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                                                              Abstract 

Increased muscle loading results in phosphorylation of the 70 kDa ribosomal S6 kinase 

(p70s6k) signaling pathway and this event strongly correlates with degree of muscle 

adaptation following resistance exercise. Here, we compared the basal and contraction-

induced phosphorylation of p70s6k, Akt and mTOR in tibialis anterior muscles of lean 

and obese Zucker rats. Immunoblotting demonstrated differences in level of basal p70S6k 

phosphorylation (Thr 389) in the normal and diabetic TA. HFES had an increase in 

p70S6k (Thr389) phosphorylation at 0-, 1- and 3-hr in lean TA and only at 3-hr in obese 

TA. mTOR (Ser 2448) Phosphorylation was elevated in lean TA immediately after HFES 

and remains unaltered in obese TA. HFES increased activity of both Akt (Thr 308) and 

Akt (Ser 473) in lean TA. These results suggest that diabetes is associated with 

alterations in the muscle content and ability to activate p70s6k signaling following an 

acute bout of exercise. 
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Chapter 1 

Introduction 

 

 It has been estimated that 171 million people worldwide have diabetes and it is estimated 

that this will increase to 366 million by 2030 [1]. An estimated 20.8 million people in the United 

States, about 7.0 percent of the population have diabetes. Diabetes mellitus (DM) is a serious, 

lifelong condition that is characterized high levels of blood glucose resulting from defects in 

insulin production, insulin action, or both. The obese Zucker (fa/fa) rat exhibits 

hyperinsulinemia, hyperlipidemia and hyperglycemia along with central adiposity.  Since 

individuals with type 2 diabetes typically exhibit characteristics of metabolic syndrome, the 

genetically obese Zucker rat (fa/fa) is thought to be an appropriate model for diabetes related 

studies. 

  Exercise has long been recognized to have important health benefits for people with 

type 2 diabetes. The molecular events underlying exercise-induced adaptations in diabetic 

muscle remain to be unraveled. It is thought that beneficial effects of exercise on structural and 

functional adaptations of muscle are mediated through the activation of various signaling 

molecules. These signaling molecules, in turn, activate signaling cascades involved in regulating 

gene expression, glucose uptake, glycogen synthesis and protein synthesis. Similar to that seen 

with aerobic exercise modalities [2-4] , recent data suggest that anaerobic exercise may also be 

beneficial in the treatment of diabetes [5-12]. For example, progressive resistance training has 

been found to improve glycemic control, increase skeletal muscle size and strength, and 

positively change body composition by increasing lean body mass and decreasing visceral and 

total body fat [13-16]. Whether type 2 diabetes alters exercise-induced signal transduction 
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processes in muscle is not clear, but the existence of differences, if present, may help to explain 

why exercise-induced skeletal muscle adaptations may differ between normal and diabetic 

populations. 

It is well established that strenuous exercise increases the rates of muscle protein 

synthesis [17]. This increase in protein synthesis is thought to be regulated, at least in part, by the 

phosphorylation of the p70 ribosomal protein S6 kinase (p70S6k) [18]. The activation of p70S6k 

has been proposed to promote increased translation of messages that have a polypyrimide motif 

just downstream of the 5’ cap [19]. It is thought that p70S6k activity is regulated by the 

mammalian target of rapamycin (mTOR) which functions as a growth factor and nutrient-sensing 

signaling molecule in mammalian cells [20]. How mTOR activity is modulated is not clear; 

however, recent evidence suggests that mTOR is controlled by protein kinase B (PKB) / Akt 

which is activated in response to phospholipid products of the phosphatidylinositol 3-kinase 

reaction. It is likely that PKB/Akt increases mTOR activity by phosphorylating mTOR at 

Ser2448 and it has been hypothesized that this event is a critical point of control in the regulation 

of protein synthesis [21]. Further, recent data suggests that p70S6k signaling may be particularly 

important in mediating muscle adaptation as the phosphorylation of this molecule following an 

exercise bout has been found to be strongly associated with the increase in muscle weight after 6 

wk of chronic stimulation [22]. To our knowledge, whether differences exist between normal and 

diabetic muscle in this exercise induced activation of p70S6k has not been investigated. 
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PURPOSE 

 Our long term goal is to elucidate the contraction-induced intracellular signaling 

mechanisms thought to be involved in regulating skeletal muscle hypertrophy in diabetic skeletal 

muscle. The purpose of the present study was to determine whether type 2 diabetes alters 

Akt/mTOR/p70S6k pathway signaling after an acute episode of contractile activity. 

 

SPECIFIC AIMS 

  Diabetes is the sixth leading cause of death in the US. The economic burden posed by 

diabetes is daunting with the total cost of diabetes in the U.S. in 2002 at an estimated $132 

billion [23]. As such, it is clear that the scientific community must continue to search for the 

most effective methods for the treatment and prevention of this disease. Recent data have 

suggested that increased muscle loading regulates the rate of muscle protein synthesis and 

hypertrophy [17]. This increase in protein synthesis, at least in part, is thought to be regulated by 

the activation of the Akt/mTOR/p70S6k pathway [19-21]. No research has examined the 

response to a single contractile stimulus comparing normal and diabetic muscle. The working 

hypothesis of this study is that differences exist between normal and diabetic muscle in the 

maximal contraction induced activation of p70S6k pathway. To test this hypothesis and 

accomplish the purpose of this study the following specific aims are proposed; 
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Specific Aim #1: To determine if the expression and basal phosphorylation level of 

Akt/mTOR/p70S6k pathway proteins are altered in the Tibialis Anterior (TA) muscles of lean 

and obese Zucker rats with type 2 diabetes. 

 

Hypothesis: Type 2 diabetes will be associated with alterations in the expression and basal 

phosphorylation level of Akt/mTOR/p70S6k pathway proteins in the Tibialis Anterior (TA) 

muscles. 

  

Specific Aim # 2:  To determine if the contraction induced activation/phosphorylation of 

Akt/mTOR/p70S6k pathway proteins are altered in the Tibialis Anterior (TA) muscles of lean 

and obese Zucker rats with type 2 diabetes. 

Hypothesis:  Type 2 diabetes will be associated with alterations in the contraction induced 

activation/phosphorylation of Akt/mTOR/p70S6k pathway proteins in the Tibialis Anterior (TA) 

muscles. 
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Chapter 2 
 

Review of Literature 
 

 
Introduction 

 

 A review of the pertinent literature concerning the present study will be presented 

in the following chapter. The following areas will be addressed: 1.) p70S6k  pathway related 

proteins and the p70S6k regulation in skeletal muscle, and 2.) the obese  syndrome X  Zucker rat 

strain as an animal model for type 2 diabetes investigation. 

 

p70S6k pathway related proteins and regulation of their activity in skeletal 

muscle 

  `The serine / threonine kinase, p70s6k, is believed to function in the regulation of protein 

synthesis [24]. The primary structure of p70s6k consists of four functional domains or modules. 

Module I extends from the N-terminus to the beginning of the catalytic domain and confers 

rapamycin sensitivity to p70s6k  [25-27]. Module II contains the conserved catalytic domain, 

including the acute site of mitogen-induced phosphorylation in the activation T-loop [27]. 

Module III links the catalytic domain with the carboxyl tail, contains two additional sites of acute 

phosphorylation, and is conserved in many members of the second messenger family of Ser/Thr 

kinases [28]. Finally, Module IV contains the putative auto-inhibitory domain, which has 

significant sequence similarity with the substrate region of S6, and four closely clustered 
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phosphorylation sites [29]. The activation of P70s6k occurs in a hierarcal fashion through the 

sequential phosphorylation of each module. It is thought that P70s6k activation accelerates 

translation of mRNAs containing a terminal oligopolypyrimidine (TOP) track at the 5’ end. This 

is important as the regulation of  TOP containing proteins has been postulated to be a rate-

limiting step in protein synthesis [30]. 

            It is well known that exercise causes hypertrophy of the muscle and that a single bout of 

resistance exercise increases protein synthesis. Baar and Esser (1999) reported that a single bout 

of  in situ contraction increased p70S6k activity in rat extensor digitorum longus (EDL) and 

tibialis anterior (TA) muscles [22]. In a similar study Hernandez et al., (2000) reported  that 

resistance exercise causes an increase in the rate of protein synthesis, the rate of glucose uptake 

and the activity of p70S6k in rat skeletal muscle [31]. Other studies, using other exercise 

protocols, reported comparable results. For example, Nader et al., (2001) using high-frequency 

electrical stimulation, low-frequency electrical stimulation, or running exercise showed 

significant increase in p70S6k phosphorylation in the tibialis anterior and soleus muscles of rat 

[32]. To our knowledge how diabetes affects the exercise-induced regulation of p70S6k has not 

been examined. 

Using humans, Koopman et al., (2006) reported that resistance exercise is associated with 

more pronounced phosphorylation of p70S6k in type II vs. type I muscle fibers [33]. Similarly, 

in rats, the phosphorylation of upstream regulators of p70S6k like PKB (or Akt) and mTOR was 

more pronounced in muscle tissue containing a greater proportion of type II muscle fibers [34, 

35]. Taken together, these findings suggest that contraction may regulate p70S6k in an intensity- 

and time-dependent manner, and further that p70S6k stimulation in muscle may be fiber type-

specific.  
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The Mammalian target of rapamycin (mTOR) functions as a growth factor and nutrient-

sensing signaling molecule in mammalian cells. mTOR resides upstream of p70S6K (p70 

ribosomal protein S6 Kinase) and is thought to be involved in regulation of a number of 

components of the translational machinery [36]. Insulin and activated Akt have been shown to 

induce phosphorylation of mTOR in vivo and in vitro. It is thought that the phosphorylation of 

Threonine 2446 and Serine 2448 regulates mTOR activity. Although the exact mechanism of this 

regulation is unknown, both  in vitro and in vivo experiments have implicated Akt in the 

phosphorylation and activity of mTOR [37-39].  

             mTOR has been implicated in skeletal muscle remodeling using several models of 

altered muscle loading. For example, recent data by Bodine and colleagues (2001) demonstrated 

that overloading the rat plantaris muscle by synergist muscle ablation, increases mTOR Serine 

2448 phosphorylation [21]. In contrast, unloading the gastrocnemius muscle by hind limb 

suspension, which promotes atrophy of the muscle, decreased Serine 2448 phosphorylation [37]. 

Similarly, a single bout of in situ muscle contractile activity in rats showed an increase in 

phosphorylation level of mTOR and its downstream target p70S6k [34, 37, 40]. Taken together, 

these studies suggest that mTOR phosphorylation is sensitive to muscle activity and may play a 

role in the exercise-induced regulation of p70S6k phosphorylation. 

              Akt (PKB) is the serine/threonine kinase that is required for the activation of mTOR. 

Akt plays an important role in executing multiple cellular metabolic pathways such as cell 

metabolism, cell survival and cell proliferation. In addition to these homeostatic functions, Akt is 

also thought to mediate the mitogenic effects of insulin and insulin-like growth factor-I [41-43]. 

Akt1 is the predominant isoform in most tissues [44] and, similar to many membrane proteins, it 

contains a pleckstrin homology (PH) domain that binds phospholipids [45]. Akt is activated in a 
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PI3K (Phosphoinositide-3 kinase) -dependent manner and is regulated by phosphorylation on 

Thr 308 and Ser 473. It appears that the phosphorylation of Thr 308 is dependent, at least in part, 

on the activity of PI3-kinase [41]. The kinase responsible for the phosphorylation on Serine 473 

has not been identified. Phosphorylation on Serine 473 appears to be related to PI3-kinase 

activity, although PDK1 (3-phosphoinositide-dependent protein kinase 1) may also be involved 

[46]. Akt can also be activated by PI3K-independent mechanism, as is observed following 

growth hormone treatment [47], or after increases in intracellular calcium or cAMP levels [48, 

49]. The mechanism for this PI3K-independent Akt activation is poorly understood.  

