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Abstract

Solving Higher Order Dynamic Equations on Time Scales as First Order Systems

Elizabeth R. Duke

Time scales calculus seeks to unite two disparate worlds: that of differential, Newto-

nian calculus and the difference calculus. As such, in place of differential and differ-

ence equations, time scales calculus uses dynamic equations. Many theoretical results

have been developed concerning solutions of dynamic equations. However, little work

has been done in the arena of developing numerical methods for approximating these

solutions. This thesis work takes a first step in obtaining numerical solutions of dy-

namic equations—a protocol for writing higher-order dynamic equations as systems of

first-order equations. This process proves necessary in obtaining numerical solutions

of differential equations since the Runge-Kutta method, the generally accepted, all-

purpose method for solving initial value problems, requires that DEs first be written

as first-order systems. Our results indicate that whether higher-order dynamic equa-

tions can be written as equivalent first-order systems depends on which combinations

of which dynamic derivatives are present.
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Chapter 1

Introduction

Mathematicians have long known that they can rewrite higher-order, ordinary differen-

tial equations and higher-order, ordinary difference equations as equivalent first-order

systems; and this ability proves important since it facilitates analytical results and

since modelling applications often incorporate such equations. As Cleve Moler ex-

plains, “Many mathematical models involve more than one unknown function and

second or higher order derivatives. These models can be handled by making x(t) a

vector-valued function of t. Each component is either one of the unknown functions

or one of its derivatives” [Mol04]. In addition to general simplification and analytic

benefits, rewriting higher-order equations as first-order systems proves necessary in

implementing models that rely on the solutions of ODEs since commercial software

requires users to write ODEs as first-order, vector equations for numerical solution

approximation [WyBa95].

Using dynamic equations as its tools, time scales calculus seeks to unify differ-

ential and difference calculus, or as the oft-quoted E.T. Bell wrote, “to harmonize

the continuous and discrete, to include them in one comprehensive mathematics, and

to eliminate obscurity from both” [Bel37]. Realizing this and the fact that we can

indeed write higher-order equations as equivalent, first-order systems for both cases—

differential and difference—we might expect that this result holds for the general case,

that indeed, the whole is the sum of its parts.

However, for other results, time scales calculus has proven this natural intuition

to be incorrect; at times, complications do arise from juxtaposing the continuous and

discrete worlds, the analog and digital universes. Also, the fact that time scales cal-
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culus commonly uses two different derivatives—delta and nabla—and recently, a third

dynamic derivative, the diamond-alpha derivative, creates further complexity. Un-

like differential and difference equations, which rely solely on the standard Newtonian

limit and the difference operator, respectively, higher-order dynamic equations can

employ a mixture of derivatives. Perhaps, it is this property of time scales calculus

that makes its study so appealing but that also makes proving its results so potentially

problematic.

Recently, a large body of work has developed in and around time scales calcu-

lus. Much of this work has necessarily been concerned with fleshing out the analytic

backbone of the discipline, whereas little work has been done concerning the numerical

approximation of dynamic equations not solvable in closed-form. Qin Sheng and others

at the University of Dayton and Baylor University have conducted important, prelim-

inary studies leading in this direction, writing about the prospect of using dynamic

derivatives as continuous derivative approximates and presenting results concerning

the validity of approximating dynamic derivatives on a proper subset of points within

a given time scale (called a grid in numerical analysis) [She05, She06]. This thesis

seeks to solve another preliminary problem that stands in the way of approximating

the solutions of dynamic equations—that of writing higher-order equations as equiva-

lent first-order systems—with the hope of facilitating the use of existing computational

techniques for producing numerical solutions of dynamic equations on time scales.

Analytic work shows and numerical work confirms that nth-order dynamic equa-

tions can be written as equivalent systems of n, first-order equations when the choice of

derivatives is uniform throughout (i.e. nth-order delta, nth-order nabla, or nth-order

diamond-alpha dynamic equations). However, this result does not hold for dynamic

equations of “mixed” derivatives (e.g. the third-order, nabla-delta-nabla dynamic

equation).
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Chapter 2

Time Scales Calculus

2.1 Introduction to Time Scales Calculus

Paradoxically, humans are finite beings and yet have foggy, ever-present notions con-

cerning the infinite. While we function in a seemingly continuous reality, science

tells us that all matter comes in tiny, discrete, atomic packages. The battle between

the finite and infinite, the continuous and discrete, perennially plagues and intrigues

science, philosophy, and humanity. In keeping with this, mathematicians encounter

difficulty when modelling “real-world” scenarios due to nature’s tendency to perform

in seasons. The growth of plants or insect colonies or bacteria depends heavily on

seasons. Nature, at times behaving in an entirely continuous manner and at other

times, lying dormant until its next erratic surge forward, balks at neat classification

into either the continuous or discrete realm.

These two types of domains—continuous and discrete— represent two separate

branches of mathematics. High school and undergraduate college students typically

learn continuous calculus (called differential calculus) when they study “calculus.”

However, there are other calculi. The other dominant calculus, difference calculus, is

used to model discrete systems. Discrete systems operate on an integer or integer-

like domain, whereas differential systems operate on the real numbers. Examples of

mathematical problems that rely on discrete domains include calculating compound

interest, counting the number of ways to draw green marbles out of a bag, count-

ing the number of green marbles in that bag, calculating population at year n, etc.

These problems are inherently discrete since, barring some strange scenarios, we do
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not encounter half-marbles or half-people, and we must compound interest at precise

instants, rather than infinitely often.

Until Stefan Hilger introduced time scales calculus in his 1988 Ph.D. dissertation,

differential and difference calculus remained independent fields despite often produc-

ing similar results [Hil90]. Hilger united continuous and discrete calculus under one

calculus system—time scales calculus. Employing the delta or Hilger derivative, time

scales calculus derives its beauty and inherent usefulness from its ability to find rates

of change on a “mixed” domain—one that operates on a combination of discrete and

continuous intervals. Hilger’s system relies on the idea that we can use the same dif-

ferentiation and integration systems, changing only the time scale, not the calculus,

from discrete to continuous and vice versa.

Critics discredit time scales calculus, threatening that despite its structural ele-

gance, time scales offers the mathematical world no functionality. Paul Glendinning

complains, “To be useful the theory must be able to treat a case that is not obvi-

ously covered by classical theory, or do something much more simply than before—a

unification of formalism isn’t enough” [Gle03]. Proponents argue that time scales

facilitates analysis, not necessarily computation, for systems with a combination of

continuous and discrete domains. Hilger claims that his system eliminates the need

for watered-down, discrete versions of analysis, i.e.“a parallel presentation of discrete

and continuous results, the sometimes boring, sometimes difficult performing of a proof

by forming analogies or just its omission” [Hil90]. The purpose of this thesis work is

to examine and facilitate time scales calculus’s potential computational utility. Before

tackling larger questions, I will begin by attempting to explain what a time scale is,

anyway.

Definition 1 (Time Scale). A time scale, T, is a closed, non-empty subset of the set

of real numbers, R.

Examples of time scales include the natural numbers (N), the integers (Z), the real

numbers (R) themselves, the Cantor set (D), and any closed interval of real numbers

[a, b], where a, b ∈ R. Sets that are not time scales include Q, R−Q, and C. C is not

a time scale since it is not a subset of R, while neither Q nor its irrational counterpart

are closed sets.
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A set’s classification as continuous or discrete relies on the relationships of objects

in that set to one another. If the objects are mathematically distinct from each other,

i.e. each point is measurably far from any other point, then the set is discrete; on the

other hand, if no points are measurably far from the other points, the set is continuous.

Since time scales can contain points that are on one side measurably distinct from the

others but fused to their neighbors on the other side, we must develop a language

to describe points and their neighbors. Further, in this respect, to know anything

about a point itself is to know where its neighbors are. Time scales calculus, therefore,

designates names for neighbors: the forward jump operator and the backward jump

operator.

Definition 2 (Forward Jump Operator). Let T be a time scale and inf ∅ := sup T.

For t ∈ T,

σ(t) := inf{s ∈ T : s > t}

is called the forward jump operator.

Definition 3 (Backward Jump Operator). For t ∈ T and sup ∅ := inf T ,

ρ(t) := sup{s ∈ T : s < t}

is called the backward jump operator.

Perhaps the essence of a time scale lies not so much in where its points lie, per

se, but rather in the magnitude of the distances between them. Time scales calculus

specifies functions that describe these distances.

Definition 4 (Graininess Function). The graininess function, µ : Tk → [0,∞] is

defined by

µ(t) := σ(t)− t

for all t ∈ T.

Definition 5 (Backwards Graininess Function). The backwards graininess function,

ν : Tk → [0,∞] is defined by

ν(t) := t− ρ(t)

.
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Generally speaking, applying the forward jump operator to a point t in a time scale

yields the point in the time scale immediately following (or greater than) t, whereas

applying the backward jump operator produces the point in the time scale immediately

previous to (or less than) t. Thus, if T = Z, then σ(t) = t + 1, and ρ(t) = t− 1.

Keep in mind that if t exists on a continuous portion of a domain, then its most

immediate neighbor must be itself since the neighbors on either side, (i.e. greater than

or less than t) are infinitely close and thus indistinguishable from t. Then, if T = R,

the forward jump operator, σ(t) = t, and the backward jump operator, ρ(t) = t.

