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ABSTRACT 
 

Habitat Preferences of the Eastern Hellbender in West Virginia 

 

By S. Conor Keitzer 

 

 The Eastern Hellbender, Cryptobranchus alleganiensis alleganiensis, is a 
species of concern in West Virginia and is in need of management. An important 
component of conservation efforts will involve identifying suitable habitat for 
protection. The goal of this research was to locate populations and examine 
hellbender habitat preferences to help managers identify habitat for protection. 
Populations were located using rock turning surveys from May through 
November, 2006. Hellbenders may be sensitive to water chemistry, so the 
dissolved oxygen, pH, turbidity, specific conductivity, and water temperature 
were measured. Substrate composition may influence populations, so substrate 
was characterized with Wolman pebble counts. Crayfish relative abundance was 
measured because they are an important prey item. Mean habitat characteristics 
of sites where hellbenders were present and absent were compared with t-tests. 
Habitat variables were ordinated in principal component analysis and examined 
in 2-dimensional ordination space to determine if sites where hellbenders were 
present grouped. Populations were found at 12% of sites, indicating that 
populations have declined in many streams. Hellbenders preferred sites with a 
large amount of gravel and cobble, cool water temperatures, low specific 
conductivity, and lower pH values. Gravel and cobble substrates may provide 
habitat for larval hellbenders and invertebrate prey items. Cool streams allow for 
more efficient cutaneous gas exchange. Low specific conductivity may indicate 
undisturbed conditions, suggesting hellbender populations were concentrated in 
less disturbed streams. Acidic conditions can alter prey communities and affect 
amphibian survival, so it was surprising to find populations in more acidic 
streams, although levels were above those known to harm stream ecosystems. 
Streams with similar habitat characteristics should be protected to conserve this 
unique salamander. 
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Chapter 1 
Overview 

 
The long-term survival of a species depends on populations successfully 

recruiting new individuals through reproduction, which is intimately linked to 

environmental conditions. Habitat specialists, such as the hellbender, are species 

which have narrow environmental tolerance ranges and therefore live in relatively 

specific habitats. Understanding habitat preferences of these species has 

important conservation implications. Protection of required habitat will increase 

the likelihood of successful reproduction and contribute to the species’ long-term 

survival. 

Large scale declines in hellbender populations have been observed 

throughout their range, indicating the need for management of this species 

(Gates et al., 1985; Nickerson et al., 2002; Pfingsten, 1990; Wheeler et al., 2003; 

Williams et al., 1981). An important component of this management will involve 

identifying and protecting suitable habitat. The majority of the information 

regarding hellbender habitat requirements comes from a study conducted by 

Nickerson and Mays (1973) on healthy populations in Missouri. Most hellbender 

studies have focused on demography and behavior, with few studies examining 

habitat requirements (but see Hillis and Bellis, 1971; Humphries and Pauley, 

2005; Nickerson et al., 2003).  

The objective of this study was to quantitatively assess environmental 

characteristics of sites where hellbenders were present to determine habitat 

preferences. This information should help management agencies identify 

hellbender habitat for protection and contribute to the long-term survival of this 

unique species. 

 
 

 
 

1 



  

Chapter 2 
Introduction 

 
The Eastern Hellbender 

The Eastern Hellbender, Cryptobranchus alleganiensis alleganiensis, is a 

large salamander found in swiftly flowing streams in the central and eastern 

United States (Figure 1). They possess several adaptations to lotic environments 

which are helpful in identification (Figure 2). Hellbenders have dorsoventrally 

flattened bodies and heads, which offer a minimum of resistance to flowing 

water. Their paddle-like tail can be used for swimming at surprising speeds for 

short distances to avoid predators (Nickerson and Mays, 1973). Although 

hellbenders posses large lungs, the majority of gas exchange occurs through the 

skin. Highly vascularized folds of skin are present and increase the surface 

respiratory area (Guimond and Hutchinson, 1973). They also exhibit a rocking 

behavior, particularly when stressed, which has been shown to further enhance 

gas exchange (Harlan and Wilkinson, 1981). This method of respiration is 

believed to limit hellbenders to cool, swiftly flowing streams where gas exchange 

is maximized (Ultsch and Duke, 1990).  
The northern extant of the Eastern Hellbenders’ range is southern New 

York, extends southward to northern Georgia and Alabama, and westward into 

Missouri (Nickerson and Mays, 1973) (Figure 3). Hellbenders have been found in 

the Savannah, Susquehanna, Ohio, Tennessee, Missouri, and Meramec River 

systems (Phillips and Humphries, 2005). Populations can be found statewide in 

West Virginia except for the Potomac and James River systems, which are east 

of the Allegheny front (Green and Pauley, 1987).   
Although nocturnal (Noeske and Nickerson, 1979) and rarely encountered, 

hellbenders can be abundant where they occur (Hillis and Bellis, 1971; 

Humphries and Pauley, 2005; Nickerson and Mays, 1973, Peterson et al., 1988; 

Taber et al., 1975). The population estimate for a 4.6 km section of a Missouri 

stream was 428 individuals/km and a biomass estimate of 156 kg/km. A 4,600 m2 

riffle of that same stream had an estimated population of 1 individual/8-10 m2 and 
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a biomass estimate of 98.2 kg (Nickerson and Mays, 1973). Peterson et al. 

(1988) found population densities to range from 0.9-6.1 hellbenders/100 m2 from 

four rivers in Missouri. Hillis and Bellis (1971) captured 152 individuals in a 220 m 

x 70 m study area from a Pennsylvanian stream. 

High population density and biomass estimates suggest that hellbenders 

are an important component of stream ecosystems (Humphries and Pauley, 

2005). Hellbenders feed predominantly on crayfish, but will eat a variety of 

invertebrates such as snails, insect larvae, adult insects, worms, and mollusks 

(Alexander, 1927; Green, 1933; Netting, 1929; Nickerson and Mays, 1973; 

Reese, 1903). Vertebrate prey items include minnows, suckers, anurans, aquatic 

reptiles, small mammals, lamprey, and other hellbenders (Alexander, 1927; 
Netting, 1929; Nickerson et al., 1983; Nickerson and Mays, 1973; Reese, 1903). 

Hellbenders, particularly eggs and larvae, are potential prey for a variety of 

species. Known predators include Northern Pike, catfish, turtles, water snakes, 

and humans (Nickerson and Mays, 1973). The specific role of hellbenders in 

ecosystems has not been examined, but they appear to occupy a high trophic 

level. Species that occupy high trophic levels can influence production in 

ecosystems through trophic cascades, which have been observed in a variety of 

habitats, including freshwater streams (Carpenter et al., 1985; Carpenter et al., 

1987; Huryn, 1998; Pace et al., 1999). The diet of hellbenders suggests they may 

play an important role in shaping invertebrate communities, principally by 

influencing crayfish populations (Humphries and Pauley, 2005). Hellbenders may 

exhibit top-down control of stream food webs and influence productivity through 

consumption of primary and secondary consumers (Figure 4).  

Despite declines in densities, populations were abundant in many river 

systems as recently as the 1970s (Nickerson and Mays, 1973). However, it 

appears that since this time, populations have declined substantially throughout 

the hellbenders’ range (Gates et al., 1985; Nickerson et al., 2002; Nickerson and 

Mays, 1973; Pfingsten, 1990; Trauth et al., 1992; Wheeler et al., 2003; Williams 

et al., 1981). Today, the only state where hellbenders are not considered a 

species of concern or endangered is South Carolina, where the status is 
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unknown (Table 1). In West Virginia they are an S2 species, which means they 

are very rare or imperiled. It may also mean there are factors present which 

make them vulnerable to extirpation. 

Reasons for Declines 
The specialized adaptations of hellbenders to relatively specific habitat 

conditions (Guimond and Hutchison, 1973; Nickerson and Mays, 1973; Taketa 

and Nickerson, 1973; Ultsch and Duke, 1990; Williams et al., 1981) make them 

susceptible to rapid environmental changes. In addition, their low genetic 

diversity (Merkle et al., 1977; Routman, 1993; Routman et al., 1994) indicates 

hellbenders may be unable to adapt to long-term environmental changes 

(Williams et al., 1981). Habitat degradation is therefore believed to be a major 

reason for population declines (Humphries and Pauley, 2005; Nickerson and 

Mays, 1973; Nickerson et al. 2002; Trauth et al., 1992; Wheeler et al., 2003; 

Williams et al., 1981). Despite this belief, there have been few studies that 

address habitat requirements (but see Hillis and Bellis, 1971; Humphries and 

Pauley, 2005; Nickerson et al., 2003; Nickerson and Mays, 1973).  