Akt is thought to regulate skeletal muscle growth and metabolism. In Akt1/ PKBα-

deficient mice, there is conspicuous impairment in organism growth [50] , whereas Akt2-

deficient mice exhibit reduced insulin-stimulated glucose uptake in isolated EDL muscles [51]. 

In situ electroporation of constitutively active Akt has been examined in mouse skeletal muscle 

and  recent data has suggested that this molecule plays a critical role in the progession of muscle 

hypertrophy [21]. The role of Akt as a signaling mediator in muscle contraction is not well 

understood. Using rodent models Lund and colleagues (1998) and Sherwood et al., (1999) 

following  in situ muscle contraction reported no Akt kinase activation [52, 53]. Similar findings 

have been reported in humans. For example, Widegren and co-workers (1998) reported no 

activation of Akt following one-leg cycle ergometry at approximately 70% VO2max in human 

skeletal muscle [54]. Conversely, Nader et al., (2001) reported different modes of exercise like a 

single bout of either a high-frequency electrical stimulation, a low-frequency electrical 

stimulation, or a running exercise protocol causes transient increase in Akt phosphorylation in 

the tibialis anterior and soleus muscles of rat [32]. Supporting these findings, Turinsky et al., 

(1999) reported that  exercise in vivo is associated with activation of Akt1 but not Akt2 or Akt3 
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in contracting skeletal muscles [55]. The reasons for discrepancies between studies is not entirely 

clear however it is possible that differences in the model utilized, methods or time points may be 

involved. Taken together, these findings suggest that contraction may regulate Akt in an 

intensity- and time-dependent manner, or perhaps that Akt stimulation in muscle may be fiber 

type-specific. More research is necessary to clarify the pathway responsible for hypertrophy and 

increased protein synthesis rates in skeletal muscle.  

Summary 

            The p70S6 kinase and its upstream regulators mTOR and Akt kinase, are proposed 

molecules involved in the contraction-mediated regulation of protein synthesis and hypertrophy 

in skeletal muscle. The exact molecular mechanism(s) regulating the activity of these molecules 

is/are largely unknown. Few studies have investigated differences in the activation of these 

signaling molecules in response to an acute bout of resistance exercise. Elucidating the 

differences between normal and diabetic muscle tissue at the molecular level may be beneficial 

for exercise and pharmacological interventions designed for the treatment of type 2 diabetes. 

 

Overview of Diabetes Mellitus and Insulin resistance 

 Diabetes Mellitus 

It has been estimated that 171million people worldwide have diabetes and it is estimated 

that this will increase to 366 million by 2030 [1]. An estimated 20.8 million people in the United 

States or about 7.0 % of the population have diabetes. Of those affliated, 14.6 million have been 

diagnosed while 6.2 million have yet to be. Diabetes mellitus (DM) is a group of diseases 

marked by high levels of blood glucose resulting from defects in insulin production, insulin 

action, or both. Insulin is a polypeptide hormone, secreted by the beta cells of the pancreas that 
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allows glucose to enter cells from the blood. A deficiency in this hormone, or the inability of 

cells to respond to it, causes abnormally high blood glucose levels, which if allowed to proceed 

unchecked can lead to numerous complications. The two major types of diabetes are type 1 and 

type 2. Type 1 diabetes mellitus can occur at any age and is characterized by the marked inability 

of the pancreas to secrete insulin because of autoimmune destruction of the beta cells [56]. This 

type of diabetes is typically diagnosed in children and has been referred to as juvenile onset 

diabetes or insulin dependent diabetes mellitus. Type 1 accounts for about five to ten percent of 

all cases of diabetes [56]. The major type of diabetes is type 2 diabetes mellitus (DM). Type II 

(non-insulin dependent) DM is an emerging epidemic in Western cultures that is thought to 

afflict 150 million people worldwide [57]. This type of diabetes accounts for ninety to ninety five 

percent of all diagnosed diabetic cases [58]. Type 2 diabetes is characterized by peripheral 

insulin resistance with an insulin-secretary defect (inability to increase beta-cell production of 

insulin) that varies in severity. In the progression from normal glucose tolerance to abnormal 

glucose tolerance, postprandial glucose levels first increase which eventually results in fasting 

hyperglycemia. Several genetic and environmental factors lead to the development of the disease 

in most patients [59]. To our knowledge research examining the signaling events thought to 

underlie exercise-induced muscle adaptation in type 2 diabetes has not been performed.  

 

Insulin resistance 

Insulin resistance is present when the biological effects of insulin are less than expected 

for glucose disposal in skeletal muscle [60]. Mutation of some members of the insulin signaling 

cascade (insulin receptor, insulin receptor-substrate) also leads to the manifestation of insulin 

resistance. Nevertheless, such mutations constitute a very rare cause of type 2 diabetes [61]. The 
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mechanism by which skeletal muscle becomes insulin resistant is unclear, but there is a strong 

correlation between insulin sensitivity and the levels of plasma free fatty acids and intra-

muscular fatty acid metabolites (long chain acyl-CoA, diacylglycerol and triglycerides). 

 

The obese Zucker strain as a model for type 2 diabetes investigation 

              Appropriate experimental models are essential tools for understanding the molecular 

basis of disease and the actions of therapeutic agents. Diabetic research has widely utilized 

animal models for experimentation. Thus far, most experiments have utilized rodent models [59] 

because of their short life span, the ability to manipulate animal genetics and economic 

considerations. There are numerous rodent models for the different types of diabetes. Similar to 

humans, Type 2 diabetes in rodents is a heterogeneous group of disorders characterized by 

insulin resistance and impaired insulin secretion. Many of these animal models have been 

developed using selective breeding which typically produces specific genetic mutations. Other 

methods for developing diabetic rodent models include molecular biology techniques such as 

gene targeting and transgenic techniques [59].  

          The Goto Kakizaki (GK) rat, developed by selective breeding of the Wistar rat, and is an 

example of a type 2 diabetic model. The GK rat develops relatively stable hyperglycemia and is 

characterized by insulin resistance and impaired insulin secretion. The GK rat, like other animal 

models of diabetes, develops some features that can be compared with the complications of 

diabetes seen in humans. These include renal lesions, structural changes in peripheral nerves and 

abnormalities of the retina. Similar to the GK rat the Kuo Kondo (KK) mouse was developed by 

selective breeding. Several different lines have been bred and they vary genetically and 

phenotypically [59]. The KK mouse becomes obese as an adult; developing insulin resistance, 
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islet cell hyperplasia, and mild hyperglycemia [59]. Conversely, the Nagoya-Shibata-Yasuda 

(NSY) mouse spontaneously develops diabetes in an age-dependent manner, but is not obese. 

This model is useful when studying age-related phenotypes [59]. Psammomys obesus (the Israeli 

sand rat) is vegetarian in its natural habitat, but when fed laboratory rat chow, becomes obese, 

insulin resistant and hyperglycemic [59]. Perhaps the most widely used is Obese Zucker (fa/fa) 

rat. The Obese Zucker is a model of monogenic obesity and diabetes along with the Ob/Ob 

mouse and db/db mouse. The db/db mouse and the fa/fa Zucker rat both have mutations in the 

hypothalamic receptor for leptin [59]. This mutation causes hyperphagia and is thought to be 

responsible for the obesity seen in this model. Animal models of diabetes have provided 

extremely valuable insight to the disease. The genetically obese Zucker (fa/fa) rat was selected 

for the present investigation as this model is widely used in obesity related diabetes studies. 

The obese Zucker is developed through selective breeding and exhibits hyperinsulinemia, 

hyperlipidemia and hyperglycemia along with central adiposity. These characteristics are 

valuable for studying type 2 DM in the context of metabolic syndrome, and should provide 

useful insight to the disease since many type 2 diabetics possess these same conditions. Insulin 

resistance in obese Zucker rat is mainly associated with impaired insulin-stimulated GLUT-4 

protein translocation [62, 63] and glucose transport activity, [64, 65] but does not appear to be 

associated with the amount of GLUT-4 turnover stimulated by insulin [62, 66, 67]. 

Previous studies have indicated differences in the skeletal muscle tissue between obese 

Zucker rats and their lean counterparts in response to exercise. Ardevol and others (1997) 

exercised female lean and obese Zucker rats in a short, intense treadmill protocol and oxygen 

consumption, carbon dioxide release, lactate and bicarbonate levels in venous and arterial blood 

were measured. It was concluded that fatigue appears earlier in obese rats due to loss of 
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buffering ability caused by massive extra-muscular glycolysis and lactate production triggered 

by exercise-induced adrenergic stimulation  [68]. This same group studied differential substrate 

utilization by exercising and fatigued muscle in lean and obese Zucker rats [69].  It was found 

that lean rats managed their glycosyl units more efficiently than obese rats [69]. Taken together, 

these data suggest that metabolic differences exist between lean and obese Zucker rat muscle 

tissue in response to exercise.  

The obese Zucker (fa/fa) rat model has been used in other investigations to demonstrate 

the potential benefits of exercise training. Cortez et al., (1991) reported significant increase in 

oral glucose tolerance while maintaining significantly lower plasma insulin concentrations in 

treadmill exercised female obese Zucker rats compared to sedentary control rats  [70]. Similarly, 

Ivy et al., (1989) reported increased rates of glucose transport (assessed by measuring the rate of 

3-O-methyl-D-glucose (3-OMG) accumulation) in obese Zucker rats after treadmill exercise 

[71]. The mechanism(s) underlying these improvements in glucose regulation are not entirely 

clear, however Brozinick et al.,(1993) demonstrated that obese Zucker rats, following in vivo 

muscle contraction, had significantly higher GLUT-4 protein concentration and citrate synthase 

activity than the control obese Zucker rats [71, 72]. Taken together, these studies suggest that 

exercise training decreases the skeletal muscle insulin resistance of the obese Zucker rat. 

Whether the mechanisms of muscle adaptation differ between normal and obese Zucker rats is 

not known. Elucidating the molecular events responsible for exercise induced muscle adaptation 

in diabetic muscle may be beneficial for exercise and pharmacological interventions designed for 

the treatment of this disease. 
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Summary 

          Type 2 diabetes is an emerging epidemic in Western cultures that accounts for ninety to 

ninety five percent of all diagnosed diabetic cases. The obese Zucker (fa/fa) rat is an appropriate 

animal model for studying diabetes at the molecular level in the context of metabolic syndrome. 

Few studies have investigated differences in diabetic and normal skeletal muscle in response to 

exercise. Elucidating the molecular events responsible for exercise induced muscle adaptation in 

diabetic muscle may be beneficial for exercise and pharmacological interventions designed for 

the treatment of this disease. 

 

 

   

                                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 - 15 -

 
Chapter 3 

 

Lean and Obese Zucker Rats Exhibit Different Patterns of p70S6kinase 
Regulation in the Tibialis Anterior Muscle in Response to 

High Force Muscle Contraction 
 

 
Anjaiah Katta1 and Eric R. Blough 1,2 

 

 

 

 

 

1 Department of Biological Sciences, Marshall University 
2 Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan   C. 

Edwards School of Medicine 
 

 

 

 

Author for correspondence: 

 Eric Blough, Ph.D. 
 Laboratory of Molecular Physiology 
 Suite 311, Science Building 
 Department of Biological Sciences 
 1 John Marshall Drive 
 Marshall University 
 Huntington, WV  25755-1090 
 E-mail:  blough@marshall.edu 
 

Running Title: Diabetes alters contraction induced p70S6k signaling in skeletal muscle                                     



 - 16 -

 

ABSTRACT 

Increased muscle loading results in phosphorylation of the 70 kDa ribosomal S6 kinase (p70s6k) 

signaling pathway and this event strongly correlates with the degree of muscle adaptation 

following resistance exercise. Whether differences exist between normal and diabetic muscle in 

the activation of the p70s6k pathway following a single episode of exercise remains unclear. 

