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ABSTRACT 
 

 
SURVEY OF THE GREAT KANAWHA RIVER, WEST VIRGINIA, FOR 
VIRULENCE RELATED GENE MARKERS stx1, stx2, AND eaeA  

 
CHRISTINA C. JOHNSON. Department of Biological Sciences, Marshall University, 
One John Marshall Drive, Huntington, West Virginia 25755 

 
Microbial surveying using antibiotic resistant bacteria, fecal coliforms, and virulence 
genes is an approach not previously tested on the Great Kanawha River. Research 
objectives were to test antibiotic resistant and fecal coliform bacteria as bioindicators of 
water quality, and develop a multiplex- polymerase chain reaction (mPCR) system for 
identification of stx1, stx2, and eaeA DNA sequences in isolated fecal coliforms (FC). 
Fecal indicator populations and antibiotic resistant populations were demonstrated to be 
independent.  Bacterial populations were assigned impact score(s) (IS) values for each 
sample site based on data set percent ranks.  Population scores were summed per sample 
site to generate Relative IS, used to visualize water variability. Relative IS95 for both 
seasons were at about zero between river miles (RM) 95-60 (toward origin), reach highest 
levels at RM 55-45 and return to levels similar to those toward the origin for RM 35-00 
(toward mouth).  Trends appear to be occurring in approximately the same locations 
although not with the same level of impact.  Spring versus summer Relative IS95 
comparisons show no significant correlations (P ≥ 0.05).  A total of 13 (12.0%) of 108 
mPCR assayed FC isolates were positive for at least one target gene sequence.  Two of 
the 13 were carriers of multiple target genes. No isolates were carriers of all three target 
genes.  Similar IS seasonal patterns show the use of this impact score index to identify 
areas of poor water quality is independent of sampling season tested as long as samples 
are collected during similar flow regimes.   
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CHAPTER I 
 

LITERATURE REVIEW 
 
 
Introduction 
  

Water quality is a concern both for public and environmental health reasons.  

Human interactions with riverine systems increase the cause for concern of potential 

health related risks (8, 10, 67).  One way to address these risk factors is to use 

bacteriological bioindicators to monitor water quality (10).  Fecal coliform bacteria are 

the most commonly used bioindicators of fecal pollution in water and food (21).  The 

presence of fecal coliforms in water is not necessarily indicative of a disease outbreak.  

Outbreaks of waterborne diseases can occur because water is inadequately treated or 

disinfected, or because it is re-contaminated during distribution (11).  A social stigma 

associated with fecal contamination presumes illness will occur.  Further tests must be 

done on identified coliforms to determine if they are or are not pathogenic strains.  Three 

relatively recent publicized outbreaks of the fecal coliform Escherichia coli serotype 

O157:H7 occurred in Wyoming (1998), New York (1999), and Canada (2000) have 

increased the awareness of water safety issues (37).   

 

Antibiotics 

 An antibiotic is a drug that either inhibits the growth of (bacteriostatic) or kills 

(bactericidal) bacteria by interfering with normal bacterial cell functions.  Antibiotics are 

a class of antimicrobial compounds, synthetic or natural, derived from certain fungi, 

bacteria, and other organisms (33, 59).  With molecular weights of less than 2,000 

Daltons antibiotics are considered small molecules (59).  Research has shown that many 
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compounds including antibiotics can enter the environment, disperse, and persist to a 

greater degree than originally believed.  According to a study conducted by the United 

States Geological Survey (USGS), little is known about the degree of environmental 

occurrence, transport, and eventual fate of many commonly used organic chemicals after 

their intended use (26).   

Antibiotics can be classified based on their target specificity (i.e. narrow spectrum 

or broad spectrum).  The antibacterial spectrum is the range of activity an antimicrobial 

exhibits against susceptible bacteria (33, 59).  Ciprofloxacin, erythromycin, and 

tetracycline are three antibiotics, each from a different class of antibiotics, being tested in 

this survey for antibiotic resistance in surface water.  Each of the three antibiotics being 

examined were identified as emerging environmental contaminants in freshwater systems 

throughout the United States by the USGS in their 1999-2000 Toxic Substances 

Hydrology Program Report (26, 51, 53). 

 Ciprofloxacin is a synthetic antibiotic belonging to the fluoroquinolone class of 

antibiotics (64).  It is a broad spectrum, bactericidal antibiotic active against both Gram-

positive and Gram-negative bacteria (33, 45, 61, 64).  The chemical formula for 

ciprofloxacin is C17H18FN3O3 (Figure 1).  It has a molecular weight of 331.4 Daltons (45, 

61).  Ciprofloxacin is manufactured and sold by Bayer pharmaceutical as Cipro® and 

Ciproxin® (61).  This synthetic chemotherapeutic agent�s mode of action works through 

inhibition of nucleic acid synthesis.  Inhibition of bacterial DNA replication is 

accomplished by binding to DNA gyrase.  The DNA gyrase allows for the untwisting that 

is required for replication of a DNA double helix.  Inhibition of nucleic acid synthesis, in 

turn, leads to the death of susceptible bacterial cells (33, 45, 50, 61).   
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Erythromycin is a member of the Macrolide group of antibiotics (46, 62).  

Macrolides are a group of broad spectrum chemotherapeutic agents characterized by 

having a macrolide ring (63; Figure 2).  The chemical formula for erythromycin is 

C37H67NO13, and its molecular weight is 733.93 Daltons (62).  Erythromycin is produced 

by an actinomycete called Saccaropolyspora erythraea, formerly known as Streptomyces 

erythraeus (33, 62).  Erythromycin works by preventing susceptible bacteria from 

growing through inhibition of protein synthesis.  Protein synthesis inhibition is 

accomplished by reversibly binding to the 50 S ribosomal subunit which blocks 

polypeptide elongation (33, 46, 49, 62).    This action is mainly bacteriostatic but can be 

bactericidal at high concentrations (62).  The use of erythromycin as a chemotherapeutic 

agent began in 1952 under the brand name Ilosone®, after the Philippine region of Iloilo 

where the soil samples it was originally collected from was located.  It was also formally 

called Ilotycin® (62). 

 Tetracycline is in the Tetracycline class of antibiotics.  Tetracyclines are broad 

spectrum, bacteriostatic chemotherapeutic agents that inhibit protein synthesis in 

susceptible bacterial cells by binding reversibly to the 30 S ribosomal subunit (33, 48, 

65).  The reversible binding blocks aminoacyl-transfer RNA (charged tRNA) from 

binding to the 30 S ribosome-messenger RNA (mRNA) complex and, in turn, inhibits 

growth by inhibiting translation (66).  Tetracycline is produced as a secondary metabolic 

product of Streptomyces rimosus (33, 47, 54, 65).  The chemical formula for tetracycline 

is C22H24N2O8 (Figure 3), and it has a molecular weight of 444.44 Daltons.  Tetracycline 

was discovered in the research department of the Pfizer pharmaceutical company by 

Lloyd Conover.  The patent for tetracycline (No. 2,699,054) was first issued in 1955.  It 
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is also sold under the brand names Sumycin®; Tetracyn® ; Tetralysal 300® ; 

Panmycin® ; Brodspec® ; and Tetracap®  (65). 

 

Antibiotic Resistance 

 Antibiotic resistant bacteria are a natural evolutionary phenomenon (58).  Bacteria 

with intrinsic resistance to antibiotics are found in nature (4).  The ability of bacteria to 

develop or acquire resistance is an example of the Darwinian Principal of �survival of the 

fittest.�   Only those bacteria with the ability to adapt are those with the ability to survive 

(31, 58).  The results of the USGS National Reconnaissance study indicated that 

wastewater treatment techniques are not adequately removing antibiotic compounds prior 

to treated water being reintroduced in to natural water reservoirs (26, 51). 

Hirsch et al. (22) and Koplin et al. (26) suggest that the rate at which pathogenic 

bacteria develop resistance to antibiotics is affected by even low-level concentrations of 

antibiotic residues present in the environment.  Thus antibiotic residues could result in 

serious threats to public health as more bacterial infections become resistant to treatments 

using presently known antibiotics (22).  Repeated and continuous use of antibiotics also 

creates selection pressures that favor the growth of antibiotic resistant mutants (15, 54).  

A survey of six freshwater streams in Hong Kong found that multiple antibiotic resistant 

bacterial species are common in environmental organisms even in the absence of specific 

antibiotic pressures (20).  The increased frequency and spectrum of antibiotic resistance 

has also been attributed to social and technical changes that increase the transmission rate 

of resistant organisms.  These changes include an increase in the use and accessibility of 

antimicrobial agents and medically invasive procedures (15).    
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 Antibiotic resistance, to a single antibiotic or to multiple antibiotics, can be 

acquired through mutational changes or by acquisition of resistance encoding genetic 

material which has the ability to be transferred from one bacterium to another (15, 58).  

The acquisition of external genetic material may allow a bacterium to exhibit resistance 

to an entire class of antibiotics (58).  Three lateral gene transfer mechanisms (also known 

as horizontal gene transfer) have been identified: transformation, conjugation, and 

transduction (Figures 4, 5, 6; 43, 67).  All three mechanisms are believed to occur in 

aquatic environments (67).  Lateral gene transfer is an important evolutionary mechanism 

for bacterial species.  It creates diversity within bacterial species.  Mechanisms for 

transferring genetic material from one bacterium to another are integral to aid in the 

understanding of how virulence factors and antibiotic resistance spread through bacterial 

populations (43).    

 Transformation, when compared to conjugation and transduction, rarely occurs in 

nature and the degree to which it contributes to genetic diversity is not known (43, 48).  

Transformation involves the transfer and incorporation of naked DNA (DNA that has 

been released from a cell) into competent bacterial host cells (Figure 4; 15, 43).  The 

competency of a bacterial host cell (i.e. its ability to transport and express foreign DNA) 

is dependant upon stages of the cell�s life cycle.  Competency is usually maximal prior to 

completion of cell wall synthesis but not all bacteria can become competent (43).  

 Conjugation is probably the most common form of bacterial gene transfer 

mechanism.  Gene transfer by conjugation is dependent upon cell to cell contact and a 

specialized appendage, known as the F- pilus (or sex pilus) (Figure 5; 15, 43, 60).  

Plasmids encoding antibiotic-resistance genes are able to pass throughout populations of 
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bacteria, and between multiple species of bacteria using conjugation as their means of 

gene transfer (43).      

 Transduction occurs when the DNA of a host (donor cell) is encapsulated into a 

bacteriophage which acts as a vector and injects the acquired DNA material in to a 

recipient cell (Figure 6; 15, 48).  Both Gram-positive and Gram-negative bacterial species 

are capable of acquiring antibiotic resistance this way (48).  The fact that a limited 

amount of host DNA can be packed into the head of a bacteriophage, and that this 

process is dependent on specific phages, suggests that this type of gene transfer is 

probably a minor source for multiple drug resistance. 

 In a 1976 study (24), done on waterways in Oregon, potentially pathogenic Gram-

negative bacteria and fecal coliforms were isolated to determine if transfer of resistance 

genes could occur in streams, rivers, bays, and other waterways.  Of the 2,763 bacterial 

colonies isolated 2,445 were identified as fecal coliforms, Pseudomonas, Moraxella, 

Actinobacter, or Flavobacterium-Cytophaga.  Based on antibiotic resistance data, fecal 

coliforms were found to survive better in surface water environments than other more 

sensitive organisms.  The study concluded that the survival potential of fecal coliforms in 

the environment is related to their ability to acquire antibiotic resistance (24).   Resistance 

to multiple antibiotics is considered common among fecal coliforms isolated from both 

humans and animals.  The pattern of resistance is related to the gastrointestinal 

microflora�s exposure to antibiotics.  Shared patterns of resistance between humans and 

animals is attributed to the approval for use of most antibiotics by both humans and 

animals (21). 
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Resistance genes and mechanisms existed long before antimicrobials were 

introduced into clinical medicine.  It is thought that bacterial species capable of 

producing antimicrobials (intrinsically resistant organisms) may be one source of 

resistance genes (4, 58).  These bacteria must possess a resistance mechanism to protect 

themselves from their own antibiotic action and may, in turn, pass the resistance on to 

other bacteria (58).  Intrinsically antibiotic resistant organisms may also acquire 

additional resistance genes from bacterial species introduced into soil or water (4).  The 

proportion of some bacterial species present at a site could affect the total amount of 

resistance measured for particular antibiotics or antibiotic classes.  For example, 

Klebsiella strains have an intrinsic ability to be resistant to Ampicillin (34).   

 

Toxins of Enteric Bacteria 

The coliform group (meaning �coli� like or E. coli like) is defined as all aerobic 

and facultative anaerobic, non-spore forming, Gram-negative, rod-shaped bacteria that 

ferment lactose with the production of gas within 48 hours at 35° C (95° F; 10).  

Examples of coliform bacteria include those bacteria in the genera Escherichia (e.g. E. 

coli), Klebsiella (e.g. K. pneumoniae), Enterobacter (e.g. E. cloacai), and Citrobacter (C. 

rodentium; formerly C. freundii).  Fecal coliforms are a subset of the coliform group.  

Fecal coliform bacteria are heat tolerant, Oxidase negative, and associated with feces 

from warm blooded animals (e.g. humans, domestic pets, farm animals, and wildlife).  

Some are considered part of the normal commensal gastrointestinal flora in warm 

blooded animals (e.g. Escherichia coli).  Fecal coliform bacteria, members of the family 

Enterobacteriacae, include Escherichia, Enterobacter, Klebsiella, and Citrobacter 
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species (Appendix E).  Escherichia coli is one species within the fecal coliform subset of 

the coliform group of bacteria (Figure 7).   The presence of E. coli in a water source is 

considered a specific indicator of recent fecal contamination and increases the likelihood 

of enteric pathogens (e.g. Vibrio cholerae, Salmonella typhi, Shigells sp., Salmonella sp., 

or Campylobacter jejuni) being present (3, 10, 52).  There are at least 700 strains of E. 

coli recognized, many of them non-infectious (29).  Approximately ten percent of solid 

human waste is made up of E. coli cells and under ideal laboratory conditions E. coli cells 

can divide every twenty minutes (23).   

 E. coli O157:H7, an enterohemorrhagic Escherichia coli (EHEC), is believed to 

have evolved from an atypical enteropathogenic E. coli (EPEC) ancestor of serotype 

O55:H7 (27, 31, 44).  This EPEC ancestor contained the locus of enterocyte effacement 

(LEE) containing genes for the intimin adhesion protein, but lacked the genes encoding 

shiga-toxins (27, 44).  According to O�Brien (36), epidemiological studies have shown 

that production of high or moderate levels of shiga-like toxins is associated with many 

EPEC and most EHEC strains that cause diseases in humans.   Escherichia coli O157:H7, 

a shiga-toxin producing Escherichia coli (STEC), is related to Shigella dysenteriae 

through a piece of viral DNA that was introduced into each strain�s genetic code.  The 

viral genes code for a toxin that is essentially identical in both strains.  Shigella 

dysenteriae possesses the genes that encode the toxin that causes dysentery, Shiga toxin 

(Sht; 9, 23, 32, 36).  The toxins produced by the STEC bacteria are termed shiga-like 

toxins (SLTs; 32).  Two main categories of SLTs have been distinguished.    Escherichia 

coli shiga-like toxin 1 (Stx1; formerly SLT1 and verotoxin 1, VT1) is almost identical to 

the Sht of Shigella dysenteriae, they can not be distinguished serologically (6, 57).  
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Escherichia coli shiga-like toxin 2 (Stx2; formerly SLT2 and verotoxin 2, VT2) is less 

related to the Sht of Shigella (6, 9).   The term shiga-like toxin is used to describe toxins 

neutralized by anti-Shiga toxins that are produced by Shigella serotypes other than 

Shigella dysenteriae (6, 9).  It is speculated that the E. coli � Shigella gene transfer 

occurred by means of lateral gene transfer within the last few decades (23, 30, 31).  The 

transfer could have occurred during a widespread outbreak of toxin-bearing Shigella in 

Central America during the 1970�s.  Close proximity within the gastrointestinal track and 

the presence of viruses -Stx1 and Stx2 are phage encoded- provided optimal conditions to 

facilitate gene transfer (5, 9, 23).  

