2 Poisson Processes 

 For the queuing systems discussed in this work, we will assume that customers 

arrive one at a time and the rate of arrival is independent of the length of the queue and of 

the rate of service.  In order to better understand this process, the following definitions 

are necessary. 

Definition 1  (Stochastic Process)  A stochastic process { }TttX ∈),(  is a collection of 

random variables, )(tX , indexed by Tt∈ .  )(tX  is referred to as the state of the 

stochastic process at time t.   

Definition 2  (Counting Process)  A counting process { }TttX ∈),( , is a stochastic 

process wherein the state represents the number of times an event has occurred by time t. 

In order for a stochastic process to be considered a counting process, the following must 

hold: 

 i. )(tX  is an integer greater than or equal to zero. 

 ii. If ts < , then )()( tXsX ≤ . 

 iii. When ts < , )()( sXtX −  is the number of events in the interval ( ]ts, . 

Condition (iii) allows us to view time as a set of disjoint intervals.  If the number of 

events that occur in disjoint intervals are independent of each other, then the counting 

process has independent increments.  Further, if the distribution of events occurring in 

any interval depends only on the length of the interval, then the counting process has 
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stationary increments.  Therefore, the arrival process described at the beginning of this 

section is a counting process with independent, stationary increments. 

Definition 3  (Poisson Process, Type 1)  A counting process { }TttX ∈),(  is a Poisson 

process with rate λ, λ > 0, if the following conditions hold: 

  i. 0)0( =X  

  ii. The process has independent increments. 

  iii. The number of events in any interval of length 0>t is Poisson distributed 

with mean t⋅λ . 

Condition (i) implies that our “time” begins when the first customer arrives.  Condition 

(ii) states that the number of customers who arrive within any given interval of time is 

independent of the number of customers who arrive in any other interval of time.  Lastly, 

using the definition of a Poisson distribution, condition (iii) shows that the probability 

there are n arrivals in an interval of length t, beginning at time s is  

 { } ( )
!

)()(Pr
n

t
ensXtsX

n

t λλ−==−+ , where K,2,1,0=n   (2.4) 

 Note here that the distribution of events occurring in any interval does not depend 

on the time at which the interval starts, but depends instead only on the length of the 

interval. 

 Our desired queueing system arrival process satisfies the first two conditions, but 

we cannot say that the arrival process of our queueing system is a Poisson process.  In 

order to do so, we now consider a second definition of a Poisson process: 
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Definition 4  (Poisson Process, Type 2)  A counting process { }TttX ∈),(  is a Poisson 

process with rate λ, λ > 0, if the following conditions hold: 

 i. 0)0( =X  

  ii. The process has stationary and independent increments. 

  iii. { } )(1)(Pr hohhX +== λ  

  iv. { } )(2)(Pr hohX =≥  

Where any function f  is said to be )(ho  if 0
)(

lim
0

=
→ h

hf

h
 

 Ross [12] provides proof that Definition 4 implies Definition 3.  Here we prove 

that Definition 3 implies Definition 4, and thus showing Definition 3 and Definition 4 are 

equivalent. 

Proof: Suppose that condition iii. of Definition 3 holds.  Then, for any time 0>h , we 

have that, 

{ } { } ( )
he

h
eXhXhX hh λ

λ λλ ⋅===−+== −−

!1
1)0()0(Pr1)(Pr

1

 

but since  ∑
∞

=

=
0 !n

n
x

n

x
e , we have, 
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{ } ( )

( ) ( )

( )
h

n

h
h

h
n

h
h

h

h
n

h
hX

n

n

n

n

n

n

λ
λ

λ

λ
λ

λ
λ

λ
λ

⋅






 −
+=

⋅






 −
+







 −
=

⋅






 −
==

∑

∑

∑

∞

=

∞

=

∞

=

1

1

0

0

!

!!0

!
1)(Pr

 

Now we let 
( )

h
n

h
hf

n

n

λ
λ

⋅






 −
= ∑

∞

=1 !
)(  and consider, 

( )
( )

( )

( )

0
!