Using an in situ high-frequency electrical stimulation (HFES), we examined the exercise-induced 

phosphorylation of p70s6k, Akt and mammalian target of rapamycin (mTOR) in the tibialis 

anterior (TA) muscles of lean and obese Zucker rats at 0, 1, and 3hr after HFES. Immunoblotting 

demonstrated differences in the content (27.9 ± 3.6% lower) and level of basal p70S6k 

phosphorylation (Thr 389) (26.1 ± 7.5% lower) in the normal and diabetic TA (P<0.05). p70S6k 

(Thr389) phosphorylation increased 33.3 ± 7.2% , 24.0 ± 14.9%  and 24.6 ± 11.3% in lean TA at 

0-, 1- and 3-hr post-HFES and increased 33.5 ± 8.0% in obese TA at 3-hr post-HFES (P<0.05). 

mTOR (Ser 2448) Phosphorylation was elevated in lean TA (96.5 ± 40.3%, P< 0.05) 

immediately after HFES and remains unaltered in obese TA with HFES. In lean TA, HFES led to 

increased phosphorylation of Akt (Thr 308) (31.8 ± 16.2% and 31.1 ± 8.8%) and Akt (Ser 473) 

(47.2 ± 12.1% and 43.7 ± 11.7%) at 0- and 3-hr time points respectively (P<0.05). Taken 

together, these data suggests that diabetes is associated with alterations in the muscle content and 

ability to activate the p70s6k signaling pathway following an acute bout of exercise. (250 words) 

 

Key words: type 2 diabetes; skeletal muscle; p70S6k; mTOR; Akt; HFES   
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 INTRODUCTION  

           Type 2 (non-insulin dependent) diabetes mellitus (DM) is an emerging epidemic in 

Western cultures that is thought to afflict 150 million people worldwide [57]. A number of 

studies employing strength training regimens have been shown to improve glycemic control, 

increase skeletal muscle size and strength, and positively change body composition suggesting 

that anaerobic exercise may be an effective strategy for the treatment of insulin resistance and 

type 2 diabetes [13-16]. Recent reports have suggested that differences exist between normal and 

diabetic muscle in their adaptation to an exercise regimen [8, 10, 72-75]. However, the direct 

effects of exercise on the phenotype of diabetic muscle have not been widely studied. It is 

thought that the beneficial effects of exercise on muscle are mediated through the activation of 

various signaling cascades which are involved in regulating changes in gene expression, glucose 

uptake, and protein synthesis [76]. Whether type 2 diabetes alters exercise-induced signal 

transduction processes in muscle is unknown, but the existence of differences, if present, may 

help to explain why exercise-induced skeletal muscle adaptations may differ between normal and 

diabetic populations. 

 It is well established that increased muscle loading increases the rates of muscle protein 

synthesis [17]. This increase in protein synthesis, at least in part, is thought to be regulated by the 

phosphorylation of the p70 ribosomal protein S6 kinase (p70S6k) [18], whose activation has 

been proposed to promote increased translation of messages that have a polypyrimide motif just 

downstream of the 5’ cap [19].  It is thought that p70S6k activity is regulated by the mammalian 

target of rapamycin (mTOR) which functions as a growth factor and nutrient-sensing signaling 

molecule in mammalian cells [20]. How mTOR activity is modulated is not clear; however, 
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recent evidence suggests that mTOR is controlled by protein kinase B (PKB) / Akt which is 

activated in response to phospholipid products of the phosphatidylinositol 3-kinase reaction. It is 

likely that PKB/Akt increases mTOR activity by phosphorylating mTOR at Ser 2448 and it has 

been hypothesized that this event is a critical point of control in the regulation of protein 

synthesis [21]. It has been postulated that p70S6k signaling may be particularly important in 

mediating muscle adaptation as the phosphorylation of this molecule following an exercise bout 

has been found to be strongly associated with the increase in muscle weight after 6 wk of chronic 

stimulation [22].   

 The purpose of the present study was to determine whether type 2 diabetes alters p70S6k 

signaling after an acute episode of contractile activity. We hypothesized that type 2 diabetes 

would be associated with differences in how muscle contraction regulates the phosphorylation of 

the Akt / mTOR / p70S6k signaling cascade. To test this hypothesis the contraction-mediated 

activation of Akt, mTOR and p70S6k was assessed in skeletal muscle from normal and diabetic 

rats either immediately after or 1 or 3h after a single bout of sciatic nerve stimulation. Taken 

together, the data indicate that diabetes alters contraction-induced p70S6k phosphorylation in 

skeletal muscle. These findings are consistent with the possibility that DM alters the way skeletal 

muscle “senses and responds” to contractile stimuli.  
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MATERIALS AND METHODS 

 Animals  

All procedures were performed as outlined in the Guide for the Care and Use of Laboratory 

Animals as approved by the Council of the American Physiological Society and the Animal Use 

Review Board of Marshall University. Young (10 week, n=12) male lean Zucker and young (10 

week, n=12) male obese Zucker rats were obtained from the Charles River Laboratories. Rats 

were housed two to a cage in an AAALAC approved vivarium. Housing conditions consisted of 

a 12H: 12H dark-light cycle and temperature was maintained at 22° ± 2°C. Animals were 

provided food and water ad libitum and allowed to recover from shipment for at least two weeks 

before experimentation. During this time, the animals were carefully observed and weighed 

weekly to ensure none exhibited signs of failure to thrive, such as precipitous weight loss, 

disinterest in the environment, or unexpected gait alterations. 

 

Materials   

Anti- p70S6k  (#9202), Akt  (#9272), mTOR (#2972), phosphorylated Thr389 p70S6K (#9206), 

phosphorylated Ser421/Thr424 p70S6K (#9204), phosphorylated Ser2448 mTOR (#2971), 

phosphorylated Thr308 Akt (#9275) and phosphorylated Ser473 ( #9271) Akt, Mouse IgG, and Rabbit 

IgG antibodies were purchased from Cell Signaling Technology (Beverly, MA).  Enhanced 

chemiluminescence (ECL) western blotting detection reagent was from Amersham Biosciences 

(Piscataway, NJ).  Restore western blot stripping buffer was obtained from Pierce (Rockford, IL) 

and 3T3 cell lysates were from Santa Cruz Biotechnology (Santa Cruz, CA).  All other chemicals 

were purchased from Sigma (St. Louis, MO) or Fisher Scientific (Hanover, IL).  
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Contractile stimulation of skeletal muscles 

 The high-frequency electrical stimulation (HFES) model has been previously described [77] and 

was chosen on the basis of its efficacy in stimulating protein translation and muscle hypertrophy 

in vivo [22] . In order to produce maximal contractile stimulus, a voltage of 5-7V was applied to 

electrodes and sciatic nerve was stimulated with 1-ms pulses at 100 Hz, where all motor units 

(both fast and slow) are recruited. The contractions lasted 3-s and were followed by a 10-s rest. 

And after the sixth repetition, there was an additional 50 s of rest.  The HFES model used in the 

present study produced 10 sets of 6 contractions with an overall protocol time of 22 min. This 

protocol results in eccentric contraction of the TA. The TA muscle was chosen for analysis on 

the basis of previous studies demonstrating that HFES induces p70S6k phosphorylation and 

muscle hypertrophy in the TA muscle [78-81]. Animals were killed by a lethal dose of 

pentobarbital sodium at baseline, immediately following, 1h or 3 h after HFES. Once excised, 

muscles were blotted dry, trimmed of visible fat and tendon projections, weighed, immediately 

frozen in liquid nitrogen, and stored at -80° C. 

 

Preparation of protein isolates and immunoblotting   

Muscles were pulverized in liquid nitrogen using a mortar and pestle until a fine powder was 

obtained. After washing with ice cold PBS, pellets were lysed on ice for 15 minutes in T-PER (2 

mL/1g tissue weight) (Pierce, Rockford, IL) and centrifuged for 10 minutes at 2000 X g to pellet 

particulate matter. This process was repeated twice and the supernants combined for protein 

concentration determination using the Bradford method (Pierce, Rockford, IL). Samples were 

diluted to a concentration of 3 μg/ μl in SDS loading buffer, boiled for 5 minutes, and 60 μg of 

protein were separated using 10% SDS-PAGE gels. Transfer of protein onto nitrocellulose 
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membranes, verification of transfer and determination of equal loading between lanes and 

membranes was determined as outlined previously [82]. Protein immuno-detection was 

performed as outlined by the antibody manufacturer while immunoreactive bands were 

visualized with ECL (Amersham Biosciences). Exposure time was adjusted at all times to keep 

the integrated optical densities (IODs) within a linear and non-saturated range, and band signal 

intensity was quantified by densitometry using a flatbed scanner (Epson Perfection 3200 

PHOTO) and Imaging software (AlphaEaseFC). Molecular weight markers (Cell Signaling) 

were used as molecular mass standards and NIH 3T3 cell lysates were included as positive 

controls. To allow direct comparisons to be made between the concentration levels of different 

signaling molecules, immunoblots were stripped and re-probed with Restore western blot 

stripping buffer as detailed by the manufacturer (Pierce, Rockford, IL).  

 

Statistical analysis 

 Results are presented as mean + SEM. Data were analyzed by using the Sigma Stat 3.0 

statistical program. Data were analyzed using a two-way ANOVA followed by the Student-

Newman-Keuls post-hoc testing when appropriate. P <0.05 was considered to be statistically 

significant. 
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RESULTS 

Syndrome-X and muscle mass 

             Average body mass of obese Zucker rats (597 ± 21.7 g) was ~82 % greater than lean 

counterparts (328 ± 12.2 g; P< 0.05). Compared to lean animals (651 ± 9 mg), TA muscle mass 

was ~35% less in the obese Zucker rats (479 ± 20 mg; P< 0.05) (Table 1).  

 

 p70S6k pathway related protein levels and phosphorylation status are altered in the diabetic 

TA muscle.  

 To investigate the diabetic effects on the total amounts of p70S6k, mTOR and Akt, we 

performed SDS PAGE and western blot analysis using antibodies which recognize both the 

unphosphorylated and phosphorylated forms of these molecules. There were no differences in 

mTOR protein content (P< 0.05; Fig. 1). The muscle content of p70S6k, and Akt in the obese 

zucker TA was 27.9 ± 3.6% and 28.2 ± 10.1% lower, respectively than that observed in their lean 

counterparts (P< 0.05; Fig. 1). Immunoblot analysis using phospho-specific antibodies indicated 

that the basal phosphorylation level of p70S6k (Thr 389) was 26.1 ± 7.5% lower in the obese 

Zucker TA compared to that observed in lean animals (P<0.05; Fig. 2). No significant 

differences were detected across groups in basal phosphorylation levels of p70S6k 

(Thr421/Ser424), mTOR (Ser 2448), Akt (Thr 308) and Akt (Ser 473) (Fig. 2, 3 & 4).  

 

The contraction-induced phosphorylation of p70S6k is altered in the obese-Zucker rat.  

 Phosphorylation of p70S6k, mTOR and Akt in exercised TA muscles was determined at 

0-, 1-, and 3-hours after a bout of HFES and compared to control (unstimulated) muscles. 