2.2 A categorization of points

Time scales calculus defines its own vocabulary for referring to the points in contin-

uous, discrete, and mixed domains. In a mixed domain, some points t will occupy

the unique position of being both discrete-ish and continuous-ish. Introducing the

following language proves necessary in distinguishing set properties (discrete and con-

tinuous) from point properties (scattered and dense), giving us words for “discrete-ish”

and “continuous-ish,” specifically “scattered” and “dense,” respectively.

Definition 6 (Scattered). If σ(t) > t, t is called a right-scattered point for t ∈ T.

Likewise, if ρ(t) < t, t is called a left-scattered point.

Definition 7 (Dense). A point t such that t ∈ T is called right-dense if σ(t) = t.

Similarly, if ρ(t) = t, t is called left-dense.

Furthermore, if a point t is scattered on both sides, i.e. both left-scattered and

right-scattered, it is called isolated ; but if a point t is dense on both sides, i.e. left-

dense and right-dense, it is called dense.

2.3 Dynamic Derivatives

In order to develop a derivative definition for time scales, we must first define a subset

(Tk) of T since for time scales with left-scattered suprema, a derivative definition that

requires σ(t) will be undefined at t.

Definition 8 (Tk). If T has a left-scattered maximum b, then Tk = T−{b}. Otherwise,

Tk = T.
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We will see that the nabla derivative uses ρ(t) in its definition. Thus, we must

define Tk for right-scattered infima.

Definition 9 (Tk). If T has a right-scattered minimum a, then Tk = T − {a}. Oth-

erwise, Tk = T.

Further, Tk ∩Tk is denoted Tk
k. To describe a subset of an existing time scale with

m left-scattered right endpoints removed and n right-scattered left endpoints removed,

we use the notation Tkm

kn
, where m, n = 0, 1, 2 . . ., e.g. Tk0

= T, Tk1
= Tk. Likewise,

Tk2
= Tk − {ρ(b)} if ρ(b) is left-scattered and Tk2

= Tk otherwise.

With this machinery, we may proceed to define three types of differentiation on

time scales.

Definition 10 (The Delta (Hilger) Derivative). Assume f : T→ R is a function, and

let t ∈ Tk. Then, if for any given ε > 0, there exists a δ > 0 with s ∈ (t− δ, t + δ)∩T,

such that
∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣ ≤ ε |σ(t)− s| ,

then f∆(t) is called the delta derivative at t provided it exists. If f∆(t) does exist for

all t ∈ Tk, we say that f is delta differentiable on Tk.

Particularly for time scales that contain right-scattered infima, we would like a

derivative that uses ρ(t) in its definition rather than σ(t). On a more fundamental

level, if we are interested in how functions change as time moves backward, rather

than forward, the nabla derivative is our natural choice.

Definition 11 (The Nabla Derivative). A function defined on T is nabla differentiable

on Tk if for every ε > 0, there exists a δ > 0 with s ∈ (t− δ, t + δ) ∩ T such that the

inequality
∣∣f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)

∣∣ < ε |ρ(t)− s|

holds. f∇(t) is called the nabla derivative of f at t.

A third dynamic derivative, the diamond-alpha derivative f3α , has attracted recent

attention because of its usefulness as a conventional derivative approximate [She05,

RoSh06].
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Definition 12 (The Diamond-alpha Derivative). f3α(t) is called the diamond-alpha

derivative of f at a point t if

f3α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

Note that f is diamond-alpha differentiable if and only if f is delta and nabla differ-

entiable.
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Chapter 3

Computing Dynamic Derivatives

While the definitions given in the previous chapter precisely define their respective

dynamic derivatives, calculating derivatives from these definitions is not necessarily

straightforward. This chapter will present computationally-friendly dynamic deriva-

tive definitions in order to simplify analytic results and provide formulas for use in

numerical computations. The general structure for this section was inspired by Qin

Sheng’s work [She05].

Dynamic derivative formulae depend on the time scale structures on which deriva-

tives are to be taken. Thus, to simplify the following discussion, we provide notation

that decomposes a time scale T into the following sets:

TI := {t ∈ T: t is isolated, i.e. left-scattered and right-scattered},
TD := {t ∈ T : t is dense, i.e. left-dense and right-dense},
TDS := {t ∈ T : t is left-dense and right-scattered},
TSD := {t ∈ T : t is left-scattered and right-dense}.

3.1 First-order Derivatives

Let f be once delta differentiable for t ∈ T. Then, we can define formulae for f∆(t)

as follows:

f∆(t) =





f(σ(t))−f(t)
µ(t) , t ∈ TI

⋃
TDS ;

f ′(t), otherwise.
(3.1)

Next, if f is one-time nabla differentiable for t ∈ T, then we can write that

9



f∇(t) =





f(t)−f(ρ(t))
ν(t) , t ∈ TI

⋃
TSD;

f ′(t), otherwise.
(3.2)

Finally, assume f is once diamond-alpha differentiable, then we define f3α(t):

f3α(t) =





α f(σ(t))−f(t)
µ(t) + (1− α)f ′(t), t ∈ TSD;

αf ′(t) + (1− α)f(t)−f(ρ(t))
ν(t) , t ∈ TDS ;

α f(σ(t))−f(t)
µ(t) + (1− α)f(t)−f(ρ(t))

ν(t) , t ∈ TI ;

f ′(t), t ∈ TD.

(3.3)

3.2 Special considerations for Higher-order Derivatives

When calculating higher-order derivatives, we must consider some situations that

we do not normally encounter when computing continuous or discrete derivatives

separately. Even calculating second order dynamic derivatives gives rise to a num-

ber of questions. For example, below we attempt to find a formula for f∆∇(t) for

t ∈ TI
⋂
Tk2

, or in other words, for t on which f∆∇(t) 6= f ′′(t).

f∆∇(t) = (f∆(t))∇

= f∆(t)−f∇(ρ(t))
ν(t)

= 1
ν(t) [

f(σ(t))−f(t)
µ(t) − f(σ(ρ(t)))−f(ρ(t))

µ(ρ(t)) ]

(3.4)

Simplifying this final expression raises some interesting questions:

Is σ(ρ(t)) = t?

And,

is µ(ρ(t)) = ν(t)?

The answer to either questions is yes—provided that t is not left-dense and right-

scattered. In the case that t is left-dense and right-scattered, i.e., t = ρ(t) and

σ(t) 6= t, then σ(ρ(t)) = σ(t) 6= t.

Additionally, we might wonder whether σ(t) and ρ(t) are commutative. The fol-

lowing example demonstrates that, in general, they are not.
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Example 1. Consider the time scale T = [1, 2] ∪ {3, 4, 5}. First, let’s notice that we

can decompose this time scale using the notation introduced above:

TI = {3, 4, 5};

TD = [1, 2);

TDS = {2}.

Thus, T = TI ∪ TD ∪ TDS . Note that if we let t = 2, then ρ(σ(t)) = ρ(3) = 2; but

σ(ρ(t)) = σ(2) = 3. Therefore, σ(ρ(t)) 6= ρ(σ(t)).

The example illustrates that for certain time scales, σ(t) and ρ(t) are not commu-

tative operators. However, for T = TI , σ(t) and ρ(t) do commute. In the following

formulae, the conditions have been set such that σ(ρ(t)) = ρ(σ(t)) = t; µ(ρ(t)) = ν(t);

and ν(σ(t)) = µ(t). Moreover, simplified notation is used where appropriate.

In chapter 8 of Bohner and Peterson’s second time scales text [BoPe03], Disconju-

gacy and Higher Order Dynamic Equations, Paul Eloe explains a further complication

for higher-order dynamic equations:

Analysis on time scales provides both a unification and an extension of the

theories of differential equations and finite difference equations. . . Even so, the

unification here is quite interesting for the following reason. A standard tool is

lost in the study of higher order dynamic equations on time scales. If the sigma

function is not differentiable, then one can not take higher order derivatives of

products or ratios.

Indeed, not surprisingly, Eloe is quite right. However, in this manuscript, we have

side-stepped this issue somewhat by requiring that dynamic equations be n-times

differentiable before giving our conclusions.

3.3 Second-order Derivatives

Let f be twice delta differentiable, then a computational formula for the delta-delta

dynamic derivative of f is given below.
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f∆∆(t) =





f(σ(σ(t)))−f(σ(t))
µ(σ(t))µ(t) − f(σ(t))−f(t)

µ2(t))
, t ∈ TI

⋂
Tk2

;

f ′′(t), otherwise.
(3.5)

Let f be twice nabla differentiable, then the nabla-nabla derivative of f can be

calculated as follows:

f∇∇(t) =





f(t)−f(ρ(t))
ν2(t)

− f(ρ(t))−f(ρ(ρ(t))
ν(ρ(t))ν(t) , t ∈ TI

⋂
Tk2 ;

f ′′(t), otherwise.
(3.6)

For a once delta, once nabla differentiable function f , the delta-nabla dynamic

derivative is

f∆∇(t) =





f(σ(t))−f(t)
µ(t)ν(t) − f(t)−f(ρ(t))

ν2(t)
, t ∈ TI

⋂
Tk

k;

f ′′(t), otherwise.
(3.7)

For a once nabla, once delta differentiable function f , the delta-nabla dynamic

derivative is

f∇∆(t) =





f(σ(t))−f(t)
µ2(t)

− f(t)−f(ρ(t))
µ(t)ν(t) , t ∈ TI

⋂
Tk

k;

f ′′(t), otherwise.
(3.8)

