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ABSTRACT 
 

Estimation of the Effects of Vegetation on Local Climate 
Using GIS and Remote Sensing Data 

 
By Won Hoi Hwang 

 

As one of the effective methods to control urban temperatures, the 
effects of trees and other vegetation have come into focus. Geographic 
Information System (GIS) and remote sensing data, Digital Orthophoto 
Quarter-Quadrangle (DOQQ) and Landsat Thematic Mapper (Landsat 
TM), have been applied in this study to analyze the UHI. The effect of 
road-side trees on local micro-climate was examined with in-situ 
temperature measurement and simulated shade. Regression analyses 
revealed significant negative slopes for all time periods. This trend 
continued throughout the entire night until sunrise the next morning. The 
relationship between thermal patterns and vegetation distributions was 
investigated using the Landsat TM images. The result of regression 
analyses showed that vegetation affects surface temperature across study 
sites. Where the higher the Normalized Difference Vegetation Index 
(NDVI), the surface temperature was lower. It was observed in most 
seasons except winter. This relationship became stronger into summer, 
and then weaker into autumn. 
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CHAPTER I 
 

Introduction 
 

 Rapid urbanization and industrialization have induced numerous 

environmental problems. Especially, urbanization has produced significant changes in the 

surface and atmospheric properties that can cause climate changes in most cities (Kim et 

al. 2002). A well known phenomenon is the urban heat island (UHI), which can be 

caused by various factors such as increased anthropogenic heat, reduced water 

evaporation, and increased flux in short wave absorption by the urban canopy, which is 

the assemblage of buildings, trees, and other objects composing a town or city and the 

spaces between them. Configurations of the urban canopy are characterized by building 

coverage, canopy height, orientation of roads, and building height distribution (Kondo et 

al. 2001). The urban heat island refers to the phenomenon where the temperatures of the 

urbanized areas are higher than those in the surrounding suburban and rural areas 

(Streutker 2002 and Kim et al. 2004). It also causes “warmer nighttime temperatures in 

the core of the built environment when compared with the surrounding rural environment” 

(Hawkins et al. 2004). 

Since the UHI phenomenon was first observed in large urban areas, it has been 

studied in various aspects by many researchers for the past forty years. As one element of 

regional climate phenomena, UHI studies have been conducted worldwide. For example, 

UHI studies using remote sensing data (Table 1) have been conducted in St. Louis, 

Missouri (Vukovich, 1997), Seoul, Korea (Lee, 1993), thirty seven cities in the United 

States (Johnson et al. 1994), Huntsville, Alabama (Lot et al. 1997), Vancouver, British 

Columbia, Canada (Owen et al. 1998 and Voogt and Grimmond 2000), Houston, Texas 

(Streuker 2002), the Tokyo metropolitan area in Japan (Hirano et al. 2004), and 

Indianapolis City, Indiana (Weng et al. 2004). 

Recent researches into urban climates were summarized by Arnfield (2003) and 

McKendry (2003). Arnfield classified UHI studies into three categories: observational 



2 
 

Table 1 UHI studies using remote sensing data 

Author RS Data Time Resolution Study Area 
Carlson and Arthur (2002) AVHRR1 1986 to 1987 1.1Km Philadelphia, Pennsylvania 
Gallo and Tarpley (1996) AVHRR June to August 1991 1.1Km 28 cities in the US 
Hafner and Kidder (1999) AVHRR February 1.1km Georgia 
Hirano et al. (2004) JERS-12 July 1997 100m Tokyo metropolitan area 
Johnson et al. (1994) AVHRR July 1989 1.1km 37 cities in the US 
Lee (1993) AVHRR - 1.1km Seoul, Korea 
Lo et al. (1997) ATLAS September 1994 5m Huntsville, Alabama 
Owen et al. (1998) AVHRR 1985 to 1994 1.1km State College, Pennsylvania 
Rosenzweig et al. (2006) Landsat ETM+ August 2002 30m New York, New York 
Streutker (2002) AVHRR April 1998 to January 2000 1.1km Houston, Texas 

Vukovich (1983) HCMM3 June 1978, February 1979, 
and September 1979 500m St. Louis, Missouri 

Weng (2001) Landsat TM 1989 to 1997 120m Zhujiang Delta, China 
Weng (2003) Landsat TM December 1989, March 1996, 

and August 1997 
120m Guangzhou, China 

Weng et al. (2004) Landsat ETM+3 June 2000 30m Indianapolis City Indiana 
1 AVHRR: Advanced Very High Resolution Radiometer 
2 JERS-1: Japanese Earth Resources Satellite-1 
3 HCMM: Heat Capacity Mapping Mission 
4 Landsat ETM+: Landsat Enhanced Thematic Mapper Plus 
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studies, determinants of UHI, and large-scale UHI studies (Table 2). Observational 

studies focus on the UHI by observing the existing situation or condition of the UHI. The 

studies, which focus on the empirical generalization of the UHI, belong to the second 

category: determinants of the UHI. Large-scale studies generalize the UHI model at large 

scales. 

Most UHI studies are observational studies. For example of the observational 

studies, the UHI phenomenon of the metropolitan area of Washington, District of 

Columbia has been analyzed by Kim (1992). Kim focused on the changes and causes of 

urban heating and discovered that urban heating was influenced by the rapid heating of 

urban surface such as buildings, asphalt, bare-soil, and short grass. 

The existing states of intensity, spatial and temporal structures, and determinants 

of the UHI in Seoul, Korea were investigated by Kim and Baik (2002, 2004, and 2005). 