In general, hellbenders require cool, fast-flowing streams with a 

heterogeneous substrate (Nickerson et al., 2003; Nickerson and Mays, 1973). 

Nickerson and Mays (1973) found the probable optimal conditions were 

temperatures between 9.8-22.5 C, pH from 7.6-9.0, and dissolved oxygen from 

8.4-13.6 ppm. It appears that adult and larval hellbenders utilize different stream 

microhabitats (Nickerson et al., 2003). Adults require access to large flat rocks 

for cover and nesting (Hillis and Bellis, 1971; Humphries and Pauley, 2005; 

Nickerson and Mays, 1973; Nickerson et al., 2003). Hellbenders will actively 

defend these rocks and they may be a limiting resource (Hillis and Bellis, 1971; 

Nickerson and Mays, 1973; Peterson and Wilkinson, 1996). Larval hellbenders 

require smaller rocks for cover and will also utilize interstitial spaces in gravel and 

cobble (Nickerson and Mays, 1973; Nickerson et al., 2003). These areas also 

provide habitat for a variety of aquatic invertebrates (Bourassa and Morin, 1995; 

Williams, 1978), which make up the bulk of the hellbender diet (Alexander, 1927; 
Green, 1933; Netting, 1929; Nickerson and Mays, 1973; Reese, 1903).  
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There are a number of potential reasons for hellbender declines, but 

habitat degradation is probably the most important (Humphries and Pauley, 

2005; Nickerson and Mays, 1973; Nickerson et al. 2002; Trauth et al., 1992; 

Wheeler et al., 2003; Williams et al., 1981). Land use practices such as logging, 

urban development, and agriculture have the potential to increase water 

temperatures and lower the respiratory ability of hellbenders (Utlsch and Duke, 

1990). Temperatures above the thermal maximum range of 32.7-36.6 C can be 

fatal (Hutchinson et al., 1973).  

Acid precipitation and acid mine drainage can increase stream acidity, 

which has been shown to decrease trout and benthic invertebrate abundance, 

alter vertebrate and invertebrate communities, and impact aquatic food webs 

(Baker et al., 1996; Cagen et al., 1993; Hall et al., 1980). Acidic conditions have 

been shown to affect the development and hatching success of amphibian eggs 

and larvae (Freda and Dunson, 1985; Gosner and Black, 1957; Ling et al., 1986). 

It is possible that acidic conditions will affect hellbender eggs and larvae in a 

similar manner. Acidification can therefore potentially impact hellbenders by 

altering aquatic food webs and by directly impacting an individual’s survival. 

Modification of stream flow for transportation, agriculture, and 

hydroelectric power can alter stream ecosystems (Benke, 1990; Robinson et al., 

2004). These changes can negatively affect larval and juvenile fish survival and 

change fish communities (Bain et al., 1988; Scheidegger and Bain, 1995; 

Schlosser, 1985; Travnichek et al., 1995). Changes to stream flow can also alter 

invertebrate drift and species diversity (Minshall and Winger, 1968; Robinson et 

al., 2004). Stream flow alteration could therefore impact hellbenders by changing 

the abundance and diversity of vertebrate and invertebrate prey. Reduction in 

flow may also affect the respiratory ability of hellbenders because gas exchange 

is increased by flowing water (Nickerson and Mays, 1973; Ultsch and Duke, 

1990; Williams et al., 1981). 

Sedimentation is one of the most common non-point sources of pollution 

and is believed to be a major contributor to hellbender declines (Nickerson and 

Mays, 1973; Williams et al., 1981). A variety of activities such as agriculture, 
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urban development, logging, and wildfires may increase the sediment load of 

streams (Kerby and Kats, 1998). Increased sediment loads have been shown to 

alter fish, salamander, and invertebrate communities and can affect stream 

ecosystem processes (Angradi, 1999; Berkman and Rabeni, 1987; Kerby and 

Kats, 1998; Kreutzweiser et al., 2005; Lemly, 1982; Rabeni and Minshall, 1977; 

Sponseller and Benfield, 2001). It may directly impact survivorship of hellbender 

larvae by increasing the embeddedness of gravel and cobble, forcing larvae to 

utilize less secure areas (Nickerson et al., 2003). Sedimentation also has the 

potential to bury larvae and limit their ability to breathe. Sedimentation probably 

impacts hellbenders by altering prey communities, limiting larval access to 

interstitial spaces, and decreasing the availability of large rocks (Nickerson et al., 

2003; Williams et al., 1981). These environmental factors do not act in isolation 

of each other and synergistic interactions probably occur which magnify their 

impact. 

It is unlikely that habitat degradation alone is responsible for all population 

declines. Over-collection by the pet trade and scientific researchers has also 

been implicated (Humphries and Pauley, 2005; Nickerson and Mays, 1973; 

Phillips and Humphries, 2005; Trauth et al., 1992; Wheeler et al., 2003). For 

example, in the mid 1980’s over 100 individuals were removed by commercial 

collectors in two days from a Missouri stream. Surveys from this same site in 

1991 resulted in no hellbender captures (Trauth et al., 1992). There are several 

examples of large collections for scientific research as well, including the 

collection of over 650 individuals from a stream in Pennsylvania, although I am 

unaware of the current status of this population (Swanson, 1948). Hellbenders 

are often killed by fisherman due to the mistaken belief that they are poisonous 

or harmful to the fishery (Nickerson and Mays, 1973). Nickerson et al. (2002) 

noted that hellbenders can be negatively affected by fishery management 

practices, such as the use of chemicals to reduce non-game fish populations. 

They also suggest that a reduction in crayfish populations as a result of a large 

otter population may be contributing to declines in a Tennessee stream.  
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It is possible that physical abnormalities as a result of intraspecific 

competition, failed predation, accidental injury, and birth defects may reduce 

individual reproductive effort (Miller and Miller, 2005). A study by Unger (2003) 

found that males from a declining population had lower sperm concentrations 

(sp/ml) than males in a stable population. The apparently low survival rate of 

eggs and larvae (Taber et al., 1975) suggests that anything that further affects 

reproductive success could significantly impact populations.  

There is no single reason for hellbender declines; instead it is probably 

due to the interaction of multiple factors. Additionally, the relative importance of 

each factor will vary spatially and temporally, which can make effective 

conservation management difficult. While there are a variety of potential causes, 

habitat degradation is probably the major threat to hellbender populations  

The Eastern Hellbender in West Virginia 
Green (1934) believed hellbenders were more abundant in West Virginia 

than any other part of the Ohio River drainage during the 1930s. Although 

populations were declining throughout their range by the 1970s, Nickerson and 

Mays (1973) believed large populations were still present in some West Virginian 

streams. However, prior to surveys by Humphries and Pauley (2005) in the late 

1990s, the only information I am aware of regarding population distribution 

comes from scattered reports by the West Virginia Division of Natural Resources 

(WVDNR), West Virginia Biological Survey (WVBS), and anecdotal evidence 

(Figure 5). According to these reports, hellbenders have been found in 12 of the 

32 major watersheds (Table 2). Although there are no records, populations were 

probably found in the other major watersheds as well, except for river systems 

east of the Allegheny front (Green and Pauley, 1987).  

Humphries and Pauley (2005) provided the first population density 

estimate for West Virginia. They estimated a population of 31 individuals in a 

3,883 m2 section or 0.8 individuals/100 m2 and an estimated biomass of 39.2 

kg/ha. This density is lower than reported by Nickerson and Mays (1973), but 

probably represents a healthy population. This study confirmed that large and 

apparently stable populations still exist in some West Virginian streams.  
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WVDNR reports from the last 10 years show that populations may still be 

present in Buffalo Creek, North Fork of the Cherry River, Desert Fork, Back Fork 

of the Elk River, Fish Creek, West Fork of the Greenbrier River, Horseshoe Run, 

North Fork of the Hughes River, Little Laurel Creek, and Shavers Fork. However, 

recent surveys by Makowsky (2004) only found hellbenders at 3 of 32 sites. He 

found adult hellbenders in the Cranberry and Elk Rivers and eggs were found in 

the Holly River. Unfortunately, the lack of information regarding past population 

densities and distribution makes it impossible to know whether declines have 

occurred. Declining populations in other parts of the hellbender’s range (Gates et 

al., 1985; Nickerson et al., 2002; Nickerson and Mays, 1973; Trauth et al., 1992; 

Wheeler et al., 2003; Williams et al., 1981) and results of recent surveys 

(Makowsky, 2004), indicate that populations may have declined, or are at risk of 

declining, in at least some West Virginian river systems.  