If f is twice diamond-alpha differentiable, then formulae for the diamond-alpha-

diamond-alpha derivative are given.

f3α3α(t) = [αf∆(t) + (1− α)f∇(t)]3α

= (αf∆(t))3α + [(1− α)f∇(t)]3α

= α[αf∆∆(t) + (1− α)f∆∇(t)] + (1− α)[αf∇∆(t) + (1− α)f∇∇(t)]

= α2f∆∆(t) + α(1− α)f∆∇(t) + α(1− α)f∇∆(t) + (1− α)2f∇∇(t)

For a once diamond-alpha and once delta differentiable function f , the diamond-

alpha-delta dynamic derivative is

f3α∆ = [αf∆(t) + (1− α)f∇(t)]∆

= αf∆∆(t) + (1− α)f∇∆(t)

12



Given f , a once delta, once diamond-alpha differentiable function, the following

formula holds for the delta-diamond-alpha dynamic derivative:

f∆3α = (f∆(t))3α

= αf∆∆(t) + (1− α)f∆∇(t)

Let f be a once diamond-alpha, once nabla differentiable function, the diamond-

alpha-nabla dynamic derivative is

f3α∇ = [αf∆(t) + (1− α)f∇(t)]∇

= αf∆∇(t) + (1− α)f∇∇(t)

If f is once nabla, once diamond-alpha differentiable, the nabla-diamond-alpha

derivative is

f∇3α = (f∇(t))3α

= αf∇∆(t) + (1− α)f∇∇(t)
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Chapter 4

Ordinary Differential Equations

Assuming that we are studying dynamic equations defined on the real numbers, i.e.

T = R, or some continuous interval therein, a large body of theoretical and computa-

tional work exists surrounding the solutions (both exact and approximate) since such

dynamic equations are conventional, ordinary differential equations—ODEs. Thus,

the discussion of solving dynamic equations on time scales will begin with a summary

of the relevant, existing ODE cannon. Most (if not all) of the results of the first section

are found in [KePe04, Zil97]. More information about higher-order ODEs is available

in [Tre96].

4.1 Initial Value Problems

Definition 13 (ODEs). A first-order ordinary differential equation takes the form

x′(t) = f(t, x(t)), (4.1)

where x(t) is a real scalar, complex scalar, or vector function of t, and f(t, x(t)) is

continuous on its domain.

The differential equation x′(t) = f(t, x(t)) is called ordinary since it involves the

derivative of a dependent variable x with respect only to t, a single, independent

variable (as opposed to a partial differential equation, which involves derivatives taken

with respect to multiple independent variables). This ODE is of first-order because

the highest order derivative appearing in (4.1) is first-order.
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An initial value problem, or IVP, is created when differential equations of the

form (4.1) are paired with some initial data (t0, x(t0)), where x(t0) is often denoted

x0. Such an initial data point is called an initial condition. Solving an initial value

problem requires that we find a differentiable function x(t) such that (4.1) is satisfied

on some open interval I containing t0.

4.2 Higher-Order Differential Equations

Despite causing mathematicians headaches, higher-order differential equations often

perform instrumental duties in modeling applications and provide a wealth of inter-

esting mathematical material. We define the glorious, headache-producing equations

that involve derivatives of arbitrary order below.

Definition 14 (nth-Order Initial Value Problems). Let f be an n times differentiable

function of t and x(t), defined on an interval t ∈ (a, b), where x(t) is a real scalar,

complex scalar, or vector function of t. For t0 ∈ (a, b), the nth-order initial value

problem is

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), (4.2)

subject to the initial conditions x(t0) = x0, x′(t0) = x1, . . . , x(n−1)(t0) = xn−1.

Defining nth-order ODEs is sometimes deemed unnecessary because higher-order

ODEs can be written as equivalent systems of first-order ODEs by introducing addi-

tional variables, which represent lower-order terms. Consider the following example:

x′′′(t) = x′(t)x(t)− 2t(x′′(t))2, (4.3)

for t in the domain of f with three initial conditions:

x(t0) = x0; x′(t0) = x1; x′′(t0) = x2. (4.4)

To write (4.3) as system of equations of the form (4.1), first, we introduce lower-order
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variables:
u0(t) = x(t);

u1(t) = x′(t);

u2(t) = x′′(t).

Using these lower-order variables, we write (4.3) as a vector equation:




u′0(t)

u′1(t)

u′2(t)




=




u1(t)

u2(t)

u1(t)u0(t)− 2t(u2(t))2




. (4.5)

Then, if we define

U(t) =




u0(t)

u1(t)

u2(t)




; F (t, U(t)) =




u1(t)

u2(t)

u1(t)u0(t)− 2t(u2(t))2




, (4.6)

we have U ′(t) = F (t, U(t)), with the initial condition

U(t0) =




u0(t0)

u1(t0)

u2(t0)




=




x0

x1

x2




, (4.7)

a first-order, initial value problem. Generally, any single equation of order n can be

written as a first-order, vector equation in Rn.
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Definition 15 (Corresponding Systems of Equations). A system of equations

U ′(t) = F (t, U(t)) =




u1(t)

u2(t)
...

f(t, u0(t), u1(t), . . . , un(t))




with initial condition U(t0) = U0

corresponds to the nth order IVP x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)),

x(t0) = x0, x′(t0) = x1, . . . , x(n−1)(t0) = xn−1 whenever

U(t) =




u0(t)

u1(t)
...

u(n−1)(t)




=




x(t)

x′(t)
...

x(n−1)(t)




, U0 =




u0(t0)

u1(t0)
...

u(n−1)(t0)




=




x0

x1

...

x(n−1)




,

(4.8)

and u′(n−1)(t) = f(t, u0(t), u1(t), . . . , u(n−1)(t)).

Theorem 1 (Equivalence of Solutions). Solving the nth-order initial value problem,

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), x(t0) = x0, x
′(t0) = x1, . . . , x

(n−1)(t0) = xn−1,

is equivalent to solving the corresponding system of n, first-order equations.

Proof. By definition,

U ′(t) =




u0(t)

u1(t)
...

u(n−1)(t)




′

=




u′0(t)

u′1(t)
...

u′(n−1)(t)




=




x′(t)

x′′(t)
...

x(n)(t)




=




u1(t)

u2(t)
...

u(n−1)(t)

f(t, x(t), x′(t), . . . , x(n)(t))




.

Since x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) and the initial conditions of (4.2) are

met, and since all other equations in the system are true by design,

(e.g. u′0(t) = x′(t) = u1(t)), solving

U ′(t) = F (t, U(t)), U(t0) =




u0(t0)

u1(t0)
...

un−1(t0)




is equivalent to solving the nth-order DE.
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Chapter 5

Ordinary Difference Equations

Kelley and Peterson write,“just as the differential operator plays the central role in

the differential calculus, the difference operator is the basic component of calculations

involving finite differences” [KePe01]. Rather than finding rates of change using a

conventional, continuous derivative, difference equations use the difference operator ;

and, as suggested in the introduction, difference equations operate on discrete domains.

Refer to [KePe01] for the results of the first section.

Definition 16. If x(t) is a real scalar, complex scalar, or vector function of the variable

t, the difference operator, ∆, applied to x at t is defined

∆x(t) = x(t + 1)− x(t). (5.1)

The goal of this chapter is to demonstrate and prove that initial value problems

of higher-order difference equations can be solved by writing them as first-order sys-

tems following the same protocol established for differential equations. We begin by

introducing initial value problems for first-order difference equations.

5.1 Initial Value Problems

Just as rates of change sometimes describe the behavior of variables of interest in

continuous domains, so can we define such relationships using difference equations.
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Definition 17. A first-order ordinary difference equation can be written in the form

∆x(t) = f(t, x(t)), (5.2)

where t = a, a + 1, a + 2, . . ..

Defining initial value problems is also similar to the same task for IVPs of differen-

tial equations. A difference equation of the form (5.2) together with initial condition

x(t0) = x0 is called an initial value problem.

5.2 Higher-Order Difference Equations

Calculating higher-order differences simply involves using the difference operator mul-

tiple times. In fact, nth-order differences are obtained by applying the difference

operator n times.

Example 2.

∆2 x(t) = ∆(∆x(t)) (5.3)

= ∆(x(t + 1)− x(t)) (5.4)

= ∆(x(t + 1))−∆(x(t)) (5.5)

= x(t + 2)− 2x(t + 1) + x(t). (5.6)

Thus, an nth-order difference equation can be written in terms of difference oper-

ators as in the upper three equations (5.3), (5.4), (5.5), or can be written in terms

of functions of t for t, t + 1, . . . , t + n as in (5.6). Here, we have chosen to use the

difference operator notation to define higher-order difference equations in order that

it will correspond to differential and dynamic equation notation.

Definition 18. Let x(t) be a function of a discrete set t = a, a + 1, a + 2, . . . , a + n

that is n times differenceable. Then, the nth-order ordinary difference equation takes

the form

∆nx(t) = f(t, x(t), ∆x(t), . . . ,∆(n−1)x(t)). (5.7)

When the nth-order difference equation is subject to initial conditions
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x(t0) = x0, ∆x(t0) = x1, ∆2x(t0) = x2, . . . , ∆(n−1)x(t0) = x(n−1), (5.8)

(5.7) and (5.8) together are called an nth-order initial value problem.

As with differential equations, ordinary difference equations of order greater than

one can be written as systems of first-order equations using a change of variables as

described in the following example.