Shiga toxin-producing Escherichia coli (STEC; also known as enterohemorrhagic 

Escherichia coli (EHEC) and verocytotoxin producing Escherichia coli (VTEC)) are well 

documented human pathogens with the capacity to cause large outbreaks of 

gastrointestinal illness (27, 28).  Primer sets have been designed and used in previously 

published polymerase chain reaction (PCR) assays to detect stx1 (formerly slt-I) and stx2 

(formerly slt-II) virulence gene markers (Table 1 and 2; 17, 28, 32, 39, 40, 41, 58).  The 

presence of either stx1 or stx2 genes indicates the presence of a STEC species (39).  Sht, 

Stx1, and Sxt2 toxins inhibit protein synthesis in host cells causing cell death (19, 25, 

36).  No single factor is responsible for the virulence of STEC (6).  The most common 

serotype of STEC worldwide is Escherichia coli O157:H7 (25).  Studies have shown that 

the prevalence of STEC stx1 and stx2 genes vary based on the location where assayed 

isolates were collected.  Khan et al. (25) found the dominant combination of virulence 

factors was stx1 and stx2 during a study in Calcutta, India.  In Germany mostly stx1 was 

found and in France only stx2 genes were identified (25).   
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In the United States alone approximately 4,000 confirmed E. coli O157:H7 cases 

are reported each year (29).  Escherichia coli O157:H7 outbreaks associated with both 

drinking and recreational water raise concerns about waterborne illness outbreak.  Studies 

have shown that the O157:H7 strain is considered a hardy pathogen that has the ability to 

survive for extended periods in water, especially cold temperatures (e.g. 8° C; 14).  With 

a low infectious dose of only 10-100 cells and a relatively short incubation period of 1-8 

days, E. coli O157:H7 is a serious health risk (18, 37).   

Of the three aforementioned E. coli O157:H7 outbreaks, the outbreak that 

occurred during May/June 2000 in Walkerton, Ontario, Canada (Figure 8) was the most 

severe (7, 12, 37).  This incident represented the first documented outbreak of E. coli 

O157:H7 infection associated with a municipal water supply in Canada and the largest 

multi-bacterial (Campylobacter spp. also identified) waterborne outbreak in Canada as of 

October, 2000 (7, 55).  One thousand and forty six cases of gastroenteritis were reported 

following exposure to the Walkerton municipal water supply.  Heavy rainfall during mid-

May caused gross contamination of the municipal water distribution system by manure 

run-off (7, 12, 29).  Six people died and 27 people developed hemolytic uremic syndrome 

(HUS) a serious kidney complication of E. coli infections that can lead to kidney failure 

(7). 

 

Intimin 

 Intimin is an outer membrane protein.  It is encoded by the E. coli attaching and 

effacing (eaeA) gene (16, 28, 30, 39, 40, 41, 42, 56).  Intimin proteins are expressed by 

enteric bacterial pathogens capable of inducing intestinal attachment and effacement 
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lesions.  A bacterium attaches itself to a target intestinal cell by embedding its receptor in 

the epithelial membrane of the host cell (1, 44).  The locus of enterocyte effacement 

(LEE) is required to produce attaching-effacing lesions.  Theses lesions are characteristic 

of EPEC induced pathology (44).  The intimin proteins are required for intimate 

adherence to intestinal epithelial cells, characteristic of attaching and effacing 

enteropathogens and for full virulence of EPEC (42).  The genes associated with the 

development of theses lesions are clustered in a pathogenicity island called LEE (16, 28, 

30, 39, 40, 41, 42, 56).  Pathogenicity islands are discrete segments of DNA that encode 

virulence traits and are usually acquired from other organisms (e.g. bacteriophage or via 

conjugation) (31). 

The eaeA primer set used during Paton and Paton�s (39, 41) characterization of 

shiga-toxigenic Escherichia coli (STEC) and Lopez-Saucedo et al. studies were selected 

because it appeared to be conserved among both STEC and EPEC strains examined up 

until that date (28, 39, 40, 41, 68).   Confirmed STEC strains can be negative for the eaeA 

gene and positive for either one or both stx1 and stx2 genes.  This indicates that the STEC 

identified lacked the LEE pathogenicity island (39). 

The polymerase chain reaction (PCR) is commonly used for the detection of 

genes associated with virulence factors.  PCR techniques produce rapid, sensitive, and 

specific results.  Gel electrophoresis is usually used in conjunction with PCR to aid in the 

detection of the amplified DNA products (35).  This method allows detection of gene 

sequences in both cultivable and non-cultivable bacterial cells (18).  Wang et al. (57) and 

Osek (38) suggests that the scientific community needs to develop more rapid, sensitive, 

simple, and reproducible procedures for the detection of STEC pathogenic strains and for 
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characterization of their toxins in not only human specimens but also in water and food 

sources (38, 57). 

Research Objectives 

 During spring and summer 2004, twenty mainstem and five tributary water 

samples were collected along the Great Kanawha River, West Virginia.  The objectives 

of this research were to detect stx1, stx2, and eaeA virulence related gene markers, 

determine if fecal coliform bacteria were present in collected water samples, and to test 

antibiotic resistant and fecal coliform bacteria as bioindicators of water quality.    
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CHAPTER II 
 

METHODS 
 

Site Descriptions 

 During April and July 2004, twenty mainstem and five tributary water samples 

were collected along the Great Kanawha River, West Virginia.  Mainstem samples were 

collected every five river miles starting at river mile 95 (origin) in Fayette County and 

ending at river mile 00 (mouth) in Mason County at the confluence of the Kanawha and 

Ohio Rivers (Appendix C).  Detailed mainstem and tributary sample site coordinates and 

descriptions are listed in Appendices A and B, respectively (see also Figure 9).  

 

Sample Collections 

Samples were collected using sterilized glass jars with twist on leak proof lids.  

Collection jars were labeled with the river mile or tributary being collected (e.g. River 

mile 00 � 95, Gau, New, Coal, Elk, or Poca), and the time of collection was documented.  

Samples were collected mid channel in an attempt to ensure homogeneous and 

representative water samples.  Collection jars were placed in the water pointing 

downwards until fully submerged to avoid collecting the surface film.  The jars were then 

inverted to allow the water to fill the jar.  A small amount of water was poured off to 

allow air to be present in the jar.  Collection jars were sealed, placed in a cooler and 

stored on ice.  Each sample was processed within 6 hours of collection.  

Water samples from five main tributaries of the Kanawha were also analyzed.  

Collections were made following the same procedures as mainstem sample collections.  

The five tributary sites included the Gauley, New, Elk, Coal, and Pocatalico Rivers.  To 
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ensure homogeneous water samples were collected each subsurface tributary sample was 

collected above the debris line before the mixing zone near the point of discharge.   

 

Sample Processing 

 Total Cultivable Bacteria:    Total cultivable bacteria were enumerated by first 

taking a water collection jar containing a sample from the cooler and shaking several 

times to ensure a homogeneous mixture of the sediments within the jar and removing the 

lid.  From the undiluted samples, 100 µl (0.1 ml) was aseptically transferred to a sterile 

9.9 ml dilution blank in a sterile screw-cap test tube.  Caps were replaced following the 

transfer and the tubes were vortexed on high speed for at least five seconds.  From the 

diluted samples 100 µl aliquots were aseptically transferred in triplicate to sterile petri 

dishes (150×15 mm, Becton-Dickinson) containing Difco R2A agar (Becton, Dickinson 

and Company, Sparks, Maryland) plus fungizone (375 ng/ml; Cambrex Bio Science 

Walkersville Inc., Walkersville, Maryland).  Diluted samples were spread over the 

surface of the agar using five sterile solid glass beads (5 mm).  Petri dishes were shaken 

in a front to back and side to side motion five to six times and rotated a quarter of a turn.  

This motion was repeated until the sample was evenly distributed over the surface of the 

agar and the agar surface was dry.  Each plate was inverted to allow the beads to be 

discarded without completely removing the lid.  Beads were colleted in a beaker 

containing 70% ethanol.  To identify plates, each set was marked with river mile or 

tributary abbreviation (e.g. Poca, New, Elk, Gau, or Coal), date of inoculation, and 

inoculation condition (e.g. I: total cultivable).  Finally, the plates were wrapped in 

parafilm, inverted, and incubated for seven days at 25° C.  Following incubation, each 
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plate was examined for colony forming units (CFU) and the number of CFU per plate 

was recorded.  MicroSoft Excel was used to determine the CFU per ml of total cultivable 

bacteria in the original sample.  The average CFU value from triplicate counts was 

multiplied by a dilution factor of 1,000 (10-2 for the initial dilution and a 100 µl plating 

volume) to determine the CFU per ml of total cultivable bacteria in the original sample.     

  Antibiotic Resistant Bacteria:    Antibiotic resistance was analyzed by 

enumeration on R2A agar plus fungizone and ciprofloxacin (4 mg/L), erythromycin (8 

mg/L) or tetracycline (12.5 mg/L) (Appendix D).   Water samples were shaken to ensure 

a homogeneous mixture of the sediments within the jar.  From the undiluted sample 100 

µl was aseptically transferred in triplicate to sterile petri dishes (150×15 mm, Becton-

Dickinson) containing Difco R2A agar plus fungizone (375 ng/ml), plus the appropriate 

concentration of a single antibiotic (Table 4).  The samples were spread on the agar as 

previously described.  To identify plates, each set was marked with river mile or tributary 

abbreviation, date of inoculation, and inoculation condition (i.e. II: ciprofloxacin, III: 

erythromycin, or IIII: tetracycline).  Finally they were wrapped in parafilm, inverted, and 

incubated for seven days at 25° C.  Following incubation, each plate was examined for 

colony forming units (CFU) and the number of CFU per plate was recorded.  MicroSoft 

Excel was used to calculate the mean and standard deviations for each set of inoculated 

plates.  Average CFU values were multiplied by a dilution factor of 10 (plating volume of 

100 µl) to determine the number of resistant CFU per ml of total cultivable bacteria in the 

original sample. 

Fecal Indicators:     Fecal coliform bacteria were enumerated using membrane 

filtration and cultivation on m-FC medium.  Collection jars were shaken to ensure 
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homogeneous distribution of sediments with in the jar.  One, five and ten milliliter sub-

samples were filtered to yield a range of 10 to 60 colonies per membrane.  Samples were 

transferred to separate sterile, analytical test filter funnels (Nalge Nunc International, 0.45 

MIC, 100 ml) containing 100 ml of sterile tap water.  Samples were filtered, and filter 

membranes were transferred using forceps stored in ethanol.  Filter membranes were 

placed in sterile petri dishes (Millipore, 47 mm) with pads impregnated with 2 ml sterile 

m-FC media with Rosolic acid (Fisher-Scientific cat no. M00000P2F), and incubated 

upright at 44.5 ± 0.2°C for 24 hours.  

Blue colonies were considered typical fecal coliforms (Figure 10).  Grey to cream 

colored colonies were considered non-fecal coliforms and were not counted.  Fecal 

coliform densities were calculated for each sample by multiplying the number of colony 

forming units (CFU), cultivated on a membrane filter within the desired countable range 

of 10 to 60 CFU, by 100 ml and dividing the product by the sample volume (i.e. 1, 5, or 

10 ml).  Densities were recorded as fecal coliforms per 100 ml.      

 
Impact Score Determination:    Data from the enumeration of total cultivable, 

antibiotic resistant, and fecal indicator bacteria were entered in an Excel (MicroSoft 

2002) spreadsheet and used to establish an impact score (IS) for each site.  For each 

population (erythromycin resistant, ciprofloxacin resistant, tetracycline resistant, and 

fecal coliform bacteria), the average counts for each site were ranked for each population 

data set using the percentile rank function.  The percentile rank output was multiplied by 

100 to give a percentile score for each data point with in the total population data set.  

Boundaries were chosen as a means of determining population impact scores for each 

site.  For example, a boundary of IS90 (Impact Score at the 90th percentile boundary) 
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weights sites with population counts above the 90th percentile and below the 10th 

percentile.  Next, numerical values of 1, 0 or -1 were given to each site population count 

based on the site percentile value.  A population score of 1 was assigned to all data points 

falling above the upper (i.e. 90th) percentile boundary.   Population scores of 0 were 

assigned to all data points falling between the upper and lower (i.e. between 90th and 10th) 

percentile boundaries.   Population scores of -1 were assigned to all data points falling 

below the lower (i.e. 10th) percentile boundary.  This method of value assignment was 

repeated for all populations enumerated (erythromycin, ciprofloxacin, and tetracycline 

resistant, and fecal coliform bacteria).  Total impact scores were determined by adding all 

the population scores for an individual sample site.  For this study impact scores ranged 

from -4 to +4 (3 antibiotics and 1 fecal indicator measured).  Higher impact scores (i.e. 

+4) indicate a sample site as more impacted.  Lower impact scores (i.e. -4) indicate a 

sample site as a less impacted area.  To visualize water quality variability the total 

relative impact score for each site was plotted versus river mile.  Relative impact scores 

were plotted for spring and summer sampling seasons in order to compare the two 

seasons.  

 Sample processing methods followed the Standard Operating Procedure (SOP) 

outlined in the Marshall University, Environmental Microbiology Research Laboratory 

and prepared by Dr. Charles Somerville.  A complete SOP has been included in 

Appendix F.   
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Primer Design 

 Oligonucleotide primer sets were designed for detection of shiga-like toxin 1 

(stx1), shiga-like toxin 2 (stx2), and intimin (eaeA) virulence related DNA sequences 

based on previously published research (Table 1).  Primers were synthesized by Marshall 

University DNA Core Facility in Huntington, West Virginia.  Oligonucleotide analysis 

was calculated by the Core Facility using Oligo 4.0 Primer Analysis Software (NBI).  

Characteristics of the oligonucleotide primers used for the detection of potentially 

toxigenic Escherichia coli collected from water samples are presented in Table 2. 

 

Colony Cultivation 

 A total of 108 fecal coliform colonies were randomly chosen and sub-cultured for 

analysis from m-FC plates inoculated with water from the summer sample collection.  

Typical blue colonies were transferred to Luria-Bertani (LB) agar (Appendix G) using 

sterile wooden applicators.  Bacterial samples were assigned identification numbers 

based on the notebook page on which the original transferred colony was documented, 

the location of the sample collection site (e.g. K95), and the sequential order in which 

each isolate was transferred (e.g. 1, 2, 3, etc.). Transferred colonies were incubated 24 to 

48 hours at 35°C on LB agar plates before being processed for nucleic acid preparation.   

 

Nucleic Acid Preparation from Pure Cultures 

 Sterile wooden applicators were used to collect cultivated fecal coliform colonies 

from the LB agar.  Colonies were transferred from the applicator to sterile 2 ml 

Eppendorf tubes containing 50 µl of sterile distilled water (E-pure; 
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Barnstead/Thermolyne, model D4631: 15 -16 megohms) by stirring the applicator in the 

tube for 5 � 10 seconds.  The tubes were incubated in a 0.6 amp (75 watt) Thermolyne 

heating block (Barnstead, model DB17615) for 5 � 7 minutes at 95- 100°F to lyse the 

cells and free the nucleic acids.  Following incubation the tubes were placed in a 

centrifuge (Eppendorf, model 5415 D) at 13,000 × g for 3 minutes at room temperature.  

Supernatant fluid was transferred from the centrifuged tube using sterile pipet tips and 

collected in sterile 2 ml Eppendorf tubes.  Tubes were labeled using the same format 

established for the colony cultivation.  This procedure was repeated for all sample 

colonies and for positive and negative controls.  Prepared supernatants were frozen until 

PCR analyses began.  

 

PCR Detection of Virulence Genes 
  
 Supernatant fluids from nucleic acid preparations were used in multiplex 

polymerase chain reaction (mPCR) assays for the detection of stx1, stx 2, and eaeA 

virulence genes.  Amplification of bacterial DNA was performed using 30 µl volumes 

each containing 2 µl of sample supernatant; 1.25 µl each of forward and reverse 100 µM 

oligonucleotide (primer) stock solutions (stx1, stx 2, and eaeA); and 20.5 µl Taq Supermix, 

ready to use mixture of DNA Polymerase, salts, magnesium, and dNTPs (GenScript 

Corporation, Cat.No. E00033, www.genscript.com). The sequences and predicted sizes of 

amplified products for specific oligonucleotide primers are shown in Table 1.  

Oligonucleotide primers were designed according to published literature (Table 1).   

   PCR amplifications were performed in a Bio-Rad Gene Cycler� Version 1.7 

(Model No. Gene Cycler).  Samples were subjected to the following cycling conditions: 
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95°C (5 min, 1 cycle); 95°C for 30 seconds, 55°C for 60 seconds, and 72°C for 90 

seconds (repeated 30 cycles); and a final cycle of  95°C for 30 seconds, 55°C for 60 

seconds, and 72°C for 5 minutes.  Products were visualized by ultraviolet 

transillumination following electrophoresis and ethidium bromide staining.  