Study Objectives 
Hellbenders are considered a species of concern in West Virginia and are 

in need of management. Research is needed to gain a better understanding of 

habitat requirements and population distribution for effective conservation 

management. The objectives of this research were to (1) provide the WVDNR 

with information about populations in central and southern West Virginia and (2) 

quantitatively assess habitat preferences of the Eastern Hellbender. This 

information will aid the WVDNR in management decisions regarding hellbender 

conservation. 
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Chapter 3 
Methods 

 
Study Area 

The area surveyed consisted of counties south of Randolph, Upshur, 

Lewis, Braxton, Calhoun, Roane, Jackson, Logan, and Cabell counties (Figure 

6). This area encompasses approximately 15,120 km2 and includes portions of 

the Appalachian Plateau, Allegheny Front, and Allegheny Mountain 

physiographic provinces. The large area surveyed allowed for a gradient of 

environmental variables to be sampled. The major watersheds in this area are 

the Greenbrier, Upper and Lower New, Gauley, Tug Fork, Upper and Lower 

Guyandotte, Coal, Upper and Lower Kanawha, Elk, and Big Sandy.  
Hellbenders have been found in the Cranberry River, Williams River, 

Gauley River, Greenbrier River, East and West Forks of the Greenbrier River, Elk 

River, Back Fork of the Elk River, Mud River, North Fork of the Cherry River, 

Guyandotte River, Second Creek, Glade Creek, and Twelvepole Creek in this 

area. There is also evidence that they were in the New River, Bluestone River, 

and Tug Fork River (L. Rogers, 2006, personal communication). This area 

includes relatively undisturbed sites, such as the Cranberry River in the 

Monongahela National Forest (MNF) and disturbed sites, such as the 

Guyandotte River in the town of Pineville. Although sites within the MNF receive 

some protection from disturbances, even these sites have been exposed to the 

effects of logging. The majority of the forests in West Virginia were logged at 

some point as a result of the forestry boom following the Civil War, including the 

MNF (Miller and Maxwell, 1913).  

Surveys 
 Surveys were conducted from May through November, 2006. Sites were 

searched by 1 or 2 surveyors wearing snorkeling gear (mask, snorkel, and 

wetsuit if needed). Rocks were slowly turned with the aid of a log peavey and 

specimens were captured by hand. Nickerson and Krysko (2003) found that 

snorkeling was the only method that captured hellbenders of all age classes in a 
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review of survey techniques. The number of surveyors was multiplied by time 

searched to determine search effort. Relative abundance was determined by 

dividing the number of specimens encountered by search effort and has been 

found to correlate well with mark-recapture density estimates (Peterson et al., 

1988). Sites were searched until hellbenders were encountered or for at least 3 

hours if no specimens were found. 

Total length (mm), weight to the nearest gram, markings/deformities, sex 

(if possible), depth (m) at site of capture, length (cm) and width (cm) of rock 

under which specimen was captured, and rock opening orientation (upstream or 

downstream) were recorded. Specimens were tagged with a Passive Integrated 

Transponder (P.I.T.) in a fatty portion of tissue at the base of the tail posterior to 

the hind legs. Tags were injected with a syringe and needle sterilized in ethyl 

alcohol and specimens were released at site of capture (Figure 7).  

The life history of hellbenders suggests they may be affected by stream 

substrate, so Wolman pebble counts were used to characterize stream 

substratum (Wolman, 1954). Water chemistry of a stream may affect hellbenders 

as well, so water temperature (C), pH, dissolved oxygen (mg/L), percent 

dissolved oxygen, specific conductivity (ms/cm), and turbidity were measured 

with a Hydrolab Quanta (Hydrolab Corp.). Relative abundance of crayfish was 

also recorded for each site because crayfish make up a significant portion of the 

hellbender diet.  

Night surveys were conducted from August through September, 2006. 

These surveys consisted of 1 to 3 surveyors using headlamps while walking in 

the stream to locate specimens. Box traps and hoop nets were baited with catfish 

bait and set at 2 sites. However, this method was time consuming and I had little 

confidence that areas were being effectively surveyed, so no further trapping 

attempts were made. 

Sites were chosen in streams where populations were known from reports 

by the WVDNR and WVBS to determine if they were still present. If possible, the 

exact site where populations had been found was searched. New sites were 

subjectively chosen if they looked like good hellbender habitat.  
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Data Analysis 

 The length and width of the capture rock were multiplied for a rough 

estimate of the rock’s area. Hellbenders were placed into size classes based on 

total length. Males reach sexual maturity at approximately 300 mm and females 

at a slightly larger size of 380 mm (Taber et al., 1975). Larvae partially 

metamorphose (lose gills) when they reach total lengths of 100-130 mm 

(Petranka, 1998). Wolman pebble counts were first converted into particle size 

categories (Table 3). The number of particles in size categories was then used to 

determine the particle size percentile classes for statistical analysis (Bunte and 

Abt, 2001). The size classes represent the size at which 5% (D5), 16% (D16), 

25% (D25), 50% (D50), 75% (D75), 84% (D84), or 95% (D95) of particles were below 

that size, so they varied depending on the stream substrate. For example, a site 

with a large number of particles falling in the fine sediment category will have a 

lower D5 score than a site that has very few fine sediment particles and lots of 

large cobble. 

Site specific habitat characteristics were ordinated in principle component 

analysis (PCA) with a variance-covariance centered matrix (McCune and 

Mefford, 1999). The only particle size class used in the analysis was the D50 

because particle size scores are highly correlated. Percent dissolved oxygen was 

also not included because it is highly correlated with dissolved oxygen (mg/L) 

and water temperature. The PCA was graphed in 2-dimensional ordination space 

to examine whether sites where hellbenders were present (HP) separated from 

sites where they were absent (HA). Habitat characteristics were examined with t-

tests to determine if there were differences in HP and HA sites (Statistix 7.0. 

Analytical Software. 1985, 2000). A Euclidean distance measures cluster 

analysis with Ward’s group linkage method was used to determine how similar 

sites were based on habitat characteristics (McCune and Mefford, 1999). Only 

the characters found to be significant with t-tests were used in the cluster 

analysis.  
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Chapter 4 
Results 

 
Hellbenders were found at 8 of 67 sites, the majority of which were in the 

Monongahela National Forest (Figure 8). If sites are limited to streams where 

they have been found in past, then hellbenders were found at 8 of 41 sites (Table 

4). Two additional locations were found by other researchers over the course of 

the study in the Kanawha River and a Williams River site. It appears that 

populations are patchily distributed in streams (Figure 9). My surveys confirm 

that hellbenders are still present in the Back Fork of the Elk River, East and West 

Forks of the Greenbrier River, Cranberry River, Gauley River, and Williams 

River. Hellbenders were only found in streams in which they were already known 

to occur from past reports by the WVDNR and BSMU (Table 5). Rock turning 

surveys during the day were the only method used to successfully locate 

specimens. 

 Thirteen hellbenders were observed, 4 of which escaped so the size class 

could not be determined, although they appeared to be adults (Table 6). A larval 

hellbender was found in the Williams River, a juvenile was found in the Gauley 

River, and the rest were adults. Eggs were not found at any sites. The highest 

relative abundances were in the West Fork of the Greenbrier River (0.800 

hellbenders/hour) and the Back Fork of the Elk River (0.703 hellbenders/hour). 

Only 1 hellbender was able to be sexed, a male from the Cranberry River. 

Most specimens were found at depths a little over 0.5 m (n = 13, mean = 62.2 

cm) and under large rocks (n = 13, mean = 1. 028 m2). The majority of rock 

openings were oriented downstream (n = 10). Five hellbenders had what 

appeared to be scarring from bite marks and 2 were missing the second digit of 

the right hind foot. One adult had a large, fresh circular shaped wound on its 

head (Figure 10). Another adult regurgitated what looked like a salamander, but it 

was too digested to identify. 