0

!
lim

!
lim

!
lim

!
lim

1

1
0

1
0

1
0

1

0

=




⋅=








 −
⋅=








 −
⋅=

⋅






 −
=

⋅






 −

∑

∑

∑

∑
∑

∞

=

∞

=
→

∞

=
→

∞

=
→

∞

=

→

n

n

n

h

n

n

h

n

n

h

n

n

h

n

n

h

n

h

n

h

h

h
n

h

λ

λ
λ

λ
λ

λ
λ

λ
λ

 

Since 0
)(

lim
0

=
→ h

hf

h
, we have that { } )(1)(Pr hohhX +== λ , thus showing Definition 3 

implies condition (iii) of Definition 4.  Now, since we are given that the process is a 

counting process, we know that )(hX  is some integer greater than or equal to zero, thus 

=
→ h

hf

h

)(
lim

0
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we only now need consider { }2)(Pr ≥hX .  Again, in conditions of Definition 3, we have 

that, 

{ } ( )
!

)()(Pr
n

t
ensXtsX

n

t λλ−==−+ ,   K,2,1,0=n  

let 
( )

!
)(

n

h
ehf

n

h λλ−=  and we consider, 

    

( )

h

n

h
e

h

hf

n

h

hh

!lim
)(

lim
00

λλ−

→→
=  

!
limlim

!
lim

!
lim

1

00

1

0

0

n

h
e

n

h
e

nh

h
e

nn

h

h

h

nn
h

h

nn
h

h

−

→

−

→

−
−

→

−

→

⋅=

⋅=

⋅
⋅=

λ

λ

λ

λ

λ

λ

 

When 2≥n , we see that  

001
!

limlim
1

00
=⋅=⋅

−

→

−

→ n

h
e

nn

h

h

h

λλ  

Therefore, we have 
( )

!
)(

n

h
ehf

n

h λλ−=  is )(ho  for 2≥n , and thus, 

{ } )(2)(Pr hohX =≥ .  This shows that Definition 3 implies Definition 4, and along with 

Ross’s proof that Definition 4 implies Definition 3, the two are equivalent. � 

 Note that Definition 4 allows us to shorten the length of each time increment until 

there is only one arrival for each increment.  Through equivalence of the two definitions, 
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we can say that our arrival process is a Poisson process.  Note that the lengths of the 

increments need not be uniform since they are independent of each other. 
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2.3 Markov Chains 

 We will now turn our attention to a class of stochastic processes known as 

Markov chain.  Some of the properties of Markov chains are outlined in the following 

definitions. 

Definition 5: (Markov process)  A discrete stochastic process is said to be a Markov 

process if the present state of the process depends only on the immediately proceeding 

state.  That is,  { } { } ijtttttt PiXjXiXiXiXiXjX ========= −−−− 10033221 Pr,,,,Pr K .  

 In other words, given the Markov process is in state i, it will next move to state j 

with probability ijP . 

Definition 6: (Markov chain)  A Markov process with discrete state space and parameter 

space is a Markov chain. 

 We assume that if the Markov chain is in state i, and transition to state j is 

possible, then 0≥ijP .  Also, since i and j are indexes, we assume that 0, ≥ji .  Also, we 

will assume that if the Markov chain is in state i. then it must move to some state j, and so 

we have that ∑
∞

=

=
0

1
j

ijP .  It is often helpful to represent a Markov chain in matrix form as 

follows: 

P



















=

OMMM

L

L

L

222120

121110

020100

PPP

PPP

PPP
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 Markov chains, like queueing systems possess steady states.  That is, if the 

Markov chain is allowed to operate for a long period of time, then we may begin to see a 

limiting value for ijP .  In the event that a Markov chain has made m state changes, we say 

that, 

j

m

ij
m

P π=
∞→

)(
lim  for all i 

This shows that after a “long” period of time, there is a steady probability that the 

Markov chain will settle in state j.  It is this thinking that we will use when we talk about 

queueing systems that have obtained a steady state.  For more in depth work with Markov 

chains, the reader is referred to Ross [12], Foster [4], and Gross and Harris [5], among 

others. 
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CHAPTER 3 
 

Non-Preemptive Shunting in an M/M/1 System 
 

3.1 General Results 

 We begin this chapter by clarifying the meaning of shunting.  In a first in-first out 

queueing system, we say that a customer has shunted if he enters the system in any 

position other than at the end of the queue.  It is assumed that the arrival process of the 

shunting customer does not differ from that of the customers in the system, other than the 

point of entry to the system.  This process is also being referred to as “skipping line” or 

“jumping line.”  Being the victim of a line jumper can be very frustrating, and so we will 

look at the effects this action has on the expected waiting time of customers already in 

queue.  An example of this might be seen at a toll booth, where a long line of cars is 

proceeding to a vacant toll taker.  Immediately before the first car in line arrives at the 

vacant window, a car from a different lane decides to shunt in front of the line of cars.  