Escherichia coli , designated EDL933, serotype O157:H7, (ATCC No. 35150, 

Culti-Loops®, Lot No. 607572, Remel Europe, Ltd.) was used as the positive control 

(stx1, stx 2, and eaeA) for all assays, and  Escherichia coli (ATCC No. 25922, Bactrol 

Disks, Lot No. 145103, Difco Laboratories) was the negative control used for all assays 

(2, 13).  Positive and negative control strains were processed using the same protocol 

designated for sample preparations.   

  

Gel Electrophoresis 

 Amplified products were resolved by gel electrophoresis using 10 µl of the final 

reaction mixture and 2 µl Loading dye (Blue/Orange 6x, Promega, Madison, Wisconsin) 

on a 2% agarose gel in 1x TAE buffer.  Gels were stained in 0.1 µl/ml of 1% ethidium 

bromide (Fisher Biotech, Fair Lawn, New Jersey).  PCR reaction mixtures were 

electrophoresed at 116 - 121 volts for 35-45 minutes or until dye front reached the end of 

the gel.  The Alpha Innotech FluorChem� 9900 (San Leandro, California), ultraviolet 

florescence, and ethidium bromide were used to visualize amplified DNA fragments.   

Figure 25 shows a representative gel for both positive and negative controls used for all 

assays. 
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CHAPTER III 
 

RESULTS 
 
 

Seasonal Bacterial Growth 
 
 Average bacterial counts and standard deviations for total cultivable, 

ciprofloxacin-resistant, erythromycin-resistant, and tetracycline-resistant bacterial data 

were calculated using MicroSoft Excel for each sample site during both spring and 

summer sampling seasons (Tables 3 and 4).  

 Total cultivable bacterial counts for spring (Figure 11a) and summer (Figure 12a) 

are shown in figures 11 and 12.  A Log scale comparison showed average total cultivable 

counts were 1-3 orders of magnitude greater than the average ciprofloxacin-resistant, 

erythromycin-resistant or tetracycline-resistant counts in any given sample along the 

mainstem during the spring sampling season (Figure 11b), and 1-2 orders of magnitude 

greater for the summer season (Figure 12b) . 

 Comparison of spring and summer mainstem and tributary ciprofloxacin-resistant 

cells show average ciprofloxacin resistant cell counts were, in general, greater during the 

summer sampling season than during the spring season (Figures 13 and 14).  Average 

mainstem and tributary erythromycin-resistant and tetracycline-resistant cellular counts 

were also shown generally to be higher for summer samples than for spring samples 

(Figures 15 -18).  During, the summer season consistently high counts of resistant 

bacteria occurred between river miles 40-55 and at the Pocatalico River tributary site 

(Figures 13-18). 

 Seasonal comparisons of main stem fecal coliform counts show average counts 

between river miles 95-55 (the upper river) to be lower during the spring than summer 
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averages (Figures 19a and 19b).  Between river miles 50-00 (the lower river) the opposite 

was found, average fecal coliform counts were greater during spring sampling than 

during summer sampling (Figure 19a and 19b).  A seasonal comparison using average 

tributary fecal coliform counts showed that summer counts were generally higher than 

those for spring (Figure 20). 

 Mean ciprofloxacin-resistant (566 CFU/ml), erythromycin-resistant (935 

CFU/ml), and tetracycline-resistant (160 CFU/ml) counts, were two orders of magnitude 

higher than mean fecal coliform counts (2 CFU/ml) for spring samples (Figure 21a). 

Mean ciprofloxacin-resistant (1803 CFU/ml), erythromycin-resistant (2766 CFU/ml), and 

tetracycline-resistant (1436 CFU/ml) bacterial counts, were three orders of magnitude 

higher than mean fecal coliform counts (5 CFU/ml) for summer samples (Figure 21b). 

 

Microbiological and Physical Parameter Associations 
 
 Water temperature (°C), turbidity (NTU), and pH were measured and included as 

physical parameter data during spring and summer sampling seasons along the mainstem 

(K95-K00) of the river (Appendix K).  Linear regressions were used to measure the 

strength of association between any two environmental variables.  The variables included 

were water temperature, turbidity, pH, total cultivable bacteria (Totals), ciprofloxacin-

resistant bacteria (Cipro), erythromycin-resistant bacteria (Erythro), tetracycline-resistant 

bacteria (Tet), and fecal coliform bacteria (FC) for both sampling seasons.  

 Linear dependencies were found in spring microbiological data.  The variables 

that were statistically significantly correlated at P≤ 0.05 (95% confidence interval; Table 

5), were Cipro vs. Tet (P = 0.020; R = 0.517).  Statistically significant linear correlations 
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were identified between Totals vs. Turbidity (P = 0.000; R = -0.927), Totals vs. pH (P = 

0.000; R = 0.734), and Totals vs. water temperature (P = 0.000; R = -0.772).  Statistically 

significant linear correlations were also identified for turbidity vs Tet (P = 0.012; R = 

0.552), and water temperature vs. Erythro (P = 0.040; R = -0.464) for spring data (Table 

5).   

Summer microbiological data identified one statistically significant linear 

correlation, variables were significantly statistically correlated at P≤ 0.05 (95% 

confidence interval; Table 6), between Tet vs. Erythro (P = 0.000; R = 0.944).  No 

statistically significant linear correlations were identified between any physical 

parameters and any microbiological counts (Table 6). 

 The correlation coefficient test identified no significant linear correlations 

(P≥0.05; Table 7), between microbiological variables for spring vs. microbiological 

variables for summer, Totals vs. Totals (P = 0.120; R = -0.359), Cipro vs. Cipro (P = 

0.459; R = 0.176), Erythro vs. Erythro (P = 0.438; R = 0.195), Tet vs. Tet (P = 0.807; R 

= -0.058), and FC vs. FC (P = 0.107; R = 0.107).   

 

Impact Scores 
 
 Impact Scores (IS) for spring and summer data were determined for each sample 

site using the 95th (IS95) boundary level (Table 9).  The 95th percentile boundary gives the 

clearest visualization of signal-to-noise ratio for these data (Figure 22-24; Appendix T, U, 

and V show spring and summer IS90, IS85, and IS80).  IS95 scores were plotted versus 

sample site river mile to visualize water quality variability (Figures 22 and 23; [Appendix 

W, X, and Y (IS90); Appendix Z, AA, and AB (IS85); Appendix AC, AD, and AE (IS90).       
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 IS95 scores for the spring collection were at or below zero near the origin (river 

miles 95-55), reached their highest levels between river miles 50-45 and 25-20, and show 

a trend returning levels to those similar to the upper part of the river for miles 40-30 and 

15-00, toward the mouth (Figure 22; Table 8).  Relative IS95 for summer collections show 

a general trend at or about zero toward the origin for river miles 90-60 reach highest point 

at river mile 55 and begins a gradual decline between river miles 45-00 toward the mouth 

(Figure 23; Table 8). 

 A comparison of spring and summer relative IS95 shows river trends are relatively 

similar for both sampling seasons.  Trends appear to be occurring in approximately the 

same locations although not with the same level of impact.  For spring (river miles 95-50) 

and summer (river miles 90-60) trends are at or about zero, reach highest levels between 

river miles 55-45 (industrialized area) and then return to about or below zero for river 

miles 35-00 (Figure 24; Table 8). 

 

Gene Detection Assays 
 
 Gene detection assays were performed on 108 typical fecal coliform colonies 

(Figure 7) sub-cultured from m-FC impregnated filter pads using summer water samples.  

Assays were validated by testing positive control (Escherichia coli , designated EDL933, 

serotype O157:H7; ATCC No. 35150, Culti-Loops®, Lot No. 607572, Remel Europe, 

Ltd.) and negative control (Escherichia coli; ATCC No. 25922 Bactrol Disks, Lot No. 

145103, Difco Laboratories) strains.  Positive and negative controls were selected on the 

basis of the presence or absence of specified verocytotoxin genes as described in previous 

literature and visualized using gel electrophoresis (Figure 25). 
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 The result of the present study indicated that of 108 typical fecal coliform isolates 

assayed, 13 (12.0%) were positive for at least one of the three gene markers (Tables 9 and 

10).  A total of 2 (1.85%) isolates were identified as carries of the stx1, one isolate each 

from sites K-65 and the Elk River tributary (Figure 26).  Nine (8.33%) isolates were 

identified as carriers of the stx2 gene, 2 isolates each from sample sites K-75, K-70, and 

the Elk River tributary, and one isolate each from sample sites K-65, K-55, and K-00 

(Figure 26; Tables 9 and 10).  A total of 4 (3.70%) isolates were identified as carriers of 

the eaeA gene, one isolate each from sites K-55 and K-05, and two from site K-00 

(Tables 9 and 10).   

 Two (1.85%) of the isolates assayed, one each from sites K-65 and K-55, were 

identified by mPCR as carriers of multiple target genes.  Of 6 isolates assayed from site 

K-65, 1 was identified as a carrier of both stx1 and stx2 gene markers (Figure 26; Tables 9 

and 10).  Site K-55 showed 1 isolate out of a total of 10 assayed as positive for both stx1 

and eaeA (Table 9).  Multiplex PCR showed no isolates assayed were carriers of all three; 

stx1, stx2, and eaeA genes, nor were any of the characterized strains carriers of both stx2 

and eaeA genes (Tables 9 and 10). 
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CHAPTER IV 
 

DISCUSSION 
 
 
The Kanawha River  
 
 The Great Kanawha River is the largest water way wholly contained in West 

Virginia. It flows in an approximate southeast to northwest direction.  The river begins at 

the confluence of the New and Gauley Rivers in Fayette County (River mile 99.5) and 

ends 99.5 river miles west as it enters the Ohio River at Point Pleasant in Mason County 

(River mile 0), West Virginia.  Microbial surveying based on antibiotic resistant bacteria, 

fecal coliform bacteria, and virulence related genes is an approach not previously tested 

on the Great Kanawha River.  

 

Microbiological and Physical Parameter Data 

 Antibiotic resistance and fecal coliform data for spring and summer sampling 

seasons were used to develop an Impact Score assessment.  No significant linear 

correlations were found between spring and summer microbiological variables.  These 

finding were expected due to the river being a lotic system and in constant motion.  

Different microbiological peaks would be expected to be found at different locations 

along the river during different seasons.  These data do allow us to identify individual 

areas of concern (hot spots). 

     Physical parameter data were used to identify linear correlations associated with 

microbiological data.  Statistically significant linear dependencies were identified 

between total cultivable bacteria and three physical data parameters (pH, turbidity, and 

water temperature) for spring data.  These results suggest that pH, turbidity and water 
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temperature play a role in the distribution of bacterial populations in this river system.  

These findings were not substantiated during summer sampling.  Additional sampling 

seasons would have to be tested to definitively substantiate the spring findings.        

 

Seasonal Data 

 Spring samples were collected, along the Great Kanawha River�s mainstem and 

five major tributaries, over a two day period from April 5 to April 6, 2004.  During both 

days, the river�s flow regime was consistent.  No rain events occurred during or just prior 

to the collection of samples.  Summer samples were originally collected over a two day 

period between July 12 and 13, 2004.  Due to an incubation error fecal coliform counts 

from samples collected on July 12 at river locations; K95 �K55 and the Gauley, New and 

Elk River Tributaries were excluded from further analysis.  Antibiotic resistance data 

acquired during the July 12 and 13 sampling set was used to determine antibiotic 

resistance patterns along the river during similar flow regimes.   

 On August 5, 2004 additional summer samples were collected for K90-K55 and 

Elk River Tributary sample sites.  Samples were unable to be collected for mainstem site 

K95 and for the Gauley and New River Tributaries due to a heavy rain event that 

occurred during collection.  Summer IS analyses could not be performed on these three 

sites.  Antibiotic resistance and fecal coliform data, using water samples collected on July 

13 and August 5, were used for summer IS data analyses; sample sites K90-K00 and the 

Elk, Coal, and Pocatalico River Tributaries.   
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Fecal Coliforms 

 One method of addressing water quality is to monitor bacterial populations found 

in water as bioindicators of water quality (10).  Fecal coliform bacteria are the most 

commonly used bioindicators of fecal pollution in water and food (21).  Membrane 

filtration (MF) is a highly reproducible technique.  MF can be used to test relatively large 

volumes of sample and produces rapid numerical results.  For this study MF, in 

conjunction with m-FC media plus Rosolic acid impregnated filter pads, was used to 

determine if fecal coliform bacteria were present.  And if so, were the significantly 

different in spring and summer sampling seasons. 

   Fecal coliform bacteria were enumerated along the mainstem and at tributary 

sample locations for both spring and summer sampling seasons.  Spring samples showed 

no noticeable mainstem spikes in fecal coliform counts.  The relative consistency in 

counts could have been influenced by similar river flow regime patterns present during 

the two day sample collections. The spring season is normally associated with increased 

rain events and run-off introduced in to the river system.  This normal weather 

occurrence possibly accounts for the higher fecal coliform counts found between sample 

sites K50 and K00 during the spring season as opposed to summer.  The counts found 

between these sites from the July 13, summer collection were visibly lower than those 

collected on April 6 during the spring collection.    

 Fecal coliform counts were visibly higher between sites K90-K55 than between 

K50-K00 for the summer sampling season.  This occurrence is possibly due to the heavy 

rain event occurring during sample collection.  Noticeable spikes were visible at sites 

K75 and K55 for summer mainstem fecal coliform data.  Site K75 is located near the 
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unincorporated town of Shrewsbury in Kanawha County.  The sample for K75 was 

collected within fifty yards of a small river island (Goat Island) inhabited by a small herd 

of goats.  Goat Island is also frequented by campers using out-house type restroom 

facilities.  Site K55 is located behind the Union Carbide Plant in the town of South 

Charleston in Kanawha County.  These spikes could have been exacerbated by the rain 

event which occurred during sample collections at sites K90-K55 on August 5, 2004.      

 A comparison of mean ciprofloxacin resistant, erythromycin resistant, tetracycline 

resistant, and fecal coliform bacterial counts, suggests the fecal coliform bacteria appear 

to be of different populations of bacteria.  Resistant bacterial organisms were found in 

greater numbers than fecal coliform organisms.  This finding is an indication that the 

isolated resistant organisms are of different bacterial populations than the fecal coliform 

bacteria present.  This data was consistent for both spring and summer sampling seasons.  

These findings allow us to use the fecal coliform bacteria isolated from processed water 

samples as a variable to assess water quality in the Impact Score (IS) index tested during 

this study.     

 

Impact Scores 

 The Impact Score (IS) tested here was originally developed for use on the Ohio 

River system, by Dr. Charles Somerville of the Marshall University Environmental 

Research Laboratory in Huntington, West Virginia.  The IS index was not developed as a 

means of comparing river system�s water quality against one another.  It was designed to 

be used as a means of identifying �hot spots� or areas with water quality concerns within 

a single river system.   
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 The impact assessment range of -4 to +4 is based on the four microbiological 

variables being tested.  Fecal coliform bacteria were chosen as a water quality variable 

for this IS index because they are the most commonly used bioindicators of fecal 

pollution in water and food (21).  The presence of fecal coliforms (e.g. E. coli) in a water 

source is an indicator of recent fecal contamination (3, 10, 52).  Fecal contamination can 

be considered a major concern when assessing the health of a river system.    

Ciprofloxacin, erythromycin, and tetracycline are three antibiotics, each from a different 

class of antibiotics, being tested as bioindicator variables in this research.  Each of the 

three antibiotics examined was identified as an emerging environmental contaminant in 

freshwater systems in the United States by the USGS in their 1999-2000 Toxic 

Substances Hydrology Program Report (26, 51, 53).  The antibiotics tested were added to 

the R2A agar medium at minimum inhibitory concentrations (MIC) for Gram-negative 

bacterial isolates.   

 The 95th percentile boundary level was used to visualize water quality variability 

along the river system for both sampling seasons.  This boundary level gave the clearest 

visualization based on the signal-to-noise ratio for areas considered most impacted.  

Similar IS seasonal patterns show the use of this IS index to identify areas of poor water 

quality is independent of sampling season tested.  One limitation of the index was 

identified using data collected during the second summer sampling (August 5, 2004).  

Due to a heavy rain event encountered during sample collections, data produced inflated 

bacterial counts as a result of increased run off (Appendix H, I and J).  This finding 

suggests that similar flow regimes are required for definitive IS comparisons.  A second 

limitation is based on the predetermined microbiological variables tested.  In order for a 
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river system to be compared against itself on a seasonal basis, the variables tested must 

be constant.  Changing variables could affect the identification of areas of concern along 

the system.  

  A potential environmental risk cannot be definitively assessed for the Great 

Kanawha River because a causal connection between antibiotic resistant bacteria and the 

presence of antibiotics is the water system has not been established.  Future research 

should attempt to determine the composition of resistant bacteria in order to determine if 

the bacterial populations present are intrinsically resistant to the antibiotics being tested 

or if there resistance is environmentally induced.  