The PCA ordination suggests that there were differences in habitat 

characteristics of HA and HP sites (Figure 11). HP sites grouped, although there 
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was considerable overlap with HA sites. The majority of the grouping appears to 

be a result of the first principle component (PRIN 1), which explained 96.4% of 

the total variation (Appendix B). Although there is a large spread over which HP 

sites occurred along this axis, it appears there is a lower limit, below which no HP 

sites are located. The D50 score was most relevant along this axis and HP sites 

were positively correlated with D50 score (Table 7). Principle component 2 (PRIN 

2) explained 2.8% of the overall variation and there was little grouping of HP sites 

on this axis. Turbidity was the most important environmental variable on this axis. 

The t-tests showed that HP sites had significantly higher D16, D25, and D50 scores 

and significantly lower pH, water temperature, and specific conductivity (D16: p = 

0.0190, D25: p < 0.0001, D50: p = 0.0035, pH: p = 0.0016, water temp.: p = 

0.0066, specific conductivity: p < 0.0001) (Table 8, Figure 12, & Figure 13). A 

conservative interpretation of the cluster analysis identified 6 groupings that 

included HP sites (Figure 14). Based on the cluster analysis, it appears that Pond 

Fork of the Little Coal River, Mash Fork of the Big Coal River, and the mainstem 

of the Greenbrier River may also be capable of supporting populations (Figure 

15).  
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Chapter 5 

Discussion 
 

Large scale declines in Eastern Hellbender populations have been 

observed throughout their range for the last 30 years (Gates et al., 1985; 

Nickerson et al., 2002; Nickerson and Mays, 1973; Pfingsten, 1990; Trauth et al., 

1992; Wheeler et al., 2003; Williams et al. 1981). Although it is impossible to say 

for certain, because we simply lack information regarding past population 

densities and distributions (Humphries and Pauley, 2005), it appears that 

populations are also declining in many streams in central and southern West 

Virginia. Hellbenders were only found at 12% of all sites surveyed and 19.5% of 

sites from streams in which hellbenders are known to occur from past reports. 

This low rate of encounters seems to indicate population declines if hellbenders 

were as common as Green (1934) believed they were in the 1930s.  

However, these results should be interpreted with caution. There is the 

possibility that hellbenders were present at a site and not observed. This may 

have occurred if hellbenders were under large rocks that could not be turned or if 

they escaped when sediment released from turning rocks obscured vision. I think 

the use of a snorkeling mask allowed for most hellbenders to be observed, even 

if vision was briefly obscured, but it is possible that some escaped without being 

seen. Hellbenders are known to utilize cracks in the bedrock (Nickerson and 

Mays, 1973) which were not searched. I did not see many bedrock cracks while 

sampling though, so this was probably not a major problem in these surveys. In 

most cases, I believe that hellbenders were observed if they were present. 

The absence of hellbenders at a site should not be extrapolated to the 

whole stream. Hellbenders appear to be patchily distributed in streams and it 

seems probable that populations were present in streams that I did not find them; 

they were just not at the sites sampled (Figure 9). For example, Makowsky 

(2004) found eggs in the Holly River, but I was unable to find any hellbenders 

there in my surveys. I believe that if Holly River had been surveyed more 
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extensively, hellbenders would have been found. This example is probably true 

for a number of streams and more extensive surveys are needed to determine if 

populations exist in these streams (Table 4 & Table 5).  

Although populations have probably declined, there are still apparently 

healthy populations in West Virginia. The majority of sites where hellbenders 

were found were in the Monongahela National Forest, which is encouraging 

because they receive some protection from many land use practices (Figure 8). It 

was also encouraging to find a larval hellbender in the Williams River and a 

juvenile in the Gauley River, because it means successfully reproducing 

populations exist. Hellbenders live up to 25 years in the wild, so adults may 

persist in environments which are not capable of supporting successful 

reproduction (Nickerson and Mays, 1973; Williams et al., 1981).Therefore, the 

presence of adults does not necessarily represent a healthy population, although 

I believe the high relative abundances of hellbenders in the West Fork of the 

Greenbrier River and the Back Fork of the Elk River represent healthy 

populations even though no larvae or juveniles were found.  

The most likely threat to these populations is a change in stream quality 

as a result of logging activity. Most populations were located in the Monongahela 

National Forest, so they are protected from many land use activities that can 

degrade habitat, but logging still occurs. Logging has the potential to increase 

sediment loads and water temperatures. Sedimentation can alter stream 

ecosystems by changing invertebrate and vertebrate communities (Angradi, 

1999; Berkman and Rabeni; 1987; Kreutzweiser et al., 2005; Lemly, 1982) and is 

believed to be a major reason for hellbender declines (Nickerson and Mays, 

1973; Williams et al., 1981). Sedimentation could potentially affect hellbenders by 

decreasing the quality of larval and nesting habitat and by altering prey 

availability. Higher water temperatures could affect the respiratory ability of 

hellbenders and decrease their individual fitness (Ultsch and Duke, 1990). 

However, forestry best management practices are designed to limit these effects 

and logging may only have a minimal impact on populations. These streams 
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should continue to be monitored however, so that if declines are observed action 

can be taken to ensure they are not extirpated. 

The specific habitat requirements of hellbenders suggest their distribution 

will be influenced by the availability of preferred habitat. The patchy distribution 

observed in this study may therefore relate to site specific habitat characteristics. 

In general, hellbenders were found at sites with higher particle size scores and 

lower water temperatures, pH values, and specific conductivities (Table 8, Figure 

11, Figure 12, & Figure 13).  

It was not surprising that hellbenders preferred sites with higher particle 

size scores, which are usually associated with the more heterogeneous stream 

substrate required by hellbenders (Nickerson et al., 2003; Nickerson and Mays, 

1973). In this study, hellbenders were generally found under large flat rocks 

oriented downstream and in relatively shallow water of rapid flow, similar to 

previous studies on habitat use (Hillis and Bellis, 1971; Humphries and Pauley, 

2005; Nickerson et al., 2003; Nickerson and Mays, 1973). These areas probably 

allow for a maximum amount of gas exchange, protect individuals from stream 

flow disturbance, and provide nesting and cover for adults. However, it appears 

that the amount of large rocks was not a limiting factor in the streams I sampled 

Table 8, Figure 12, and Figure 13. Higher particle size classes were generally 

made up of boulders typically used by adults in my surveys. There were no real 

differences between sites where hellbenders were present or absent at these 

higher size classes, indicating that the amount of large rocks was not a limiting 

factor. Instead, it appears that hellbenders prefer sites with higher scores at the 

smaller size classes, specifically at the D16, D25, and D50 classes. This may relate 

to the availability of larval and prey habitat. 

Nickerson et al. (2003) found that larval and adult hellbenders utilized 

different microhabitats. Larvae were usually found under small rocks, often in 

mixed substrates of cobble and gravel. They were predominantly found in deep 

pools, but were also found near stream margins and areas of sub-surface 

percolation which may provide protection from predators. These areas are also 

utilized by larval fishes and macroinvertebrates (Allan, 1997), illustrating the 
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importance of this microhabitat in maintaining stream ecosystems. Hellbenders 

preferred sites with higher D16, D25, and D50 size class scores, which contained 

gravel and cobble in my surveys. This suggests that having a large amount of 

larval habitat is important for maintaining hellbender populations. Interestingly, 

the larval hellbender captured in this survey was found under a fairly large rock, 

more often utilized by adults (Table 5). Nickerson et al. (2003) also found larvae 

under larger rocks and believed this may have been the result of the limited 

availability of preferred sites under small rocks, which forced larvae to use less 

secure cover. Larvae may also have been under smaller rocks which were 

disturbed when the larger rock was turned.  

In addition to providing habitat for larval hellbenders, gravel and cobble 

substrates are an important habitat for macroinvertebrates (Allan, 1997; Rabeni 

and Minshall, 1977; Reice, 1980; Williams, 1978). Macroinvertebrates are a key 

component of stream ecosystems and transfer energy to higher trophic levels 

occupied by vertebrate predators, including hellbenders (Allan, 1997). 