Example 3. Let ∆4x(t) = 2x(t)∆x(t)− sin(t)∆2x(t). Since this difference equation

is fourth order, we will assign four variables, u0(t), . . . , u3(t).

u0(t) = x(t)

u1(t) = ∆x(t)

u2(t) = ∆2x(t)

u3(t) = ∆3x(t)

(5.9)

Then, define a vector function U(t) =




u0(t)

u1(t)

u2(t)

u3(t)




. Then, apply the difference operator

to the vector function U(t):

∆U(t) =




∆u0(t)

∆u1(t)

∆u2(t)

∆u3(t)




=




∆x(t)

∆2x(t)

∆3x(t)

∆4x(t)




=




u1(t)

u2(t)

u3(t)

2u0(t)u1(t)− sin(t)u2(t)




. (5.10)

Thus, if

F (t, U(t)) =




u1(t)

u2(t)

u3(t)

2u0(t)u1(t)− sin(t)u2(t)




, (5.11)

then we can write (5.9) as a first-order difference equation in R4, ∆U(t) = F (t, U(t)).

In the previous example, a fourth-order difference equation (5.9) was written as a
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first-order difference equation in R4, or, in other words, as a system of four, first order

equations. In general, it is true that an nth-order difference equation can be written

as a first-order vector equation in Rn.

Definition 19 (Corresponding Systems of Equations). A system of equations

∆U(t) = F (t, U(t)) =




u1(t)

u2(t)
...

f(t, u0(t), . . . , un(t))




with initial condition U(t0) = U0

corresponds to the nth order IVP ∆nx(t) = f(t, x(t), ∆x(t), ∆2x(t), . . . , ∆(n−1)x(t)),

x(t0) = x0, ∆x(t0) = x1, . . . , ∆(n−1)x(t0) = xn−1 whenever

U(t) =




u0(t)

u1(t)
...

u(n−1)(t)




=




x(t)

∆x(t)
...

∆(n−1)x(t)




, U0 =




u1(t0)

u2(t0)
...

un(t0)




=




x0

x1

...

x(n−1)




,

(5.12)

and ∆un(t) = f(t, u0(t), u1(t), . . . , u(n−1)(t)).

Theorem 2 (Equivalence of Solutions). Solving the nth-order initial value problem

(5.8) is equivalent to solving the corresponding system of n, first-order equations.

Proof.

By definition,

∆U(t) =




∆u0(t)

∆u1(t)
...

∆u(n−1)(t)




=




∆x(t)

∆2x(t)
...

∆nx(t)




=




u1(t)

u2(t)
...

f(t, x(t), ∆x(t), . . . , ∆nx(t))




.

Since ∆nx(t) = f(t, x(t), ∆x(t), . . . ,∆(n−1)x(t)) and the initial conditions (5.8) are

met, and since all other equations in the system are necessarily true,

(e.g. ∆u0(t) = ∆x(t) = u1(t)), solving
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∆U(t) = F (t, U(t)), U(t0) =




u0(t0)

u1(t0)
...

un−1(t0)




is equivalent to solving the nth-order difference equation.
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Chapter 6

Ordinary Dynamic Equations

Finally, we will discuss Stefan Hilger’s unification of differential and difference equa-

tions: the dynamic equations of time scales calculus. We begin with their definitions.

A first-order, ordinary, delta dynamic equation takes the form

x∆(t) = f(t, x(t), x(σ(t)), (6.1)

where x(t) is a real scalar or vector function of t ∈ T.

A first-order, ordinary, nabla dynamic equation is written

x∇(t) = f(t, x(t), x(ρ(t))), (6.2)

where x(t) is a real scalar or vector function of t ∈ T.

Finally, first-order, ordinary, diamond-alpha dynamic equations assume the follow-

ing form

x3α(t) = f(t, x(t), x(ρ(t)), x(σ(t))), (6.3)

where x(t) is a real scalar or vector function of t ∈ T.

6.1 Initial Value Problems

As for differential and difference equations, we define initial value problems for each

of the three derivatives on time scales. Care must be taken in defining the time

scales on which the solutions of the dynamic equations are defined (e.g. T k3

k3 ) for a

23



third-order diamond alpha equation; otherwise, these definitions do not differ from

those introduced for the traditional cases, T = R (differential equations) and T = Z

(difference equations).

Definition 20. Given t0 ∈ T and x(t0), the problem

x∆(t) = f(t, x(t)), x(t0) = x0 (6.4)

is called an initial value problem. A function x : T→ R with x(t0) = x0 that satisfies

x∆(t) = f(t, x(t)) for all t ∈ Tk is called a solution of this IVP.

Definition 21. A function x(t) is called a solution of the nabla dynamic equation if

x∇(t) = f(t, x(t)) is satisfied for all t ∈ Tk.

If t0 ∈ T, the problem

x∇(t) = f(t, x(t)), x(t0) = x0 (6.5)

is called an initial value problem, and x(t) satisfying the nabla dynamic equation (6.5)

is called a solution of this IVP.

Definition 22. For t0 ∈ T, the problem

x3α(t) = f(t, x(t)), x(t0) = x0 (6.6)

is called an initial value problem, and a solution x(t) that satisfies the diamond-alpha

dynamic equation (6.6) for all t ∈ Tk
k with x(t0) = x0 is called a solution of this IVP.

6.2 nth-Order Dynamic Equations

At present, there are three types of dynamic derivatives: delta, nabla, and diamond-

alpha. nth-order dynamic derivatives may employ any combination or permutation of

these three derivatives. Thus, we have nine second-order dynamic derivatives–and thus

nine formats for the generalized second order equation. Further, we have 3n general,

nth-order dynamic equations.

As in the two previous chapters, this section aims to show when and/or if nth-order

dynamic equations can be written as equivalent first-order systems. First, I define nth-
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order dynamic equations of the same type, i.e. nth-order delta, nth-order nabla, and

nth-order diamond-alpha dynamic equations. Then, I will attempt a generalized struc-

ture for any nth-order dynamic equation. In general, higher-order dynamic equations

that use a uniform choice of dynamic derivative (i.e. delta, nabla, or diamond-alpha)

for each of the n derivatives involved can be written as equivalent, first-order sys-

tems. Also, any second-order dynamic equation initial value problem (not necessarily

of uniform derivative) can be written and solved as a system of two equations. How-

ever, a similar statement cannot be made for the “mixed,” generalized, higher-order

derivative.

Definition 23 (nth-Order Delta Initial Value Problems). Let x(t) be an n times delta

differentiable function for t ∈ Tkn
. For t0 ∈ T, the nth-order initial value problem is

x∆n
(t) = f(t, x(t), x∆(t), . . . , x∆(n−1)

(t)), (6.7)

subject to the initial conditions x(t0) = x0, x∆(t0) = x1, . . . , x∆(n−1)
(t0) = xn−1.

In Advances in Dynamic Equations on Time Scales, the most current text on the

subject of time scales calculus, Paul Eloe gives the result for linear, nth-order, delta

dynamic equations that we would like to develop in the present paper for general,

higher-order dynamic equations:

Lx = 0 with Lx := x∆n
+

∑n
i=1 qi(x∆n−i

)σ, (6.8)

where qi is rd-continuous (cf. appendix for a brief discussion of rd-continuity), i =

1, . . . , n and where 1 + µqi 6= 0 on T. For such an equation, we can write an equiva-

lent system of first-order equations, assigning lower-order variables and differentiating

[BoPe03]. Later in the section, we will show that this results holds for non-linear

equations.

Definition 24 (nth-Order Nabla IVPs). Let x be an n times nabla differentiable

function of t ∈ Tkn . The nth-order initial value problem for t0 ∈ T is

x∇
n
(t) = f(t, x(t), x∇(t), . . . , x∇

(n−1)
(t)), (6.9)
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subject to the initial conditions x(t0) = x0, x∇(t0) = x1, . . . , x∇(n−1)
(t0) = xn−1.

Definition 25 (nth-Order Diamond-Alpha IVPs). Let x be defined and differentiable

for all t ∈ Tkn

kn . The nth-order initial value problem takes the following form when

t0 ∈ T:

x3α
n
(t) = f(t, x(t), x3α(t), . . . , x3α

(n−1)
(t)), (6.10)

subject to the initial conditions x(t0) = x0, x3α(t0) = x1, . . . , x3α
(n−1)

(t0) = xn−1.

Before attempting to define truly general nth-order “mixed” derivative dynamic

equations, we will define a general form for nth-order IVPs of uniform derivative (i.e.

all delta, all nabla, or all diamond-alpha) since the results of interest in this paper

depend on whether the choices of derivatives are uniform.

Definition 26 (nth-Order IVPs of Uniform Derivative). Let x(t) be an n-times dif-

ferentiable real scalar or vector function on t ∈ Tkn

kn
and let x2(t) be either the delta,

nabla, or diamond-alpha derivative of x(t). Then, the general, nth-order initial value

problem is

x2n
(t) = f(t, x(t), x2(t), . . . , x2(n−1)

(t)), (6.11)

subject to the initial conditions x(t0) = x0, x2(t0) = x1, . . . , x2(n−1)
(t0) = xn−1.

For generality, we must define the function x(t) for t ∈ Tkn

kn
. However, when 2 = ∆

or 2 = ∇, this condition can be relaxed, i.e. t ∈ Tkn
or t ∈ Tkn , respectively.