The driver who was cut off, and other drivers behind him in line, are forced to wait 

through the impatient driver’s service. 

 This process is illustrated in Figure 3.1 below. 

 

 

 

 

   Figure 3.1 

1 2 server 

µ 

n n + 1 . . . j j - 1 j + 1 . . . 

shunting 

j = 1, 2, 3, ... , n 

λ 
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 Suppose we have a first in-first out, M/M/1 system with arrival rate λ, and service 

rate µ.  Recalling our notation from Chapter 1, we denote the time spent in the system, 

time spent in the queue, and time spent in service by the n
th
 customer as T , qT , and S  

respectively, and we had the following: 

   STT q +=  

and  

   
µ
1

+= qWW  

for expected time. 

 Now, suppose that a customer on arrival, meets n customers in the system, 

including the customer being served, and enters the queue somewhere ahead of customer 

n, say at epoch j.  When this occurs, we will refer to the time spent in the system by 

customer n as ′T .  We will denote the service time of the shunting customer as )( jS .  

Thus, when shunting occurs, we have, 

   )( j

q SSTT ++=′  

Using the fact that STT q += , we have: 

    )( jSTT +=′   (3.1) 

This is not surprising, since it simply states that when shunting occurs, the waiting time 

of a customer is increased by the amount of time it takes to serve the customer who has 

jumped in front of him. 
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  Now, let [ ]′=′ TEW .  Because this system is M/M/1, service rate is independent 

of where the customer entered the line, so the average service time for each customer is 

µ
1
, therefore, 

   

[ ] [ ] [ ]

[ ] [ ]

µ
1

)(

)(

+=′

+=′

+=′

WW

SEWTE

SETETE

j

j

 

Equation 2.3 gives 

   
µµ
11

++=′ qWW  

or   
µ
2

+=′ qWW  

 Under the assumption that our system is in steady state, if customer j entered the 

system in accordance with the Poisson arrival process and is to be served at the same rate 

as other customers, it holds that 

    [ ] ∑∑
∞

=

∞

=

⋅=⋅==
10 n

n

n

n pnpnNEL  

 Let L′  be the expected queue length of the system after shunting has occurred.  

[ ]1+=′ NEL , since the system has a total of 1+n  customers, including the one that 

shunted.  So we have that, [ ] ∑
∞

=

+=+=′
0

)1(1
n

npnNEL .  Since 1
0

=∑
∞

=n

np , we have that, 

(3.2) 

(3.3) 
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∑
∞

=

⋅+=′
0

1
n

npnL .  We know from the classical M/M/1 results that n

np ρρ ⋅−= )1( , 

where 
µ
λ

ρ = .  Hence,  

   

ρ

ρρρ

ρρ

ρρ

−
=

⋅⋅−+=

⋅⋅−+=

−⋅+=′

∑

∑

∑

∞

=

−

∞

=

∞

=

1

1

)1(1

)1(1

)1(1

1

1

1

0

n

n

n

n

n

n

n

n

nL

 

 Under the previously stated conditions, it also holds that 

    [ ] ( )∑
∞

=

−==
1

1
n

nqq pnNEL  

Let 
′

qL  be the expected number of customers in queue after a shunting occurs.  Thus we 

have 

     

( )

L

pn

pnL

n

n

n

nq

=

⋅=

−+=′

∑

∑
∞

=

∞

=

1

1

1)1(
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3.2 Shunting and Position in Queue 

 We now consider how a customer’s position in queue and being the victim of 

shunting are related.  Since expected waiting time after shunting is given in terms of a 

customer’s expected time in queue, Equation 3.2 and Equation 3.3 hold for any customer 

in queue, regardless of his/her position behind the position that the line jumper takes.   

 However, if a customer is near the front of the queue, then qT  will obviously be 

less than if the customer is near the end of the queue.  We consider the limit: 

   
S

SS

ST

SST

T

T j

q

j

q

TT qq

)()(

00
limlim

+
=

+

++
=

′
→→

. 

We can interpret this to mean that if, at time t, a shunting occurs in front of customer n 

whose time left in queue at time t is near zero, then customer n’s expected service time is 

effectively doubled.  In more general terms, the closer a customer is to the point of 

service, the more impact shunting will have on his waiting time.   