Macroinvertebrate diversity and abundance is higher in mixed substrates of 

gravel and cobble (Allan, 1997; Rabeni and Minshall, 1977; Reice, 1980; 

Williams, 1978). A significant portion of the hellbender diet is made up of 

macroinvertebrates and their distribution may be related to prey availability 

(Alexander, 1927; Green, 1933; Netting, 1929; Nickerson and Mays, 1973; 

Reese, 1903). Gravel and cobble substrates are therefore important in 

maintaining populations because they provide habitat for larval hellbenders and 

prey items.  

The most likely threat to the habitat required by larvae and invertebrate 

prey is sedimentation. Fine sediments can fill interstitial spaces used by larval 

hellbenders and invertebrates, degrading the quality of this habitat. This could 

force larval hellbenders into less secure sites, making them more vulnerable to 

predation (Nickerson et al., 2003). Sedimentation could also lead to the direct 

mortality of individuals if they become buried and are unable to breathe. It may 

also alter invertebrate prey communities, which could negatively affect the quality 

and quantity of available food to support populations (Angradi, 1999; Berkman 
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and Rabeni; 1987; Kreutzweiser et al., 2005; Lemly, 1982). Large amounts of 

fine sediments associated with sedimentation would drag down particle size 

scores, perhaps explaining why populations were not found at sites with lower 

particle size scores. 

Although stream substrate was an important habitat characteristic, it 

appears that water characteristics were also important factors (Table 8, Figure 

12, & Figure 13). The respiratory ability of hellbenders is greater in cooler waters, 

which may explain why hellbenders preferred sites with lower water temperatures 

(Ultsch and Duke, 1990). Summer temperatures at some HA sites reached up to 

29.4 C, which is well above the proposed optimal temperature range of 9.8-22.5 

C and approaches the critical thermal maximum range of 32.7-36.6 C 

(Hutchinson et al., 1973; Nickerson and Mays, 1973). The highest temperature 

reported for HP sites was 19.3 C, which includes summer months and supports 

the idea that hellbenders require cool streams. Hellbenders are slow to acclimate 

to temperatures changes and seasonal increases found in some streams may be 

too stressful on individuals to support populations (Hutchinson et al., 1973). This 

may also explain why hellbenders were found in a very narrow range of 

temperatures. Several of the highest temperatures were recorded from streams 

where hellbenders are known to occur from past reports, but were not found in 

my surveys. For example, a site where hellbenders have been found in the 

Greenbrier River reached a summer temperature of 28 C. This leads me to 

believe that temperatures in this stream have increased since hellbenders were 

last observed. This may also be true for several other streams and may explain 

why hellbenders were not found at many sites where they used to be present.  

Specific conductivity measures the ability of water to pass an electric 

current and is related to the geology of an area, but may also be influenced by 

land use practices (Dow and Zampella, 2000; Lenat and Crawford, 1994; 

Sponseller and Benfield, 2001). Urbanization, agricultural practices, and logging 

can increase the amount of NO3
-, NH4

+, P, CA2+, and Mg2+ present in streams, 

which results in a higher conductivity. Generally, less disturbed sites (i.e. forested 

streams) have a lower specific conductivity than disturbed sites. Dow and 
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Zampella (2000) found that specific conductivities in the range of 0.07-0.14 

uS/cm were associated with disturbed streams. HA sites had a high mean 

specific conductance (0.2214 uS/cm), indicating that many of these areas were 

highly disturbed (Table 8, Figure 12, & Figure 13). Conversely, HP sites had a 

much lower mean specific conductivity (.0356 uS/cm), indicating that these sites 

are relatively undisturbed. Differences may have been caused by geology rather 

than disturbance; although HP sites were usually in forested areas. Habitat 

degradation as a result of land use could potentially impact hellbenders in a 

number of ways and this study suggests that disturbed areas do not support 

populations. However, research designed to specifically address the effects of 

land use on hellbender populations is needed to determine if this is true. 

Acidic conditions in streams can alter invertebrate communities and 

decrease the survival rate of fish and amphibian eggs and larvae (Baker et al., 

1996; Cagen et al., 1993; Freda and Dunson, 1985; Gosner and Black, 1957; 

Hall et al., 1980; Ling et al., 1986). It was therefore surprising to find hellbenders 

in more acidic conditions than HA sites, some of which were lower than has 

previously been reported (Table 8, Figure 12, & Figure 13). However, these 

conditions were still above the acidity levels (pH < 4-5) shown to negatively affect 

amphibian and fish survival rates. Some of these sites were approaching 

conditions known to harm stream ecosystems. It appears that hellbenders can 

survive in stream conditions that are more acidic than has previously been 

reported. However, pH levels should be monitored because conditions in some 

streams are approaching levels that may alter stream communities and could 

affect the long-term survival of populations.  

The results of the cluster analysis indicate that the mainstem of the 

Greenbrier River, Pond Fork of the Little Coal River, and Marsh Fork of the Big 

Coal River contained areas with similar habitat characteristics to those where 

hellbenders were found (Figure 14 & Figure 15). This suggests that these 

streams may contain habitat suitable for supporting populations. Marsh Fork of 

the Big Coal River and Pond Fork of the Little Coal River were not surveyed 

extensively, so it is possible that populations were present in areas not surveyed. 
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The mainstem of the Greenbrier River was surveyed fairly extensively, but 

hellbenders have been found there in the past and populations may still exist in 

areas of suitable habitat. The interpretation of the cluster analysis was 

conservative, so there are a number of other streams that probably contain 

suitable habitat as well. The cluster analysis also suggests that hellbenders were 

present at some sites and missed or that other factors may be influencing habitat 

suitability. 

Hellbenders preferred slightly acidic sites with a heterogeneous substrate, 

cool water temperatures, and low specific conductivity. A combination of these 

characteristics is required to support populations. For example, a stream with 

heterogeneous substrate but warm water temperatures is unlikely to support a 

healthy population. While these characteristics are important components of 

hellbender habitat, they are certainly not the only relevant habitat characteristics. 

The overlap of HA and HP sites in the PCA ordination and their relationships in 

the cluster analysis suggest that other factors not measured were also affecting 

populations (Figure 11 & Figure 14). The absence of populations at apparently 

suitable sites indicates that further research is needed to determine what factors 

were responsible for the absence of hellbenders at these sites. 

Additionally, caution should be used when extrapolating information from 

the small sample size of this study. In most cases, the narrow ranges of habitat 

variables probably do not represent the entire range of tolerances that 

hellbenders are able to survive in. For example, hellbenders have been found in 

temperatures slightly higher than the range found in this study (Nickerson and 

Mays, 1973). However, the patchy distribution suggests populations are 

concentrated around available resources and the habitat characteristics identified 

as being important in this study probably represent good hellbender habitat. 

Therefore, streams with similar habitat characteristics will likely be capable of 

supporting populations and should be protected.  
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Chapter 6 
Conclusions 

 
 Eastern Hellbender populations appear to be declining in central and 

southern West Virginia. Declines may be a result of the relatively specific habitat 

requirements of hellbenders, which makes them susceptible to changes in their 

environment (Guimond and Hutchison, 1973; Nickerson and Mays, 1973; Taketa 

and Nickerson, 1973; Ultsch and Duke, 1990; Williams et al., 1981). Hellbenders 

appear to require stream substrates with large areas of gravel and cobble, 

probably because they provide habitat for larval hellbenders and invertebrate 

prey (Allan, 1997; Nickerson et al., 2003; Nickerson and Mays, 1973; Rabeni and 

Minshall, 1977; Reice, 1980). Hellbenders preferred cooler streams and were 

found in a narrow temperature range between 17.36 C and 19.34 C. This may be 

related to the respiratory ability of hellbenders which is maximized in cool water 

and their inability to acclimate well to temperature changes (Hutchinson et al., 

1973; Ultsch and Duke, 1990). Hellbenders also preferred specific conductivities 

around 0.0365 mS/cm. This may relate to stream disturbance, with the lower 

values where hellbenders were found indicating less disturbed streams (Dow and 

Zampella, 2000). Hellbenders were found in more acidic streams than they have 

previously been reported from, with some streams approaching conditions known 

to harm stream ecosystems (Baker et al., 1996; Cagen et al., 1993; Hall et al., 

1980). Although discussed individually, these habitat characteristics do not occur 

in isolation of each other. Instead, they interact and it appears that a combination 

of suitable habitat characteristics is needed to support populations. 