As with differential equations, higher-order dynamic equations can be written as

systems of first-order equations using a change of variables as long as the choice of

derivative is the same for all n derivatives, i.e we have either an nth-order delta, an

nth-order nabla, or an nth-order diamond-alpha dynamic equation.

Example 4. Consider the delta dynamic equation

x∆4
(t) = x∆∆(t) et − (x∆(t))3. (6.12)

We will assign four variables, u0(t), . . . , u3(t) since this is a fourth-order dynamic
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equation:

u0(t) = x(t)

u1(t) = x∆(t)

u2(t) = x∆2
(t)

u3(t) = x∆3
(t)

(6.13)

Define a vector function U(t) =




u0(t)

u1(t)

u2(t)

u3(t)




, and then apply the delta derivative oper-

ator to the vector function U(t):

U∆(t) =




u∆
0 (t)

u∆
1 (t)

u∆
2 (t)

u∆
3 (t)




=




x∆(t)

x∆2
(t)

x∆3
(t)

x∆4
(t)




=




u1(t)

u2(t)

u3(t)

u2(t)et − (u1(t))3




. (6.14)

Thus, if

F (t, U(t)) =




u1(t)

u2(t)

u3(t)

u2(t)et − (u1(t))3




, (6.15)

we can write (6.12) as a first-order, dynamic, vector equation, U∆(t) = F (t, U(t)).

In Example 4, a fourth-order dynamic equation (6.13) was written as a first-order

dynamic equation in T4, or, in other words, as a system of four, first order equations.

In general, it is true that nth-order dynamic equations of uniform derivative can be

written as first-order, vector equations on Tn.

Definition 27 (Corresponding Systems of Equations). A system of dynamic equations

U2(t) = F (t, U(t)) =




u1(t)

u2(t)
...

f(t, u0(t), . . . , u(n−1)(t))
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with initial condition U(t0) = U0 corresponds to the nth-order IVP

x2n
(t) = f(t, x(t), x2(t), x22

(t), . . . , x2(n−1)
(t)),

x(t0) = x0, x2(t0) = x1, . . . , x2(n−1)
(t0) = xn−1 whenever

U(t) =




u0(t)

u1(t)
...

u(n−1)(t)




=




x(t)

x2(t)
...

x2(n−1)
(t)




, U0 =




u0(t0)

u1(t0)
...

u(n−1)(t0)




=




x0

x1

...

x(n−1)




,

(6.16)

and u(n−1)
2(t) = f(t, u0(t), u1(t), . . . , u(n−1)(t)).

Theorem 3 (Equivalence of Solutions). Solving the nth-order initial value problem

(6.11) is equivalent to solving the corresponding system of n, first-order equations.

Proof. By definition,

U(t)2 =




u2
0 (t)

u2
1 (t)
...

u2
(n−1)(t)




=




x2(t)

x22
(t)

...

x2n
(t)




=




u1(t)

u2(t)
...

f(t, x(t), x2(t), . . . , x2(n−1)
(t))




.

Since x2n
(t) = f(t, x(t), x2(t), . . . , x2(n−1)

(t)) and the initial conditions in defini-

tion 26 are met, and since all other equations in the system are true by design,

(e.g. u2
0 (t) = x2(t) = u1(t)), solving

U2(t) = F (t, U(t)), U(t0) =




u0(t0)

u1(t0)
...

un−1(t0)




is equivalent to solving the nth-order dynamic equation.
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Second-order IVPs of uniform derivative are simply special cases of the general

nth-order IVP of uniform derivative just described in definition (26). As such, they

are indeed rewritable and equivalently solvable as systems of two equations. But

when attempting to rewrite a mixed-derivative, second order equation as a system of

lower-order variables, we run into trouble. Consider this example:

Example 5. Given a once nabla, once delta differentiable function x(t), defined on

Tk
k and the initial value problem

x∇∆(t) = x(t); x(t0) = x0, (6.17)

where t0 ∈ T, we make substitutions for x(t) and x∇(t):

U(t) =




u0(t)

u1(t)


 =




x(t)

x∇(t)


 (6.18)

Differentiating yields

U∆(t) =




u∆
0 (t)

u∆
1 (t)


 =




x∆(t)

x∇∆(t)


 =




?

u0


 (6.19)

We see that the problem lies in the fact that when the derivative operator is ap-

plied to the lower-order derivatives, they no longer correspond to the actual arguments

of the original dynamic equation. In the example above, we needed u∆
0 (t) = x∇(t),

but we cannot set up the system of n equations such that this will happen. Delta-

differentiating the vector U(t) such that the x∇(t) term gives f(t, x(t), x∇(t)) does

not yield lower-order terms found in the original IVP. Indeed, we find that delta dif-

ferentiating u0(t) gives x∆(t), which is not present in the dynamic equation or in the

lower-order variable scheme we introduced. The desired result holds for differential,

difference, and dynamic equations of uniform derivative precisely because the deriva-

tive operator applied to obtain the dynamic equation equivalent is the only derivative

operator used in all lower-order derivative arguments of the equation.

However, if we allowed ourselves to use more equations in the equivalent system,

might we be able to write a vector equivalent for the original dynamic equation? The
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resulting system would consist of more than n equations, some percentage of which

would be extraneous to the final solution, creating additional computational costs if

a Runge-Kutta-like scheme were employed. However, when attempting to rewrite the

dynamic equation from the previous example in this way, we discover another problem:

Recall that in (6.19), we found that delta-differentiating u0(t) gave x∆(t), which

was not present in the lower-order variable scheme. So, relaxing the usual protocol,

we attempt to introduce a third lower-order variable, x∆(t). However, upon differen-

tiating,

U∆(t) =




u∆
0 (t)

u∆
1 (t)

u∆
2 (t)




=




x∆(t)

x∇∆(t)

x∆∆(t)




=




u2

u0

?




,

we find that we have created another variable not present in our scheme. We might

attempt to solve this problem by further introducing another variable, u3(t), but upon

differentiating, we find ourselves trapped in an endless loop, creating an infinitely

large system. Devising a system for rewriting dynamic equations of mixed derivatives

is certainly not a trivial task, and in fact, might prove impossible. Without a uniform

choice of derivative, we cannot rewrite dynamic equations as equivalent systems of n

equations—at least not in the same, standard way. Whether this can be done in a non-

standard way remains to be seen. We introduce the generalized, mixed, higher-order

IVP on time scales to formalize this finding.

Definition 28 (nth-Order General Dynamic Equations of Non-uniform Derivative).

Let x(t) be an n times continuously differentiable real scalar or vector function on

t ∈ Tkn

kn
and let x2i(t) be any one of the delta, nabla, or diamond-alpha derivatives.

Then, the general, nth-order initial value problem is

x2122...2n(t) = f(t, x(t), x21(t), . . . , x2122...2(n−1)(t)), (6.20)

subject to the initial conditions x(t0) = x0, x2
1 (t0) = x1, . . . , x2122...2(n−1)(t0) = xn−1.

Note that the choice of the derivative 2i need not be uniform for i = 1, 2, 3, . . . , n.

In general, it is not the case that these generalized, higher-order dynamic equations

can be rewritten as equivalent systems of n equations. However, for certain choices

of time scale, we can in fact rewrite higher-order equations as equivalent systems for
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the general initial value problem where the choice of derivatives need not be uniform.

One such instance occurs when T = R.
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Chapter 7

Numerical Solutions of ODEs

It’s one thing to define ordinary differential equations and the initial value problems

they inspire; however, it’s quite another thing to find the solutions of these equations.

In fact, in many instances, finding closed-form solutions to IVPs proves impossible.

Usually, we must satisfy ourselves with approximate solutions, which are themselves

difficult to generate. As LeVeque writes,“Our goal is to approximate solutions to

differential equations, i.e. to find a function (or some discrete approximation to this

function) which satisfies a given relationship between various of its derivatives on some

given region of space and/or time . . . In general this is a difficult problem” [LeV98].

Further information on these topics is available in [LeV98, Tre96, WyBa95]. Cleve

Moler gives a particularly good introduction to Runge-Kutta methods in [Mol04].

7.1 Solving ODEs with Finite Difference Methods

Finite difference methods give us straight-forward protocol for approximating solu-

tions for these difficult problems. Finite difference methods substitute finite difference

formulas for the actual derivatives in ODEs so that ODEs can be algebraically manip-

ulated to yield approximate solutions. LeVeque explains,“A finite difference method

proceeds by replacing the derivatives in the differential equation by finite difference

approximations, which gives a large algebraic system of equations to be solved in place

of the differential equation” [LeV98]. A finite difference formula is a formula or “sten-

cil” that generates an approximation of a derivative at some point t using a specified

number of neighboring data values (and may include the data value at t).
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If we let x(t) be a function of one variable t that is sufficiently smooth to be

differentiable several times and such that each derivative is a well-defined, bounded

function over some interval that contains a particular point of interest, tk, k ∈ Z, we

can approximate the derivative of x at tk. In approximating such a derivative, perhaps

the most immediate approach would be to find the slope of the secant line between

tk and the next point in the domain, tk+1 = tk + h, for some real value of h for the

function, x(t), that we want to “differentiate.” We obtain

x′(tk) ≈
x(tk + h)− x(tk)

h
. (7.1)

This approximation for the derivative is called one-sided since x is evaluated only at

points “on one side of tk”, i.e. t ≥ tk. An analogous, one-sided approximation attempt

simply finds the slope of the secant line that intersects (tk, x(tk)) and (tk−h, x(tk−h))

x′(tk) ≈
x(tk)− x(tk − h)

h
(7.2)

for some small h value not necessarily equal to h in (7.1). Note that (7.1) is the

derivative approximation used in the finite difference method known as Forward Euler

or explicit Euler, and (7.2) approximates the derivative in the Backward Euler or

implicit Euler method.