 

Gene Detection 

 Two major categories of Escherichia coli shiga-like toxins are Stx1 and Stx2.  

Stx1 is a relatively homogenous family of toxins that are almost identical to the Shiga-

toxins of Shigella dysenteriae.  Stx2 toxins are a more heterogenous group that are 

serologically distinct from Stx1 (57).  Certain strains of STEC isolates appear to have a 

greater degree of virulence associated with humans.  Previous studies have shown 

epidemiologically that Stx2 is more critical than Stx1 for developing virulence factors 

associated with disease development (57). The gene for Stx2 was found more often than 

the other two genes in this study.  PCR primer pairs were synthesized with reference to 

published sequence data for stx1, stx2, and eaeA gene markers.  Details of the nucleotide 

sequence, the target gene, and the size of the PCR product for each primer pair are listed 

in Table 3. 
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 The mPCR based diagnostic described in this study is for the detection of stx1 

(shiga-like toxin 1), stx2 (shiga-like toxin 2), and eaeA (Intimin) virulence genes.  The 

mPCR assay described is a direct and effective method for the simultaneous detection of 

three DNA sequences found in strains of STEC serogroup O157, known to be associated 

with causing human disease.  Due to time and funding constraints, mPCR assays were 

only performed using water samples collected during the summer sampling season.    

 For each of the 108 mPCR assays, the expected results were obtained for the 

positive and negative control strains.  The result of the present study indicated that of 108 

typical fecal coliform isolates assayed, 13 (12.0%) were positive for at least one of the 

three gene markers.  Two (1.85%) were positive for at least two gene markers, and none 

were positive for all three.  These results were expected due to little agricultural activity 

being located within close proximity to the river along the entire span of the river system.  

Higher gene detection rates would have been expected along a river system with 

increased ruminant activity or areas with little or no sanitation or water treatment 

facilities present.  Identification of virulence genes using this method is important for 

assessing potential sources of human shiga-like toxin producing Escherichia coli 

infections 

 There is a necessity for reliable methods of detection and isolation of virulent 

bacterial strains considered potentially pathogenic for humans. A need also exists for the 

identification of potential reservoirs of these bacteria, such as food, feces, and water 

sources.  Ruminants are known to harbor shiga-like toxin producing Escherichia coli 

isolates, but not enough research has been performed to allow an understanding of the 

virulence potentials of these isolates.  Escherichia coli are normally commensal 
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organisms associated with the gastrointestinal tract flora of warm blooded animals.  

These organisms have the potential of becoming pathogenic and causing opportunistic 

infections when they acquire virulence genes located on plasmids, bacteriophages or 

pathogenicity islands (e.g. stx1, stx2 or eaeA) (33). 
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CHAPTER V 
 

CONCLUSION 
 
  

 The objectives of this research were, first to determine if fecal coliform bacteria 

were present in collected water samples.  The second objective was to test antibiotic 

resistant and fecal coliform bacteria as bioindicators of water quality.  The final objective 

was to use a multiplex- polymerase chain reaction (mPCR) method to detect stx1, stx2, 

and eaeA virulence genes in fecal coliform bacteria isolated from summer water samples.    

 Fecal coliform bacteria were identified as present in water samples collected 

along the mainstem and at tributary sample locations for both spring and summer sample 

seasons.  Fecal indicator populations and antibiotic resistant populations were 

demonstrated to be independent populations.  This finding allowed the fecal indicator 

population to be included as part of the Impact Score (IS) index being tested here.   

 The second objective was accomplished by testing the IS index as a measure of 

water quality variability.  The index tested was found to be a useful tool for identifying 

areas of concern along the Great Kanawha River system in West Virginia.  Similar IS 

seasonal patterns show the use of the impact score to identify areas of poor water quality 

is independent of sampling season tested.  Two index limitations were identified.  First, 

similar flow regimes are required for IS comparison.  And second, test variables must 

remain constant for seasonal comparisons (e.g. antibiotics, antibiotic concentrations, 

fungicide, fungicide concentration, inoculation volumes, media etc.).   

 A potential environmental risk cannot be definitively assessed for the Great 

Kanawha River yet as the causal connection between antibiotic resistant bacteria and the 
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presence of antibiotics is the water system has not been established.  Future research 

should attempt to determine the composition of resistant bacteria in order to determine if 

the bacterial populations present are intrinsically resistant to the antibiotics being tested 

or if there resistance is environmentally induced.  

 There is a necessity for reliable methods of detection and isolation of virulent 

bacterial strains considered potentially pathogenic for humans. A need also exists for the 

identification of potential reservoirs of these bacteria, such as food, feces, and water 

sources. The final research objective was accomplished by performing a mPCR based 

diagnostic on 108 fecal coliform isolates collected using summer water samples.  The 

mPCR assay described is a direct and effective method for the simultaneous detection of 

three DNA sequences found in strains of STEC serogroup O157, known to be associated 

with causing human disease.  Identification of virulence genes using this method is 

important for assessing potential sources of human shiga-like toxin producing 

Escherichia coli infections 

 

 

 
   

 

 

. 
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Figure 1. Chemical structure of ciprofloxacin 

 
1, 4-dihydro-1-cyclopropyl-6-fluoro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid 
Image from http://en.wikipedia.org/wiki/Image:Ciprofloxacin.png 
 
 
Figure 2.  Chemical structure of erythromycin 

 
 
 (3R*, 4S*, 5S*, 6R*, 7R*, 9R*, 11R*, 12R*, 13S*, 14R*)-4-((2,6-Dideoxy-3-C-methyl-3-O-methyl-a-L- ribo- hexopyranosyl) -oxy) 
-14- ethyl-7,12,13- trihydroxy - 3,5,7,9,11,13-hexa methyl-6- ((3,4,6-trideoxy-3-(dimethylamino)-b-D-xylo- 
hexopyranosyl)oxy)oxacyclotetradecane-2,10-dione 
Image from http://en.wikipedia.org/wiki/Image:Erythromycin.png 
 
 
Figure 3.  Chemical structure of tetracycline. 
 

 
 
2-(amino-hydroxy-methylidene)-4-dimethylamino-6, 10, 11,12a-tetrahydroxy-6-methyl-4,4a,5, 5a-tetrahydrotetracene-1,3,12-trione 
Public domain image from http://manske.virtualave.net/nupedia/tetracycline.png 
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Figure 4.  Mechanism of Transformation.  The steps of bacterial transformation are 
shown in a cartoon depiction. 
 
1.  Naked DNA fragments from disintegrated cells (DNA not incorporated into structures such as 
chromosomes) in the area of a potential recipient cell.  This cell must be of the correct genus and be in a 
state of competence (capable of taking up DNA), allowing the entry of the DNA fragments. 
 

 
 
 
 
 
2.  Naked DNA enters into the competent cell. 
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3.  Recombination of DNA fragments occurs and replaces some of the original host cell DNA.  The 
resultant recombinant cell will now express the foreign genes and pass them on to future offspring.  The 
DNA that does not recombine during this process is broken down into enzymes. 
 
 

 
 
Steps for bacterial transformation adapted from the Rediscovering Biology Online Textbook Website. 
http://www.learner.org/channel/courses/biology/archive/images/1854_d.html 
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Figure 5.   Mechanism of Conjugation.  The steps of F-plasmid conjugation are shown in 
a cartoon depiction. 

 

Copied from the website maintained by Stanley Maloy.  (17 October 2000, last date modified) 
http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/plasmids/conjugation-mech.html 
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Figure 6.  Mechanism of Transduction.  The steps of bacterial transduction is depicted in 
a cartoon. 
                     Bacterial Host #1    

  When a bacteriophage infects a host cell, it  
  may cause the degradation of host    
  DNA into small fragments. 
 
 
 
 
 
 
 
 
 
 
 
Bacteriohage coat proteins are synthesized     
and phage DNA replicated 
 
 
 
 

 
 
 
. 
As the virus particles mature, some bacteriophages may envelop 
fragments of bacterial DNA instead of Phage DNA. Only 
bacterial DNA is present in the transducing virions.  
 
 
 
 
Bacteriophages carrying the host bacterial DNA can now infect 
another bacterium host cell 
 
     Bacterial Host #2 
 
.  
 
When the bacterial DNA acquired from Bacterial Host #1 is 
introduced into a new host (Bacterial Host #2) it can become 
integrated into the bacterial chromosome of host #2.  This 
process can introduce several bacterial genes at one time. 
 
 The bacteria then multiply keeping the   
                            recombinant genetic material in tact. 

 
Steps for bacterial transformation adapted from the Rediscovering Biology Online Textbook Website. 
http://www.learner.org/channel/courses/biology/archive/images/1854_d.html 
 



 48

Figure  7.   Total coliforms and fecal coliforms.  
 

                                                                                                            Total Coliforms 
 
  
  
                                                                    Fecal Coliforms 
        
                                               
 

                                     
                                                                                                        Escherichia coli             

                            
  
 
 The total coliform group encompasses both fecal coliforms and E. coli.  E. coli is a 
subset of the fecal coliform group and fecal coliforms are a subset of the total coliform 
group.   
 
 
 
Figure 8.  Map showing location of Walkerton, Ontario, Canada.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Walkerton, located in Ontario, Canada was the location of a waterborne outbreak of E. 
coli O157:H7 during May/June 2000 that resulted in 6 deaths. 
http://uk.multimap.com/map/browse.cgi?client=public&X=-9000000.2612631&Y=5500000.68730376&gride=-
9033710.2612631&gridn=5456082.68730376&scale=10000000&coordsys=mercator&db=CA&lang=&inmap=&table=&ovtype=&lo
calinfosel=&local=&kw=&srec=0&mapsize=big&db=CA&rt= 
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Figure 10.  Typical Fecal Coliforms.   
 

 
 

Blue colonies produced using m-FC medium with Rosolic acid are considered typical fecal 
coliforms, following incubation at 44.5 ± 0.2°C for 24h. 
http://www.millipore.com/catalogue.nsf/docs/M00000P2F 
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Figures 11a and 11b. Comparison of main stem total cultivable and antibiotic resistant bacteria 
for spring data 
a. 

Main Stem Total and Resistant Bacteria Comparison
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b. 

Main Stem Total And Resistant Bacteria Log Scale Comparison
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a. In Figure 11a is suggestive of total cultivable bacterial growth from spring samples, appears not to be inhibited by 
R2A agar plus fungizone (375 ng/ml) media when compared to resistant bacterial growth present on R2A agar plus 
fungizone with either; ciprofloxacin (4 µg/ml), erythromycin (8 µg/ml), or tetracycline (12.5 µg/ml) antibiotics 
added to the media.  
b. Figure 11b represents the Log scale comparison of main stem total cultivable and antibiotic resistant bacteria for 
spring data.  Figure 11.2 is a graphical representation suggestive of total cultivable bacterial growth from spring 
samples, appears not to be inhibited by R2A agar plus fungizone (375 ng/ml) media when compared to resistant 
bacterial growth present on R2A agar plus fungizone with either; ciprofloxacin (4 µg/ml), erythromycin (8 µg/ml), 
or tetracycline (12.5 µg/ml) antibiotics added to the media.  
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Figures 12a and 12b.  Comparison of main stem total cultivable and antibiotic resistant bacteria 
for summer data. 
a. 

Main Stem Total and Resistant Bacteria Comparison
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b. 

Main Stem Total and Resistant Bacteria Log Scale Comparison
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a  Figure 12a is suggestive of total cultivable bacterial growth from summer samples, appears not to be inhibited by 
R2A agar plus fungizone(375 ng/ml) media when compared to resistant bacterial growth present on R2A agar plus 
fungizone with either; ciprofloxacin (4 µg/ml), erythromycin (8 µg/ml), or tetracycline (12.5 µg/ml) antibiotics 
added to the media.  
b Figure 12b is a Log scale comparison of main stem total cultivable and antibiotic resistant bacterial counts for 
summer data. .  Figure 12.2 is a graphical representation suggestive of total cultivable bacterial growth from spring 
samples, appears not to be inhibited by R2A agar plus fungizone (375 ng/ml) media when compared to resistant 
bacterial growth present on R2A agar plus fungizone with either; ciprofloxacin (4 µg/ml), erythromycin (8 µg/ml), 
or tetracycline (12.5 µg/ml) antibiotics added to the media.  
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Main Stem Fecal Coliforms Spring vs. Summer
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Figures 19a and 19b.  Comparison of main stem fecal coliform bacteria for spring and summer 
seasonal data. 
a. 
  
                                                                                                                  
 
         P = 0.107; R = 0.5147 
 
 
 
 
 
 
 
 
 
 
 
b. 

Log Scale Fecal Coliforms Spring vs. Summer
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Figures 19a and 19b show two spikes in fecal coliform growth were present during summer sampling at river miles 
75 (3100 CFU/100 ml) and 55 (4200 CFU/100 ml).  River mile 55 is located behind the Union Carbide Plant in 
South Charleston (Kanawha County), West Virginia, and is in a heavily industrialized area.  River mile 75 is located 
near the unincorporated town of Shrewsbury in Kanawha County.  The sample for river mile 75 was collected within 
fifty yards of a river island (Goat Island) inhabited by a small herd of goats.  Goat Island is also frequented by 
campers using out-house type facilities as restrooms.  Figure 19b is shown using a Log scale to give better 
visualization of fecal coliform counts for seasonal data. 
 
Average fecal coliform counts were greater at KR50-KR00 during the spring compared to summer.  
Average fecal coliform counts were lower at KR95-KR55 during the spring compared to summer.  This occurrence 
is possibly attributed to a rain event that occurred during summer sample collections for site K90-K55.  
 
a  Indicates the origin at the confluence of the New and Gauley Rivers. 
b   Indicates the mouth at the confluence of the Ohio River.  

a 

a 

b 
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Figure 21a and 21b.   Mean main stem antibiotic resistant and fecal coliform bacterial data from 
spring and summer sampling seasons. 
 
a. 
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a  Mean Ciprofloxacin-resistant (Cipro-R), mean Erythromycin-resistant (Eryth-R), mean Tetracycline-resistant (Tet-
R), and mean Fecal Coliform (Fecals) bacteria appear to be of different populations for both spring (Figure 21a) and 
summer (Figure 21b) sampling seasons. 
 

 b All bacterial counts were reported as per 1 ml.  Fecal coliforms were converted from per 100 ml to per 1 ml of 
sample. 
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Table 1. Oligonucleotide Primers.  Oligonucleotide forward and reverse primer sequences
                                          used for polymerase chain reaction (PCR).

Primer

Target 
gene or 

virulence Primer Sequence (5� to 3�)
Amplicon 
size (bp) Reference

stx 1 F stx 1 ATA AAT CGC CAT TCG TTG ACT AC 180 Robins-Browne et al. 2004
stx 1 R AGA ACG CCC ACT GAG ATC ATC López-Saucedo et al. 2003

Paton and Paton 2002
Paton and Paton 1999
Paton and Paton 1998

stx 2 F stx 2 GGC ACT GTC TGA AAC TGC TCC 255 Robins-Browne et al. 2004
stx 2 R TCG CCA GTT ATC TGA CAT TCT G Paton and Paton 2002

Paton and Paton 1999
Paton and Paton 1998

eae A F eaeA GAC CCG GCA CAA GCA TAA GC 384 Robins-Browne et al. 2004
eae A R CCA CCT GCA GCA ACA AGA GG López-Saucedo et al. 2003

Paton and Paton 2002
Paton and Paton 1999
Paton and Paton 1998  
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Table 2.  Oligonucleotide Characteristics. Characteristics of the oligonucleotide primers  
tested to detect pathogenic Escherichia coli collected from water samples along the Great Kanawha 
River. Oligonucleotide analysis  data calculated by Marshall University DNA Core Facility using 
OLIGO 4.0 Primer Analysis Software (NBI). 
 