Exercise induced phosphorylation of these molecules was compared between lean and obese 
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Zucker rats. In the case of each molecule examined, significant differences existed between lean 

and obese Zucker rat models (Fig. 2, 3 & 4). In the lean rat TA,  the phosphorylation of p70S6k 

(Thr 389) was found to be 33.3 ± 7.2% , 24.0 ± 14.9%  and 24.6 ± 11.3% higher than in 

unstimulated control muscles at 0-, 1- and 3-hr post-HFES, respectively (P< 0.05)  (Fig. 2). This 

response appeared to differ in the obese Zucker TA, where the phosphorylation of p70S6k (Thr 

389) was 33.5 ± 8.0% higher than control 3 hr post-exercise (P<0.05), but not immediately after 

or at the 1 hr post-HFES (Fig. 2). In lean Zucker TA, the Erk1/2-dependent phosphorylation of 

p70S6k (Thr 421/Ser 424) was 412.5 ± 37.2% , 331.0 ± 28.1%  and 83.0 ± 20.7% higher than 

control at 0-, 1- and 3-hr, respectively (P< 0.05)  (Fig. 2). Although different in magnitude 

compared to lean animals (Fig. 2) p70S6k (Thr 421/Ser 424), phosphorylation in the obese TA 

exhibited a similar pattern and was 294.5 ± 9.6% , 103.3 ± 35.5%  and 182.0 ± 26.1% higher 

than baseline at 0-, 1- and 3-hours, respectively (Fig 2; P< 0.05) 

 

The contraction-induced phosphorylation of potential p70S6k regulators is altered in obese-

Zucker rat.  

 It is thought that p70S6k phosphorylation is regulated by mTOR and its upstream 

regulator Akt [20, 21, 37]. mTOR phosphorylation (Ser 2448) was found to be 96.5 ± 40.3% 

higher than baseline immediately after exercise in lean animals (P< 0.05) while it was not 

different from baseline at 1 and 3 hr post-HFES (Fig. 3). This response differed in obese animals 

with no alteration in mTOR (Ser 2448) phosphorylation levels at any time point after HFES (Fig. 

3). In lean Zucker TA, Akt (Thr 308) phosphorylation was 31.8 ± 16.2%, 29.8 ± 7.5% and 31.1 ± 

8.8% higher than baseline at 0-, 1- and 3-hr post-HFES, exhibiting a biphasic response (P<0.05; 

Fig. 4). An altogether opposite response was observed in the obese Zucker TA, where Akt (Thr 
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308) phosphorylation was 25.3 ± 6.2%, 44.6 ± 9.0% and 30.4 ± 5.9% lower than baseline at 0-, 

1-, and 3-hours, respectively after HFES (P<0.05). In lean rats, the phosphorylation of Akt (Ser 

473) appeared to mirror what was seen at the Thr 308 residue with HFES and was 47.2 ± 12.1% 

and 43.7 ± 11.7% higher than baseline at 0- and 3-hours, respectively (P< 0.05; Fig. 4). This 

pattern of response was essentially opposite in the obese Zucker, where the phosphorylation of 

Akt (Ser 473) was 18.7 ± 6.4%, 46.3 ± 5.5% and 32.4 ± 7.3% lower than baseline at 0-, 1-, and 

3-hours post-HFES, respectively (P< 0.05; Fig. 4). Taken together these results suggest that the 

contraction-induced activation of p70S6k signaling may be altered with diabetes.  
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DISCUSSION 

 The obese Zucker rat is insulin resistant and has been used as model of type 2 diabetes 

[64, 83]. In this report, we demonstrate that the phosphorylation (activation) of the 

Akt/mTOR/p70S6k pathway in response to a maximal contractile stimulus appears to be altered 

in diabetic muscle.  

 Our results suggest that compared to lean animals, the magnitude and time course of the 

contraction-induced phosphorylation of p70S6k (Thr 389) and p70S6k (Thr 421 / ser 424) was 

significantly different in obese animals (Fig. 2). The p70S6k, is a serine/threonine protein kinase 

which plays an important role in regulating protein synthesis. p70S6k modulates protein 

synthesis, at least in part, by controlling the translation of numerous messenger RNA transcripts 

that encode components of the translational apparatus [84].  Illustrating this fact is the finding 

that blockade of p70S6k activity results in a significant inhibition of protein synthesis in multiple 

cell systems [85-89]. In skeletal muscle, the contraction induced phosphorylation of p70S6K is  

elevated following HFES [22, 34, 77] and is highly correlated with an increase in muscle mass 

following a resistance training program [22]. To our knowledge, the influence of diabetes on 

p70S6k phosphorylation in response to muscle contraction has not been reported. The 

physiological significance of these alterations remains unclear; however, it is interesting to note 

that previous reports have suggested that the insulin-stimulated phosphorylation of p70S6k may 

be altered in diabetic rats [90-92]. In the light of these studies, our data suggest that diabetes 

affect how multiple stimuli regulate the phosphorylation of p70S6k. Future studies employing a 

combination of approaches to stimulate p70S6k phosphorylation will certainly be of value in 

determining how diabetes may affect the regulation of p70S6k in skeletal muscle.  
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 To further explore how diabetes may be associated with alterations in the contraction-

induced regulation of p70S6k phosphorylation, we assessed the effects of muscle contraction on 

mTOR. Like p70S6k, mTOR is thought to be involved in the regulating several components of 

the translational machinery and in addition, is thought to be an upstream activator of p70S6k 

[36]. Similar to previous studies, increased contractile activity appears to be a strong stimulus to 

increase the phosphorylation level of mTOR in non-diabetic muscle [34, 77]. Conversely, in the 

diabetic TA, HFES appears unable to alter the degree of mTOR phosphorylation (Fig. 3). This 

latter finding is consistent with our data demonstrating that diabetic muscle exhibits a reduced 

ability to activate p70S6k following a single bout of exercise. Taken together, these data suggests 

that diabetes-associated alterations in p70S6k regulation may be due, at least in part, to defects in 

the ability of diabetic muscle to activate mTOR following a contractile stimulus.  

 mTOR phosphorylation of Ser 2448 is regulated by Akt/PKB [37-39]. Akt is a 

serine/threonine kinase which mediates certain types of muscle hypertrophy [21]. Under non-

stimulated conditions Akt is located in the cytoplasm and is thought to translocate to the plasma 

membrane upon activation, where it is phosphorylated by phosphinositide-dependent kinases 

(PDK) on its two principal regulatory sites Thr308 and Ser 473 [93]. Phosphorylation of both 

sites is essential for the activation of Akt. Like p70S6k and mTOR, HFES significantly increased 

the amount of Akt (Ser 308) and Akt (Ser 473) phosphorylation in non-diabetic muscle (Fig 4). 

Similar findings regarding the effects of contractile activity on Akt phosphorylation in non-

diabetic muscle have been reported previously [32, 55, 94]. In contrast to our findings in the 

nondiabetic animals, these events appeared to differ in diabetic muscle, suggesting that diabetes 

is associated with alterations in the ability of skeletal muscle to activate Akt signaling following 

increased contractile loading (Fig. 4) and this latter finding may be important. Given that Akt is 
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thought to reside upstream of mTOR, this lack of Akt activation in diabetic muscle may provide 

an explanation as to why diabetes may be associated with defects in HFES induced mTOR and 

p70S6k phosphoryation. Although this possibility is promising, it should be noted that the 

functional role of Akt in regulating p70S6k signaling cannot be accurately assessed in the 

absence of further study to evaluate experimental manipulation of this protein. Additional studies 

perhaps employing strategies designed to directly inhibit or activate Akt signaling during HFES 

may prove to be useful in addressing these possibilities.  

 The precise influence of diabetes on Akt regulation in muscle contraction remains 

unclear. It has been postulated that the degree of Akt activation following contractile activity 

may be dependent upon the type of contractile activity, contraction intensity, and / or the 

duration of stimulation [77]. Given this contention, it is plausible that reported differences in the 

signaling response between models could be related to the time points chosen for evaluation. 

Future studies employing other time points may yield different findings. Alternatively, it is 

possible that the two groups experienced different amount of tension during the HFES protocol. 

Although this possibility exists, we consider it unlikely that differences in contractile intensity, if 

present, are solely responsible for the alterations in muscle signaling we observe. Indeed, given 

the nature of the HFES model (direct nerve stimulation), the type of contraction this model 

produces in the TA (maximal eccentric loading) and the conditions under which the loading 

occurred (identical in both groups), we suggest that our data are consistent with the notion that 

diabetes is characterized by alterations in contractile signaling. The molecular mechanism(s) 

responsible for these differences are largely unknown. Exercise was found to have no effect on 

Akt as observed in isolated soleus muscle, but it occurs well in vivo and it is possible that 

systemic factors and / or oxidative stress may mediate the activation of Akt by exercise [95]. 
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Supporting this contention, hyperglycemia has been shown to directly decrease insulin-induced 

Akt phosphorylation on Ser473 in rat and human skeletal muscle [96, 97]. The factors which 

may regulate diminished Akt activation during hyperglycemia will require further 

experimentation. Similarly, it is possible that a reduced availability of circulating growth factors, 

decreased expression of local growth factors or alterations in cytokine levels may also play a role 

regulating Akt signaling [98, 99]. This latter possibility is an intriguing alternative that we are 

actively pursuing. 

Given the strong correlation between the phosphorylation level of p70S6k and degree of 

muscle hypertrophy seen by others, these data could suggest that diabetic muscle may be 

incapable of growth following a resistance based exercise program. This is not in agreement with 

the findings of Farrell and colleagues [3] who demonstrated that diabetic muscle is fully capable 

of undergoing muscle hypertrophy in rats following 8 weeks of resistance training. The reasons 

for this apparent discrepancy are not entirely clear, but may lie in the difference in models and 

time points between the studies and a more comprehensive examination is needed. Irrespective 

of the mechanism, it is likely that diabetes-associated differences in the ability of skeletal muscle 

to induce p70S6K signaling could be of clinical importance given the potential role that this 

signaling pathway may play in regulating protein synthesis and the adaptation of skeletal muscle 

to increased contractile loading. Given the apparent linkage between exercise induced increase in 

muscle mass and improvement in glucose disposal, we speculate that the data of the present 

study may have implications for the improvement of resistance based programs for the treatment 

of diabetes mellitus.  
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Appendix  
                                                         Appendix A 
 
 
                                                      Tables and Figures  
 

Table 1 Body weight and muscle mass of lean and obese (fa/fa) Zucker rats. An asterisk (*) 

indicates significant difference (P < 0.05) from the lean Zucker value. 

 

 Lean Zucker Obese Zucker 

Body mass, g 328 ± 12.2 597 ± 21.7 * 

TA mass, mg 651 ± 9 479 ± 20 * 
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Figure 1 
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                                               Figure 2 

 

 

                                               

 



 - 32 -

                                          Figure 3 
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                                      Figure 4 
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FIGURE LEGENDS 

Fig. 1:  Type 2 diabetes is associated with alterations in skeletal muscle p70S6k and 

its pathway related proteins. TA muscles from LNZ and obese (fa/fa) Zuckers (OSXZ) 

were analyzed by Western blot analysis for diabetes-related changes in total p70S6k, 

mTOR and Akt protein expression. Results are expressed as a percent of the normal, LNZ 

value. An asterisk (*) indicates significant differences (P< 0.05) from the lean Zucker 

value. 

 

Fig. 2:  Contraction-induced p70S6k (Thr 389 & Thr 421/Ser 424) phosphorylation 

is altered with type 2 diabetes. The basal (control) and contraction-induced 

phosphorylation of the p70S6k in TA muscles from lean and diabetic Zucker rats at 0, 1, 

and 3 hours after contractile stimulus. p70S6k (Thr 389 & Thr 421/ser 424) 

phosphorylation was determined by Western analysis and immunodetection for 

phosphorylation on Thr 389 and Thr 421/ser 424. An asterisk (*) indicates significant 

difference (P < 0.05) from the control within animal model, and a cross (†) indicates 

significant difference (P < 0.05) at corresponding time points across animal models.  