Further, a third and more accurate attempt at approximating derivatives comes

from averaging the two one-sided approximations to obtain a centered approximation:

x′(tk) ≈
(x(tk+h)−x(tk)

h ) + (x(tk)−x(tk−h)
h )

2
. (7.3)

Note that if the points in the domain are uniformly spaced, averaging yields

x′(tk) ≈
x(tk + h)− x(tk − h)

2h
, (7.4)

the derivative approximation used in the Central Euler finite difference method.

These formulae are the classic choices for approximating a first derivative of one

variable. However, there are infinitely many ways to construct such a formula. To

increase the accuracy of a certain finite difference formula, we might increase the
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number of data points used to approximate the derivative. For instance, the four

step Adams-Bashforth formula for approximating x′(tk) yields a fourth-order accurate

approximation on a uniform grid:

x′(tk) ≈
1
24

[9x(tk+1) + 19x(tk)− 5x(tk−1) + x(tk−2)] (7.5)

(refer to the appendix for information concerning the accuracy of an approximation).

However, while increasing the number of data points used at each step of the approx-

imation calculation does increase the accuracy of an approximation in theory, it also

requires more known data values at start-up. When such data are not available, using

more accurate methods can be less accurate in practice although methods do exist for

“getting around” the problem of missing start-up values.

Notice also that we can construct finite difference formulae for higher order deriva-

tives similarly. The standard centered difference approximation of the second deriva-

tive, which yields a second-order accurate approximation on a uniform grid, is

x′′(tk) ≈
1
h2

[x(tk−1)− 2x(tk) + x(tk)] (7.6)

Once an appropriate finite difference formula is chosen for the IVP at hand, we

employ the corresponding finite difference method to solve. Consider the next example.

Example 6. Suppose we would like to use the Forward Euler finite difference method

to solve the first-order IVP

x′(t) = x(t), t ∈ [t0, tn], x(t0) = x0.

As it turns out, we can obtain the exact, closed-form solution for this particular

example problem by integrating and solving for the unknown constant using initial

value data. In fact, if we suppose that t0 = 0 and x0 = 1, the solution is x(t) = et,

which we can use to compare to our approximate solution in the discussion that follows.

Since we cannot approximate this solution for every value in the interval (because

there are infinitely many numbers in that interval), we must choose some values in the

interval, often called a “grid” in numerical analysis terms, at which we can approximate

solutions for an IVP. Wylie and Barrett write, “our objective is to obtain satisfactory
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approximations to the values of the solution . . . on a specified set of values” [WyBa95].

Here, we shall construct an evenly-spaced grid with step size h of n + 1 points t0, t0 +

h, . . . , t0 + nh = tn.

To solve the IVP using the Forward Euler finite difference method, we substitute

the one-sided, forward difference approximate (7.1) for x′(t) in the ODE and use the

value of t for which the solution is known, t0:

x(t0 + h)− x(t0)
h

≈ x(t0). (7.7)

Then, solving for x(t0 + h) yields

x(t0 + h) = (1 + h)x(t0). (7.8)

Now that we have obtained a value for x(t0+h), we can march forward in time and

calculate x(t0 + 2h) in the same way; then, we can use x(t0 + 2h) to find x(t0 + 3h),

etc, until we have obtained values for all n + 1 points in our grid. Note that the more

general form for solving the first-order IVP x′(t) = f(t, x(t)), t ∈ [t0, tn], x(t0) = x0,

using Euler’s method where k ∈ Z is

x(tk + h) = x(tk) + hf(tk, x(tk)). (7.9)
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For the specific example in question, letting t ∈ [0, 2] and using a grid with step-

size h = 0.20, we compare the results in Fig. 7.1 from Forward Euler with those of

the actual solution using MATLAB 6.5.
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Figure 7.1: Exact Solution and Solution Approximated by Euler’s Method for the IVP
x′(t) = x(t)

The Forward Euler finite difference method is extremely useful for demonstration

purposes, but as shown in the figure, gives relatively large error values. In fact,

compared with modern differential equation solvers, Forward Euler is rather primitive.

As we shall see in the next section, however, it is often used in intermediate steps of

one of the best modern solution techniques, the family of Runge-Kutta methods.

7.2 Runge-Kutta Methods

In the world of DE solvers, finite difference methods are categorized as multi-step

methods. They are so called because FD methods use function evaluations at one or

more points in the grid to generate each point in the solution approximation. There are

other families of solvers, however, that perform many calculations between grid points.

These are called single-step and/or multi-stage methods. The family of Runge-Kutta

methods belongs to this latter category.

The basic idea behind the Runge-Kutta methods is that we can obtain more ac-

curate solution estimates if we use Euler’s method several times between each grid

point, tk, and compute a weighted average of the results, rather than reaching further
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behind or beyond the immediate grid point at hand. Thus, we might perform four

separate function evaluations and a linear combination of their results to move from

tk to tk+1. To find x(tk + h) using a finite difference method, we rewrite the relevant

ODE substituting the appropriate finite difference formula (here, I’m using Forward

Euler once again) and rearrange the terms of the equation to solve for x(tk + h):

x(t0+h)−x(t0)
h ≈ f(tk, xk)

⇒ x(tk + h) ≈ hf(tk, xk) + xk

(7.10)

To solve the ODE using a Runge-Kutta method, on the other hand, we will perform

several calculations. The details of these calculations vary enormously, but what is

typically considered the classical Runge-Kutta method follows.

Rather than assume the slope of the line tangent to the first grid point, tk, is the

slope of the tangent lines to all grid points throughout the interval [tk, tk+1], classical

Runge-Kutta makes several intermediate slope calculations denoted s1, s2, . . . (again,

we will assume that h is the distance between two grid points, i.e h = tk+1−tk, though

not necessarily uniform).

s1 = f(tk, xk),

s2 = f(tk + h
2 , xk + h

2s1),

s3 = f(tk + h
2 , xk + h

2s2),

s4 = f(tk + h, xk + hs3).

(7.11)

The actual step to the next grid point, tk+1 is taken via a linear combination of

these “slope” values:

x(tk + h) = x(tk) +
h

6
(s1 + 2s2 + 2s3 + s4) (7.12)

The classical (fourth-order) Runge Kutta method is used to solve the example

problem given for finite difference methods (Example 6). A plot (Fig. 7.2) of the

Runge-Kutta and Forward Euler solutions is given below (left); the exact solution

is not shown here because, for this simple example, Runge-Kutta approximates the

solution so closely that giving the exact solution makes seeing the RK solution difficult.

An error plot (right) compares the error obtained using classical Runge-Kutta versus
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the Forward Euler finite difference method.
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Figure 7.2: Left: Approx Solns of the IVP x′(t) = x(t), x0 = 1, Right: Error Plot

Classical Runge-Kutta is a four-stage method because it makes four intermediate

slope calculations between steps. These steps need not be uniform. In fact, when

computer software (in this case, MATLAB 6.5) employs a Runge-Kutta method to

solve an ODE, the sizes of the intermediate steps and the coefficients used in the

linear combination in (7.12) are not predetermined. Instead, these parameters depend

on error estimates that are found by matching terms in a Taylor Series expansion of

the slopes. The generalized R-K method of m stages, along with a generalized form

for the error estimate, is given by a number of parameters: αi, βi,j , γi, and δi.

si = f(tk + αih, xk + h

i−1∑

j=1

βi,j sj), i = 1, . . . , m. (7.13)

The proposal for the solution approximate at the next time-step is

xk+1 = xk + h
k∑

i=1

αi si, (7.14)

with an error estimate

ek+1 = h
k∑

i=1

δi si. (7.15)

If this error estimate falls below a specified tolerance, then the proposed solution

approximate, xk+1, is accepted; if not, then the proposed xk+1 is rejected, and another

is generated with an h value modified by the results of the error estimate.
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Once the parameters are chosen and implemented, the overall order of accuracy

for the R-K method is given by the smallest power of the step-size h that cannot

be “matched” in the Taylor Series approximate or “cancelled” if subtracting the si

value from the Taylor expansion [Mol04]. Following the generalized procedure outlined

above, the one, two, three, and four stage methods (often denoted RK-1, RK-2, etc.)

give first, second, third, and fourth order accuracy, respectively. Including more stages

does increase the accuracy though not at the same linear rate (i.e. RK-6 gives fifth

order accuracy; RK-9 gives seventh order accuracy)[Tre96].

The MATLAB solver ode45, a four-stage RK method, uses error estimates (called

Dormand-Prince pairs) from both fourth and fifth stage methods between steps to

obtain a kind of fourth-fifth order hybrid Runge-Kutta method. ode45 is what you

might call the “bread-and-butter” of numerical differential equation solvers. In his

book, Numerical Computing in MATLAB, Cleve Moler suggests, “in general, ode45,

is the first function to try for most problems.” Moler refers to ode45 as “the workhorse

of the MATLAB ordinary differential equations suite” [Mol04].

Below (Fig. 7.3), we use ode45 to solve the IVP in Example 6. Notice that the plot

also shows the exact solution of the IVP; and moreover, the ode45 solution is almost

indistinguishable. These results are given alongside an error plot that compares ode45,

classic RK-4, and the Forward Euler finite difference method to the exact solution.