They found that the previous-day maximum UHI intensity, among the four predictors 

(the previous day, wind speed, cloudiness, and relative humidity), was the most 

correlated with the maximum UHI intensity (2002). They studied the trend of average  

 

Table 2 UHI study trends by Arnfield and vegetation related studies 

Trends References 

Observational Studies Kim (1992), Kim and Baik (2002, 2004, and 2005), 
Gedzelman et al. (2003), and Li et al. (2004) 

Determinants of the UHI Weng (2001), Morris et al. (2001), Streutker (2002), 
Hawkins et al. (2004), Grimmond and Oke (1999), Owen et 
al. (1998), and Hirano et al. (2004) 

Large-scale UHI studies Atkinson (2003), Hafner and Kidder (1999) 

Vegetation related studies Carlson and Arthur (2000), Heisler (1986), Owen et al. 
(1998), Scott et al. (1999), Spronken-Smith and Oke 
(1998), Rosenzweig et al. (2006), Nowak et al. (2002 and 
2006), and Weng et al. (2004) 
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annual maximum UHI intensities, which was smaller in coastal cities than in inland cities 

(2004) and the UHI in Seoul, which was stronger in the nighttime and on weekdays than 

in the daytime and on weekends (2005). 

The trend of the UHI in New York City (NYC) was analyzed by using a meso-

scale analysis, which ranges from a few to several hundred kilometers (Gedzelman et al. 

2003). They found that the UHI in NYC increased in the afternoon, continued during the 

night, and decreased rapidly after dawn in all seasons. Li et al. (2004) studied the 

correlation between the UHI and annual temperature in China. They discovered that the 

UHI effect in cities, which have a population over ten thousand, affected the annual mean 

temperatures, such as increase of the average values, decrease of variances and change of 

climatic trends, depending on regions. 

While observational studies have shown the general phenomena of the UHI, other 

researchers have studied the specific determinants of the UHI. The relationship between 

urban growth and surface temperature in China has been studied by Weng (2001).  

By using remote sensing and GIS, Weng found that urban growth patterns in the 

Zhujiang Delta, China caused surface radiant temperatures to increase. With wind and 

cloud data over twenty years, the development of the UHI in temperatures to Melbourne, 

Australia was limited to increasing wind speed, turbulent transport and the features on 

urban environments that affect urban air temperature in clear sky and calm wind 

condition (Morris et al. 2001).  

The changes of the difference between urban and rural temperatures have been 

studied as one of the determinants of the UHI (Streutker 2002 and Hawkins et al. 2004).  

Streuker found that the UHI magnitude, the difference in temperature between urban and 

rural areas, was correlated inversely with rural temperature (Streutker 2002). Depending 

on the land coverage classes in rural areas, the average UHI effect was distributed form 

9°C to 12°C and the maximum UHI effect ranged from 10.7°C to 14.6°C (Hawkins et al. 

2004). 

Some researchers have focused on heat flux, a significant component of urban 

areas. Grimmond and Oke (1999) have found that the storage heat flux, an important 
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component of the energy balance in urban areas, is the greatest in more urbanized sites, 

such as downtown and industrial areas. The impacts of surface condition or land coverage 

parameters on the UHI have been studied by Owen et al. (1998) and Hirano et al. (2004). 

Owen et al. (1998) studied the relationship between land coverage changes and climate 

effect. They found that the change of the urban land coverage was significantly correlated 

to the decrease of fractional vegetation coverage and the increase of surface radiant 

temperatures. Hirano et al. (2004) focused on the relationship between vegetation 

coverage distribution and urban climate. Their study revealed that the difference of air 

temperature between vegetation and non-vegetation land cover condition was up to 1.5°C. 

Areas with decreased vegetation abundance and increased residence were warmer than 

areas with low-rise residential areas in Tokyo, Japan. 

Generalizing or modeling UHI phenomena belong to the large-scale UHI studies. 

It adopts surface parameters or remotely sensed data to observe the large-scale land use 

zones. For example, Atkinson (2003) has established numerical modeling of the UHI 

intensity and showed the difference between the daytime UHI and the nighttime UHI. 

The individual effects, which are caused by Albedo, anthropogenic heat, emissivity, sky-

view factor, and thermal inertia, ranged from 0.2°C to 0.8°C in the daytime and from 

0.3°C to 0.75°C at night. A hydrostatic three-dimensional meso-scale model was 

performed to investigate the effect of the surface parameters using Advanced Very High 

Resolution Radiometer (AVHRR) satellite data by Hafner and Kidder (1999). 

A variety of studies focused on the effect of trees and other vegetation on the 

urban environment (Table 2). Scott et al. (1999) focused on the effect of tree cover on 

parking lots. Trees created shade, and it keeps the surface and air temperature cool. They 

observed temperature differences between shaded and exposed site by collecting surface 

and air temperature data. The shaded sites were cooler than exposed sites and the 

maximum difference of surface temperature was 39°C during the warm period, August 5 

to 7 in 1995. The differences of air temperature between shaded and exposed sites were 

observed. The difference was 1.3°C during the warm period. However, the difference of 

air temperatures was smaller than that of the surface temperatures. Also, they found that 

the tree shade affected fuel-tank temperatures of parked cars. The highest temperature of 



6 
 

the fuel-tank interior parked at exposed area was recorded 38.6°C. These temperature 

differences had influence on emission of oxides of nitrogen (NOx) and hydrocarbons in 

the form of reactive organic gases (ROGs). Due to reducing the temperature of fuel-tank 

for shaded vehicles, lower level of gases emitted from the fuel-tank. For example, the 

amount of ROG emission at 50% canopy coverage site was 0.85 tons per day (tpd) less 

than 8% canopy coverage site. NOx emission was reduced 0.1tpd at the 50% canopy 

coverage sites. 