 

Fig. 3: Contraction-induced mTOR (Ser 2448) phosphorylation is altered with type 

2 diabetes. The basal (control) and contraction-induced phosphorylation of the mTOR in 

TA muscles from lean (LNZ) and obese Zucker (OSXZ) rats at 0-, 1-, and 3-hours after 

HFES. Phosphorylation of mTOR was determined by immunodetection of 

phosphorylation on Ser 2448. An asterisk (*) indicates significant difference (P < 0.05) 
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from the control time point within animal model, and a cross (†) indicates significant 

difference (P < 0.05) at corresponding time points across animal models.  

 

Fig. 4: Effects of eccentric, maximal muscle contraction in situ on phosphorylation 

of Akt (Thr308 / Ser473). The basal (control) and contraction-induced phosphorylation 

of the Akt in TA muscles from lean and diabetic Zucker rats at 0, 1, and 3 hours after 

contractile stimulus. Akt phosphorylation was determined by Western analysis and 

immunodetection for Akt phosphorylation on Thr308 and Ser473. An asterisk (*) 

indicates significant difference (P < 0.05) from the control within animal model, and a 

cross (†) indicates significant difference (P < 0.05) at corresponding time points across 

animal models.  
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                                                 Appendix B 
                                                Tibialis Anterior (TA) 
                                       Film Properties Report for p70S6k (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p70S6k (Cell Signaling)  Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  15 seconds    Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker 8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 
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Tibialis Anterior (TA) 

Film Properties Report for p70S6k (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p70S6k  (Cell Signaling)            Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  15 seconds    Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-38- 

Tibialis Anterior (TA) 

Film Properties Report for p70S6k (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p70S6k (Cell Signaling)  Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  15 seconds    Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker 8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-39- 

Tibialis Anterior (TA) 

Film Properties Report for p-p70S6k (Thr389)    (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p-p70S6k (Thr389)   Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit  Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  5 min   Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-40- 

Tibialis Anterior (TA) 

Film Properties Report for p-p70S6k (Thr389)    (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p-p70S6k (Thr389)   Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit  Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  5 min              Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-41- 

Tibialis Anterior (TA) 

Film Properties Report for p-p70S6k (Thr389)    (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p-p70S6k (Thr389)   Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit  Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  5 min   Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-42- 

Tibialis Anterior (TA) 

Film Properties Report for p-p70S6k 421/424    (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p-p70S6k 421/424   Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit  Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  5 min   Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-43- 

Tibialis Anterior (TA) 

Film Properties Report for p-p70S6k 421/424    (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p-p70S6k 421/424   Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit  Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  5 min   Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-44- 

Tibialis Anterior (TA) 

Film Properties Report for p-p70S6k 421/424    (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody: p-p70S6k 421/424   Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit  Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  5 min   Molecular weight:  70 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-45- 

Tibialis Anterior (TA) 

Film Properties Report for mTOR (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  mTOR (Cell Signaling)  Primary Antibody Dilution:  1:1000 

 Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

 Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  2 min    Molecular weight:  289 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-46- 

Tibialis Anterior (TA) 

Film Properties Report for mTOR (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  mTOR (Cell Signaling)  Primary Antibody Dilution:  1:1000 

 Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

 Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  1min                Molecular weight:  289 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-47- 

Tibialis Anterior (TA) 

Film Properties Report for mTOR (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  mTOR (Cell Signaling)  Primary Antibody Dilution:  1:1000 

 Incubation Time:  overnight @ 4°C   Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

 Incubation Time:  1hr@room temp  Medium:  5% milk in TBS-T 

Exposure Time:  2 min    Molecular weight:  289 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-48- 

Tibialis Anterior (TA) 

Film Properties Report for p-mTOR (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-mTOR (Cell Signaling) Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 min    Molecular weight:  289 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-49- 

Tibialis Anterior (TA) 

Film Properties Report for p-mTOR (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-mTOR (Cell Signaling) Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  2 min    Molecular weight:  289 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-50- 

Tibialis Anterior (TA) 

Film Properties Report for p-mTOR (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-mTOR (Cell Signaling) Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  2 min    Molecular weight:  289 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-51- 

Tibialis Anterior (TA) 

Film Properties Report for Akt (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  Akt (Cell Signaling)  Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C                Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 seconds    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-52- 

Tibialis Anterior (TA) 

Film Properties Report for Akt (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  Akt (Cell Signaling)  Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C                Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 seconds    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-53- 

Tibialis Anterior (TA) 

Film Properties Report for Akt (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  Akt (Cell Signaling)  Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C                Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 seconds    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-54- 

Tibialis Anterior (TA) 

Film Properties Report for p-Akt 308 (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-Akt 308              Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 min    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-55- 

Tibialis Anterior (TA) 

Film Properties Report for p-Akt 308 (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-Akt 308              Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 min    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 



-56- 

Tibialis Anterior (TA) 

Film Properties Report for p-Akt 308 (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-Akt 308              Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  2 min    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 
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Tibialis Anterior (TA) 

Film Properties Report for p-Akt 473 (1) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-Akt 473              Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  1min    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 
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Tibialis Anterior (TA) 

Film Properties Report for p-Akt 473 (2) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-Akt 473              Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  1 min    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 
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Tibialis Anterior (TA) 

Film Properties Report for p-Akt 473 (3) 

Experimenter:  Anjaiah Katta 

Muscle / Tissue: Tibialis Anterior (TA)            Species:  Rat (Zucker)  

Protein conc.: 1.5µg/µl x 20µl = 30 µg           Gel type:  10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage:  124V Transfer Voltage:  24V Duration:  45 min 

Primary Antibody:  p-Akt 473              Primary Antibody Dilution:  1:1000 

Incubation Time:  overnight @ 4°C               Medium:  5% BSA in TBS-T 

Secondary Antibody:  Anti-Rabbit   Secondary Antibody Dilution:1:1000 

Incubation Time:  1hr@room temp              Medium:  5% milk in TBS-T 

Exposure Time:  5 min    Molecular weight:  60 kDa 

Lane 1:  Biotinylated Ladder 16µl 

Lane 2:  Mol Wt Marker  8 µl 

Lane 3:  Lean Zucker control 20 µl 

Lane 4:  Lean Zucker  0 hour 20 µl 

Lane 5:  Lean Zucker 1 hour 20 µl 

Lane 6:  Lean Zucker 3 hour 20 µl 

Lane 7:  Obese Zucker control 20 µl 

Lane 8:  Obese Zucker 0 hour 20 µl 

Lane 9:  Obese Zucker 1 hour 20 µl 

Lane 10:  Obese Zucker 3 hour 20 µl 

Lane11:  Positive Control [L6 + IGF Lysate, 3T3 Cell Extract (untreated) 3T3 cell extract  

               (serum treated)HeLa cell lysate] 16 µl 

Lane 12:  Mol Wt Marker 8 µl 
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Subsection B (Raw data) 

 This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

p70S6k data set  

 Total p70S6k IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 15.2 13.9 12.8 12.4 10.6 13.3 10.1 11.7
%C 15 13.6 13.6 12.3 10.5 13 10.1 11.9
%C 15.6 14.3 13.9 12.8 10.5 11.7 9.9 11.4
%C 15.4 14.7 13.8 12.8 10.2 11.5 10.2 11.5
%C 15.1 13.1 11 13.2 11.5 12.1 11.5 12.5
%C 14.5 13.2 10.8 12.8 11.9 12.5 11.9 12.5
         
N 6 6 6 6 6 6 6 6

Mean 
15.133

33 13.8 12.65
12.716

67
10.866

67 12.35 
10.616

67 
11.916

67
Strandard 
Deviation 

0.3777
12 

0.6260
99

1.4110
28

0.3250
64

0.6713
17

0.7148
43 

0.8542
05 

0.4833
91

Standard Error 
of the mean 

0.1689
18 0.28

0.6310
31

0.1453
73

0.3002
22

0.3196
87 

0.3820
12 

0.2161
79

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

0.9118
94

0.8359
03

0.8403
08

0.7180
62

0.8160
79 

0.7015
42 

0.7874
45

Standard error 
of the mean 

0.0111
62 

0.0185
02

0.0416
98

0.0096
06

0.0198
38

0.0211
25 

0.0252
43 

0.0142
85

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
91.189

43
83.590

31
84.030

84
71.806

17
81.607

93 
70.154

19 
78.744

49

SE 
1.1161

99 
1.8502

2
4.1698

08
0.9606

15
1.9838

47
2.1124

71 
2.5243

1 
1.4284

95
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                                             p-p70S6k Thr389 IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 13.1 16.2 13.5 13.7 9.5 12.5 9.8 11.6
%C 12.6 16.2 13.6 13.8 9.8 11.8 10 12.2
%C 13.2 15.6 13.2 14.4 9.3 10.7 10.7 13
%C 13.2 15.6 13.2 14.4 9.3 10.7 10.7 13
%C 10.2 17.3 19.1 17.5 8.2 9.3 7.5 10.8
%C 10.9 16.7 18.2 17.4 8 9.4 7.7 11.6
         
N 6 6 6 6 6 6 6 6

Mean 12.2 
16.266

67
15.133

33 15.2
9.0166

67
10.733

33 9.4 
12.033

33
Strandard 
Deviation 

1.3160
55 

0.6562
52

2.7434
77

1.7674
84

0.7359
8

1.2722
68 

1.4422
21 

0.8710
15

Standard Error 
of the mean 

0.5885
58 

0.2934
85

1.2269
2

0.7904
43

0.3291
4

0.5689
76 

0.6449
81 

0.3895
3

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

1.3333
33

1.2404
37

1.2459
02

0.7390
71

0.8797
81 

0.7704
92 

0.9863
39

Standard error 
of the mean 

0.0482
42 

0.0240
56

0.1005
67

0.0647
9

0.0269
79

0.0466
37 

0.0528
67 

0.0319
29

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
133.33

33
124.04

37
124.59

02
73.907

1
87.978

14 
77.049

18 
98.633

88

SE 
4.8242

42 
2.4056

13
10.056

72
6.4790

4
2.6978

71
4.6637

35 
5.2867

26 
3.1928

66
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                                                 p-p70S6k 421/424 IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 4.3 19.2 16.7 9.8 4.4 17.9 13.3 14.2
%C 4.1 19.4 17 9.7 4 18.3 12.9 14.6
%C 5.5 24.8 21.7 8.3 4.2 17.8 7.8 10
%C 5.4 24.3 20.9 8.4 4.1 18.5 8 10.4
%C 4 25.4 20.3 7 5.4 17.5 6.6 13.9
%C 3.8 25.8 20.2 6.5 5.2 17.7 6.9 13.9
         
N 6 6 6 6 6 6 6 6

Mean 
4.5166

67 23.15
19.466

67
8.2833

33 4.55 17.95 9.25 
12.833

33
Strandard 
Deviation 

0.7413
95 

3.0263
84

2.0982
53

1.3526
52

0.5991
66

0.3781
53 

3.0310
06 

2.0597
73

Standard Error 
of the mean 

0.3315
62 

1.3534
4

0.9383
67

0.6049
24

0.2679
55

0.1691
15 

1.3555
07 

0.9211
59

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

5.1254
61

4.3099
63

1.8339
48

1.0073
8

3.9741
7 

2.0479
7 

2.8413
28

Standard error 
of the mean 

0.0734
09 

0.2996
55

0.2077
57

0.1339
32

0.0593
26

0.0374
43 

0.3001
12 

0.2039
47

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
512.54

61
430.99

63
183.39

48
100.73

8
397.41

7 
204.79

7 
284.13

28

SE 
7.3408

55 
29.965

46
20.775

66
13.393

16
5.9325

88
3.7442

51 
30.011

23 
20.394

66
 

 