We can see that while the classical RK-4 method gives excellent results, MATLAB’s

use of variable step size and Dormand-Prince pairs improves accuracy significantly.
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Figure 7.3: Right: Exact and Approx Solns of x′(t) = x(t), x0 = 1, Left: Error
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The driving force behind this thesis problem (writing higher-order dynamic equa-

tions on time scales as systems of first-order DEs) is the fact that software imple-

mentations of the Runge-Kutta family of methods (including ode45) require that

higher-order DEs be written as systems of first-order equations [WyBa95]. Before

we can develop software for solving dynamic equations on time scales, we must deter-

mine whether such transformations are possible since the assumptions that underly

commercial software applications may not hold for dynamic equations.
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Chapter 8

Numerical Solutions of Dynamic

Equations

For applied mathematicians, time scales calculus holds great appeal because of its

potential to model natural phenomena more accurately (and perhaps more efficiently)

that behave sometimes in a continuous manner and at others times, in a discrete

manner. Also, from a computational standpoint, time scales calculus provides a for-

mal, mathematically-sound framework in which analysts could reduce computational

expense by constructing ‘mixed domain’ models. For instance, discrete domains with

few points could be used when modeled behavior was regular and predictable and when

making calculations for additional grid points in the domain might be unnecessary. On

the other hand, continuous domains could be employed when modeled behaviors were

erratic or difficult to predict. Certainly, these kinds of techniques have been employed

before (especially for such things as the resolution of Runge phenomena); however,

time scales calculus provides a formalized mathematical structure that could be used

to justify such techniques analytically and to suggest optimum protocol.

Previously, most of the research in time scales calculus has been analytically-based.

This approach seems logical since the pioneers of times scales calculus needed to es-

tablish the ground rules of the new discipline before applying them. Recently though,

several mathematicians have been laying the groundwork for computing numerical

solutions of dynamic equations on time scales [BaOt05, ESH03, ElSh04, RoSh06,

SFHD06, She05, She06]. Also, our research group at Marshall University has used
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time scales calculus theory to show that the solution of a first-order delta dynamic

equation converges to the differential solution as the graininess function, µ(t), ap-

proaches zero [DHOv04a, LaOv06] and furthermore, that there is a homeomorphism

that maps the graininess function of the dynamic equation x∆(t) = f(t, x(t)) to the

parameter space of the logistic equation [DHOv04b].

In the previous chapters, we have shown analytically that certain initial value

problems for higher-order dynamic equations can be written as corresponding systems

of equations and that solving these systems is equivalent to solving the original IVPs.

This paper seeks also to show this result numerically. However, in undertaking this

project, we have encountered some uncharted waters and have discovered that trying to

“solve” a dynamic equation numerically is not necessarily a straight-forward procedure.

8.1 What does it mean to “solve” a dynamic equation

numerically?

Given the ordinary differential equation x′(t) = f(t, x), solving for x(t) is equivalent

to integrating f(t, x) and thus to finding the area of the region under the curve of

the graph that represents f(t, x). Even if this cannot be done analytically, we can

always draw rectangles of tinier and tinier widths under that curve, find their areas,

and calculate the Riemann Sum, achieving a solution that becomes more and more

accurate as the rectangles get thinner. For ODEs of higher-order, this physical solution

becomes more obscure, but the objective is clear: finding numerical values of a function

(perhaps unknown) whose nth instantaneous rate of change is f(t, x, x′, . . . , x(n)).

Typically, we don’t hear much about approximating the solutions of difference

equations. After all, we use the solutions of difference equations as approximations

for the solutions of differential equations. We describe one family of these procedures,

i.e. finite difference methods, in the previous chapter. In fact, as long as a forward

difference equation is explicitly solvable for its highest-order term, a numerical approx-

imation of its solution amounts to recursion (solving for x(t+1) using the value of x(t)

and solving for x(t + 2) using x(t + 1), etc.). Thus, we can solve difference equations

numerically at machine accuracy as long as they are explicitly solvable. However,

when difference equations are not explicitly solvable for the highest-order terms, i.e.
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when they are non-linear, techniques such as linearization and quasilinearization are

employed.

Despite differences in the details for approximating the solutions of differential

and difference equations, the overall goal of the various procedures is straightforward,

as are the physical representations of the solutions. Also, for those who want to

use time scales derivatives and grids to obtain more accurate solutions of differential

equations, the goal is also clear—to approximate the DE solution more closely, using

the flexibility of time scales grids and derivatives to cause the solution of the dynamic

equation to emulate the solution of the ODE. But, what about the dynamic equations

themselves? How do we calculate or approximate their solutions? And what do these

solutions represent physically?

Previous research has developed many tools for solving linear dynamic equations

analytically [BoPe01, BoPe03]. Recent numerical research on dynamic equations has

demonstrated successful techniques for approximating solutions of ordinary differential

equations using time scales derivatives and grids [She05, SFHD06, ElSh04, ESH03].

Solutions of non-linear dynamic equations been solved using a method of quasilin-

earization in which non-linear equations are approximated by equations more linear

in form and more easily solved. These methods provide monotonically convergent

lower and upper solution sequences [ESH03, ElSh04].

8.2 tsSolver

Two students at Baylor University, Brian Ballard and Bumni Otegbade, have written a

time scales toolbox for MATLAB that includes a delta dynamic equation solver called

tsode [BaOt05]. In the manual that accompanies the toolbox, the authors explain

that their solution protocols differ for continuous and discrete time scales and for

continuous and discrete intervals within mixed time scales. On discrete time scales and

on discrete intervals within mixed time scales, tsode solves for x(σ(t)) (called y(t + 1)

in the manual) recursively using (3.1). For continuous time scales and on continuous

intervals, tsode solves using MATLAB’s built-in differential equation solver, ode23.

Ballard and Bumni’s protocol inspired our procedure for approximating solutions of

first-order and second-order delta, nabla, and diamond-alpha dynamic equations on
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time scales.

In an attempt to create such a protocol for approximating solutions of dynamic

equations on time scales, we developed a GUI (Graphical User Interface) in MATLAB

6.5. The GUI, called tsSolver, displays time scales that users choose from a drop-down

menu and solutions of dynamic equations (that users also choose from a menu) on the

chosen time scale. The GUI follows the protocol described below.

Figure 8.1: A screen shot from tsSolver that demonstrates the time scales available in
the drop-down menu.

On an isolated time scale, i.e. σ(t) > t > ρ(t), for first and second order delta

IVPs, our approach is similar to the difference equation strategy described above and

similar to tsode’s recursion strategy—solve the dynamic equation explicitly for the

“highest-order” version of the solution x in the dynamic equation. Then, generate

the solution values for each grid point on which the solution is defined by repeated

recursion. Consider the following example.
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Example 7. Let x∆(t) = −x(t); x(t0) = 1; T = {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
Recall from chapter 3, the computational formula (3.1) for x∆(t) when T = TI :

x∆(t) =
x(σ(t))− x(t)

µ(t)

Solving for the“highest-order” term x(σ(t)) gives

x(σ(t)) = x(t) + µ(t)x∆(t). (8.1)

Applying this computational formula to the IVP on the given time scale gives us a

numerical value of the solution t = 0.2:

x(0.2) = x(0) + µ(0)(−x(0)) = 1.0 + 0.2(−1.0) = 0.8.

We repeat the recursion, obtaining x(0.4),

x(0.4) = 0.8 + 0.2(−0.8) = 0.64.

and continue this process to obtain the complete solution vector x(t) for t ∈ Tk

x(t) =




1.0

0.8

0.64

0.5120

0.4096




. (8.2)
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Figure 8.2: A screen shot from tsSolver ’s solution of the given delta dynamic equation
(below) for the given T (above).
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Notice that unlike approximating solutions of differential equations with finite dif-

ference methods, on discrete time scale intervals, this method of solving first-order

delta and nabla IVPs is accurate to machine epsilon since the derivative actually is

defined as the computational formula given for isolated time scales.

But, what if instead, the time scale at hand was a combination of discrete and

continuous intervals? Just as tsode uses ode23 to solve delta equations on continuous

intervals, tsSolver uses MATLAB’s built-in ode45 (discussed in the previous chapter)

since ode45’s approximations offer more accuracy than ode23 for non-stiff problems.

These procedures seem fairly straightforward and in fact, are. However, we meet a

bit of difficulty (familiar to numerical analysts and engineers who use finite difference

methods to solve differential equations) when we attempt to solve diamond-alpha

dynamic equations in this way. For an isolated time scale or an isolated interval within

a mixed time scale, the diamond-alpha computational formula (3.3) with α = 0.5 is

equivalent to a weighted version of the central Euler formula of chapter seven. When

solving such a diamond-alpha dynamic equation using repeated recurrences or when

solving a differential equation with a central Euler formula, we run into the problem

of not having enough initial data at the beginning of the recurrence process. In the

following example, we see that we need to calculate x(σ(t)) from x(t) and (x(ρ(t)),

but have only x(ρ(t)).

Example 8.

x¦α(t) = t; x(0) = 0; α = 0.5; T = {0, 0.05, 0.10, . . . , 0.25, 0.30} (8.3)

(3.3) gives us that

αx∆(t) + (1− α)x∇(t) = t.