We now consider the limit: 

   1limlim

)(

=
+

++
=

′
∞→∞→ ST

SST

T

T

q

j

q

TT qq

  

This shows that if customer n is significantly far from the point of service, then shunting 

has little or no effect on him. 
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3.3 Shunting and Service Rates 

 It is also interesting to consider the connection between service time and shunting.  

From our own experiences, we can relate to the situation when being served by a very 

efficient server, we are more likely to allow someone to skip ahead of us in queue.  At the 

same time, if we are in a very long queue that is barely creeping along, we may allow 

someone to jump in front of us.  To illustrate this, we consider the following: 

    

q

q

W

W

WW

=









++=









+=′

∞→

∞→∞→

µµ

µ

µ

µµ

11
lim

1
limlim

 

And since  

    

q

q

W

WW

=









+=

∞→∞→ µµµ

1
limlim

 

we can see that as the rate of service goes to zero, or equivalently, the service mean 

grows rapidly, then shunting does not affect a customers expected wait time significantly. 



 22 

 In the same vein, we see that, 

    

∞=









+=









+=′

→

→→

µ

µ

µ

µµ

2
lim

1
limlim

0

00

qW

WW

 

and 

     

∞=









+=

→→ µµµ

1
limlim

00
qWW

 

which tells us that as the rate of service goes to infinity, or equivalently, the service mean 

decreases rapidly, then shunting likewise has no significant effect on the expected wait 

time of a customer.  
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3.4 Probability of Shunting 

 To conclude this chapter, we explore the probabilities that are associated with 

shunting in an M/M/1, FCFS queueing system.  We begin by establishing the global 

balance equations of an M/M/1 system.  Gross and Harris [5] provide outstanding details 

on the subject of global balance equations. 

 First, we note that since arrivals follow a Poisson process, the number of arrivals 

over some interval, ( )ttt ∆+,  is equal to 1.  Also, departures from the system occur one at 

a time. Let ( )tttpn ∆+,  be the probability that there are n customers in the system in the 

time interval ( )ttt ∆+, .  Thus we have 

 

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) )()()(
)(,
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)()(
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11
0

2

11

2
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2

2
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2

1

1

2

1

1

tptptp
t

tptttp

ttpttp

ttpttpttpttptptttp

ttpttpttp

ttpttpttpttptptttp

tttp

tttptttptttp

nnn
nn

t

nn

nnnnnn

nnn

nnnnnn

n

nnn

+−→∆

++

−−

++−

−

+

−

+++−=
∆

−∆+

∆−∆+

∆−∆+∆+∆+−=−∆+

∆−∆+∆−

∆+∆+∆−∆−=∆+

∆∆−+

∆−∆+∆−∆−=∆+

µλµλ

µλµ

µλλµλµλ

µλµµλ

λµλµλ

µλ

µλµλ

 

Since  
( )

)(
)(,

lim
0

tp
t

tptttp
n

nn

t
′=

∆
−∆+

→∆
, and when the system is in steady state, 0)( =′ tpn , 

we then have that   ( ) )()()(0 11 tptptp nnn +− +++−= µλµλ  



 24 

when 1≥n  (3.4) 

Also, when in steady state, nn ptp =)( , thus we have  

   

( )

11

110

+−

+−

⋅+⋅=⋅+⋅

⋅+⋅++−=

nnnn

nnn

pppp

ppp

µλµλ

µλµλ

  

and   10 pp ⋅=⋅ µλ  when 0=n  (3.5) 

 Using the fact that 01 p=− ρ  we have: 

    
)1(1

10

ρρ

µλ

−=

⋅=⋅

p

pp
 

Recursively, we find that when 1=n  

   

( ) 2

2

2

02

000
2

0112

2011

1 ρρ

ρ

µ
λρµρλ

λµλµ

µλµλ

⋅−=

⋅=

⋅−⋅⋅+⋅⋅
=

⋅−⋅+⋅=⋅

⋅+⋅=⋅+⋅

p

pp

ppp
p

pppp

pppp

 

If we continue this pattern we see that  

   ( ) n

np ρρ ⋅−= 1 .  (3.6) 

Again, since the shunting customer follows the same Poisson arrival process and is 

served in the same manner as all other customer, this hold for our system. 