 

 

 

 

 

 

 



-63- 

mTOR data set  

Total mTOR IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 11.2 12.8 11.8 16.6 12.3 11.2 9.9 14.2
%C 10.8 12.6 11 17.1 12.6 10.5 10.7 14.7
%C 13 13.7 12.6 14.5 12.3 10 10 13.9
%C 12.8 13.6 12.6 13.8 12.2 11.3 10.6 13.2
%C 10.4 18.2 20.3 12.1 7.8 12.1 10.8 8.2
%C 9.4 17.2 19.7 12.4 9 12.9 11.6 7.7
         
N 6 6 6 6 6 6 6 6

Mean 
11.266

67 
14.683

33
14.666

67
14.416

67
11.033

33
11.333

33 10.6 
11.983

33
Strandard 
Deviation 

1.4009
52 

2.3970
12

4.1778
78

2.0875
02

2.0791
02

1.0519
82 

0.6164
41 

3.1657
02

Standard Error 
of the mean 

0.6265
25 

1.0719
76

1.8684
04

0.9335
59

0.9298
03

0.4704
61 

0.2756
81 

1.4157
45

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

1.3032
54

1.3017
75

1.2795
86

0.9792
9

1.0059
17 

0.9408
28 

1.0636
09

Standard error 
of the mean 

0.0556
09 

0.0951
46

0.1658
35

0.0828
6

0.0825
27

0.0417
57 

0.0244
69 

0.1256
58

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
130.32

54
130.17

75
127.95

86
97.928

99
100.59

17 
94.082

84 
106.36

09

SE 
5.5608

71 
9.5145

83
16.583

47
8.2860

31
8.2526

88
4.1756

87 
2.4468

73 
12.565

78
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                                                     p-mTOR IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 7.1 28.8 19.1 10.2 4.6 15.5 9.7 5.1
%C 7.3 28.3 19.1 10.2 5 15.4 9.2 5.5
%C 10.8 19.7 14.8 14.2 9.5 11.3 9.3 10.4
%C 11.2 19.2 14.6 14.2 9.6 11.4 9.2 10.5
%C 13.2 13.6 10.9 14.5 10.7 9.7 11.6 15.9
%C 13.1 13.6 10.4 15.2 10.1 9.9 11.5 16.3
         
N 6 6 6 6 6 6 6 6

Mean 10.45 
20.533

33
14.816

67
13.083

33 8.25 12.2 
10.083

33 
10.616

67
Strandard 
Deviation 

2.6987
03 

6.7420
08

3.7838
69

2.2631
1

2.7090
59

2.6122
79 

1.1513
76 

4.8350
46

Standard Error 
of the mean 

1.2068
97 

3.0151
17

1.6921
98

1.0120
94

1.2115
28

1.1682
47 

0.5149
11 

2.1622
98

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

1.9649
12

1.4178
63

1.2519
94

0.7894
74

1.1674
64 

0.9649
12 

1.0159
49

Standard error 
of the mean 

0.1154
93 

0.2885
28

0.1619
33

0.0968
51

0.1159
36

0.1117
94 

0.0492
74 

0.2069
18

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
196.49

12
141.78

63
125.19

94
78.947

37
116.74

64 
96.491

23 
101.59

49

SE 
11.549

25 
28.852

8
16.193

28
9.6851

06
11.593

57
11.179

39 
4.9273

78 
20.691

85
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                                                        Akt data set  

Total Akt IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 15.2 13 14.1 14.6 11.3 10.6 9.4 11.9
%C 15.1 12.6 14.2 14.5 11.5 10.4 10.1 11.6
%C 15.8 13.5 17.2 15 11.5 9.5 7.8 9.8
%C 14.9 13.3 16.5 15.1 12 9.9 8.2 10.1
%C 15.3 14.2 14.9 15.6 10.4 10.9 9.2 9.5
%C 16.4 14.2 14.4 15.3 10.2 10.8 9.1 9.6
         
N 6 6 6 6 6 6 6 6

Mean 15.45 
13.466

67
15.216

67
15.016

67 11.15 10.35 
8.9666

67 
10.416

67
Strandard 
Deviation 

0.5540
76 

0.6439
46

1.3136
46

0.4167
33

0.7007
14

0.5468
09 

0.8358
63 

1.0571
98

Standard Error 
of the mean 

0.2477
9 

0.2879
81

0.5874
8

0.1863
69

0.3133
69

0.2445
4 

0.3738
09 

0.4727
93

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

0.8716
29

0.9848
98

0.9719
53

0.7216
83

0.6699
03 

0.5803
67 

0.6742
18

Standard error 
of the mean 

0.0160
38 

0.0186
4

0.0380
25

0.0120
63

0.0202
83

0.0158
28 

0.0241
95 

0.0306
01

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
87.162

89
98.489

75
97.195

25
72.168

28
66.990

29 
58.036

68 
67.421

79

SE 
1.6038

2 
1.8639

58
3.8024

63
1.2062

71
2.0282

77
1.5827

86 
2.4194

77 
3.0601

5
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p-Akt 308 IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 13.3 22.7 9.3 16.9 11.1 9.8 7.1 9.8
%C 14.1 23.2 8.2 16.4 12.7 9.1 7.7 8.6
%C 12.8 16.5 10 19.1 13 10.6 9.1 8.7
%C 12.2 17.1 10.3 18.6 13.6 10.5 8.5 9.1
%C 15.3 15.3 10.7 19.5 14.5 9.6 5.8 9.3
%C 15.9 15.4 10.2 19.1 14.4 9.7 5.7 9.7
         
N 6 6 6 6 6 6 6 6

Mean 
13.933

33 
18.366

67
9.7833

33
18.266

67
13.216

67
9.8833

33 
7.3166

67 9.2
Strandard 
Deviation 

1.4459
14 

3.6175
5

0.9020
35

1.2940
89

1.2639
88

0.5706
72 

1.3920
01 

0.4979
96

Standard Error 
of the mean 

0.6466
32 

1.6178
17

0.4034
02

0.5787
34

0.5652
73

0.2552
12 

0.6225
22 

0.2227
11

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

1.3181
82

0.7021
53

1.3110
05

0.9485
65

0.7093
3 

0.5251
2 

0.6602
87

Standard error 
of the mean 

0.0464
09 

0.1161
11

0.0289
52

0.0415
36

0.0405
7

0.0183
17 

0.0446
79 

0.0159
84

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
131.81

82
70.215

31
131.10

05
94.856

46
70.933

01 
52.511

96 
66.028

71

SE 
4.6409

02 
11.611

13
2.8952

31
4.1535

95
4.0569

82
1.8316

67 
4.4678

59 
1.5984

01
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p-Akt 473 IDV Values 

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

%C 11.7 16.6 11.7 15.3 14 12.7 8.2 9.8
%C 11.3 17.5 11.6 15.9 13.7 12.1 8.3 9.6
%C 10.9 20.1 11.6 19.9 13 10.4 7 7.2
%C 10.7 19.8 12.7 18.8 12.3 10.9 7.5 7.2
%C 13.5 15.6 13.4 16.9 13.7 10.2 6.4 10.3
%C 14 16.5 12.8 16.8 14.1 9.4 5.9 10.5
         
N 6 6 6 6 6 6 6 6

Mean 
12.016

67 
17.683

33 12.3
17.266

67
13.466

67 10.95 
7.2166

67 9.1
Strandard 
Deviation 

1.3948
72 

1.8584
04

0.7694
15

1.7534
73

0.6889
61

1.2373
36 

0.9662
64 

1.5073
15

Standard Error 
of the mean 

0.6238
06 

0.8311
04

0.3440
93

0.7841
77

0.3081
13

0.5533
53 

0.4321
27 

0.6740
92

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

Relative 
Expression 
Level 1 

1.4715
67

1.0235
78

1.4368
93

1.1206
66

0.9112
34 

0.6005
55 

0.7572
82

Standard error 
of the mean 

0.0519
12 

0.0691
63

0.0286
35

0.0652
57

0.0256
4

0.0460
49 

0.0359
61 

0.0560
96

         

 
Lean 
control Lean 0 Lean 1 Lean 3 

Obese 
conrtol 

Obese 
0 

Obese 
1 

Obese 
3 

% RE 100 
147.15

67
102.35

78
143.68

93
112.06

66
91.123

44 
60.055

48 
75.728

16

SE 
5.1911

69 
6.9162

58
2.8634

65
6.5257

44
2.5640

43
4.6048

83 
3.5960

6 
5.6096

42
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Subsection C (Statistics)  

Total p70S6k 

t-test  
 
Data source: raw data in TA totals p70paper 
 
Normality Test: Passed (P > 0.050) 
 
Equal Variance Test: Passed (P = 0.438) 
 
Group Name N  Missing Mean Std Dev SEM  
p70 lz 6 0 15.133 0.378 0.154  
p70 oz 6 0 10.867 0.671 0.274  
 
Difference 4.267 
 
t = 13.568  with 10 degrees of freedom. (P = <0.001) 
 
95 percent confidence interval for difference of means: 3.566 to 4.967 
 
The difference in the mean values of the two groups is greater than would be expected by 
chance; there is a statistically significant difference between the input groups (P = 
<0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 

Total mTOR 

t-test  
 
Data source: raw data in TA totals p70paper 
 
Normality Test: Failed (P = 0.045) 
 
 
Test execution ended by user request, Rank Sum Test begun 
 
Mann-Whitney Rank Sum Test  
 
Data source: raw data in TA totals p70paper 
 
Group N  Missing  Median    25%      75%     
mTOR lz 6 0 11.000 10.400 12.800  
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mTOR oz 6 0 12.250 9.000 12.300  
 
T = 41.000  n(small)= 6  n(big)= 6  P(est.)= 0.810  P(exact)= 0.818 
 
The difference in the median values between the two groups is not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference  (P = 0.818) 
 
 

Total Akt 

t-test  
 
Data source: raw data in TA totals p70paper 
 
Normality Test: Passed (P > 0.050) 
 
Equal Variance Test: Passed (P = 0.627) 
 
Group Name N  Missing Mean Std Dev SEM  
Akt lz 6 0 15.450 0.554 0.226  
Akt oz 6 0 11.150 0.701 0.286  
 
Difference 4.300 
 
t = 11.791 with 10 degrees of freedom. (P = <0.001) 
 
95 percent confidence interval for difference of means: 3.487 to 5.113 
 
The difference in the mean values of the two groups is greater than would be expected by 
chance; there is a statistically significant difference between the input groups (P = 
<0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
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p-p70S6k Thr389 

Two Way Analysis of Variance  
 
Data source: raw data TA in p70 pathway 
Balanced Design 
 
Dependent Variable: p p70 389  
 
Normality Test: Failed (P < 0.050) 
 
Equal Variance Test: Failed (P < 0.050) 
 
Source of Variation  DF   SS   MS    F    P   
model 1 41.255 41.255 5.209 0.028  
time 3 465.562 155.187 19.595 <0.001  
model x time 3 95.996 31.999 4.040 0.013  
Residual 40 316.795 7.920    
Total 47 919.608 19.566    
 
 
Main effects cannot be properly interpreted if significant interaction is determined. This 
is because the size of a factor's effect depends upon the level of the other factor. 
 