Primer            Primer Sequence (5� to 3�) Oligonucleotide Analysis
stx 1 F ATA AAT CGC CAT TCG TTG ACT AC Td  =  64.8°C  (nearest neighbor method)

Tm  =  68.2°C  (%GC method)
Tm  =  64.0°C  [2*(A+T) + (G+C)]
nmol/OD  = 4.5 (nearest neighbor extinction coefficient)
µg/OD  = 31.8
Composition:  A + T   14   60.9%
                      C + G    9   39.1%

stx 1 R AGA ACG CCC ACT GAG ATC ATC Td  =  65.6°C  (nearest neighbor method)
Tm  =  70.8°C  (%GC method)
Tm  =  64.0°C  [2*(A+T) + (G+C)]
nmol/OD  = 4.88 (nearest neighbor extinction coefficient)
µg/OD  = 31.5
Composition:  A + T   10   47.6%
                      C + G   11   52.4%

stx 2 F GGC ACT GTC TGA AAC TGC TCC Td  =  66.3°C  (nearest neighbor method)
Tm  =  62.8°C  (%GC method)
Tm  =  66.0°C  [2*(A+T) + (G+C)]
nmol/OD  = 5.28 (nearest neighbor extinction coefficient)
µg/OD  = 34.1
Composition:  A + T    9   42.9%
                      C + G  12   57.1%

stx 2 R TCG CCA GTT ATC TGA CAT TCT G Td  =  64.6°C  (nearest neighbor method)
Tm  =  69.6°C  (%GC method)
Tm  =  64.0°C  [2*(A+T) + (G+C)]
nmol/OD  = 4.96 (nearest neighbor extinction coefficient)
µg/OD  = 33.5
Composition:  A + T   12   54.5%
                      C + G   10   45.5%

eae A F GAC CCG GCA CAA GCA TAA GC Td  =  69.5°C  (nearest neighbor method)
Tm  =  72.3°C  (%GC method)
Tm  =  64.0°C  [2*(A+T) + (G+C)]
nmol/OD  = 5.1 (nearest neighbor extinction coefficient)
µg/OD  = 31.5
Composition:  A + T     8   40.0%
                      C + G   12   60.0%

eae A R CCA CCT GCA GCA ACA AGA GG Td  =  68.1°C  (nearest neighbor method)
Tm  =  72.3°C  (%GC method)
Tm  =  64.0°C  [2*(A+T) + (G+C)]
nmol/OD  = 5.13 (nearest neighbor extinction coefficient)
µg/OD  = 31.7
Composition:  A + T     8   40.0%
                      C + G   12   60.0%
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Table 5.  Spring correlations for microbiological and physical parameter data. 
 
                                          (P - value; R - value) 

Totals Totals      

Cipro 0.112  Cipro     

Erythro 0.089 0.408 Erythro    

Tet 0.013 0.020 0.022 Tet   

Fecal 0.590 0.062 0.476 0.520 Fecal  

Turbidity 0.000 0.197 0.144 0.012 0.487 Turbidity 

pH 0.000 0.166 0.717 0.150 0.862 pH 

W °C 0.000 0.145 0.040 0.063 0.609 W °C 
 
a Measure of the strength of association between two variables using P-values based on 
the correlation coefficient statistical test.    
 
 
b Variables included are Total cultivable (Totals), Ciprofloxacin-resistant (Cipro), 
Erythromycin-resistant (Erythro), and Tetracycline-resistant (Tet) bacteria and turbidity, 
pH, and water temperature (W°C).  
 
c Values in red are considered correlated at P≤0.05, suggesting the variables are 
correlated and linear dependences were identified; values in blue are uncorrelated at 
P≥0.05, suggesting the variables are not correlated and no linear dependences were 
identified.  
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Table 6.  Summer correlations for microbiological and physical parameter data. 
 
Totals Totals      
Cipro 0.130 Cipro     
Erythro 0.737 0.177 Erythro    
Tet 0.385 0.057 0.000 Tet   
Fecal 0.312 0.098 0.326 0.513 Fecal  
Turbidity 0.759 0.837 0.526 0.766 0.923 Turbidity 
pH 0.935 0.933 0.952 0.728 0.712 pH 
W °C 0.207 0.507 0.642 0.331 0.730 W °C 

a Measure of the strength of association between two variables using P-values based on 
the correlation coefficient statistical test.  
 
b Variables included are Total cultivable (Totals), Ciprofloxacin-resistant (Cipro), 
Erythromycin-resistant (Erythro), and Tetracycline-resistant (Tet) bacteria and turbidity, 
pH, and water temperature (W°C).  
 
c Values in red are considered correlated at P≤0.05, suggesting the variables are 
correlated and linear dependences were identified; values in blue are uncorrelated at 
P≥0.05, suggesting the variables are not correlated and no linear dependences were 
identified. 
 
Table 7.  Spring vs. summer correlations for microbiological data. 
 

  
Totals 

Summer   
Cipro 

Summer   
Erythro 
Summer   

Tet 
Summer   

Fecals 
Summer

Totals 
Spring 0.120 

Cipro 
Spring 0.459 

Erythro 
Spring 0.438 

Tet     
Spring 0.807 

Fecals  
Spring 0.107 

R-
Values -0.359   0.176   0.195   -0.058   0.515 

 

a Measure of the strength of association between two variables using P-values based on 
the correlation coefficient statistical test. A P-value ≥ 0.05 suggests the variables are not 
correlated and no linear dependences were identified.  
 
b Variables included are Total cultivable (Totals), Ciprofloxacin-resistant (Cipro), 
Erythromycin-resistant (Erythro), and Tetracycline-resistant (Tet) bacteria and turbidity, 
pH, and water temperature (W°C).  
 
c Values in red are considered correlated at P≤0.05; values in blue are uncorrelated at 
P≥0.05. 
 
Data used for figures 13, 15, 17, and 19 
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Table 8 . Relative Impact Scores (range -4 to 4) for Spring and Summer using the 95th 
Percentile (IS95).  

 
River Mile 

or 
Tributary 

aSite Designation 
b cSpring 

IS95 
b c Summer 

IS95 

New River                T           -1           N.D. 
Gauley                T -1   N.D. 

95                U 0   N.D. 
90 U -1 0 
85 U -1 0 
80 U -1 0 
75 U 0          0 
70 U -1 0 
65 U 0 0 
60 U 0 0 
Elk T 0 3 
55 U 0 3 
50 L             1 0 

Coal T 0 0 
45 L 1 2 

Pocatalico T 3 0 
40 L 0 0 
35 L 0 -1 
30 L 0 -1 
25 L 1 -1 
20 L 1 -2 
15 L -1 -1 
10 L 0 -2 
5 L 0 0 
0 L 0 0 

 
a Designation of U (Upper Kanawha between river miles KR95-KR55), L (Lower Kanawha between river   
  miles KR50-KR00), or T (Tributary) indicates the region of the River or Tributary entering the river.  
b Fields highlighted in red indicates an impacted area. 
c Fields highlighted in blue indicates less impact. 
d �N.D.� = area where impact score determination was not applicable.  
 
Data used for figures 22, 23, and 24. 
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Table 9.  Target gene identification per sample site location.   

ID No. 
River Mile/ 
Tributary Isolate No. stx1 stx2 eaeA 

  *CJ1-39 K00 1 - + - 
CJ1-39 K00 2 - - - 
CJ1-39 K00 3 - - - 

  *CJ1-39 K00 4 - - + 
  *CJ1-39 K00 5 - - + 
  *CJ1-39 K05 1 - - + 

CJ1-39 K05 2 - - - 
CJ1-39 K05 3 - - - 
CJ1-39 K05 4 - - - 
CJ1-39 K05 5 - - - 
CJ1-39 K10 1 - - - 
CJ1-39 K10 2 - - - 
CJ1-39 K15 1 - - - 
CJ1-39 K25 1 - - - 
CJ1-39 K30 1 - - - 
CJ1-39 K35 1 - - - 
CJ1-39 K40 1 - - - 
CJ1-39 K40 2 - - - 
CJ1-39 K40 3 - - - 
CJ1-39 K40 4 - - - 
CJ1-39 K45 1 - - - 
CJ1-39 K45 2 - - - 
CJ1-39 K45 3 - - - 
CJ1-39 K45 4 - - - 
CJ1-40 K50 1 - - - 
CJ1-40 K50 2 - - - 
CJ1-40 K50 3 - - - 
CJ1-40 K50 4 - - - 
CJ1-40 K50 5 - - - 
CJ1-40 K50 6 - - - 
CJ1-40 K50 7 - - - 
CJ1-40 K50 8 - - - 
CJ1-40 K50 9 - - - 

+ = isolate positive for target gene 
- = isolate negative for target gene 
�*� indicates an isolate was positive for at least one target gene sequence 
�^� indicates an isolate was positive for at least two target gene sequences 
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Table 9 (continued) 

ID No. 
River Mile/ 
Tributary Isolate No. stx1 stx2 eaeA 

CJ1-67 K55 1 - - - 
CJ1-67 K55 2 - - - 
CJ1-67 K55 3 - - - 
CJ1-67 K55 4 - - - 
CJ1-67 K55 5 - - - 
CJ1-67 K55 6 - - - 
CJ1-69 K55 7 - - - 

^*CJ1-69 K55 8 - + + 
CJ1-69 K55 9 - - - 
CJ1-69 K55 10 - - - 
CJ1-67 K60 1 - - - 
CJ1-67 K60 2 - - - 
CJ1-67 K60 3 - - - 
CJ1-67 K60 4 - - - 
CJ1-67 K60 5 - - - 
CJ1-67 K60 6 - - - 
CJ1-67 K65 1 - - - 

^*CJ1-67 K65 2 + + - 
CJ1-67 K65 3 - - - 
CJ1-67 K65 4 - - - 
CJ1-67 K65 5 - - - 
CJ1-67 K65 6 - - - 
CJ1-68 K70 1 - - - 
CJ1-68 K70 2 - - - 
CJ1-68 K70 3 - - - 

 *CJ1-68 K70 4 - + - 
 *CJ1-68 K70 5 - + - 

CJ1-68 K70 6 - - - 
 *CJ1-68 K75 1 - + - 
 *CJ1-68 K75 2 - + - 

CJ1-68 K75 3 - - - 
CJ1-68 K75 4 - - - 
CJ1-68 K75 5 - - - 

+ = isolate positive for target gene 
- = isolate negative for target gene 
�*� indicates an isolate was positive for at least one target gene sequence 
�^� indicates an isolate was positive for at least two target gene sequences 
 



 

 76

Table 9 (continued) 

ID No. 
River Mile/ 
Tributary Isolate No. stx1 stx2 eaeA 

CJ1-68 K75 6 - - - 
CJ1-69 K75 7 - - - 
CJ1-69 K75 8 - - - 
CJ1-69 K75 9 - - - 
CJ1-69 K75 10 - - - 
CJ1-68 K80 1 - - - 
CJ1-68 K80 2 - - - 
CJ1-68 K80 3 - - - 
CJ1-68 K80 4 - - - 
CJ1-68 K80 5 - - - 
CJ1-68 K80 6 - - - 
CJ1-68 K85 1 - - - 
CJ1-68 K85 2 - - - 
CJ1-68 K85 3 - - - 
CJ1-68 K85 4 - - - 
CJ1-68 K85 5 - - - 
CJ1-68 K85 6 - - - 
CJ1-69 K90 1 - - - 
CJ1-69 K90 2 - - - 
CJ1-69 K90 3 - - - 
CJ1-69 K90 4 - - - 
CJ1-69 K90 5 - - - 
CJ1-69 K90 6 - - - 
N.D. NEW N.D. N.D. N.D. N.D. 
N.D. GAU N.D. N.D. N.D. N.D. 

CJ1-67 ELK 1 - - - 
CJ1-67 ELK 2 - - - 

 *CJ1-67 ELK 3 - + - 
CJ1-67 ELK 4 - - - 
CJ1-67 ELK 5 - - - 

  *CJ1-67 ELK 6 - + - 
CJ1-69 ELK 7 - - - 
CJ1-69 ELK 8 - - - 

+ = isolate positive for target gene 
- = isolate negative for target gene 
�*� indicates an isolate was positive for at least one target gene sequence 
�^� indicates an isolate was positive for at least two target gene sequences 
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Table 9 (continued) 

ID No. 
River Mile/ 
Tributary Isolate No. stx1 stx2 eaeA 

CJ1-69 ELK 9 - - - 
  *CJ1-69 ELK 10 + - - 

CJ1-40 COAL 1 - - - 
CJ1-40 COAL 2 - - - 
CJ1-40 COAL 3 - - - 
CJ1-40 COAL 4 - - - 
CJ1-40 COAL 5 - - - 
CJ1-40 COAL 6 - - - 
CJ1-40 POCA 1 - - - 
CJ1-40 POCA 2 - - - 
CJ1-40 POCA 3 - - - 

+ = isolate positive for target gene 
- = isolate negative for target gene 
�*� indicates an isolate was positive for at least one target gene sequence 
�^� indicates an isolate was positive for at least two target gene sequences 
�N.D.� designates sites where no data were collected. 
 
a. Thirteen (12.0%) of 108 isolates assayed were positive for at least on target gene 
sequence; two (1.85%) isolates were positive for stx1, nine (8.33%) were positive for stx2, 
and four (3.70%) were positive for eaeA target gene sequences.  See Table 10 for a target 
gene identification summary.   
 

b. Two (1.85%) of the 108 isolates assayed were positive for at least two target gene 
sequences, and no isolates assayed were positive for all three target gene sequences. 
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Table 10.  Summery of target gene identification per sample site location.  The 
proportion of genes identified at each river mile. 
 

   River 
Mile    / 

Tributary      stx1        stx2    eaeA   

     
Isolates   
Assayed 

95  N.D    N.D.       N.D.  0 

90  0 0 0  6 

85  0 0 0  6 

80  0 0 0  6 

75  0 2 0  10 

70  0 2 0  6 

     *65  1 1 0  6 

60  0 0 0  6 

     *55  0 1 1  10 

50  0 0 0  9 

45  0 0 0  4 

40  0 0 0  4 

35  0 0 0  1 

30  0 0 0  1 

25  0 0 0  1 

20  0 0 0  0 

15  0 0 0  1 

10  0 0 0  2 

5  0 0 1  5 

0  0 1 2  5 

New  N.D N.D N.D  0 

Gau  N.D N.D N.D  0 

Elk  1 2 0  10 

Coal  0 0 0  6 

Poca  0 0 0  3 

  Total 2(1.85%) 9(8.33%) 4(3.70%)
Total 

Isolates 
108 

(100%) 
* = sites identified as positive for multiple target genes. 
�N.D.� designates sites where no data were collected.  
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Appendix A.  The Great Kanawha River�s Mainstem Sample Site Coordinates and 
Descriptions for River Miles K-95 � K-00.  
 
River Mile  Latitude  Longitude  Site Description 
 
K-95 38°8�48� N  - 81°12�39.7� W  Right descending bank  

below island.  
 
K-90   38°8�0� N  - 81°16�43� W  Mid-channel, 90.5 river  

miles from mouth.  Near 
the town of Alloy in 
Fayette County. 

 
K-85  38°10�56� N  - 81°.19�53� W  Mid-channel.  Less than  

one mile down stream of 
Montgomery  
Bridge, in Montgomery.  
Upstream of London 
Locks. 

 
K-80 38°12�25� N  - 81°23�57� W  Mid-channel. Downstream  

of London Locks. The 
town of Riverside in 
Kanawha County located 
on Right descending bank. 

 
K-75   38°12�20� N  - 81°27�56.22� W Mid-channel, 1.6 river  

miles upstream of Chelyan 
Bridge. The town of 
Shrewsbury located on 
right descending bank.  

 
K-70   38°13�38� N  - 81°32�19� W  Mid-channel, 2.5 river  

miles up stream of 
Marmet Locks, before 
DuPont Plant. The town of 
Belle located on right 
descending bank. 

 
K-65 38°17�13� N  - 81°34�3� W  Mid-channel, 2.5 river  

miles down stream of 
Marmet Locks.  Near  

                                                                                                              the town of Malden. 
 
K-60 38°20�3� N  - 81°36�41� W  Mid-channel.  In  

Charleston.  The  
state capital complex is 
visible on the right 
descending bank. 
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 Appendix A. (continued)  The Great Kanawha River�s Mainstem Sample Site 
Coordinates and Descriptions for River Miles K-95 � K-00.  
 
River Mile  Latitude  Longitude  Site Description 
 
K-55 38°22�20� N  - 81°41�33� W  Mid-channel.  Down  

stream side of Union 
Carbide Island, South  
Charleston.  Three miles 
down stream of the Elk 
River tributary. 

 
K-50   38°21�59� N  - 81°45�41� W  Mid-channel.  Near  

Dunbar.   
 
K-45 38°23�53� N  - 81°50�34� W  Mid-channel.  Near Nitro,  

400 meters down stream 
of Coal River. 

 
K-40 38°27�37� N  - 81°49�13� W  Mid-channel.  1 river mile  

up stream of Pocatalico 
River, Putnam County. 

 
K-35 38°31�52� N  - 81°51�20� W  Mid-channel.  4 miles  

down stream of Pocatalico 
River and 3.6 river miles 
up stream of Winfield 
Locks. 

 
K-30 38°31�42� N  - 81°55�52� W  Mid-channel. 1.2 river  

miles down steam of 
Winfield Locks. 