Alterations to these habitat characteristics, whether from human or natural 

causes, could negatively impact populations in a variety of ways. Habitat 

alterations probably do not affect one characteristic at a time, but instead alter 

several characteristics which can act synergistically to impact populations. For 
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example, logging can increase sediment loads and water temperatures. 

Increased sediment loads could degrade the quality of larval habitat and alter 

prey communities. At the same time, increased stream temperatures could 

decrease individual fitness and lower reproductive success. The combined 

impact of these effects could render a habitat unsuitable to support a healthy 

population.  

Although populations seem to be declining, there are apparently healthy 

populations in several streams. These populations were patchily distributed, 

probably concentrating in areas of high resource availability. The majority of 

these sites were in less disturbed areas, indicating the need to protect forested 

streams. The habitat characteristics found to be important in this study may 

represent good hellbender habitat and streams with similar habitat characteristics 

should be protected to help conserve this unique salamander.  
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Chapter 7 
Management Recommendations 

 
 The results of this study support the listing of the Eastern Hellbender as 

an S2 species, due to declining populations and specific habitat requirements 

which make it vulnerable to extirpation. However, there are apparently healthy 

but disjunct populations existing in central and southern West Virginia, largely 

within the Monongahela National Forest. Surveys should continue to monitor 

these populations as well as attempt to locate new populations for protection. 

Diurnal rock turning surveys were the most effective method for locating 

specimens, although other researchers have had success with trapping and 

nocturnal surveys (Humphries and Pauley, 2005; Nickerson and Krysko, 2003). 

In addition to streams where hellbenders were found in this study, the cluster 

analysis suggests that the mainstem of the Greenbrier River, Pond Fork of the 

Little Coal River, and Marsh Fork of the Big Coal River should be surveyed more 

extensively because they may be capable of supporting populations (Figure 14 & 

Figure 15). Forested habitat should be protected because populations were 

rarely observed in more disturbed areas. Land use practices that increase 

sediment loads should be limited because they have the potential to degrade 

larval and invertebrate prey habitat needed to maintain populations. For example, 

the juvenile hellbender found in the Gauley River was less than a mile 

downstream from a new bridge being built. Sediment levels were much higher 

downstream of this bridge (Pers. Obs.) and could potentially impact the long-term 

survival of this population. Activities that could increase stream temperatures 

should also be limited because hellbenders need fairly cool and stable water 

temperatures. Acidic stream conditions are a potential threat, but did not appear 

to be a problem in these surveys.  
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Tables 
 
 

Table 1.  State listings of the Eastern Hellbender. These listings indicate that the 
Eastern Hellbenders are declining throughout its’ range. 
  
 
 
 

State Status 

Alabama Rare/Possibly Endangered 

Arkansas Endangered 

Georgia Threatened 

Illinois Endangered 

Indiana Endangered 

Kentucky Special Concern 

Maryland Endangered 

Mississippi Rare/Possibly Endangered 

Missouri Critically Imperiled 

New York Special Concern 

North Carolina Special Concern 

Ohio Endangered 

Pennsylvania Immediate Concern 

South Carolina Unknown 

Tennessee In Need of Management 

Virginia Special Concern 

West Virginia Very Rare or Imperiled 
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Table 2. Watersheds that hellbenders have been found on based on reports by 
the WVDNR and WVBS. Numbers in () represent multiple records for that year. * 
represent watersheds within the study area. 
 

 

Watershed Hellbenders Year(s) 
Big Sandy River* Unknown  
Cacapon River No  

Cheat River Yes 1910, 1932, 1936, 1997(2), 1998, 2001 
Coal River* Unknown  

Dunkard Creek Unknown  
Elk River* Yes 1963, 1998, 2005 

Gauley River* Yes 
1937(2), 1938, 1959, 1986, 1995, 1996, 

1997, 1998, 2001 

Greenbrier River* Yes 
1935, 1955, 1967(2), 1993, 1994(2), 1996, 

1997(2), 1998, 2005 
James River* Unknown  

Little Kanawha River Yes 1968, 1974, 1983, 1969, 1998 
Lower Guyandotte 

River* Yes 1955, 1959 
Lower Kanawha River* Unknown  

Lower New River* Yes 1995 
Lower Ohio River* Unknown  

Middle Ohio North River Unknown  
Middle Ohio South River Unknown  

Monongahela River Unknown  
North Branch of the 

Potomac River No  
Potomac River Drains No  
Shenandoah Hardy 

River No  
Shenandoah Jefferson 

River No  
South Branch of the 

Potomac River No  
Tug Fork River* Unknown  

Twelvepole Creek* Yes 1955, 1957, 1970 
Tygart Valley River Yes 1935, 1938 
Upper Guyandotte 

River* Yes 1937 
Upper Kanawha River* Yes 1951 

Upper New River* Unknown  
Upper Ohio North River Unknown  
Upper Ohio South River Yes 1955, 1998, 2000 

West Fork River Unknown  
Youghiogheny River Unknown  
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Table 3. Particle size classes used for Wolman pebble counts. 
 
 
 
 

Material Size Range (mm) 
Silt/ Clay 0 - 0.062 

Very Fine Sand 0.062 - 0.13 
Fine Sand 0.13 - 0.25 

Medium Sand 0.25 - 0.5 
Coarse Sand 0.5 - 1.0 

Very Course Sand 1.0 - 2.0 
Very Fine Gravel 2.0 - 4.0 

4.0 - 6.0 Fine Gravel 6.0 - 8.0 
8.0 - 11.0 Medium Gravel 11.0 - 16.0 
16.0 - 22.0 Coarse Gravel 22.0 - 32.0 
32.0 - 45.0 Very Coarse Gravel 45.0 - 64.0 

Small Cobble 64.0 - 90.0 
Medium Cobble 90.0 - 128.0 
Large Cobble 128.0 - 180.0 

Very Large Cobble 180.0 - 256.0 
256.0 - 362.0 Small Boulder 362.0 - 512.0 

Medium Boulder 512.0 - 1024.0 
Large Boulder 1024.0 - 2048.0 

Very Large Boulder 2048.0 - 4096.0 
Bedrock  
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Table 4. Streams surveyed that are known to contain hellbender populations and 
the results of my surveys. The number () is how many of sites hellbenders were 
found. * are for average relative abundances if specimens were captured at more 
than one site in the same stream or if a site was visited multiple times. 
 
 
 
 
 

River 
Most Recent Date 

Found 
My 

Surveys
# of Sites 
Searched 

Relative 
Abundance (# 

per hour) 
Back Fork of the Elk 

River 2005 Yes 2(1) 0.703 

Cranberry River 2003 Yes 4(1) 0.682 

Dry Fork 1910 No 1  
East Fork of the 
Greenbrier River 1994 Yes 1(1) 0.229 

Elk River 1963 No 2  

Gauley River 1938 Yes 5(2) 0.437* 

Glade Creek 1995 No 1  

Greenbrier River 1996 No 9  

Guyandotte River 1949 No 4  

Holly River 2003 No 2  
North Fork of the Cherry 

River 2001 No 2  

Second Creek 1955 No 1  

Twelvepole Creek 1970 No 2  
West Fork of the 
Greenbrier River 2005 Yes 2(1) 0.800* 

Williams River 1996 Yes 4(2) 0.515* 
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Table 5. Streams searched where no hellbenders were found. Dates are for last 
known record. 
 
 
 
 

Site Name Most Recent 
Year Found 

# of Sites 
Searched 

Twelve Pole Creek 1970 2 
Anthony Creek - Blue Bend Unknown 1 

Birch River Unknown 1 
Bluestone River Unknown 3 

Camp Creek Unknown 1 
Cherry River - Coal Siding Unknown 2 

Clear Fork Unknown 1 
Dry Fork 1910 1 

Dry Fork of Tug Fork River Unknown 1 
East River Unknown 1 
Elk River 1963 2 

Elkhorn Creek Unknown 1 
Glade Creek 1995 1 

Glade Creek of New River Unknown 1 
Greenbrier River 1996 9 
Guyandotte River 1949 4 

Left Fork of Holly River 2003 2 
Indian Creek Unknown 2 

Marsh Fork of Big Coal River Unknown 1 
Meadow River Unknown 1 

Mountain Creek Unknown 1 
New River Unknown 2 

North Fork of Cherry River 2005 2 
Paint Creek Unknown 2 

Panther Creek Unknown 1 
Pond Fork of Little Coal River Unknown 1 

Second Creek 1955 1 
South Fork of Cherry River Unknown 1 
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Table 6. Information for hellbenders captured during surveys. The mean total 
length and mass are for adults only. A = Adult, L = Larvae, J = Juvenile. 
 