The effect of different levels of model depends on what level of time is present.  There is 
a statistically significant interaction between model and time.  (P = 0.013) 
 
Power of performed test with alpha = 0.0500:  for model : 0.508 
Power of performed test with alpha = 0.0500:  for time : 1.000 
Power of performed test with alpha = 0.0500:  for model x time : 0.669 
 
Least square means for model :  
Group Mean  
Obese 11.579  
lean 13.433  
Std Err of LS Mean = 0.574 
 
Least square means for time :  
Group Mean  
control 7.717  
zero hr 12.308  
one hr 13.700  
three hr 16.300  
Std Err of LS Mean = 0.812 
 
Least square means for model x time :  
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Group Mean  
Obese x control 8.617  
Obese x zero hr 10.483  
Obese x one hr 11.000  
Obese x three hr 16.217  
lean x control 6.817  
lean x zero hr 14.133  
lean x one hr 16.400  
lean x three hr 16.383  
Std Err of LS Mean = 1.149 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor: model 
Comparison Diff of Means p q P P<0.050  
lean vs. Obese 1.854 2 3.228 0.028 Yes  
 
 
Comparisons for factor: time 
Comparison Diff of Means p q P P<0.050  
three hr vs. control 8.583 4 10.565 <0.001 Yes  
three hr vs. zero hr 3.992 3 4.913 0.004 Yes  
three hr vs. one hr 2.600 2 3.200 0.029 Yes  
one hr vs. control 5.983 3 7.365 <0.001 Yes  
one hr vs. zero hr 1.392 2 1.713 0.233 No  
zero hr vs. control 4.592 2 5.652 <0.001 Yes  
 
 
Comparisons for factor: time within Obese 
Comparison Diff of Means p q P P<0.05  
three hr vs. control 7.600 4 6.615 <0.001 Yes  
three hr vs. zero hr 5.733 3 4.990 0.003 Yes  
three hr vs. one hr 5.217 2 4.541 0.003 Yes  
one hr vs. control 2.383 3 2.074 0.318 No  
one hr vs. zero hr 0.517 2 0.450 0.752 Do Not Test  
zero hr vs. control 1.867 2 1.625 0.258 Do Not Test  
 
 
Comparisons for factor: time within lean 
Comparison Diff of Means p q P P<0.05  
one hr vs. control 9.583 4 8.341 <0.001 Yes  
one hr vs. zero hr 2.267 3 1.973 0.353 No  
one hr vs. three hr 0.0167 2 0.0145 0.992 Do Not Test  
three hr vs. control 9.567 3 8.327 <0.001 Yes  
three hr vs. zero hr 2.250 2 1.958 0.174 Do Not Test  
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zero hr vs. control 7.317 2 6.368 <0.001 Yes  
 
 
Comparisons for factor: model within control 
Comparison Diff of Means p q P P<0.05  
Obese vs. lean 1.800 2 1.567 0.275 No  
 
 
Comparisons for factor: model within zero hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 3.650 2 3.177 0.030 Yes  
 
 
Comparisons for factor: model within one hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 5.400 2 4.700 0.002 Yes  
 
 
Comparisons for factor: model within three hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 0.167 2 0.145 0.919 No  
 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is 
found between two means that enclose that comparison.  For example, if you had four 
means sorted in order, and found no difference between means 4 vs. 2, then you would 
not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are 
enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed means is a procedural 
rule, and a result of Do Not Test should be treated as if there is no significant difference 
between the means, even though one may appear to exist. 
 
 

p-p70S6k 421/424 

Two Way Analysis of Variance  
 
Data source: raw data TA in p70 pathway  
Balanced Design 
 
Dependent Variable: p p70421-424  
 
Normality Test: Passed (P = 0.097) 
 
Equal Variance Test: Passed (P = 0.220) 
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Source of Variation  DF   SS   MS    F    P   
model 1 88.021 88.021 23.572 <0.001  
time 3 1625.925 541.975 145.143 <0.001  
model x time 3 368.351 122.784 32.882 <0.001  
Residual 40 149.363 3.734    
Total 47 2231.660 47.482    
 
 
Main effects cannot be properly interpreted if significant interaction is determined. This 
is because the size of a factor's effect depends upon the level of the other factor. 
 
The effect of different levels of model depends on what level of time is present.  There is 
a statistically significant interaction between model and time.  (P = <0.001) 
 
Power of performed test with alpha = 0.0500:  for model : 0.999 
Power of performed test with alpha = 0.0500:  for time : 1.000 
Power of performed test with alpha = 0.0500:  for model x time : 1.000 
 
Least square means for model :  
Group Mean  
Obese 11.146  
lean 13.854  
Std Err of LS Mean = 0.394 
 
Least square means for time :  
Group Mean  
control 4.533  
zero hr 20.550  
one hr 14.358  
three hr 10.558  
Std Err of LS Mean = 0.558 
 
Least square means for model x time :  
Group Mean  
Obese x control 4.550  
Obese x zero hr 17.950  
Obese x one hr 9.250  
Obese x three hr 12.833  
lean x control 4.517  
lean x zero hr 23.150  
lean x one hr 19.467  
lean x three hr 8.283  
Std Err of LS Mean = 0.789 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
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Comparisons for factor: model 
Comparison Diff of Means p q P P<0.050  
lean vs. Obese 2.708 2 6.866 <0.001 Yes  
 
 
Comparisons for factor: time 
Comparison Diff of Means p q P P<0.050  
zero hr vs. control 16.017 4 28.712 <0.001 Yes  
zero hr vs. three hr 9.992 3 17.912 <0.001 Yes  
zero hr vs. one hr 6.192 2 11.100 <0.001 Yes  
one hr vs. control 9.825 3 17.613 <0.001 Yes  
one hr vs. three hr 3.800 2 6.812 <0.001 Yes  
three hr vs. control 6.025 2 10.801 <0.001 Yes  
 
 
Comparisons for factor: time within Obese 
Comparison Diff of Means p q P P<0.05  
zero hr vs. control 13.400 4 16.986 <0.001 Yes  
zero hr vs. one hr 8.700 3 11.028 <0.001 Yes  
zero hr vs. three hr 5.117 2 6.486 <0.001 Yes  
three hr vs. control 8.283 3 10.500 <0.001 Yes  
three hr vs. one hr 3.583 2 4.542 0.003 Yes  
one hr vs. control 4.700 2 5.958 <0.001 Yes  
 
 
Comparisons for factor: time within lean 
Comparison Diff of Means p q P P<0.05  
zero hr vs. control 18.633 4 23.620 <0.001 Yes  
zero hr vs. three hr 14.867 3 18.845 <0.001 Yes  
zero hr vs. one hr 3.683 2 4.669 0.002 Yes  
one hr vs. control 14.950 3 18.951 <0.001 Yes  
one hr vs. three hr 11.183 2 14.176 <0.001 Yes  
three hr vs. control 3.767 2 4.775 0.002 Yes  
 
 
Comparisons for factor: model within control 
Comparison Diff of Means p q P P<0.05  
Obese vs. lean 0.0333 2 0.0423 0.976 No  
 
 
Comparisons for factor: model within zero hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 5.200 2 6.592 <0.001 Yes  
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Comparisons for factor: model within one hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 10.217 2 12.951 <0.001 Yes  
 
 
Comparisons for factor: model within three hr 
Comparison Diff of Means p q P P<0.05  
Obese vs. lean 4.550 2 5.768 <0.001 Yes  
 
 
 

p-mTOR 

Two Way Analysis of Variance  
 
Data source: raw data TA in p70 pathway 
Balanced Design 
 
Dependent Variable: p mTOR  
 
Normality Test: Passed (P = 0.373) 
 
Equal Variance Test: Passed (P = 0.087) 
 
Source of Variation  DF   SS   MS    F    P   
model 1 235.853 235.853 16.992 <0.001  
time 3 303.582 101.194 7.290 <0.001  
model x time 3 72.467 24.156 1.740 0.174  
Residual 40 555.217 13.880    
Total 47 1167.119 24.832    
 
 
The difference in the mean values among the different levels of model is greater than 
would be expected by chance after allowing for effects of differences in time.  There is a 
statistically significant difference (P = <0.001).  To isolate which group(s) differ from the 
others use a multiple comparison procedure. 
 
The difference in the mean values among the different levels of time is greater than 
would be expected by chance after allowing for effects of differences in model.  There is 
a statistically significant difference (P = <0.001).  To isolate which group(s) differ from 
the others use a multiple comparison procedure. 
 
The effect of different levels of model does not depend on what level of time is present.  
There is not a statistically significant interaction between model and time.  (P = 0.174) 
 
Power of performed test with alpha = 0.0500:  for model : 0.984 
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Power of performed test with alpha = 0.0500:  for time : 0.958 
Power of performed test with alpha = 0.0500:  for model x time : 0.188 
 
Least square means for model :  
Group Mean  
Obese 10.288  
lean 14.721  
Std Err of LS Mean = 0.760 
 
Least square means for time :  
Group Mean  
control 9.350  
zero hr 16.367  
one hr 12.450  
three hr 11.850  
Std Err of LS Mean = 1.076 
 
Least square means for model x time :  
Group Mean  
Obese x control 8.250  
Obese x zero hr 12.200  
Obese x one hr 10.083  
Obese x three hr 10.617  
lean x control 10.450  
lean x zero hr 20.533  
lean x one hr 14.817  
lean x three hr 13.083  
Std Err of LS Mean = 1.521 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor: model 
Comparison Diff of Means p q P P<0.050  
lean vs. Obese 4.433 2 5.830 <0.001 Yes  
 
 
Comparisons for factor: time 
Comparison Diff of Means p q P P<0.050  
zero hr vs. control 7.017 4 6.524 <0.001 Yes  
zero hr vs. three hr 4.517 3 4.200 0.014 Yes  
zero hr vs. one hr 3.917 2 3.642 0.014 Yes  
one hr vs. control 3.100 3 2.882 0.116 No  
one hr vs. three hr 0.600 2 0.558 0.695 Do Not Test  
three hr vs. control 2.500 2 2.324 0.108 Do Not Test  
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Comparisons for factor: time within Obese 
Comparison Diff of Means p q P P<0.05  
zero hr vs. control 3.950 4 2.597 0.272 No  
zero hr vs. one hr 2.117 3 1.392 0.591 Do Not Test  
zero hr vs. three hr 1.583 2 1.041 0.466 Do Not Test  
three hr vs. control 2.367 3 1.556 0.520 Do Not Test  
three hr vs. one hr 0.533 2 0.351 0.806 Do Not Test  
one hr vs. control 1.833 2 1.205 0.399 Do Not Test  
 
 
Comparisons for factor: time within lean 
Comparison Diff of Means p q P P<0.05  
zero hr vs. control 10.083 4 6.629 <0.001 Yes  
zero hr vs. three hr 7.450 3 4.898 0.004 Yes  
zero hr vs. one hr 5.717 2 3.759 0.011 Yes  
one hr vs. control 4.367 3 2.871 0.118 No  
one hr vs. three hr 1.733 2 1.140 0.425 Do Not Test  
three hr vs. control 2.633 2 1.731 0.228 Do Not Test  
 
 
Comparisons for factor: model within control 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 2.200 2 1.446 0.313 No  
 
 
Comparisons for factor: model within zero hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 8.333 2 5.479 <0.001 Yes  
 
 
Comparisons for factor: model within one hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 4.733 2 3.112 0.034 Yes  
 
 
Comparisons for factor: model within three hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 2.467 2 1.622 0.258 No  
 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is 
found between two means that enclose that comparison.  For example, if you had four 
means sorted in order, and found no difference between means 4 vs. 2, then you would 
not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are 
enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed means is a procedural 



-78- 

rule, and a result of Do Not Test should be treated as if there is no significant difference 
between the means, even though one may appear to exist. 
 