 
K-25 38°34�57� N  - 81°59�58� W  Mid-channel.  Near  

Fraziers Bottom. 
 
K-20 38°38�17� N  - 81°58�7� W  Mid-channel. 1.5 river  

miles down stream of 
Buffalo boat launch. 

 
K-15 38°42�30� N  - 81°57�6� W  Mid-channel.  Near  

Arbuckle, Mason County. 
 
K-10   38°456�15� N  - 81°59�7� W  Mid-channel.  Near  

confluence with Ten Mile 
Creek. 

K-05 38°48�18� N  - 82°3�31� W  Mid-channel.  Near  
Ambrosia near Rockcastle 
Creek. 

K-00 38°50�14� N  - 82°.8�21� W  Mid-channel. Point  
Pleasant, at mouth of 
river. Before Kanawha 
River empties into Ohio 
River.  Up stream of Rt. 2 
bridge. 
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 Appendix B .  The Great Kanawha River�s Tributary Sample Site Coordinates and 
Descriptions.  
 
 
River Tributary Latitude  Longitude  Site Description 
 
Gauley  38°13�21.43� N  - 81°7�12� W  Turn off Route 39 at  

Swiss.  Travel 1.2 miles 
out road.  Crossover 
railroad tracks to right and 
drive down to river.  Site 
is a National   

                                                                                                              Park Service site. 
 
New  38°9�12.3� N  - 81°10�53.1� W  On New River, 2 miles  

upstream of Kanawha 
Falls on right bank. Pull 
off on right side of road 
after campground, follow 
path to river  
bank. 

 
Elk  38°21�21.5� N  - 81°38�35.4� W  On Elk River, one tenth of  

a mile from the mouth, on 
the left descending bank. 

 
Coal   38°23�4.38� N   - 81°50�24.7� W  On the Coal River, sample  

collected at station site 
0.70 miles from mouth of 
stream and 7/10 of the 
way across the stream 
from the  
left descending bank. 

 
Pocatalico  38°28�40.9� N  - 81°48�48.1� W  On Pocatalico River, left  

bank on other side of WV-
62 bridge. 
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Appendix C.  Sample site locations by river mile and county. 
 

River 
Mile/Tributary County Location 

New Fayette  

Gauley Fayette  

K-95 Fayette  

K-90 Kanawha  

K-85 Kanawha  

K-80 Kanawha  

K-75 Kanawha  

K-70 Kanawha  

K-65 Kanawha  

K-60 Kanawha  

Elk Kanawha  

K-55 Kanawha  

K-50 Kanawha  

Coal Kanawha  

K-45 Kanawha  

K-40 Putnam  

Pocatalico Putnam  

K-35 Putnam  

K-30 Putnam  

K-25 Putnam  

K-20 Putnam  

K-15 Mason  

K-10 Mason  

K-05 Mason  

K-00 Mason  
 
a The Great Kanawha River spans across four West Virginia Counties: Fayette, Kanawha, 
Putnam, and Mason. 
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Appendix D.  Antibiotics and concentrations tested. 
 

Antibiotic   Catalog No.   Solventa   
Stock 
Conc.   

Working 
Conc. 

         
Ciprofloxacin Fisher 61-277-RF  DMSO  4 mg/ml  4 µg/ml 
         
Erythromycin Fisher BP920-25  EtOH:H2O 8 mg/ml  8 µg/ml 
         

Tetracycline  Fisher BP912-100  EtOH:H2O 12.5 mg/ml 
12.5 
µg/ml 

                  
a DMSO = dimethylsulfoxide (Certified ACS).  EtOH:H2O = a mixture of  
equal parts ethanol (100% USP) and reagent grade water ( 18 MΩ).  
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Appendix E.  Proteobacteria. 

1.  Proteobacteria  

a. The gram-negatives:  
i. The Proteobacteria are the gram-negatives, all of which are 

thought to have derived from an ancestral purple photosynthetic 
bacterium.  

ii. Of those bacterial groups which are actively studied by humans, 
the Proteobacteria form the most diverse taxon. 

b. The Proteobacteria group includes:  
i. the alpha subdivision (which includes Agrobacterium spp., 

Brucella spp., Zea mays mitochondria, the purple non-sulfur 
bacteria, and the rickettsias)  

ii. the beta subdivision (which includes Bordetella spp., Neisseria 
spp., and some Pseudomonas spp.)  

iii. the gamma subdivision (which includes Family 
Enterobacteriaceae, Haemophilus spp., Legionella spp., Pasteurella 
spp., Vibrio spp., the purple sulfur bacteria, and some 
Pseudomonas spp.)  

iv. the delta subdivision (which includes the Bdellovibrio)  
v. the epsilon subdivision (which include Helicobacter spp.).  

c. Facultatively anaerobic gram-negative rods  
d. Gram-negative , facultatively anaerobic bacilli are a very medically 

relevant group of bacteria .  
e. There are three families making up the bulk of facultative anaerobic 

gram-negative rods (39 of 46 genera):  
i. Enterobacteriaceae  

ii. Vibrionaceae  
iii. Pasteurellaceae  

f. Enterobacteriaceae:  
i. See section below. 

g. Family Pasteuellaceae includes the genera :  
i. Actinobacillus  

ii. Haemophilus  
iii. Pasteurella  

h. Family Vibrionaceae includes the genera :  
i. Aeromonas  

ii. Enhydrobacter  
iii. Phobacterium  
iv. Plesiomonas  
v. Vibrio  

2. Enterobacteriaceae [enterics]  
a. The enterics:  

i. Members of family Enterobacteriaceae tend to inhabit the 
intestinal tracts of animals.  
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ii. Members of family Enterobacteriaceae are found in the intestines:  
1. some are found in nearly all members of a given species  
2. some in a smaller fraction  
3. some only during (and causing) a disease state 

b. Glucose fermenters:  
i. Enterics tend to be glucose fermenters .  

ii. Some are fermenters of other carbohydrates .  
iii. Lactose non-fermeters tend to be pathogenic. 

c. Additional characteristics:  
i. If motile they have peritrichous flagella .  

ii. May have fimbriae which help them to adhere to mucous 
membranes . 

d. Family Enterobacteriaceae includes the genera:  
i. Citrobacter  

ii. Enterobacter  
iii. Erwinia  
iv. Escherichia  
v. Klebsiella  
vi. Proteus  

vii. Providencia  
viii. Salmonella  

ix. Serratia  
x. Shigella  

xi. Yersinia  

The above Appendix E information was copied form the website 
http://www.mansfield.ohio-state.edu/~sabedon/biol3018.htm which is maintained by 
Stephen T Abedon Ph. D.  12 May 1998, last modification date. 
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Appendix F.  Environmental Microbiology Research Laboratory Standard Operation 
Procedure for Impact Score Determination. Prepared by Charles Somerville, PhD. 
  
Antibiotic Stock Solutions 
 
1. The antibiotics, solvents, and concentrations used are shown in Table 1. 
 
 
Table 1.  Antibiotics tested and recommended concentrations. 

Antibiotic Catalog No. Solventa Stock Conc. Working 
Conc. 

Fungizone BioWhitaker    
17-836R 

N/A 250 µg/ml 375 ng/ml 

Ampicillin Sodium 
Salt 

Fisher 
BP1760-25 

H2O 50 mg/ml 50 µg/ml 

Ciprofloxacin Cellgro 61-
277-RF 

DMSO 4 mg/ml 4 µg/ml 

Erythromycin Fisher BP920-
25 

EtOH:H2O 8 mg/ml 8 µg/ml 

Streptomycin Sulfate Fisher BP910-
50 

Water 25 mg/ml 25 µg/ml 

Sulfamethizole Fisher 
ICN15671125 

DMSO 128 mg/ml 128 µg/ml 

Tetracycline 
Hydrochloride 

Fisher BP912-
100 

EtOH:H2O 12.5 mg/ml 12.5 µg/ml 

Virginiamycin Fisher 50-213-
730 

DMSO 16 mg/ml 16 µg/ml 

a Fungizone is purchased as a stock solution, it is stored frozen and thawed before use.  
DMSO = dimethylsulfoxide (Certified ACS).  EtOH:H2O = a mixture of equal parts 
ethanol (100% USP) and reagent grade water (18 MΩ ). 
 
 
2. Using an analytical balance, weigh out sufficient antibiotic to make a 10 ml stock (see 

Table 1 and note below) and transfer the antibiotic powder to a sterile 15 ml plastic 
centrifuge tube (Falcon 2095; Becton Dickinson, Sparks, MD or equivalent). 
 
Note � for determining amount of antibiotic powder to use 
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a. Be sure to account for the purity of the antibiotic powder by dividing the weight 
of pure antibiotic required by the purity.  For example, ciprofloxacin may be 
provided as a powder that contains 803 mg ciprofloxacin per gram.  To achieve a 
stock concentration of 4 mg ciprofloxacin per ml, it is necessary to add 4.98 [or 
4.0 mg cipro x (1000 mg powder / 803 mg cipro)] mg powder per ml of stock 
solution. 

 
3. Add 10 ml of the appropriate solvent (see Table 1) to the tube, and vortex to mix. 
 
4. In some cases (e.g. when making stock solutions of ciprofloxacin) the tube can be 

placed in a bath sonicator to facilitate dissolution of the solute.  Take care to be 
certain that all of the antibiotic has gone into solution. 

 
5. Draw the antibiotic solution into a sterile 10 ml syringe, and sterilize by forcing the 

solution through a sterile, 0.2 �m syringe filter (Fisher Scientific cat. no. 09-719C or 
equivalent) into a second sterile plastic centrifuge tube.  Do not filter sterilize 
antibiotics dissolved in DMSO. 

 
6. Store the antibiotic stocks at -20°C until used.  Replace antibiotic stocks each month. 
 
Media Preparation 
 
1. Suspend 9.1 grams Difco R2A agar (Becton Dickinson, Sparks, MD; cat no. 218263) 

in 500 ml of purified water in a 1,000 ml capacity glass Erlenmeyer flask. 
 
2. Add a magnetic stir bar, cover the flask with aluminum foil, place and piece of 

autoclave tape on the foil, and mark the name of the antibiotic to be added (if 
appropriate) on the foil. 

 
3. Swirl the flask to evenly hydrate the suspended powder, and autoclave at 121°C and 

15 psi for 20 minutes on a slow exhaust cycle. 
 
4. Move the medium from the autoclave to a 48°C water bath, and hold for at least 30 

minutes but not more than 4 hours. 
 
5. While the medium is cooling, remove the appropriate antibiotic stock solutions from 

the freezer and thaw on ice (all antibiotics except ciprofloxacin) or at room 
temperature (ciprofloxacin). 

 
6. Place the flask on a magnetic stir plate and stir gently until the medium is well mixed.  

Be careful not to introduce bubbles.  Test the temperature of the medium by touching 
the side of the flask briefly with your bare hand.  It should be warm, but not hot.  If 
the flask is hot to the touch, return it to the water bath until it has cooled enough to be 
handled comfortably.  Do not allow the medium to cool below 48°C. 
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7. Wear disposable latex gloves for the remaining steps of media preparation.  When 
properly tempered, again move the medium to the magnetic stirrer.  While stirring 
gently, aseptically add 750 �l of fungizone stock. 

 
8. Continue stirring for 15 to 30 seconds after the addition of the fungizone to the 

medium.  Tilt the flask to insure that all the fungizone stock solution is transferred to 
the medium. 

 
9. If you are preparing R2A plus fungizone for the enumeration of total cultivable 

bacteria, aseptically pour 25 ml per plate into pre-sterilized 100 x 15 mm Petri dishes 
(Falcon 1029, Becton Dickinson, Sparks, MD or equivalent).   

 
10. If you are preparing R2A plus fungizone and an additional antibiotic for the 

enumeration of a particular resistant population, aseptically add 500 �l of the 
appropriate antibiotic stock to the flask.  Stir gently for an additional 15 seconds and 
tilt the flask to insure that all the antibiotic stock is transferred to the medium. 

 
11. Pour the plates as described in step 9. 
 
12. Clearly mark the plates to indicate media content.  E.g. �R2Af � can be used to 

indicate R2A agar plus fungizone, and �R2Afc� to indicate R2A agar plus fungizone 
and ciprofloxacin, etc. 

 
13. Allow plates to cure at room temperature for at least 48 hours before use.  Plates 

should be inoculated no later than seven days after pouring. 
 
 
Sample Collection 
 
1. Whole water samples must be collected in sterile containers with secure, leak-proof 

lids.  Containers must be clearly labeled with a sample number, and the sample 
number must be recorded in a notebook in which the location, date and time of 
sampling are clearly and fully described.  If available, include additional information 
such as: latitude and longitude, air temperature, water temperature, weather 
conditions, turbidity, level of boating activity, land use patterns, etc. 

 
2. The container should be opened so that the opening is pointing downward, and the 

inside of the lid does not come into contact with any non-sterile surfaces.   
 
3. Continue holding the opening downward while passing the container through the 

surface tension layer.   
 
4. When the container is fully submerged, invert it so that it fills with water. 
 
5. Pour off enough water to leave approximately a 10% air headspace. 
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6. Seal the container and place on ice.  Samples should be cultivated within 6 hours of 
collection. 

 
 
Enumeration of Total Cultivable Bacteria 
 
1. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any 

sediment that may have settled out during transit. 
 

2. Aseptically transfer 0.1 ml of sample to a sterile 9.9 ml dilution blank in a screw-cap 
test tube. 

 
3. Tightly cap the tube and mix at full speed on a vortex mixer for at least 5 seconds. 
 
4. Aseptically transfer 0.1 ml of diluted sample to each of three plates of Difco R2A 

agar plus 375 ng/ml fungizone.   
 
5. Spread the diluted water sample on the surface of the agar plates using a sterile glass 

spreading rod, a pre-sterilized inoculating loop, or five sterile glass beads (5 mm; see 
note) until all of the liquid has been absorbed. 

 
Note � for use of sterile glass beads 
 
a. Place six glass beads (Fisher Scientific cat no. 11-312C) into a 1000 ml pipette tip 

(Biolog cat no. 3001; other tips should be tested for suitability).  One set of beads 
is required for each plate inoculated. 

 
b. Place the tip with beads into the original pipette box, cover all the tips with a 

sheet of aluminum foil, place the cap on the box, place a piece of autoclave tape 
on the box, and autoclave at 121°C and 15 psi for 15 minutes. 

 
c. When plating � open the pipette tip box, roll back the aluminum foil to expose a 

single row of pipette tips, remove one tip at a time, lift the lid of an inoculated 
plate, and pour the sterile beads onto the agar surface.  Normally, one bead 
remains stuck in the bottom of the tip. 

 
d. Repeat step c for all replicate plates.   

 
e. Cover the plates and stack them.  Then shake the plates by moving them in a 

quick back and forth motion while keeping the bottom plate in contact with the 
bench top - it is important to avoid allowing the beads to run in a circular motion 
around the outer edge of the plate.  Shake five times, then rotate the plates by 
one-quarter turn and shake again five times.  Repeat shaking and turning the 
plates a total of five times.   

 
f. Invert the plates and collect the used beads in a beaker containing 70% ethanol. 



 

 90

 
6. Plates must be clearly marked with sample number and date of inoculation. 
 
7. Wrap each set of three plates with parafilm and incubate inverted at 25°C for one 

week (see note) 
 

Note � for incubation of R2A plates 
 
a. R2A agar plates inoculated with river or lake water will continue to develop new 

microcolonies for 5 to 6 days after inoculation.  Therefore, incubation for at least 
seven days is recommended.  Incubation at temperatures above 25°C is not 
recommended as it may reduce the number of colony forming units. 

 
8. After incubation, count the number of colony forming units (CFU) on each plate and 

record in a laboratory notebook. 
 
9. Determine the mean and standard deviation of CFU counts on replicate plates and 

record in a laboratory notebook. 
 
10. Determine the CFU per ml of total cultivable bacteria in the original sample by 

multiplying the average CFU value by a dilution factor of 1,000 (accounts for the 
initial 10-2 dilution and the plating volume of 0.1 ml).  Record this value in the 
laboratory notebook. 
 
 

Enumeration of Antibiotic Resistant Bacteria 
 
1. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any 

sediment that may have settled out during transit. 
 

2. Aseptically transfer 0.1 to 0.2 ml (see note) of undiluted sample to each of three 
plates of Difco R2A agar plus 375 ng/ml fungizone, plus the appropriate 
concentration of a single antibiotic (see Table 1).  