The influences of urban parks were studied by Spronken-Smith and Oke (0998) 

and Rosenzweig et al. (2006), while Scott et al. studied the effect of trees on the local 

micro-climate. Spronken-Smith and Oke discovered that vegetated urban parks affected 

surface and air temperatures in Vancouver, BC and Sacramento, CA. Based on the 

surface and air temperature, parks create cool islands (cool island effect; PCI). This study 

showed that park’s temperature in Vancouver, BC could be 5°C cooler and temperature 

in Sacramento, CA could be 5-7°C cooler than the park’s surroundings, if parks are in the 

best conditions. However, the type of parks is an important factor in PCI effect. In the 

PIC effect, trees had a significant role through shade by tree canopy and evaporative 

cooling. If park’s surface is dry grass, it might be warmer than park’s surrounding, due to 

rapid heating and cooling. 

Rosenweig et al. (2006) focused on mitigating elements of the UHI in New York 

City, such as urban forestry, living roofs, and light surfaces. In this study, they used a 

regional climate model (MM5) and geographic information system (GIS) to decide the 

characteristics of the NYC’s UHI. Based on the result of this study, vegetation reduced 

temperature effectively more than other elements. However, light surfaces were the most 

effective element on dropping temperature in NYC, due to the large proportion of 

developed areas. 

The relationship between surface temperature and vegetation was study by Weng 

et al. (2004), Carlson and Arthur (2000), and Owen et al. (1998). Weng et al. (2004) 

focused on vegetation fraction as an indicator of vegetation abundance instead of the 

NDVI. Vegetation abundance was one of important factors to determine the surface 
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temperature. Result shows that unmixed vegetation fraction was negatively correlated 

with the surface temperature stronger than NDVI for all land cover types.  

On the other hand, Carlson and Arthur (2000) and Owen et al. (1998) studied the 

effect of land coverage changes on surface temperature. Through developing and 

analyzing land coverage parameters using remote sensed data, Carlson and Arthur found 

that temperature became higher, as vegetation grew smaller due to the urbanization. 

Owen et al. (1998) focused on the effect of urbanization on urban climate using two land 

cover parameters, fractional vegetation cover and surface moisture availability. Land 

cover changes in urban area affected on the fractional vegetation cover and surface 

temperature. As a result of this study, decreased vegetation coverage, which was 

influenced by urbanization, was correlated with increasing surface temperature.  

Another benefit of tree is energy savings. Trees had influence on the energy use in 

buildings through blocking solar radiation and wind (Heisler, 1986). Although the 

amount of energy saving differ with climate, depending on the spacious and locations, up 

to twenty five percent of annual space conditioning energy could be saved in the best 

condition with trees in an optimum arrangement, compared to the same house in an open 

field. 

Nowak et al. (2002 and 2006) focused on the trees’ effect on carbon storage and 

sequestration and air pollutant removal by urban trees. They observed that urban trees in 

the U.S. stored 700 million tons of carbon, while trees annually eliminated 22.8 million 

tons of carbon (Nowak et al. 2002). The level of atmospheric carbon dioxide was affected 

by the amount of tree canopy and proportions of large trees. Also, trees had a significant 

role in the removal of air pollutants, such as carbon monoxide (CO), hydrocarbon, nitro 

dioxide (NO2), surfer dioxide (SO2), and ozone (O3) (2006). Approximately, 0.7 million 

metric tons of total annual air pollution were removed by urban trees. The amount of 

pollution removal was affected by several factors, such as the amount of tree cover, 

length of in-leaf season, and meteorological variables which had influenced on urban 

trees. 

 



8 
 

Objectives 
 

The purpose of this study is twofold: 1) to investigate the effect of road-side trees 

on the local micro-climate in residential areas in a day and 2) to examine the relationship 

between vegetation distributions and thermal patterns across the year through the use of 

remotely sensed data. 
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CHAPTER II 

 

Study Area 
 

The study site, the City of Huntington, is located in the Southwest part of the 

State of the West Virginia along the Ohio River. Huntington is the largest City in the 

Huntington – Ashland, West Virginia (WV) – Kentucky (KY) – Ohio (OH) Metropolitan 

Statistical Area (MSA) and the second largest city in West Virginia, following Charleston, 

the Capital (Figure 1). 

 

Figure 1 The Huntington - Ashland, WV-KY-OH Metropolitan Statistical Area 

 

Figure 2 shows the central part of Huntington which displays a gradient of 

increasing urbanization from south to north. The south part of Huntington is covered by 

forest hills with scattered residences. Residential areas, commercial areas, and the 
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downtown business district follow the forest area from south to north. The State of Ohio 

is located across the Ohio River. 

 

Figure 2 Study area in the City of Huntington, WV (Study sites, A: industrial area, B: Marshall 
University’s Campus, C: Downtown, D: Forest, E: Residential area 1, and F: Residential area 2) Image 
source: DOQQ images created on April 3, 1997 

 

Residential areas in southern Huntington have large and mature trees along the 

street. Commercial areas have lower buildings and larger proportions of selected surfaces 

than residential areas. Along the Ohio River, the downtown and industrial areas are 

located. 