 25 

 We now let )(tp
nj

 be the probability that given n customers in the system at time 

t, an arrival to the system will take the position immediately behind customer j, for all 

nj ≤≤1 .  We say that the new customer takes the position behind customer j to account 

for the possibility that the new customer does not shunt, and takes his position behind 

customer n.  Also, this ensures that the shunting remains non-preemptive.  )(tp
nj

 can be 

represented as a row vector of n elements.  

    ( ))()()()(ˆ
21

tptptptp
nnnnnj

L=  

Since we are dealing with a system that is in steady state, we now have that 

  ( )
nnnnnj

pppp L
21

ˆ =  

Such a vector exists for every n, giving the matrix, 

  























=

nnnnn

nj

pppp

ppp

pp

p

P

L

MOMMM

L

L

L

321

333231

2221

11

0

00

000

 

We will assume that no customers are lost to the system.  Since it is given that there are n 

customers in the system, then 1
1

=∑
=

n

j
nj

p .  We wish to determine the limiting probability 

of this stochastic matrix.  In order to do so, we will follow a procedure detailed by Ross 

[12] among others.  We will consider the 2=n  and 3=n  cases, and then generalize our 

findings for all finite n.   
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 We begin by finding the eigenvalues of 









=

2221

11

2

0

pp

p
P

j
.  Note that we are 

using λ for our eigenvalues as is customary.  The reader should not confuse λ here for 

arrival rate.   

    

[ ]

0))(1(

0
01
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2

22212221
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2
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
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





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
=









=

λλ

λ
λ

λ

p

pp

IP

pppp

p
P

j

j

 

Thus 11 =λ  and 
222 p=λ .  From this, we have the matrix 










=

22
0

01

p
V .  Now, we find 

the eigenvectors: 

    ( ) 0
2

=⋅− ttj
HIP λ  

First we use 11 =λ . 
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0
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000

0
1

00

11211121
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This system of equations yields 1211 hh = , thus we let 







=









1

1

12
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h

h
. 

Next, we use 
222 p=λ . 
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This gives us that 021 =h  and 122 =h , thus 







=









1

0

22

21

h

h
.  Now, we have that 








=

11

01
H  

and that 







=

11

01
H , where 









−
=−

11

01
1H .  Now, we apply the known result,  
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( ) 










−
=










−
⋅









⋅







=

⋅⋅= −

KK
K

j

K

K

K

j

KK

j

pp
P

p
P

HVHP

2222

)(

2

22

)(

2

1)(

2

1

01

11

01

0

01

11

01
 

If we now take the limit, we have  
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
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After applying the same technique to  
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we find 
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From these, we have 
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Thus, if we generalize, we have 
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Applying the definition of conditional probability, 

we have 

,

)Pr(

)Pr(
)Pr(

n

nj

nj
p

p
p

B

BA
BA

=

=
I

 

where nj ,,2,1 K= , and njp  is the probability that a customer new to the system finds n 

customers in queue and takes the position immediately behind the j
th
 customer. 

Equivalently, we have   nnjnj ppp ⋅= .  (3.7) 
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So, we have the matrix  
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Based on our results for 
nj

p , we have that nnj pP =  when 1=j  and 0=njP  elsewhere. 

 Let us consider the case when the probability of shunting decreases geometrically 

as the position of shunting moves away from the service point.  Call this case the 

geometric shunting.  In the case of a network with n number of customers, this gives, 

  α=
n

p
1

, 2

2
α=

n
p , …, n

nn
p α= , for 10 ≤<α  

When 1=n , obviously, 1
11
=p . 

When 2=n , 10 ≤< β , 
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And when 3=n , 10 ≤< γ , 
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For 4=n , we have  
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We see here that for a given n, the tendency to shunt at a point closer to the server is 

higher than shunting elsewhere.  Also, in a geometric shunting, an arrival is less likely to 

shunt when the queue is long. 

 Also, we see that as the length of the queue increases, the probability that a 

shunting will occur immediately behind the first customer decreases.  This pattern holds 

when we consider the probability of shunting immediately behind the second customer, 

and so on. 

 We also consider the case where the probability of shunting at a point decreases 

linearly on the number of customers to the end of the queue.  Call this a linearly 

dependent shunting.  That is, ( ) α⋅+−= 1jnp
nj

, where 10 ≤<α  

For this case, α⋅= np
n1

, α)1(
2

−= np
n

, …, α=
nn

p . 