 
Note � for selection of plating volume  
 
a. Preliminary tests to determine the volume of sample to be plated are 

recommended.  A plating volume of 0.1 ml is the default volume, but if the 
number of antibiotic resistant colony forming units is consistently less than 30 per 
plate, the volume should be increased to 0.2 ml 

 
3. Spread the undiluted water sample on the surface of the agar plates using a sterile 

glass spreading rod, a pre-sterilized inoculating loop, or five sterile glass beads (5 
mm; see note above) until all of the liquid has been absorbed. 

 
4. Plates must be clearly marked with sample number and date of inoculation. 
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5. Wrap each set of three plates with parafilm and incubate inverted at 25°C for one 

week (see note above). 
 
6. After incubation, count the number of colony forming units (CFU) on each plate and 

record in a laboratory notebook. 
 
7. Determine the mean and standard deviation of CFU counts on replicate plates and 

record in a laboratory notebook. 
 
8. Determine the CFU per ml of total cultivable bacteria in the original sample by 

multiplying the average CFU value by a dilution factor of 10 (for a plating volume of 
0.1 ml) or 5 (for a plating volume of 0.2 ml).  Record this value in the laboratory 
notebook. 

 
 
Enumeration of Fecal Coliform Bacteria 
 
1. Label the 47 mm Petri dishes with absorbent pads (Millipore, cat. no. PD1004705) 

and the prepared m-E plates with media type (i.e. mFC), date, sample ID, and aliquot 
amount to be sampled. 

 
2. Place the m-FC Medium with Rosolic Acid, 2 ml plastic ampules (Cat. No. 

M00000P2F, Millipore) on ice and set aside until step 6 
 
3. Pour sterile tap water into a 100 ml capacity analytical test filter funnel with 47mm 

cellulose nitrate membrane, 0.45µm pore size (Fisher Scientific, cat. no. 09-740-30D 
or equivalent) until the membrane is covered to an approximate depth of 5-10 mm. 

 
4. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any 

sediment that may have settled out during transit. 
 
5. Aseptically transfer 0.1 to 50 ml (see note) of undiluted sample to the sterile tap water 

in the analytical filter funnel, swirl gently to evenly distribute the sample, and filter 
the water through the funnel. Rinse the sides of the funnel with sterile tap water at 
least two times and filter through membrane. 
 
Note � for selection of plating volume  
 

a. Preliminary tests to determine the volume of sample to be plated are 
recommended.  Plating volumes of 0.1 ml, 0.5 ml, and 1.0 ml are the default 
volumes for triplicate sampling.  However, if the number of colony forming 
units does not consistently fall within the 20-60 colonies per membrane 
standard, the volume should be adjusted accordingly. 
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6. Open m-FC Medium with Rosolic Acid, 2 ml ampule and squeeze contents onto the 
absorbent pad in the pre-labeled corresponding 47 mm Petri dish with absorbent pad. 

 
7. Remove the disposable funnel wall and aseptically transfer the membrane (using 95% 

ethyl alcohol flame-sterilized flat forceps) to the pre-labeled corresponding 47 mm 
Petri dish with absorbent pad soaked with the appropriate medium. 

 
8. Incubate the plates as follows:  m-FC (44.5 ± 0.2°C for 24 hours. 
 
 
9. After incubation, count the number of colony forming units (CFU) on each plate and 

record in a laboratory notebook.  For the m-FC plates, count only the blue colonies.   
 
10. Determine the mean and standard deviation of CFU counts on replicate plates and 

record in a laboratory notebook. 
 
11. Determine the CFU per 100 ml of fecal coliform and total coliform bacteria in the 

original sample by multiplying the average CFU value by a dilution factor (i.e. DF of 
10 for a plating volume of 0.1 ml).  Record this value in the laboratory notebook. 

 
 
 
Determination of Impact Scores 
 
1. Enter enumeration data for fecal indicators and antibiotic resistant bacteria into an 

Excel spreadsheet. 
 
2. For each population (i.e. fecal coliforms or ciprofloxacin resistant cells), rank the 

average count for a site within the population data set of all sites using the 
PERCENTRANK function.  Multiply the PERCENTRANK output by 100 to achieve 
a percentile score for each data point within the entire population data set (see note). 

 
Note � on determining percentile scores 
 
a. The PERCENTRANK function in Excel can not simply be copied and pasted 
from cell to cell.  If the function is transferred it will carry the original array size, but 
the array will be offset and the function will calculate an inappropriate rank.  
Therefore, you must set the array to contain the entire population data set for each 
individual data point. 

 
3. Choose the boundaries that you wish to apply to the data.  For example, an IS90 score 

weights sites with population counts above the 90th percentile and below the 10th 
percentile.  An IS80 score weights sites with population counts above the 80th 
percentile and below the 20th percentile.  In our hands, IS85 to IS90 scores provide a 
useful signal to noise ratio in the index. 
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4. Assign a population score of 1 to all data points that fall above the upper percentile 
boundary. 

 
5. Assign a population score of -1 to all data points that fall below the lower percentile 

boundary. 
 
6. Assign a population score of 0 to all data points that fall between the chosen 

boundaries. 
 
7. Repeat the determination of population scores for all microbial populations 

enumerated, i.e. for each antibiotic resistant population measured and for the fecal 
indicator population. 

 
8. Determine the total impact score (IS) by adding the population scores.  For studies 

that include three antibiotics and one fecal indicator, impact scores can range from -4 
to +4.  Higher impact scores are indicative of a more impacted water source. 

 
9. Plot IS versus river mile to get a visual representation of water quality variability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 94

Appendix G.  Luria Bertani media preparation Standard Operating Procedure. Prepared 
by Christina Johnson. 
 
 
Media Preparation 
 
1. Suspend 12.5 grams Difco Luria-Bertani Broth (Becton Dickinson, Sparks, MD: cat 

no. 221970) and 7.5 grams of Difco granulated (Becton Dickinson, Sparks, MD: cat 
no. 3171850) in 500 ml of purified water in a 1,000 ml capacity glass Erlenmeyer 
flask. 

 
2.  Cover flask with aluminum foil, place a piece of autoclave tape on the foil,  

and mark the media name of the foil. 
 

3.  Swirl the flask to evenly hydrate the suspended powder, and autoclave at          
     121º C and 15 psi for 20 minutes on a slow exhaust cycle. 

 
4.  Move the medium from the autoclave to a 48º C water bath, and hold for at    
      least 30 minutes but not more than 4 hours to temper the medium. 

 
5.  Test the temperature of the medium by touching the side of the flask briefly    
     with your bare hand.  It should be warm, but not hot.  If the flask is hot to the                    
     touch, return it to the water bath until it has cooled enough to be handled  
     comfortably.  Do not allow the medium to cool below 48º C. 

 
6.  Wear latex gloves for the remaining steps of media preparation. 

 
7.  Aseptically pour 100 ml per plate into pre-sterilized 150 × 15 mm Petri dishes         
     (Falcon 1058, Becton Dickinson, Lincoln Park, NJ or equivalent) or 25 ml per        
     plate in to pre-sterilized 100 × 15 mm Petri dishes (Falcon 1029, Becton Dickinson,  
     Sparks MD or equivalent).  
 
8.  Allow plates to cure at room temperature for at least 48 hours before use.   
     Plates should be inoculated no later than seven days after pouring. 
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Appendix H.  Total cultivable and ciprofloxacin resistant average bacterial counts 
reported.  

         Total Cultivable   Ciprofloxacin   

River 
Mile/       

Tributary 

Spring     
April 5-6,   

2004 

Summer 
A          

July 12-
13, 2004 

Summer 
B        

August 5, 
2004 

Spring    
April 5-
6, 2004 

Summer A       
July 12-13, 2004 

Summer 
B        

August 
5, 2004 

95 159666.67 20000 N.D. 356.67 1123 N.D. 
90 208000.00 18000 10000.00 386.67 783 2330.00 
85 175000.00 9333.33 14333.00 443.33 400 1180.00 
80 175666.67 18666.67 12333.00 496.67 883 1795.00 
75 138000.00 20000 11000.00 373.33 623 1850.00 
70 131000.00 4666.67 15667.00 353.33 410 1520.00 
65 157333.33 6666.67 6667.00 376.67 397 1666.67 
60 137333.33 8333.33 8667.00 616.67 363 990.00 
55 141666.67 7000 38333.00 455.00 1643 5830.00 
50 118666.67 14666.67 N.D. 1103.33 1010 N.D. 

45 109000.00 40666.67 N.D. 1106.67 1617 N.D. 

40 112333.33 47333.33 N.D. 510.00 1737 N.D. 

35 86333.33 23333.33 N.D. 496.67 2353 N.D. 

30 93666.67 50333.33 N.D. 576.67 1937 N.D. 

25 81000.00 30666.67 N.D. 483.33 1660 N.D. 

20 75500.00 168000 N.D. 706.67 1370 N.D. 

15 57666.67 31666.67 N.D. 393.33 1590 N.D. 

10 55000.00 20000 N.D. 496.67 940 N.D. 

5 11500.00 53000 N.D. 553.33 1433 N.D. 

0 15000.00 19000.00 N.D. 1033.33 1107 N.D. 

New  162666.67 13333.33 N.D. 346.67 670 N.D. 

Gau 32333.33 84000.00 N.D. 440.00 963 N.D. 

Elk 53666.67 20333.33 5233.00 563.33 1813 9120.00 
Coal 37000.00 77000.00 N.D. 763.33 3560 N.D. 

Poca  95000 64000 N.D. 1353.33 2213 N.D. 
 

a Data used for figures 11-18, and 21 
b Total cultivable and ciprofloxacin resistant average bacterial counts were reported as  
  CFU per 1 ml of sample. 
c �N.D.� designates sites were not data were reported. 
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Appendix I.  Erythromycin and tetracycline average bacterial counts reported. 
 

   Erythromycin     Tetracycline   

River 
Mile/       

Tributary 

Spring     
April 5-
6, 2004 

Summer A        
July 12-13, 2004 

Summer 
B        

August 
5, 2004 

Spring     
April 5-6, 

2004 

Summer A      
July 12-13, 

2004 

Summer 
B        

August 5, 
2004 

95 1086.67 1710 N.D. 146.67 433.3 N.D. 

90 1126.67 N.D. 2785.00 86.67 106.7 666.67 
85 1140.00 1406.7 1673.33 146.67 96.7 690.00 
80 853.33 1300 2633.33 70.00 116.7 485.00 
75 990.00 1280 1850.00 103.33 110 503.33 
70 876.67 456.7 2653.33 126.67 73.3 510.00 
65 923.33 873.3 1403.33 113.33 196.7 946.67 
60 893.33 N.D. 1690.00 116.67 73.3 423.33 
55 816.67 170 7826.67 160.00 313.3 4400.00 
50 840.00 2923.3 N.D. 196.67 1480.00 N.D. 

45 1026.67 9200 N.D. 150.00 6226.67 N.D. 

40 993.33 5275 N.D. 106.67 5046.67 N.D. 

35 823.33 2576 N.D. 133.33 1123.33 N.D. 

30 826.67 1886.7 N.D. 100.00 563.33 N.D. 

25 1236.67 1525 N.D. 150.00 600.00 N.D. 

20 1226.67 813.3 N.D. 136.67 763.33 N.D. 

15 620.00 100 N.D. 220.00 676.67 N.D. 

10 920.00 1013.3 N.D. 153.33 423.33 N.D. 

5 890.00 2593.3 N.D. 150.00 1376.67 N.D. 

0 596.67 1170 N.D. 640.00 370.00 N.D. 

New  760.00 1300 N.D. 116.67 170 N.D. 

Gau 850.00 2750 N.D. 183.33 116.7 N.D. 

Elk 780.00 1480 6460.00 123.33 190 5096.67 
Coal 1066.67 2273.3 N.D. 196.67 101.5 N.D. 

Poca  1133.33 3236.7 N.D. 406.67 690 N.D. 
 
a Data used for figures 11-18, and 21 
b Erythromycin and tetracycline resistant average bacterial counts were reported as  
  CFU per 1 ml of sample. 
c �N.D.� designates sites were not data were reported. 
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Appendix J.  Fecal coliform counts reported per 100 ml. 
 

  

           
Fecal 

Coliforms     

River 
Mile/       

Tributary 

Spring       
April 5-6, 

2004 

Summer A   
July 12-13, 

2004 

Summer 
B        

August 5, 
2004 

95 300 N.D. N.D. 

90 90 N.D. 190.00 
85 80 N.D. 180.00 
80 120 N.D. 210.00 
75 110 N.D. 3100.00 
70 110 N.D. 340.00 
65 100 N.D. 350.00 
60 150 N.D. 520.00 
55 100 N.D. 4200.00 
50 460 130.00 N.D. 

45 150 80.00 N.D. 

40 210 40.00 N.D. 

35 200 10.00 N.D. 

30 100 10.00 N.D. 

25 110 10.00 N.D. 

20 100 0.00 N.D. 

15 140 10.00 N.D. 

10 270 40.00 N.D. 

5 130 130.00 N.D. 

0 170 90.00 N.D. 

New  90 N.D. N.D. 

Gau 60 N.D. N.D. 

Elk 100 N.D. 4300.00 
Coal 200 100.00 N.D. 

Poca  420 30.00 N.D. 
 
a Data used for figures 19-21. 
b Fecal coliform average bacterial counts were reported as  
  CFU per 100 ml of sample. 
c �N.D.� designates sites were not data were reported. 
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Appendix K .  Physical parameter data collected at time of sampling. 

               Spring Summer A Summer B
                April 5-6, 2004  July 12-13, 2004         August 5, 2004

River 
Mile

Water 
Temp. °C 

Spring

Turbidity  
(NTU)     
Spring

pH       
(units) 
Spring

Water 
Temp. °C 
Summer   

A

Turbidity  
(NTU)     

Summer   
A

pH       
(units)     

Summer   
A

Water 
Temp. °C 
Summer   

B

Turbidity    
(NTU)      

Summer     
B

pH        
(units) 

Summer   
B

95 6.90 20.00 8.30 27 5 8.1 N.D. N.D. N.D.

90 7.40 14.00 8.10 27.2 3 8.3 25.4 16 8.1

85 7.50 14.00 8.10 27.8 N.D. 8.6 25.9 20 8.1

80 7.80 15.00 8.30 27.4 6 8.3 25.9 23 8.1

75 8.00 15.00 8.30 28.8 6 8.4 25.6 24 8

70 8.10 16.00 8.40 29 N.D. 8.6 26.5 21 8

65 8.30 17.00 8.40 28.7 8 8.5 26.1 28 8

60 8.40 18.00 8.30 28.6 8 8.4 26.2 23 8

55 8.40 18.00 8.00 28.8 8 8.4 26.3 19 8

50 8.10 22.00 8.10 28.7 8 8.4 N.D. N.D. N.D.

45 8.10 18.00 8.00 29 8 8.5 N.D. N.D. N.D.

40 8.20 19.00 8.00 28.4 6 8.4 N.D. N.D. N.D.

35 8.30 21.00 7.90 28.9 8 8.7 N.D. N.D. N.D.

30 8.40 25.00 8.00 28.3 11 8.2 N.D. N.D. N.D.

25 8.50 26.00 7.90 28.2 7 8.4 N.D. N.D. N.D.

20 8.40 26.00 7.90 29.3 6 8.5 N.D. N.D. N.D.

15 8.40 28.00 7.90 28.4 13 8.6 N.D. N.D. N.D.

10 8.50 31.00 7.90 28.8 23 8.5 N.D. N.D. N.D.

5 8.60 40.00 7.80 28.2 80 8.1 N.D. N.D. N.D.

0 8.90 36.00 7.90 28.5 30 8.2 N.D. N.D. N.D.

 
 
a �N.D.� designates sites where no data were reported. 
b Data used for Table 5. 
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Appendix L.   Spring Ciprofloxacin resistant bacterial impact score (range -1 to +1) 
determinations. 

River Mile 
/ 

Tributary 

Average 
Cipro 

Resistant 
per 1 ml 

Percent 
Rank IS95 IS90 IS85 IS80 

95 356.67 0.083 0 -1 -1 -1 

90 386.67 0.208 0 0 0 0 

85 443.33 0.333 0 0 0 0 

80 496.67 0.458 0 0 0 0 

75 373.33 0.125 0 0 -1 -1 

70 353.33 0.041 -1 -1 -1 -1 

65 376.67 0.166 0 0 0 -1 

60 616.67 0.75 0 0 0 0 

55 455.00 0.375 0 0 0 0 

50 1103.33 0.916 0 1 1 1 

45 1106.67 0.958 1 1 1 1 

40 510.00 0.583 0 0 0 0 

35 496.67 0.458 0 0 0 0 

30 576.67 0.708 0 0 0 0 

25 483.33 0.416 0 0 0 0 

20 706.67 0.791 0 0 0 0 

15 393.33 0.25 0 0 0 0 

10 496.67 0.458 0 0 0 0 

05 553.33 0.625 0 0 0 0 

00 1033.33 0.875 0 0 1 1 

coal 763.33 0.833 0 0 0 1 

poca 1353.33 1 1 1 1 1 

gau 440.00 0.291 0 0 0 0 

new 346.67 0 -1 -1 -1 -1 

elk 563.33 0.666 0 0 0 0 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries. 
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE 
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Appendix M.  Spring Erythromycin resistant bacterial impact score (range -1 to +1) 
determinations. 