 

Materials 
 

Two kinds of remotely sensed images were used in this study: Digital Orthophoto 

Quarter-Quadrangle (DOQQ) images and Landsat Thematic Mapper (Landsat TM) 

images (Table 3).  

DOQQ images (1m resolution, east and west side of Huntington, WV) were used 

for digitizing the study sites and as a reference image. DOQQ images in this study were 

created on April 3, 1997. 
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Twelve Landsat TM images (30m resolution, Path 33 or 34 and Row 33), spread 

across the year, with low cloud cover were acquired. These images were used to calculate 

the Normalized Difference Vegetation Index (NDVI) from the Red and Near Infrared 

(NIR) channels and to examine the relationship between vegetation distributions and 

surface temperatures as derived from thermal infrared red channel (Band 6, NIR). One of 

the Landsat TM images, acquired on July 25, 2005, coincided with the time of the study 

of the effect of road-side trees on the local micro-climate. Landsat TM images in this 

study were downloaded from the Ohio View website (http://www.ohioview.org). 

Both images, DOQQ and Landsat TM, in this study were referenced to the 

projection, Universal Transverse Mercator (UTM) Zone 17N, with the datum of the 

World Geodetic System (WGS) 1984. 

 

Table 3 Landsat Thematic Mapper images used in this study 

Path Row Date of 
Acquisition Unique Identification Landsat  Sensor Cloud 

cover (%) 
18 33 11/27/2004 0800411270127_0001 5 TM 0 
19 33 1/21/2005 0800501220185_00003 5 TM 0 
18 33 2/15/2005 0800502150140_00004 5 TM 30 
18 33 4/4/2005 0110504070012_00003 5 TM 0 
18 33 5/6/2005 0800505070054_00003 5 TM 0 
19 33 5/29/2005 0800505290025_00003 5 TM 0 
18 33 6/23/2005 0800506240091_00003 5 TM 0 
18 33 7/9/2005 0800507090108_00003 5 TM 0 
18 33 7/25/2005 0800507260120_00001 5 TM 20 
18 33 9/11/2005 08005090110029_00003 5 TM 0 
18 33 10/29/2005 08005010290072_00002 5 TM 0 
18 33 8/13/2006 0800608130011_00003 5 TM  
18 33 12/3/2006 0110701250035_00007 5 TM  
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Methodologies 
 

The Effect of Road-side Trees on Local Micro-Climate 
 

To examine the effect of road-side trees on local micro-climate, residential area 1 

(E in Figure 2: second to eighth street and eleventh and twelfth Avenue in Huntington, 

WV) was used. Along the twelve block of the study site, all trees, which are growing 

between side-walk and street, were mapped by digitizing and address matching. The trees’ 

canopy width were measured and recorded into the street. The roads were digitized from 

the DOQQ reference images (1m cell size). 

Temperature sites were selected and mapped in locations of various levels of 

shade, based on a visual evaluation of shading level, such as exposed (Sun, 0), morning 

shade (1), evening shade (2), afternoon shade and evening sun (3), and shade (4). 

Temperatures of selected temperature sites had been measured three times a day 

(afternoon, evening, and next morning before sunrise) during a summer heat wave in 

2005 that coincide with satellite over-passes, using hand-held thermal infrared 

thermometers. Tree heights had been calculated by comparing tree height with the width 

of the street on photographs. 

Because the initial evaluation of shade was assessed only qualitatively, a more 

quantitative measure of shading level was needed. In order to make a three-dimensional 

canopy for shading analysis, a slope with a flattop was simulated for the trees (Figure 3). 

For this purpose, trees along the streets were classified into six groups by height (short: 0-

10m, medium: 10-20m, and tall: 20-30m) and direction (south and north in each Avenue). 

Three extents of canopy widths were digitized for each tree using buffer analysis in ESRI 

ArcMap: half width for the top quarter for the tree, three quarter width for the second 

quarter of the height, and full width from the middle down to the ground. However, the 

raised crown and trunk under the canopy were not simulated. 

A three-dimensional surface of the canopy height was created through overlaying 

all canopy widths with their associated heights into a raster (Figure 4). 
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Figure 3 Simulated canopy shape 

 

Figure 4 Canopy height estimations of road-side trees 
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Shading of this canopy elevation raster was simulated in one hour intervals for a 

day during a heat wave for which ground temperatures were collected on July 24, 2005 

using sun altitude and azimuth data acquired from the U.S. Naval Observatory 

(aa.usno.navy.mil) by Hillshade analysis in ESRI ArcMap (Figure 5). 

 

 

Figure 5 Shade simulations for 10:00 A.M. on July 24, 2005 

 

 

Each simulated shade image was reclassified into shade (1) and exposed (0). 

Every reclassified image was combined to estimate the frequency of the pixels which 

were exposed to sun over the day (Figure 6). 

Shade levels (independent variable) were regressed against surface temperatures 

(dependent variable) for each measured daytime: in the afternoon, evening after sunset, 

and the next morning before sunrise. 
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Figure 6 Combined shade simulations for daylight with 1 hour intervals on July 24, 2005 

 

 

The relationship between vegetation and surface temperature detected 
from the satellite images 
 

Six study site of eight to twelve blocks each in Huntington, WV were selected: 

two residential areas, the downtown business district, Marshall University’s campus, an 

industrial area, and one forest (Figure 1). Each study site has its own characteristics. Four 

of the study sites were selected as representative for typical city-rural land use gradient 

with varying vegetation cover: forest (fully vegetated), two residential areas (well 

vegetated), and downtown (little vegetated). Six study sites were digitized from the 

reference images, DOQQ. 