When 1=n , 1
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=p   

when 2=n , 10 ≤< β , 
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when 3=n , 10 ≤< γ , 
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And generally,  
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where 
)1(

2

+
=

nn
α . 

 Similar interpretation can be obtained for the linearly dependent shunting, as we 

did in the case of the geometric shunting. 
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CHAPTER 4 
 

Indexed Stations Served by a Single Dynamic Server 
 

4.1 Overview of the System 

 In this chapter, we will explore a queueing system which is served by a single 

server who transports customers to and from K indexed points of service, or nodes.  The 

server begins at node 1, takes into service any customers who are waiting at node 1, and 

moves to node 2 where any customer whose final destination was node 2 departs from the 

system.  At the same time, any customers waiting for service at node 2 enter into bulk 

service.  The process continues until the server reaches node K, where he/she returns, 

without serving anyone, to node 1, where the process starts over.  We will refer to this as 

a cyclic service.  The system is illustrated in Figure 4.1 below. 

 

 

 

 

 

 

 

 

   Figure 4.1 

λ1 

2 3 K 1 

λ2 λ3 λK-1 

Customers arriving at each node 

Server moves customers only to higher indexed nodes, at which 

point the customer exits the system.  The server then returns 

without customers to node 1 to begin the service cycle again. 

Server 

K - 1 
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4.2 General Results 

We will assume that there is no limit to the size of the queue at any service point, and that 

there is no limit to the number of customers who can be in service at any given time.  

Customers arrives at node i, Ki <≤1 , following a Poisson arrival process with rate iλ .  

We assume that all iλ  are independent of each other for all Ki <≤1 , and we let 

∑
−

=

=
1

1

K

i

iλλ .  Customers move from node i to node j, Kji ≤< with probability ijp , such 

that for every Ki <≤1 , 1
1

=∑
+=

K

ij

ijp .  Let the time of the server’s return from node K to 

node 1 be 1Kr , and let the time it takes the server to move from node i  to node j , or 

routing time from i to j, be the random variable ijr  for all Kji ,,2,1, K= , Kji ≤< , 

except that when Ki = , then 1=j .  We assume routing times are independent of each 

other and independent of the number of customers waiting in queue at each node.  

Further, we assume that ijr  includes the loading time of node i and unloading time of 

node j. 

 We can see, for example, that a customer who enters at node 2, and whose 

destination is node 7, will need to wait through the loading/unloading of node 3 through 

node 6.  In this case, the routing time will be 675645342327 rrrrrr ++++= .  From this, we 

also see that the routing time from node 1 to node K is 

    ∑
−

=
+− =++++

1

1

1,,1342312

K

k

kkKK rrrrr L  
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and thus the time of a service cycle is 

    ∑
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=
++=
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kkK rrT  

Note that the routing time from node K to node 1 is not necessarily equal to the routing 

time from node 1 to node K.  That is, ∑
−

=
+≠

1

1

1,1

K

k

kkK rr . 

 We will say that Θ≤< T0 , where Θ is some finite, positive value.  Since ijr  is a 

random variable, its expected value is [ ] ijijrE τ= . 

So, we have that the expected service time of a customer who arrives at node i is: 

    [ ] ∑
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⋅==
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)(1
τ

µ
, Kji ≤<≤1  (4.1) 

with equivalent expected service rate expressed by 
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The expected service rate of the entire system, µ , is of obvious interest.  Since µ  is the 

mean of all iµ , 11 −≤≤ Ki , we have,  
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Hence,  
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 The customer’s time spent waiting in queue will depend on the location of the 

server at the time of the customer’s arrival.  If the customer and the server arrive at a 

node at exactly the same time, then we say that the customer’s time spent waiting in 

queue is 0.  However, if the customer arrives at a node the moment the server is leaving 

the node, then the customer’s time spent waiting in queue is T.  The time spent waiting in 

queue is a continuous random variable that has a uniform distribution.  Thus, a customer 

arriving at node i has an expected queue waiting time of  
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0)( Θ
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This holds for all 1,,3,2,1 −= Ki K , thus we can say 
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 Using Little’s formula, which is given without proof in Gross and Harris [5], 

among others, and originally proven by Little [11], we find the expected length of the 

queue at node i, )(i

qL  to be, 

  

2

)(

)()(

Θ
⋅=

⋅=

i

i

q

i

qi

i

q

L

WL

λ

λ

 (4.4) 
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And we see that the expected number of customers waiting in the entire system is  
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Note that since )(i

qq WW = , this confirms that qq WL ⋅= λ  holds for this system. 