River Mile 
/ 

Tributary 

Average 
Erythro 

Resistant 
per 1 ml 

Percent 
Rank IS95 IS90 IS85 IS80 

95 1086.67 0.791 0 0 0 0 

90 1126.67 0.833 0 0 0 1 

85 1140.00 0.916 0 1 1 1 

80 853.33 0.375 0 0 0 0 

75 990.00 0.625 0 0 0 0 

70 876.67 0.416 0 0 0 0 

65 923.33 0.583 0 0 0 0 

60 893.33 0.5 0 0 0 0 

55 816.67 0.166 0 0 0 -1 

50 840.00 0.291 0 0 0 0 

45 1026.67 0.708 0 0 0 0 

40 993.33 0.666 0 0 0 0 

35 823.33 0.208 0 0 0 0 

30 826.67 0.25 0 0 0 0 

25 1236.67 1 1 1 1 1 

20 1226.67 0.958 1 1 1 1 

15 620.00 0.041 -1 -1 -1 -1 

10 920.00 0.541 0 0 0 0 

05 890.00 0.458 0 0 0 0 

00 596.67 0 -1 -1 -1 -1 

coal 1066.67 0.75 0 0 0 0 

poca 1133.33 0.875 0 0 1 1 

gau 850.00 0.333 0 0 0 0 

new 760.00 0.083 0 -1 -1 -1 

elk 780.00 0.125 0 0 -1 -1 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries. 
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE 
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Appendix N. Spring Tetracycline resistant bacterial impact score (range -1 to +1) 
determinations. 

River Mile 
/ 

Tributary 

Average 
Tet 

Resistant 
per 1 ml 

Percent 
Rank IS95 IS90 IS85 IS80 

95 146.67 0.5 0 0 0 0 

90 86.67 0.041 -1 -1 -1 -1 

85 146.67 0.5 0 0 0 0 

80 70.00 0 -1 -1 -1 -1 

75 103.33 0.125 0 0 -1 -1 

70 126.67 0.375 0 0 0 0 

65 113.33 0.208 0 0 0 0 

60 116.67 0.25 0 0 0 0 

55 160.00 0.75 0 0 0 0 

50 196.67 0.833 0 0 0 1 

45 150.00 0.583 0 0 0 0 

40 106.67 0.166 0 0 0 -1 

35 133.33 0.416 0 0 0 0 

30 100.00 0.083 0 -1 -1 -1 

25 150.00 0.583 0 0 0 0 

20 136.67 0.458 0 0 0 0 

15 220.00 0.916 0 1 1 1 

10 153.33 0.708 0 0 0 0 

05 150.00 0.583 0 0 0 0 

00 640.00 1 1 1 1 1 

coal 196.67 0.833 0 0 0 1 

poca 406.67 0.958 1 1 1 1 

gau 183.33 0.791 0 0 0 0 

new 116.67 0.25 0 0 0 0 

elk 123.33 0.333 0 0 0 0 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries. 
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE 



 

 102

Appendix O. Spring Fecal Coliforms impact score (range -1 to +1) determinations. 
 

River Mile 
/ 

Tributary 

Average 
Fecal 

Coliforms/ 
100 ml 

Percent 
Rank  IS95 IS90 IS85 IS80 

95 300.00 0.916 0 1 1 1 

90 90.00 0.083 0 -1 -1 -1 

85 80.00 0.041 -1 -1 -1 -1 

80 120.00 0.5 0 0 0 0 

75 110.00 0.375 0 0 0 0 

70 110.00 0.375 0 0 0 0 

65 100.00 0.166 0 0 0 -1 

60 150.00 0.625 0 0 0 0 

55 100.00 0.166 0 0 0 -1 

50 460.00 1 1 1 1 1 

45 150.00 0.625 0 0 0 0 

40 210.00 0.833 0 0 0 1 

35 200.00 0.75 0 0 0 0 

30 100.00 0.166 0 0 0 -1 

25 110.00 0.375 0 0 0 0 

20 100.00 0.166 0 0 0 -1 

15 140.00 0.583 0 0 0 0 

10 270.00 0.875 0 0 1 1 

05 130.00 0.541 0 0 0 0 

00 170.00 0.708 0 0 0 0 

coal 200.00 0.75 0 0 0 0 

poca 420.00 0.958 1 1 1 1 

gau 60.00 0 -1 -1 -1 -1 

new 90.00 0.083 0 -1 -1 -1 

elk 100.00 0.166 0 0 0 -1 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries. 
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE 
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Appendix P.  Summer Ciprofloxacin resistant bacterial impact score (range -1 to +1) 
determinations. 

River Mile 
/ 

Tributary 

Average 
Cipro 

Resistant 
per 1 ml 

Percent 
Rank IS95 IS90 IS85 IS80 

95  N.D. N.D.  N.D.   N.D.   N.D.   N.D.   

90 2330 0.809 0 0 0 1 

85 1180 0.19 0 0 0 0 

80 1795 0.619 0 0 0 0 

75 1850 0.666 0 0 0 0 

70 1520 0.333 0 0 0 0 

65 1667 0.523 0 0 0 0 

60 990 0.047 -1 -1 -1 -1 

55 6167 0.952 1 1 1 1 

50 1010 0.095 0 -1 -1 -1 

45 1617 0.428 0 0 0 0 

40 1737 0.571 0 0 0 0 

35 2353 0.857 0 0 1 1 

30 1937 0.714 0 0 0 0 

25 1660 0.476 0 0 0 0 

20 1370 0.238 0 0 0 0 

15 1590 0.38 0 0 0 0 

10 940 0 -1 -1 -1 -1 

05 1433 0.285 0 0 0 0 

00 1107 0.142 0 0 -1 -1 

coal 3560 0.904 0 1 1 1 

poca 2213 0.761 0 0 0 0 

gau N.D. N.D. N.D. N.D. N.D. N.D. 

new N.D. N.D. N.D. N.D. N.D. N.D. 

elk 9120 1 1 1 1 1 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries.       
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE .                                       d �N.D.� = No Data Reported. 
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Appendix Q.  Summer Erythromycin resistant bacterial impact score (range -1 to +1) 
determinations. 

River Mile 
/ 

Tributary 

Average 
Erythro 

Resistant 
per 1 ml 

Percent 
Rank IS95 IS90 IS85 IS80 

95  N.D.  N.D.   N.D.   N.D.   N.D.   N.D.   

90 2785.00 0.714 0 0 0 0 

85 1673.33 0.285 0 0 0 0 

80 2633.33 0.619 0 0 0 0 

75 1850.00 0.38 0 0 0 0 

70 2653.33 0.666 0 0 0 0 

65 1403.33 0.19 0 0 0 -1 

60 1690.00 0.333 0 0 0 0 

55 7826.67 0.952 1 1 1 1 

50 2923.33 0.761 0 0 0 0 

45 9200.00 1 1 1 1 1 

40 5275.00 0.857 0 0 1 1 

35 2576.67 0.523 0 0 0 0 

30 1886.67 0.428 0 0 0 0 

25 1525.00 0.238 0 0 0 0 

20 813.33 0 -1 -1 -1 -1 

15 1070.00 0.095 0 -1 -1 -1 

10 1013.33 0.047 -1 -1 -1 -1 

05 2593.33 0.571 0 0 0 0 

00 1170.00 0.142 0 0 -1 -1 

coal 2273.33 0.476 0 0 0 0 

poca 3236.67 0.809 0 0 0 1 

gau N.D.   N.D.   N.D.   N.D.  N.D.  N.D.  

new N.D.   N.D.   N.D.   N.D.  N.D.  N.D.  

elk 6460.00 0.904 0 1 1 1 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries.                             
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE.                      d �N.D.� = No Data Reported 
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Appendix R. Summer Tetracycline resistant bacterial impact score (range -1 to +1) 
determinations. 

River Mile 
/ 

Tributary 

Average 
Tet 

Resistant 
per 1 ml 

Percent 
Rank IS95 IS90 IS85 IS80 

95 N.D. N.D. N.D. N.D. N.D. N.D. 

90 666.67 0.38 0 0 0 0 

85 690.00 0.476 0 0 0 0 

80 485.00 0.142 0 0 -1 -1 

75 503.33 0.19 0 0 0 -1 

70 510.00 0.238 0 0 0 0 

65 946.67 0.619 0 0 0 0 

60 423.33 0.047 -1 -1 -1 -1 

55 4400.00 0.857 0 0 1 1 

50 1480.00 0.809 0 0 0 1 

45 6226.67 1 1 1 1 1 

40 5046.67 0.904 0 1 1 1 

35 1123.33 0.714 0 0 0 0 

30 563.33 0.285 0 0 0 0 

25 600.00 0.333 0 0 0 0 

20 763.33 0.571 0 0 0 0 

15 676.67 0.428 0 0 0 0 

10 423.33 0.047 -1 -1 -1 -1 

05 1376.67 0.761 0 0 0 0 

00 370.00 0 -1 -1 -1 -1 

coal 1015.00 0.666 0 0 0 0 

poca 690.00 0.476 0 0 0 0 

gau N.D. N.D. N.D. N.D. N.D. N.D. 

new N.D. N.D. N.D. N.D. N.D. N.D. 

elk 5096.67 0.952 1 1 1 1 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries. 
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE.                              d �N.D.� = No Data Reported. 
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Appendix S.  Summer Fecal Coliform impact score (range -1 to +1) determinations. 
 

River Mile 
/ 

Tributary 

Average 
Fecal 

Coliforms 
per 100 ml 

Percent 
Rank  IS95 IS90 IS85 IS80 

95 N.D. N.D. N.D. N.D. N.D. N.D. 

90 190.00 0.666 0 0 0 0 

85 180.00 0.619 0 0 0 0 

80 210.00 0.714 0 0 0 0 

75 3100.00 0.904 0 1 1 1 

70 340.00 0.761 0 0 0 0 

65 350.00 0.809 0 0 0 1 

60 520.00 0.857 0 0 1 1 

55 4200.00 0.952 1 1 1 1 

50 130.00 0.523 0 0 0 0 

45 80.00 0.38 0 0 0 0 

40 40.00 0.285 0 0 0 0 

35 10.00 0.047 -1 -1 -1 -1 

30 10.00 0.047 -1 -1 -1 -1 

25 10.00 0.047 -1 -1 -1 -1 

20 0.00 0 -1 -1 -1 -1 

15 10.00 0.047 -1 -1 -1 -1 

10 40.00 0.285 0 0 0 0 

05 130.00 0.523 0 0 0 0 

00 90.00 0.428 0 0 0 0 

coal 100.00 0.476 0 0 0 0 

poca 30.00 0.238 0 0 0 0 

gau N.D. N.D. N.D. N.D. N.D. N.D. 

new N.D. N.D. N.D. N.D. N.D. N.D. 

elk 4300.00 1 1 1 1 1 
a  Individual site Impact Scores (IS) were determined for the 95th (IS95), 90th  (IS90), 85th (IS85), and 80th 

(IS80) percentile boundaries.                         
b Impact scores were interpreted as �-1� = less impacted, �0� = impacted, and �1� = more impacted. 
c Data used for Appendix T-Z, AA, and AE.                                 d �N.D.� = No Data Reported 
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Appendix T.  Relative Impact Scores (range -4 to 4) for Spring and Summer using the 
90th percentile boundary (IS90).  

 
River Mile 

or 
Tributary 

a Site Designation 
b c Spring 

IS90 
b c Summer 

IS90 

New River 
                   T         -3       N.D. 

Gauley T -1 N.D. 
95                 U 0 N.D. 
90 U -2 0 
85 U 0 0 
80 U -1 0 
75 U 0 1 
70 U -1 0 
65 U 0 0 
60 U 0 -2 
Elk T 0 4 
55 U 0 3 
50 L         2 -1 

Coal T 0 1 
45 L 1 2 

Pocatalico T 3 0 
40 L 0 1 
35 L 0 -1 
30 L -1 -1 
25 L 1 -1 
20 L 1 -2 
15 L 0 -2 
10 L 0 -3 
5 L 0 0 
0 L 0 -1 

 
 Data used for Appendix W, X, and Y figures. 
 
Individual impact scores (IS) for each sampling season (spring or summer); 
ciprofloxacin-resistant (Appendix L or P), erythromycin-resistant (Appendix M or Q), 
tetracycline-resistant (Appendix N or R), and fecal coliform bacteria (Appendix O or S), 
were combined to give a Relative IS.  The range of -4 to +4 is based on the 4 variables 
being tested (3 antibiotics, and fecal coliforms). 
 
a Designation of U (Upper Kanawha between river miles KR95-KR55), L (Lower Kanawha between river 
miles KR50-KR00), or T (Tributary) indicates the region of the River or Tributary entering the river.  
 

b Fields highlighted in red indicates an impacted area. 
 

c Fields highlighted in blue indicates less impact. 
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Appendix U.  Relative Impact Scores (range -4 to 4) for Spring and Summer using the 
85th percentile boundary (IS85).  

 
River Mile 

or 
Tributary 

a Site Designation 
b c Spring 

IS85 
b c Summer 

IS85 

New River 
                   T        -3 N.D. 

Gauley   T -1 N.D. 
95                    U 0 N.D. 
90 U -2 0 
85 U 0 0 
80 U -1 -1 
75 U -2 1 
70 U -1 0 
65 U 0 0 
60 U 0 -1 
Elk T        -1 4 
55 U 0 4 
50 L         2 -1 

Coal T 0 1 
45 L 1 2 

Pocatalico T 4 0 
40 L 0 2 
35 L 0 0 
30 L -1 -1 
25 L 1 -1 
20 L 1 -2 
15 L 0 -2 
10 L 1 -3 
5 L 0 0 
0 L 1 -3 

 
 Data used for Appendix Z, AA, and AE figures. 
 
Individual impact scores (IS) for each sampling season (spring or summer); 
ciprofloxacin-resistant (Appendix L or P), erythromycin-resistant (Appendix M or Q), 
tetracycline-resistant (Appendix N or R), and fecal coliform bacteria (Appendix O or S), 
were combined to give a Relative IS.  The range of -4 to +4 is based on the 4 variables 
being tested (3 antibiotics, and fecal coliforms). 
 
a Designation of U (Upper Kanawha between river miles KR95-KR55), L (Lower Kanawha between river 
miles KR50-KR00), or T (Tributary) indicates the region of the River or Tributary entering the river.  
 

b Fields highlighted in red indicates an impacted area. 
 

c Fields highlighted in blue indicates less impact. 
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Appendix V.  Relative Impact Scores (range -4 to 4) for Spring and Summer using the 
80th percentile boundary (IS8o).  

 
River Mile 

or 
Tributary 

a Site Designation 
b c Spring 

IS80 
b c Summer 

IS80 

New River 
                   T        -3 N.D. 

Gauley   T -1 N.D. 
95                    U 0 N.D. 
90 U -2 1 
85 U 0 0 
80 U -1 -1 
75 U -2 0 
70 U -1 0 
65 U 0 0 
60 U 0 -1 
Elk T        -1 4 
55 U 0 4 
50 L         2 0 

Coal T 0 1 
45 L 1 2 

Pocatalico T 4 1 
40 L 0 2 
35 L 0 0 
30 L -1 -1 
25 L 1 -1 
20 L 1 -2 
15 L 0 -2 
10 L 1 -3 
5 L 0 0 
0 L 1 -3 

 
 Data used for Appendix AC, AD, and AE figures. 
 
Individual impact scores (IS) for each sampling season (spring or summer); 
ciprofloxacin-resistant (Appendix L or P), erythromycin-resistant (Appendix M or Q), 
tetracycline-resistant (Appendix N or R), and fecal coliform bacteria (Appendix O or S), 
were combined to give a Relative IS.  The range of -4 to +4 is based on the 4 variables 
being tested (3 antibiotics, and fecal coliforms). 
 
a Designation of U (Upper Kanawha between river miles KR95-KR55), L (Lower Kanawha between river 
miles KR50-KR00), or T (Tributary) indicates the region of the River or Tributary entering the river.  
 

b Fields highlighted in red indicates an impacted area. 
 

c Fields highlighted in blue indicates less impact. 
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