The Normalized Difference Vegetation Index (NDVI) was calculated from every 

Landsat TM image using the following NDVI formula (Figure 7): 
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34
34

BandBand
BandBandNDVI

+
−

=  

 

Where: 

 Band 3: Red 

 Band 4: Near Infrared (NIR) 

 

 

Figure 7 NDVI patterns on July 9, 2005 (study sites, A: industrial area, B: Marshall University, C: 
downtown, D: forest, E: residential area 1, and F: residential area 2) 

 

NDVI and thermal infrared (Band 6, TIR) were extracted from the Landsat TM 

images for each pixel within the study area. Digital Numbers (DN) of the TIR channel 

were converted to degree Celsius through the following formula from the website, Center 

for Earth Observation at Yale University (http://www.yale.edu/ceo) (Figure 8): 

 

CVR = G (CVDN) + B 

Where: 

 CVR: the cell value as radiance 

 CVDN: the cell value digital number 
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 G: the gain values from the header file of Landsat TM image 

 B: the bias (or offset) from the header file of Landsat TM image 

 

)ln( 12

1

+
=

RCV
K
KT  

Where: 
 T: degrees, Kelvin 

 K1: 607.76 for TM 

 K2: 1260.56 for TM 
 

T (°C) = T (K) – 273 

Where: 

 T (°C): surface temperature 

 

 

Figure 8 Celsius patterns on July 9, 2005 (study sites, A: industrial area, B: Marshall University, C: 
downtown, D: forest, E: residential area 1, and F: residential area 2) 
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Linear regressions were performed with surface temperatures as the dependent 

variable and the NDVI as the independent variable by study sites and monthly period. 

Regression analysis was repeated monthly for the call combined study sites, and 

individual study sites. In addition to the four study sites (forest, residential area 1 and 2, 

and downtown), which represent a typical vegetation gradient from rural areas into cities, 

were combined and analyzed by regression analysis to examine changes in the 

relationship between NDVI and surface temperature for a wide range of vegetation cover 

across the year. The slope was extracted and plotted against the month for all combined 

study sites, each study site separately and the four combined study sites. 
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CHAPTER III 

 

Results and Discussion 
 

The Effect of Road-side Trees on Local Micro-Climate 
 

The road surface of residential area 1 consists of pavement and cobblestone. 

Based on the data, surface temperatures on July 24, 2005 ranged from 28.5°C to 56.7°C 

in the afternoon, from 27.5°C to 38.1°C in the evening, and from 23.2°C to 29.1°C the 

next morning.  

While the lowest temperature were recorded at shaded site (4: shade), the highest 

temperatures were in exposed site (0: sun or 2: evening sun). As the night passed, the 

difference between the highest and the lowest temperature became smaller. The biggest 

range was 28.2°C in the afternoon, while the smallest range was 5.9°C the next morning. 

Regression analysis revealed significant trends of surface temperatures as a 

function of shade proportion for all three time periods (afternoon slope = -0.285, p ≤ 

0.0001, evening slope = -0.095, p ≤ 0.0001, and morning slope = -0.027, p ≤ 0.0021: 

Figure 9). The less sun areas received during the day, the cooler the surface remained 

throughout the day. This effect was still significant after a full night of cooling. 
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Figure 9 Results of regression analysis (S*: slope value) 

 

The relationship between vegetation and surface temperature detected 
from the satellite images 
 

Trends of NDVI and surface temperature across the year 

The NDVI as a numerical indicator of vegetation and surface temperature was 

extracted from the satellite images. Across a year, the NDVI ranged from -0.3103 to 

0.7527 and the surface temperature was distributed from -14.6°C to 39.1°C across all 

study sites. As expected, the highest NDVI was recorded in forest in June and the highest 

surface temperature was in downtown area in June. However, contrary to the expectation, 

both the lowest NDVI and the lowest surface temperature were observed in forest. The 

lowest NDVI was observed in January and the lowest surface temperature was in 

December. Throughout the spring, both mean NDVI and mean surface temperature 

increased, and recorded peaks in summer. After that, NDVI and surface temperature 

became smaller. 

The trends of NDVI and surface temperature in the six study sites (forest, 

residential area 1 and 2, downtown, Marshall University’s campus, and industrial area) 

were examined individually. Across a year, the NDVI ranged from -0.0390 to 0.7527 in 

forest, -0.1367 to .6400 in residential areas, -0.2683 to 0.3333 in downtown, -0.2239 to 
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0.6301 in Marshall University’s campus, and -0.1927 to 0.4656 in the industrial area. The 

maximum ranges between the highest and the lowest NDVI in a single month were 

0.6000 in October (forest), 0.6713 in June (residential areas), 0.5264 in October 

(downtown), 0.7010 in June (Marshall University’s campus), and 0.5746 in June 

(industrial area). Surface temperatures distributed from -14.6°C to 30.8°C in forest, -

14.0°C to 35.2°C in residential areas, -13.4°C to 34.8°C in downtown, -12.8°C to 37.9°C 

in Marshall University’s campus, and -14.0°C to 38.3°C in industrial area. The largest 

ranges of the surface temperatures in a single month were 7.1°C in June (forest), 6.7°C 

on May 29 (residential areas), 6.0°C in April (downtown), and 9.0°C in November 

(Marshall University’s campus). 