 We can now determine the expected time in the system for a customer who 

arrives at node i.  The time in system for a customer who enters at node i is given by 

or  
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Hence,  
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where, 
µ
1
 is defined as in (4.2). 

 And finally, by Little’s formula, the expected number of customers in the entire 

system now becomes, 
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4.3 State Probabilities for the Model 

 In this section, we discuss the probability )(i

np  that an arriving customer at node i 

finds n customers waiting for service.  We begin by pointing out that at each node, the 

queue discipline is Poisson arrival and bulk service, Gross and Harris [5]. 

 The global balance equations for node i is obtained as follows: We assume that 

there is a limit to the number of customers that can be taken into service, namely N.  In 

other words, there is a constraint on the buffer space at the service node.  We know from 

the Poisson postulates, that 
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 The following digression is needed for our discussion:  A linear operator, 
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With this, we can write the equation 
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Letting mn =−1 , equation (4.7) may now be expressed as 
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This is referred to as the operator equation, and its roots are given as ( ))(

1

)(

2

)(

1 ,,, i

N

ii rrr +K .  

From this, we have 
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jj rC ⋅  must be less than 1, therefore, either our roots 

are less than 1, or Cj = 0.  To determine the number of roots that are on the interval )1,0(  

we use Rouché’s Theorem, which states: 

Theorem:  If f and g are functions analytic inside and on a closed contour C and if 

fg <  on C, then f and gf +  have the same number of roots inside C. 
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analytic.  Now let C be a circle of radius ξ−1 , with ξ  chosen to be sufficiently small.  

That is, ξ−≤ 1D .  We then have  
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Over the interval (0, 1), f(D) is a decreasing function, which maps to the interval 
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Realizing again that ∑
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 Jackson [7] provides that if i

nP  is the probability that there are n customers 

waiting at node i, then the state of the system can be described by the product 
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CHAPTER 5 
 

Conclusion 

 
 We have used classical queueing theory techniques to obtain important measures 

of system performance in an M/M/1 system that allows non – preemptive shunting.  We 

have determined the expected queue length, expected time in queue, and expected time in 

system.  From our results, we determined that the further a customer is from the point of 

service, the less shunting will affect his expected waiting time.  Also, we have shown that 

as the service rate reaches either zero or infinity, shunting has no perceived effect on a 

customers’ expected waiting time.  Using global balance equations and stochastic 

matrices, we determined that in an M/M/1 system that allows shunting, the limiting 

probability of shunting immediately behind the j
th
 customer given n customers in the 

system is 1
1
=

n
p  for and 0=

nj
p  where 1≠j . 

 Further study is needed in the preemptive shunting case, where a customer could 

interrupt the customer currently in service.  Much study has already been given to the 

topic of preemptive priority queues.  This could provide the basis by which a preemptive 

shunting model could can be developed.  Using global balance equations for preemptive 

priority queues that are already known and this work, a preemptive shunting model could 

be obtained, and consequently the measures of system performance.   

 Also, in a preemptive shunting queue, an admission policy might prove to be 

necessary, since there is the potential for the original customer in service to be interrupted 

by a shunter.  This provides a large source of topics, including defining admission 
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policies and from there, finding measures of system performance.  Beyond that, work 

could be done to find optimal admission policies based on desired system performance. 

Chang and Chen [2] have worked with admission policies regarding tandem queues.  

Some of their work may translate to our model here.  

 Also in this work, we have defined a system in which a single server transports 

customers through a hierarchy of independent, indexed service nodes.  We again used 

classical methods to determine measures of system performance including expected 

waiting time in queue, expected service time, and expected queue length for each service 

node.   

 Since our model operates with highly theoretical boundaries including infinite 

queue capacity and infinite service capacity, it would be of practical interest to place 

limiting values on these fields.  This provides a topic for further study of this model. 

 Also, our server moves in only one direction, this is clearly not the most efficient 

use of the server.  More work is needed to show similar results when the server is allowed 

to transport customers in two directions.  Along the same vein, results should be found 

for when the server is allowed to rest at either node 1 or node K until called upon by a 

customer at a node, particularly server idleness.   
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