 
 
p-Akt 308 
 
Two Way Analysis of Variance  
 
Data source: raw data TA in p70 pathway  
Balanced Design 
 
Dependent Variable: p-Akt 308  
 
Normality Test: Passed (P = 0.079) 
 
Equal Variance Test: Passed (P = 0.050) 
 
Source of Variation  DF   SS   MS    F    P   
model 1 322.403 322.403 118.451 <0.001  
time 3 251.038 83.679 30.744 <0.001  
model x time 3 159.905 53.302 19.583 <0.001  
Residual 40 108.873 2.722    
Total 47 842.219 17.920    
 
 
Main effects cannot be properly interpreted if significant interaction is determined. This 
is because the size of a factor's effect depends upon the level of the other factor. 
 
The effect of different levels of model depends on what level of time is present.  There is 
a statistically significant interaction between model and time.  (P = <0.001) 
 
Power of performed test with alpha = 0.0500:  for model : 1.000 
Power of performed test with alpha = 0.0500:  for time : 1.000 
Power of performed test with alpha = 0.0500:  for model x time : 1.000 
 
Least square means for model :  
Group Mean  
Obese 9.904  
lean 15.088  
Std Err of LS Mean = 0.337 
 
Least square means for time :  
Group Mean  
control 13.575  
zero hr 14.125  
one hr 8.550  
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three hr 13.733  
Std Err of LS Mean = 0.476 
 
Least square means for model x time :  
Group Mean  
Obese x control 13.217  
Obese x zero hr 9.883  
Obese x one hr 7.317  
Obese x three hr 9.200  
lean x control 13.933  
lean x zero hr 18.367  
lean x one hr 9.783  
lean x three hr 18.267  
Std Err of LS Mean = 0.674 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method) : 
 
Comparisons for factor: model 
Comparison Diff of Means p q P P<0.050  
lean vs. Obese 5.183 2 15.392 <0.001 Yes  
 
 
Comparisons for factor: time 
Comparison Diff of Means p q P P<0.050  
zero hr vs. one hr 5.575 4 11.706 <0.001 Yes  
zero hr vs. control 0.550 3 1.155 0.695 No  
zero hr vs. three hr 0.392 2 0.822 0.564 Do Not Test  
three hr vs. one hr 5.183 3 10.884 <0.001 Yes  
three hr vs. control 0.158 2 0.332 0.815 Do Not Test  
control vs. one hr 5.025 2 10.551 <0.001 Yes  
 
 
Comparisons for factor: time within Obese 
Comparison Diff of Means p q P P<0.05  
control vs. one hr 5.900 4 8.760 <0.001 Yes  
control vs. three hr 4.017 3 5.964 <0.001 Yes  
control vs. zero hr 3.333 2 4.949 0.001 Yes  
zero hr vs. one hr 2.567 3 3.811 0.027 Yes  
zero hr vs. three hr 0.683 2 1.015 0.477 No  
three hr vs. one hr 1.883 2 2.796 0.055 No  
 
 
Comparisons for factor: time within lean 
Comparison Diff of Means p q P P<0.05  
zero hr vs. one hr 8.583 4 12.744 <0.001 Yes  
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zero hr vs. control 4.433 3 6.582 <0.001 Yes  
zero hr vs. three hr 0.100 2 0.148 0.917 No  
three hr vs. one hr 8.483 3 12.595 <0.001 Yes  
three hr vs. control 4.333 2 6.434 <0.001 Yes  
control vs. one hr 4.150 2 6.162 <0.001 Yes  
 
 
Comparisons for factor: model within control 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 0.717 2 1.064 0.456 No  
 
 
Comparisons for factor: model within zero hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 8.483 2 12.595 <0.001 Yes  
 
 
Comparisons for factor: model within one hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 2.467 2 3.662 0.013 Yes  
 
 
Comparisons for factor: model within three hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 9.067 2 13.461 <0.001 Yes  
 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is 
found between two means that enclose that comparison.  For example, if you had four 
means sorted in order, and found no difference between means 4 vs. 2, then you would 
not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are 
enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed means is a procedural 
rule, and a result of Do Not Test should be treated as if there is no significant difference 
between the means, even though one may appear to exist. 
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   p-Akt 473 

Two Way Analysis of Variance  
 
Data source: raw data TA in p70 pathway  
Balanced Design 
 
Dependent Variable: p akt473  
 
Normality Test: Passed (P = 0.650) 
 
Equal Variance Test: Passed (P = 0.580) 
 
Source of Variation  DF   SS   MS    F    P   
model 1 257.613 257.613 144.348 <0.001  
time 3 136.108 45.369 25.422 <0.001  
model x time 3 162.312 54.104 30.316 <0.001  
Residual 40 71.387 1.785    
Total 47 627.420 13.349    
 
 
Main effects cannot be properly interpreted if significant interaction is determined. This 
is because the size of a factor's effect depends upon the level of the other factor. 
 
The effect of different levels of model depends on what level of time is present.  There is 
a statistically significant interaction between model and time.  (P = <0.001) 
 
Power of performed test with alpha = 0.0500:  for model : 1.000 
Power of performed test with alpha = 0.0500:  for time : 1.000 
Power of performed test with alpha = 0.0500:  for model x time : 1.000 
 
Least square means for model :  
Group Mean  
Obese 10.183  
lean 14.817  
Std Err of LS Mean = 0.273 
 
Least square means for time :  
Group Mean  
control 12.742  
zero hr 14.317  
one hr 9.758  
three hr 13.183  
Std Err of LS Mean = 0.386 
 
Least square means for model x time :  



-82- 

Group Mean  
Obese x control 13.467  
Obese x zero hr 10.950  
Obese x one hr 7.217  
Obese x three hr 9.100  
lean x control 12.017  
lean x zero hr 17.683  
lean x one hr 12.300  
lean x three hr 17.267  
Std Err of LS Mean = 0.545 
 
 
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method): 
 
Comparisons for factor: model 
Comparison Diff of Means p q P P<0.050  
lean vs. Obese 4.633 2 16.991 <0.001 Yes  
 
 
Comparisons for factor: time 
Comparison Diff of Means p q P P<0.050  
zero hr vs. one hr 4.558 4 11.820 <0.001 Yes  
zero hr vs. control 1.575 3 4.084 0.017 Yes  
zero hr vs. three hr 1.133 2 2.939 0.044 Yes  
three hr vs. one hr 3.425 3 8.881 <0.001 Yes  
three hr vs. control 0.442 2 1.145 0.423 No  
control vs. one hr 2.983 2 7.736 <0.001 Yes  
 
 
Comparisons for factor: time within Obese 
Comparison Diff of Means p q P P<0.05  
control vs. one hr 6.250 4 11.460 <0.001 Yes  
control vs. three hr 4.367 3 8.007 <0.001 Yes  
control vs. zero hr 2.517 2 4.614 0.002 Yes  
zero hr vs. one hr 3.733 3 6.845 <0.001 Yes  
zero hr vs. three hr 1.850 2 3.392 0.021 Yes  
three hr vs. one hr 1.883 2 3.453 0.019 Yes  
 
 
Comparisons for factor: time within lean 
Comparison Diff of Means p q P P<0.05  
zero hr vs. control 5.667 4 10.390 <0.001 Yes  
zero hr vs. one hr 5.383 3 9.871 <0.001 Yes  
zero hr vs. three hr 0.417 2 0.764 0.592 No  
three hr vs. control 5.250 3 9.626 <0.001 Yes  
three hr vs. one hr 4.967 2 9.107 <0.001 Yes  
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one hr vs. control 0.283 2 0.520 0.715 No  
 
 
Comparisons for factor: model within control 
Comparison Diff of Means p q P P<0.05  
Obese vs. lean 1.450 2 2.659 0.068 No  
 
 
Comparisons for factor: model within zero hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 6.733 2 12.346 <0.001 Yes  
 
 
Comparisons for factor: model within one hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 5.083 2 9.321 <0.001 Yes  
 
 
Comparisons for factor: model within three hr 
Comparison Diff of Means p q P P<0.05  
lean vs. Obese 8.167 2 14.974 <0.001 Yes  
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Chapter 4 
 

Conclusions 

 

1.   Type 2 diabetes was found to significantly alter expression of p70S6k and Akt in the   

      tibialis anterior muscle. 

2.   Type 2 diabetes was found to significantly alter the basal phosphorylation of p70S6k  

      (Thr 389) in the tibialis anterior muscle. 

3.  Type 2 diabetes was found to significantly alter contraction- induced activation of   

     Akt/mTOR/p70S6k pathway proteins. These diabetes-associated alterations in  

     Akt/mTOR/p70S6k pathway regulation may be due, at least in part, to defects in the 

     ability of diabetic muscle to activate this pathway following a contractile stimulus.  

     The upstream molecules responsible for these alterations remain to be determined.  

 

                                                    Future Directions 

  Future research based on this study should focus on mechanisms associated with 

differences in contraction induced activation of Akt/mTOR/p70S6k pathway in type 2 

diabetic skeletal muscle. In the past several years, considerable progress has been made 

to elucidate intracellular signaling mechanisms in the regulation of protein synthesis and 

skeletal muscle mass in contracting skeletal muscle. It is now apparent that the 

Akt/mTOR/p70S6k pathway plays a critical role in the regulation of protein synthesis.  

Our data suggest that the magnitude and time course of the contraction-induced 

activation of Akt/mTOR/p70S6k pathway proteins are significantly altered with type 2 

diabetes. The molecular mechanism(s) responsible for these differences with diabetes are 
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largely unknown. Additional studies, perhaps employing strategies designed to directly 

inhibit or activate specific signaling proteins of pathway during HFES may prove to be 

useful in addressing these possibilities. Further elucidating the molecular mechanisms for 

differences in the ability of skeletal muscle to activate Akt/mTOR/p70S6k pathway could 

be of clinical importance and may have implications for the improvement of resistance 

based programs for the treatment of diabetes mellitus.  

            Our data suggest that the in situ high-frequency electrical stimulation (HFES) 

induced activation of Akt/mTOR/p70S6k pathway proteins is significantly altered in type 

2 diabetes. Nader et al., (2001) using different modes of exercise like high-frequency 

electrical stimulation, low-frequency electrical stimulation, or running exercise showed 

activation of p70S6k pathway in the tibialis anterior and soleus muscles of rat [32]. 

Experiments comparing normal and diabetic animals with different modes of exercise 

and also using different time points can help provide a  better understanding of how 

diabetes may be associated with differences in how skeletal muscle  “sense” and 

“respond” to different stimuli. 

              The results of present study have shown that contraction-induced regulation of 

p70S6k signaling may be altered in the skeletal muscles of the obese Zucker (fa/fa) rat 

model. Whether similar findings would be observed in other diabetic model or other 

types of diabetes (e.g. type I) remains to be determined. In future experiments, it will be 

challenging and informative to determine how p70S6k signaling is regulated in other 

models.  

             Koopman et al., (2006) reported that resistance exercise is associated with more 

pronounced phosphorylation of p70S6k in type II vs. type I muscle fibers [33]. Similarly, 
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in rats, the phosphorylation of upstream regulators of p70S6k like PKB (or Akt) and 

mTOR was more pronounced in muscle tissue containing a greater proportion of  type II 

muscle fibers [34, 35]. Oberbach et al., (2006) have recently found that the slow oxidative 

fiber fraction was reduced by 16% with diabetes, and the fast glycolytic fiber fraction 

was increased by 49% in vastus lateralis muscles of human subjects with type 2 diabetes 

[100]. This variation in fiber fraction should invariably result in differences in oxidative 

and glycolytic enzyme content and activity.  This could lead to variations in the ratio of 

fat and carbohydrate used in muscle during contraction. Taken together, these studies 

suggest that regulation of p70S6k pathway proteins may differ between fiber types and it 

is possible that fiber type transitions associated with diabetes may be involved. Further 

contractile studies using different muscles (the predominantly slow twitch soleus and the 

predominantly fast twitch EDL) may give better understanding of altered regulation of 

these proteins with diabetes.   
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