Figure 10 shows the annual trends of mean NDVI and surface temperature by 

individual study sites. Across a year, mean NDVI in residential areas and Marshall 

University’s campus grew larger into summer and then smaller into winter. Trend of 

mean NDVI in forest was similar to that of other areas above. However, mean NDVI in 

forest was larger in the growing season than in the other areas above, while forest NDVI 

was smaller in the winter season. The trends of mean NDVI downtown and in the 

industrial area showed little variation across the year. The difference between the highest 

mean NDVI (growing seasons) and the lowest mean NDVI (winter season) were small in 

these sites, even though mean NDVI during the growing season was larger than in winter. 

While mean NDVI showed different trends depending on study sites, the mean 

surface temperatures showed similar trends across all study sites, rising mean surface 

temperature into summer, cooling thereafter. The forest temperature curve was 

consistently below the others throughout the year. The highest mean surface temperatures 

were observed in downtown except for winter seasons (December, January, and 

February). 
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Figure 10 Trends of mean NDVI by individual study sites (M*: May 29) 
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The relationship between vegetation and surface temperature 

Regression analyses were performed with NDVI and surface temperatures. 

Results revealed that vegetation affected surface temperatures across all study sites 

combined. Temperatures in vegetated areas were lower than those in other areas in most 

seasons except for winter. This effect can be seen by a negative slope between 

temperature and NDVI values. As time passed from spring to the summer, this 

relationship got stronger and then weaker into autumn (Figure 11). It was the strongest in 

July (slope∗ = -0.098: Figure 12). The results of the regression analyses of the six 

individual study sites are shown in Figure 13 and Table 4. 

As the most vegetated area, forest was expected to have the strongest negative 

relationship between vegetation and surface temperature. However, as a result of 

regression analysis, this relationship was discovered in only four months: May 6 (slope = 

-0.012), May 29 (slope = -0.034), July (slope = -0.024), and September (slope = -0.010).  

 The lack of a strong negative slope is caused by the uniform surface which is 

covered in trees. If the surface is covered by full vegetation, there are no pixels of low 

vegetation coverage and all pixels are cool. Consequently, no significant slope can be 

observed. On the other hand, different plant species leaf out or drop leaves at different 

times in spring (May) or fall (September). These species create temporary heterogeneity 

in the forest at that time, and a significant slope can be observed temporarily. 

Accordingly, the greatest negative significant slope was discovered not in July but in 

May in this study. 

The residential areas are located in the Southside of Huntington, WV (area 1) 

and southeast of downtown Huntington along the railroad (area 2). Based on the result of 

regression analysis in residential areas, it was found that vegetation affected surface 

temperature in most months. While it was not observed in January and February in 

residential area 1, it was not discovered in November in residential 2. It was the greatest 

in July in residential area 1 (slope = -0.082) and residential area 2 (slope = -0.0143). 

                                                 
∗ slope: a measure of the “steepness” of the line. A positive slope indicate that a line goes up from left to 
right along the X axis, while a negative slope indicates a line goes down (from a website of Stat Trak). 
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Figure 11 Results of regression analyses of all study sites 
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Figure 12 Slope of linear regression analyses of NDVI (X) versus surface temperature (Y) and significance level of P (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, and 
**** ≤ 0.0001) 
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Figure 13 Results of regression analyses by individual study sites (M*: May 29) 
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Table 4 Results of regression analyses by individual study sites 

Date 
Forest Residential Area 1 Residential Area 2 Downtown MU Campus Industrial 

Slope±SE P Slope±SE P Slope±SE P Slope±SE P Slope±SE P Slope±SE P 

Jan. 1 2005 0.036±0.027 - -0.004±0.004 - -0.010±0.004 * 0.005±0.005 - 0.006±0.004 - -0.006±0.002 ** 

Feb. 15 2005  0.023±0.004 **** 0.004±0.004 - 0.026±0.003 **** 0.004±0.003 - -0.038±0.009 **** 0.005±0.002 ** 

Apr. 4 2005  0.011±0.003 ** -0.059±0.008 **** -0.044±0.011 **** -0.003±0.002 - -0.033±0.008 **** 0.002±0.002 - 

May 6 2005  -0.012±0.003 **** -0.044±0.004 **** -0.062±0.006 **** -0.024±0.004 **** -0.051±0.007 **** 0.003±0.003 - 

May 29 2005  -0.034±0.004 **** -0.029±0.003 **** -0.027±0.010 ** -0.017±0.003 **** -0.043±0.006 **** -0.009±0.003 ** 

Jun. 23 2005  -0.003±0.001 - -0.044±0.005 **** -0.069±0.007 **** -0.010±0.005 * -0.045±0.005 **** 0.018±0.005 **** 

Jul. 9 2005  -0.024±0.004 **** -0.082±0.009 **** -0.143±0.014 **** -0.048±0.008 **** -0.086±0.010 **** -0.030±0.007 ***** 

Aug. 13 2006  0.002±0.002 - -0.063±0.007 **** -0.061±0.010 **** -0.013±0.004 *** -0.048±0.007 **** 0.004±0.004 - 

Sep. 11 2005  -0.010±0.005 * -0.051±0.006 **** -0.062±0.007 **** -0.024±0.006 **** -0.054±0.006 **** -0.010±0.005 * 

Oct. 29 2005  -0.007±0.013 - -0.068±0.008 **** -0.031±0.009 ** -0.008±0.004 - -0.054±0.010 **** 0.005±0.003 - 

Nov. 27 2004  -0.003±0.007 - -0.028±0.008 *** -0.003±0.010 - -0.006±0.003 - -0.007±0.006 - 0.007±0.002 ** 

Dec. 3 2006  0.004±0.002 - 0.008±0.001 **** 0.008±0.002 **** 0.002±0.001 *** -0.003±0.003 - 0.000±0.000 - 
- Significance levels of P-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001, and – = non-significant 
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Downtown is the least vegetated area among the study sites. It was expected that 

the relationship between vegetation and surface temperature was weak. The negative 

relationship was significant May through September. It was the greatest in July (slope = -

0.048). 