 
 
 

Age 
Class 

Rock 
Depth (m) 

Rock Area 
(m2) 

Rock 
Opening 

Total Length 
(mm) 

Weight 
(g) 

A 0.65 0.3474 Both 349 394 

A 0.57 4.9216 Up 673 1424 

A 0.68 0.6388 Down 532 854 

N/A 0.37 0.8955 Down Unknown Unknown 

N/A 0.50 0.6044 Down Unknown Unknown 

L 0.56 0.6192 Down 57 1 

A 1.14 0.5657 Down 502 980 

A 0.34 1.0305 Down 509 980 

N/A 0.29 0.7134 Down Unknown Unknown 

A 0.89 0.7148 Up 424 378 

N/A 0.48 0.9312 Down Unknown Unknown 

A 0.50 0.8432 Down 360 280 

J 1.11 0.4706 Down 216 62 

Mean 0.62 1.0228  478 756 

 
 
 
 
 
 
 
 
 
 
 
 

29 



  

Table 7. Eigenvectors of the PCA ordination. D50 was the most relevant on 
PRIN 1 and turbidity was most relevant on PRIN 2. 
 
 
 
 

Habitat 
Characteristic PRIN 1 PRIN 2 PRIN 3 PRIN 4 PRIN 5 PRIN 6 

Crayfish 0.0001 0.2123 0.9751 -0.0404 -0.0483 -0.0116 

Water Temp C 0.0053 -0.1706 0.069 0.9686 -0.1504 -0.0718 

SpC -0.0005 -0.0021 0.0019 0.0049 0.0011 0.2144 

DO mg/L 0.0006 0.037 -0.0625 -0.141 -0.9872 0.018 

pH -0.0008 -0.0196 0.0194 0.0706 0.0062 0.9738 

Turbidity -0.0409 -0.9605 0.2001 -0.1874 -0.0222 -0.0095 

D50 0.9992 -0.0384 0.0078 -0.0126 0.0005 0.0008 
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Table 8. Mean values of habitat characteristics + 1 S. E. Habitat characteristics 
were anaylyzed with t-tests. Bold variables were significantly different at the 0.05 
level.  
 
 
 
 

Habitat Variable Absent Present p-value 

Crayfish/hr 6.3278 + 0.9607 7.0479 + 2.5590 0.7961 

DO mg/L 8.2031 + 0.3534 8.4262 + 0.2864 0.6268 

pH 7.2544 + 0.0910 6.4163 + 0.1447 0.0016 

Turbidity 27.595 + 2.0967 17.004 + 3.2183 0.0744 

Water Temperature 19.943 + 0.6954 17.355 + 0.5634 0.0066 

% DO 90.345 + 3.8663 91.560 + 4.1558 0.8324 

SpC 0.2214 + 0.0257 0.0365 + 0.00272 <0.0001 

D5 8.6229 + 1.1190 6.9538 + 2.0720 0.5973 

D16 22.771 + 2.4214 55.375 + 10.759 0.0190 

D25 37.169 + 3.1756 84.500 + 12.408 <0.0001 

D50 159.78 + 10.993 259.50 + 38.444 0.0035 

D75 404.47 + 26.001 519.75 + 76.668 0.1340 

D84 654.37 + 44.575 832.00 + 93.686 0.1640 

D95 1512.6 + 169.89 1152 + 128.00 0.0981 
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Figures 
 
 
 
 
Figure 1. Hellbenders from the East Fork of the Greenbrier River (top) and the 
Williams River (bottom). 
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Figure 2. Morphological adaptations of hellbenders to a benthic lifestyle in lotic 
environments. The flattened body and head are adaptations to stream flow and 
help keep hellbenders on the bottom. The flattened tail aids in swimming. The 
lateral folds are highly vascularized and increase respiratory ability. 
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Figure 3. Range of the Eastern Hellbender in the U.S. (adapted from Nickerson 
and Mays, 1973) and probable range in West Virginia (adapted from Green and 
Pauley, 1987). 
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Figure 4. Hypothesized and simplified food web involving hellbenders based on 
dietary studies (See text for details). Figure adapted from Burton and Likens, 
1975. 
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Figure 5. Rivers and streams hellbenders have been found based on reports by 
the WVDNR and WVBS. 
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Figure 6. Area surveyed and streams in which hellbenders have been found. 
The area surveyed was approximately 15, 120 km2 and contains many of the 
river systems in which hellbenders have been found. 
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Figure 7. Method for P.I.T. tagging individuals. Tags were inserted in a fatty 
portion of tissue at the base of the tail posterior to the hind legs. Photo by Tim 
Baldwin. 
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Figure 8. Locations and results of population surveys. The majority of sites 
where hellbenders were present were in central West Virginia, in and around the 
Monongahela National Forest (MNF). Symbols are larger than actual search 
areas to protect exact locations. 
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Figure 9. Example of the patchy distribution of populations, which may relate to 
resource availability. 
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Figure 10. Example of scarring often observed on individuals. Rock turning may 
have resulted in the large circular shaped wound on this hellbender. Scars from 
other injuries can also be seen.  
Photo by Tim Baldwin. 
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Figure 11. PCA ordination of all sites surveyed. PRIN 1 explained 96.4% of the 
total variation and PRIN 2 explained 2.8 %. Sites where hellbenders group along 
the PRIN 1, but there is considerable overlap with sites where they were absent. 
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Figure 12. Mean values of habitat characteristics + 1 S.E. for sites where 
hellbenders were present and absent. Values are Ln+1 transformed to show 
them all on one graph. * are significantly different at the p = 0.05 
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Figure 13. Boxplots of significant habitat variables. The particle size scores were 
generally higher, but overlap occurred. Water characteristics were lower and had 
small ranges. Dark circles are outliers and x’s are extreme outliers. 
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Figure 14. Results of cluster analysis showed that sites where hellbenders were 
present from 6 groups. In addition to those, areas in the mainstem of the 
Greenbrier River, Pond Fork of the Little Coal River, and Marsh Fork of the Big 
Coal River had similar habitat characteristics and may support populations. 
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Figure 15. Locations of groupings identified in the cluster analysis. Streams 
where hellbenders have been found should be protected, while those where 
hellbenders were not found should be surveyed more extensively because they 
may potentially contain populations. 
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Appendix A 
 

Hellbender information, including P.I.T tag numbers. Exact locations are not 
given. 

ID Date TL(mm) WT(g) Site Stream 

Larval 7/12/2006 56.5 1.3 22 Williams River 

Subadult 9/22/2006 216.0 62.0 61 Gauley River 

4464043A 7/25/2006 360.0 280.0 27 Cranberry River 

542E7A3830 5/29/2006 349.0 394.0 10 East Fork of Greenbrier River 

4533597465 6/4/2006 673.0 1424.0 14 Back Fork of Elk River 

452F3D0152 6/4/2006 532.0 854.0 14 Back Fork of Elk River 

Escape 6/4/2006 N/A N/A 14 Back Fork of Elk River 

Escape 7/11/2006 N/A N/A 21 Gauley River 

44640C1D 7/16/2006 509.0 980.0 24 West Fork of Greenbrier River 

Escape 7/16/2006 N/A N/A 24 West Fork of Greenbrier River 

452E7E7C5F 7/16/2006 424.0 378.0 24 West Fork of Greenbrier River 

Escape 9/15/2006 N/A N/A 24 West Fork of Greenbrier River 

45343A3929 7/12/2006 502.0 980.0 23 Williams River 

 

 

 

 

 

 

 

 

47 



  

Appendix B 

Principle Component Results and Coordinates for survey sites, exact locations 
are not given.  
A = Absent, P = Present. 
 