Due to the uniform coverage in the downtown area, the result was similar to that 

of forest. There is not enough vegetation coverage downtown. It is composed mostly of 

paved surfaces and large buildings. Dense urbanized coverage causes that there are no 

pixels of pure vegetation and all pixels are hot. Consequently, no significant slope can be 

investigated and the relationships downtown were weaker than in other study sites. 

In Marshall University’s campus, which includes large buildings, lawns, and a 

field, significant negative regression slopes were observed across the year except for 

November, December, and January. The relationship was the greatest in July (slope = -

0.086). Due to similar vegetation proportions, the results of the regression analyses in this 

site were analogous to that of the two residential areas. All these area are heterogeneous 

and include buildings, trees, and lawns, even though the sizes of buildings are different. 

Because the industrial area includes huge complexes and paved surfaces, it was 

expected that the relationship was weak. A significant negative regression slope in this 

area was observed only four months: January (slope = -0.006), May (slope = -0.009), July 

(slope = -0.030), and September (slope = -0.010). Because vegetation in this area is 

composed of large lawns rather than woody plants, this area exhibits a lack of 

heterogeneity and the effect of vegetation on surface temperature is weak. Consequently, 

the relationship in this area was weaker than that in other sites. This area was also the 

only study site with a significant positive slope during the growing season (June). 

 For developing the UHI model, four study sites were selected: the downtown, two 

residential areas, and the forest. These predominated cover types represent a typical urban 

gradient from least vegetation (downtown), through well vegetated (residential areas), 

and to entirely vegetated (forest). On the other hand, the industrial area and Marshall 

University’s campus are complex. These excluded areas contain not only large 

unvegetated cover that is displayed by the selected four study sites. This can be seen in 
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July where the industrial area fell below and Marshall University’s campus above the 

regression line (Figure 14). 

The result of the regression analyses of the selected study sites were similar to 

that of all study sites combined (Figure 15). However, the proportion of variability (r2) 
∗of the relationships in the selected study sites was larger than that in all study sites. For 

example, it was 0.84 in July for the selected study sites, while it was 0.68 for all study 

sites. In the selected study sites, the relationships between vegetation and surface 

temperature were observed in most months except for the winter months (December, 

January, and February). The relationship grew stronger into summer, and peaking in July 

(slope = -0.962). After that, it became weaker into autumn. 

 

 

Figure 14 Result of regression analysis in July 

  

                                                 
∗ r2 (R-square, the coefficient of determination): the relative strength index for regression. r2 = 
indicates that the model can explain all variability, while r2=0 means no linear relationship 
between factors. If r2 = 0.7, it means that approximately seventy percent of the variation can be 
explained by the explanatory variable (McGrew and Monroe, 2000 and Website of Stat trek: 
http://stattrek.com). 
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Regression analysis was not the best method to describe the relationship outside 

the growing season. The results of regression analyses showed that significant negative 

regression slopes were observed not in the winter seasons but in the growing seasons.  

The UHI, where temperatures in an urbanized area are higher than those in 

surrounding suburban and rural areas, can clearly be observed throughout the year 

(Figure 16). Based on the temperature data, the surface temperatures were always lower 

in forest and became higher in residential areas and downtown. It was not related to the 

value of NDVI in the forest. The forest NDVI grew higher during the growing season, 

and then spread out in autumn. After that, it was the lowest in winter. Due to the amount 

of lawns in each site, the NDVI in residential areas (more lawns) was higher than that in 

forest (fewer lawns). However, the surface temperatures in the forest were still lower than 

residential areas in December. 
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Figure 15 Slopes of linear regression analyses of NDVI (X) versus surface temperature (Y) (Significance levels of P: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, and **** 
≤ 0.0001)
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Figure 16 The UHI in the selected study sites
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CHAPTER IV 

 

Summary and Conclusion 
 

The UHI has become one of the most significant environmental problems since it 

was first observed in large urban areas. Studies into the UHI have been conducted in 

three categories: observational studies, determinants of UHI, and large-scale UHI studies.  

The factors which cause the UHI are various such as the urban growth pattern 

(Weng 2001), wind conditions (Morris et al. 2001), the difference between urban and 

rural temperatures (Streutker 2002 and Hawkins et al. 2004), the storage heat flux 

(Grimmond and Oke 1999), and surface conditions or land coverage parameters (Owen et 

al. 1998 and Hirano et al. 2004). Among the determinants of the UHI, vegetation is one 

of the most effective ways to control urban temperatures. The effects of trees and other 

vegetation on urban environments have recently come into focus. New tools, such as GIS 

and remote sensing techniques, have been applied to analyze the UHI more effectively. 

The primary objectives of this study were to investigate the vegetation effects on local 

climate using in-situ measurements, GIS and remotely sensed data.  

 This study was performed by two parts: local micro-climate and satellite study to 

make up for disadvantages in each part. The local micro-climate study can control small 

uniform areas and measure temperatures at each point, especially, under the trees. 

However, surface temperatures cannot be extrapolated through the point measurement. 

On the other side, satellite study can cover large areas across all cover types, such as 

forest, residential and downtown. Due to the resolution of satellite image, each pixel 

covers all mixed areas. For example, exposed and shaded areas can be covered in a single 

pixel. Moreover, it cannot observe exact ground condition. In case of forest temperatures 

extracted from satellite images, the temperatures recorded were not on the ground, but on 

the trees. 
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The UHI has become one of the most significant environmental problems since it 

was first observed in large urban areas. Studies into the UHI have been conducted in 

three categories: observational studies, determinants of UHI, and large-scale UHI studies. 

Recently, the effect of trees and other vegetation on the urban environment have come 

into focus, and new tools, such as GIS and remote sensing techniques, have been applied 

to analyze the UHI more effectively. The primary objectives of this study were to 

investigate the vegetation effects on local climate using in situ measurements, GIS, and 

remote sensing data. 

 This study was performed by two parts: local micro-climate and satellite study to 

make up for disadvantages in each part. The local micro-climate study can control small 

uniform areas and measure temperatures at each point, especially, under the trees. 

However, surface temperatures cannot be extrapolated through the point measurement. 

On the other side, satellite study can cover large areas across all cover types, such as 

forest, residential and downtown. Due to the resolution of satellite image, each pixel 

covers all mixed areas. For example, exposed and shaded areas can be covered in a single 

pixel. Moreover, it cannot observe exact ground condition. In case of forest temperatures 

extracted from satellite images, the temperatures recorded were not on the ground, but on 

the trees. 

The influence of road-side trees on the local micro-climate in a specific residential 

area in a day was examined. The study was performed using surface temperature data 

which was measured by handheld TIR sensors. Instead of Landsat TM images, in situ 

measurement and simulated shades were used. Shaded areas were simulated after 

mapping the canopy using the Hillshade analysis. 

 As expected, the surface temperatures were lower at shaded sites, while higher at 

exposed sites. The differences between the highest and the lowest temperatures became 

smaller after sundown through the next morning. The result of regression analysis of 

shade level versus surface temperature showed significant negative slopes. This trend 

lasted, even after the surface cooled for a full night.  
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Landsat TM images were used for the second part of the study, to examine the 

relationship between vegetation and surface temperatures during a year. The NDVI and 

surface temperature in each study site were extracted from the satellite images (Landsat 

TM). Regression analysis was performed, using surface temperatures and NDVI, by 

study sites and monthly period.  

The trends of surface temperatures were similar across all study sites, rising into 

summer, and then cooling thereafter through the year. Forest temperature was 

consistently cooler than the others study sites, while downtown was warmer. Conversely, 

the trends of the NDVI were different depending on the study sites. The NDVI curves in 

the residential areas and Marshall University’s campus were similar, rising during the 

growing season and dropping in winter. The forest NDVI curve was lower than others in 

winter and higher during the growing season. However, the NDVI curves of downtown 

and the industrial area behaved differently. They didn’t show the significant changes 

during the year. 

 The results of the regression analysis revealed that surface temperatures were 

influenced by vegetation across all study sites combined. Significant negative slopes were 

observed in most seasons except for winter. The more vegetation presents in an area, the 

lower the surface temperature. As time passed, this relationship became stronger into 

summer, and then weaker into autumn.  

The results of regression analyses at each individual study site were different 

depending on the characteristics of study sites. Contrary to the expectation, this 

relationship in the forest was observed in only four months and was weaker than other 

study sites, due to the uniform surface (covered in trees). As expected, the relationship 

was weak downtown, where vegetation was insufficient, even though it was significant in 

May through September. In the industrial area, the weak relationship was observed 

during four months. A lack of heterogeneity affected the relationship in this area. The 

relationship in residential areas and Marshall University’s campus are analogous, due to 

the similar proportion of vegetation. The relationship grew stronger into summer, then 

weaker thereafter. 
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Significant negative slopes were observed only during the growing seasons. 

Regression analysis was not the best way to describe the relationship outside the growing 

season. The UHI was observed throughout the year. Based on the temperature data, the 

surface temperatures in the rural area (forest) were always lower than those in the urban 

area (residential and downtown). Due to the lawns, the NDVI in residential areas was 

higher than the forest area in winter. However, the surface temperatures were still lower 

in the forest. 

The results of this study can be used as a reference for urban planners to establish 

urban planning in an environmentally friendly manner. Due to the difficulty with 

management and for safety reasons, the City of Huntington encourages the planting of 

small trees instead of large-growing varieties. Contrarily, many planners and researchers 

have focused on urban vegetation, such as road-side trees, urban parks, and urban forests, 

as an effective method to control the urban temperatures and air quality, since the UHI 

became one of the environmental problems. For example, Taegu, Korea succeeded in 

controlling urban temperatures through tree-planting and developing urban parks (Kim, 

2002). Compared to earlier temperature data, in 30 years temperatures in Taegu were 

reduced 1.2°C, while temperature in other cities were increased 1~2°C. 

Following studies may have three objectives. First, differences of NDVI 

vegetation mapping results between using high resolution image (IKONOS: 4m 

resolution) and using low resolution (Landsat TM: 30m resolution) will be investigated. 

Using higher resolution images should result in more accurate results. Second, the 

difference between trees and lawns on surface temperatures will be examined. Third, the 

effects of small parks in urban areas on the temperatures in its surrounding areas will be 

examined.  
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