Axis Eigenvalue 
% of 

variance 
Cum. % of 
Variance 

1 567317.5 96.4 96.4 

2 16587.209 2.8 99.2 

3 2922.076 0.5 99.7 

4 1277.543 0.2 99.9 

5 382.124 0.07 99.99 

6 21.35 0.004 100 

7 1.342 0 100 
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Site Hellbenders
PRIN 

1 PRIN 2 PRIN 3 PRIN 4 PRIN 5 PRIN 6 

 Twelve Pole Creek A A -140.2 -9.8068 -5.1008 -4.9591 -9.0771 -1.0691 

Anthony Creek A -
43.666 1.4923 3.7926 2.3563 -0.0679 0.038 

Back Fork of Elk River A A 191.03 18.132 16.544 -1.3387 0.5346 -1.0793 
Back Fork of the Elk River B P  85.18 21.094 2.602 0.2587 1.5381 -0.8162 

Birch River A -
80.834 24.982 -6.8509 -7.294 -0.4581 1.2383 

Bluestone River A A 9.0891 18.232 -6.7296 1.2333 1.3557 0.6082 
Bluestone River B A 83.563 -22.141 2.0401 3.5679 -2.2179 0.4375 
Bluestone River C A 6.9095 -35.667 2.7358 -1.432 -2.0703 0.1763 

Camp Creek A 85.274 26.344 13.62 -1.4876 -0.2625 0.1479 

Cherry River A A -
44.015 -7.8083 3.7595 3.0232 -0.6504 -0.422 

Cherry River B A -
43.454 5.5696 -1.1859 3.597 -0.7425 -0.5304 

Clear Fork  A -
107.61 2.2553 -1.0715 5.922 -1.4266 0.2977 

Cranberry River A A 8.7292 9.0446 -6.8413 0.5186 -0.3673 -0.5766 
Cranberry River B A 8.2247 -3.5309 -2.6596 1.5132 0.3069 -0.3952 
Cranberry River C P  8.7415 9.7503 -8.0807 -1.4142 -0.3177 -0.4226 
Cranberry River D A 8.624 7.0046 -4.021 0.1416 -0.3425 -0.7596 

Dry Fork A 8.7619 8.8969 -4.6559 4.962 -0.1463 0.1472 

Dry Fork of Tug Fork  A -
107.54 7.4263 2.2302 -2.4814 -1.8621 1.2391 

East Fork Greenbrier River P  9.1585 24.191 9.7612 -1.317 1.3156 -0.9595 
East River A 8.6925 13.282 10.139 -4.7018 -0.7319 1.0519 

Elk River A A -
45.606 -43.291 2.8215 -15.447 -1.4493 0.012 

Elk River B A 8.1834 -2.0908 -4.0153 -6.9509 -0.0484 0.4267 

Elkhorn Creek A -
108.12 -8.6537 0.1567 0.0727 7.9302 0.3267 

Gauley River A P  84.632 6.8856 2.0235 -0.2144 0.1145 0.004 
Gauley River B P  8.1681 -3.1148 -1.4546 -3.4652 0.6736 -0.1951 
Gauley River C A 85.257 21.404 -7.0616 -0.5406 2.2459 -0.8077 

Gauley River D A -
43.928 -7.5456 -1.2694 5.985 -0.0474 -0.1356 

Gauley River E A -
80.877 20.449 -8.3325 2.1362 1.6211 -0.9627 

Glade Creek  A 190.26 -5.5072 -4.1327 -2.9698 0.3017 0.003 
Glade Creek of New River A 8.4976 3.5891 0.2406 3.2301 -1.2571 0.6674 

Greenbrier River A A 9.1345 18.879 -4.5642 4.198 0.6017 1.0453 

Greenbrier B A -
43.493 3.8598 -2.917 4.7148 -1.3445 0.4708 

Greenbrier River C A -
44.143 -12.646 -1.6178 4.2804 -0.4411 -0.2326 

Greenbrier River D A 83.8 -16.965 -0.9679 4.8015 0.2419 0.1785 
Greenbrier River E A 8.2807 -2.7582 -3.8514 2.799 -0.6715 -0.6354 
Greenbrier River F A 7.969 -10.059 -0.5231 2.4692 0.1665 -0.4791 

Greenbrier River G A -
127.42 -18.47 -0.607 6.2467 -0.4792 -0.2877 

Greenbrier River H A 84.054 -10.459 -1.4452 4.7064 -1.3812 -0.015 
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Greenbrier River I A 8.0157 -8.0085 6.2197 4.0729 -1.0854 0.0327 
Guyandotte River A A 6.462 -45.706 8.0248 -2.6844 6.4982 -0.0927 
Guyandotte River B A 7.52 -22.066 0.716 4.2423 -1.589 0.0867 

Guyandotte River C A -
44.554 -23.66 -0.6009 5.8849 -2.1097 0.038 

Guyandotte River D A -
127.14 -9.1809 2.0483 2.2432 7.4678 0.2409 

Holly River  A 8.3363 3.6069 0.019 -9.8021 -1.4281 -0.2772 
Indian Creek A A 84.973 13.941 -3.6147 1.8761 0.9649 0.389 
Indian Creek B A 7.7738 -14.633 -0.3421 1.0423 -1.4734 0.31 

Left Fork of Holly River A -
126.67 5.6508 -3.0596 -9.0258 -0.2036 -0.3656 

Marsh Fork of Big Coal River  A 8.0084 -7.5532 9.8335 4.3111 -2.2649 0.1468 

Meadow River  A -
150.46 -12.839 11.706 -5.1282 -0.5448 -0.6054 

Mountain Creek A -82.07 -6.4053 3.6589 -2.7254 8.199 -0.1902 

New River  A -
81.928 -7.3217 -2.9276 6.9406 1.0334 0.1886 

North Fork of Cherry River A A 8.7465 11.996 -3.569 -5.0095 0.2954 0.1683 

North Fork of Cherry River B A -
81.125 15.036 -5.0596 0.9526 -0.6727 -0.5593 

Paint Creek A A -
126.78 1.1129 -6.0505 -5.8378 -0.6466 0.7444 

Paint Creek B A -
81.484 7.3137 -6.6529 -4.8009 -0.1868 0.8717 

Panther Creek  A -
125.73 32.915 31.068 3.3174 -2.4211 0.2732 

Pond Fork of Little Coal River  A 84.542 2.1262 -2.4886 4.4193 -1.6284 1.014 
Sandstone Alls  A 189.65 -21.214 2.0355 0.4783 -0.0051 0.6943 
Second Creek  A 190.94 12.219 -1.0998 -0.6361 0.5168 1.1239 

South Fork of Cherry River  A -
43.662 0.2421 -2.7411 2.4401 0.5744 -0.3206 

Twelve Pole Creek B A -
106.94 19.362 -10.713 1.0612 0.6552 -0.3749 

West Fork of Greenbrier River A. P  84.399 0.5914 -3.0796 -2.667 -0.1274 -0.107 
West Fork of Greenbrier River B A 8.4643 3.7492 -4.0553 -2.5254 0.4906 0.0588 

Williams River A A 8.4203 5.8115 7.3011 -5.3006 -0.4034 0.0688 
Williams River B P  340.18 -10.73 -4.4182 -3.7362 0.1294 -0.3749 
Williams River C P  84.415 0.3504 -3.3219 -0.8356 -0.4037 -0.6031 
Williams River D A 8.3809 1.0449 -1.3457 0.7126 -0.7179 -0.3145 
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Appendix C 
Box plots of habitat characteristics that were not statistically significant. Dark 
circles are for outliers and x’s are for extreme outliers. 
 

 

51 



  

 

 

52 



  

 

 

53 



  

 

 

 
 

54 



  

Appendix D: 
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One John Marshall Drive 
Huntington, WV 25755 
keitzer@marshall.edu 
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Expected graduation is May 2007 
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Marshall University, Huntington WV 
 
B.S. in Wildlife Ecology and Conservation with a Minor in Zoology  
May 2004 
GPA: 3.75 
University of Florida, Gainesville FL 
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Research Experience 
Thesis Research, Marshall University 
May 2006 – Present 
Surveying for Eastern Hellbenders (Cryptobranchus a. alleganiensis) in West 
Virginian streams to determine current distribution and examining habitat 
preferences. 
Supervisor: Dr. Thomas K. Pauley 
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(Plethodontidae), Marshall University 
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Research Assistant, Marshall University 
August 2005 – Present 
Long-term research project that is investigating populations of Cheat Mountain 
Salamanders (Plethodon nettingi) on ski slopes. 
Supervisor: Dr. Thomas K. Pauley 
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Fishery Biotechnician, USGS 
January 2005 – June 2005 
Participated in research examining fish community structure on sand banks and 
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