Further rearrangement and substitution yields

x(σ(t)) =
µ(t)ν(t)t− 0.5µ(t)(x(t)− x(ρ(t))) + 0.5ν(t)x(t)

0.5ν(t)

In this case, t0 = 0 and thus, x(ρ(t)) = 0, but we need to solve for x(σ(t)) = x(0.10)

and lack the necessary x(t) = x(0.05) data value.

Numerical analysts and engineers alike have developed schemes, such as choosing
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Figure 8.3: tsSolver plots the solution of x¦α(t) = t; x(0) = 0; α = 0.5 on the given
time scale.

“ghost points” or using circular boundaries for BVPs. tsSolver employs another of

these techniques: using classical RK4 to advance from the known data value to the

unknown value using sufficiently small time steps (not included in the time scale) be-

tween the two points. Thus, in the case of example 8, tsSolver calculates data values

at several time steps between t = 0 and t = 0.1 before determining an appropriate

start-up value for x(0.1). The figure that follows shows tsSolver ’s solution for this

dynamic equation on Tk
k for the hybrid, discrete-continuous-discrete time scale

T = {0, 0.05, 0.10, . . . , 0.25, 0.30} ∪ [0.4, 0.7] ∪ {0.71, 0.72, 0.76, 0.77, 0.85, 0.93, 0.98}.
Note that the problem of requiring additional data values does not plague us only

in the case of the diamond-alpha equations but instead for all higher-order dynamic

equations. This problem presents a significant obstacle in approximating solutions of

higher-order dynamic equations accurately using these procedures and makes the need

to develop some sort of Runge-Kutta-like protocol more pressing. The author hopes

that since the present study has developed criteria for writing higher-order dynamic

IVPs as systems of equations, future work will offer such numerical methods.
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Appendix A

Determining Orders of Accuracy

The standard method for determining the order of accuracy of a certain finite difference

formula (and the consequent finite difference method) is to obtain an expression for the

difference formula by expanding the function evaluations, x(tk + h), x(tk − h), x(tk −
2h), etc. in Taylor Series and then subtracting x′(t) from the expanded expression.

Often, many terms will (or at least should, for an accurate method) drop out due to

cancellation, leaving only constant terms multiplied by powers of h, the step-size in our

domain, or grid. The least power of h, typically called p appearing in the expression

is called the formula’s order of accuracy. A finite difference method derived from this

derivative approximation is said to be pth order accurate. Let us use the one-sided

forward difference formula as an example.

We begin by expanding x(tk + h) in a Taylor Series about the point tk:

x(tk + h) = x(tk) + hx′(tk) +
h2

2
x′′(tk) +

h3

6
x′′′(tk) +O(h4) (A.1)

Making this substitution in (7.1) yields

x(tk + h) =
x(tk) + hx′(tk) + h2

2 x′′(tk) + h3

6 x′′′(tk) +O(h4)− x(tk)
h

(A.2)

(see discussion of O(hp) below)

Note heavy cancellation as (A.2) reduces nicely to (A.3):

x(tk + h) = x′(tk) +
h

2
x′′(tk) +

h2

6
x′′′(tk) +O(h3) (A.3)
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Since this expression should approximate x′(tk), we subtract x′(tk) to obtain the error

the FD formula generates, leaving the error as a function of h,

E(h) =
h

2
x′′(tk) +

h2

6
x′′′(tk) +O(h3). (A.4)

Thus, E(h) → 0 at least as quickly as h does. Then, (7.1) gives a first-order accurate

approximation of x′(tk). As a result, in the next section we shall see that the Forward

Euler finite difference method approximates the solution of the corresponding ODE

with first-order accuracy.

A.1 “Big-Oh” Notation, O(hp)

Let f and g be two functions of h. Then,

f(h) = O(g(h)) as h → 0 (A.5)

implies that there is some constant C such that

∣∣∣∣
f(h)
g(h)

∣∣∣∣ < C (A.6)

for all h sufficiently small [Lev98]. Equivalently, if |g(h)| is bounded, then

|f(h)| < C |g(h)| (A.7)

for all h sufficiently small. In other words, (A.5) tells us that f(h) goes to 0 at least as

fast as the function g(h) does. Thus, when we speak of a FD method converging to a

solution with pth-order accuracy, this is equivalent to writing the error as a function

of h using big-oh notation

E(h) = O(hp), (A.8)

meaning that as h → 0, the error diminishes as least as quickly as hp does. Thus, the

higher the order of accuracy, the more quickly the error goes to 0 as the step-size h

decreases.
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Appendix B

MATLAB Programming Code

B.1 Figure Generators

The following MATLAB 6.5 code was used to generate figures in the manuscript.

B.1.1 forwardEuler.m, Fig. 7.1

function forwardEuler(h)

t = 0:h:2;

t = t’;

%computes soln of IVP x’ = x using Forward Euler

xEul(1) = 1;

for k = 1:length(t) - 1

xEul(k + 1) = (1 + h)*xEul(k);

end

xEul = xEul’;

%computes actual soln.

x = exp(t);

%plots actual soln and Euler solution in same fig for comparison

figure(’Color’, ’white’)
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h = plot(t, x, ’b’, t, xEul, ’r--’)

legend(’Actual Solution’, ’Forward Euler Approx’)

B.1.2 classicRK4.m, Fig. 7.2

function y = classicRK4(h);

% applies classic 4th order RK method to IVP x’=x, x0 = 1;

t = (0:h:2)’; tLength = length(t);

xRK(1) = 1;

for m = 1:tLength - 1

s1 = xRK(m);

s2 = xRK(m) + 0.5*h*s1;

s3 =xRK(m) + 0.5*h*s2;

s4 = xRK(m) + h*s3;

xRK(m + 1) = xRK(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

xRK = xRK’;

%computes actual soln.

x = exp(t);

%computes soln of IVP x’ = x using Forward Euler

xEul(1) = 1;

for k = 1:tLength - 1;

xEul(k + 1) = (1 + h)*xEul(k);

end

xEul = xEul’;
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%plots actual soln, Euler soln, and RK soln in same fig for comparison

figure(’Color’, ’white’)

h = plot(t, xEul, ’b--’, t, xRK, ’r’);

legend(’Forward Euler Approx’, ’RK-4 Approx’)

xlabel(’t’)

ylabel(’x(t)’)

%gives error plot for fEul v. RK4

figure(’Color’, ’white’)

errRK = abs(xRK - x);

errFEul = abs(xEul -x);

semilogy(t, errFEul, ’b--’, t, errRK, ’r’)

xlim([0.2:2])

legend(’Forward Euler’, ’Classic RK-4’)

xlabel(’t’)

ylabel(’Error Values’)

B.1.3 ode45Demo.m, Fig. 7.3

function y = ode45Demo(h)

% applies classic 4th order RK method to IVP x’=x, x0 = 1 and compares it to

%ode45 solution and Forward Euler

t = (0:h:2)’;

tLength = length(t);

xRK(1) = 1;

for m = 1:tLength - 1

s1 = xRK(m);

s2 = xRK(m) + 0.5*h*s1;

s3 = xRK(m) + 0.5*h*s2;
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s4 = xRK(m) + h*s3;

xRK(m + 1) = xRK(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

xRK = xRK’;

%computes soln of IVP x’ = x using Forward Euler

xEul(1) = 1;

for j = 1:length(t) - 1

xEul(j + 1) = (1 + h)*xEul(j);

end

xEul = xEul’;

%computes actual soln.

x = exp(t);

%plots exact soln in same fig with ode45 for comparison

figure(’Color’, ’white’)

hold on

F = inline(’k’,’r’,’k’);

[r,k] = ode45(F, [0 2], 1);

plot(r, k, ’r--’, t, x, ’b’, t, xRK, ’k-*’, t, xEul, ’g.’);

legend(’ode45’, ’Exact Solution’)

axis on

xlabel(’t’)

ylabel(’x(t)’)

hold off

%computes actual soln. on ode45 grid
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x45 = exp(r);

%gives error plot for ForEul v. ode45 v. RK4

errFEUL = abs(xEul - x);

errRK = abs(xRK - x);

err45 = abs(k - x45);

semilogy(t, errFEUL, ’b--’, t, errRK, ’r--*’, r, err45, ’k’)

xlim([0.2 2.0])

legend(’Forward Euler’, ’Classic RK-4’, ’ode45’)

B.1.4 tsSolver.m, Fig. 8.1, Fig. 8.2, Fig. 8.3

cf. the following section for the programming code that produced the tsSolver figures.

B.2 Programming Code for tsSolver

B.2.1 tsSolver.m

function varargout = tsSolver(varargin)

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1; gui_State = struct(’gui_Name’, mfilename,

...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @tsSolver_OpeningFcn, ...

’gui_OutputFcn’, @tsSolver_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin & isstr(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
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gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

function tsSolver_OpeningFcn(hObject, eventdata, hand, varargin)

% Create the data to plot.

hand.peaks=peaks(35); hand.membrane=membrane; [x,y] =

meshgrid(-8:.5:8); r = sqrt(x.^2+y.^2) + eps; sinc = sin(r)./r;

hand.sinc = sinc;

% Set the current data value.

hand.current_data = hand.peaks; contour(hand.current_data)

% Choose default command line output for tsSolver

hand.output = hObject; hand.type = ’continuous’; hand.deriv = ’x ^

delta’; hand.eq = ’0’; hand.x0 = 1.0;

%hand.udf = ’0’;

x0 = hand.x0; ts = getTS(hand.type); x =

solveIt(hand.type,hand.deriv,hand.eq,hand.x0);

% Update handles structure

guidata(hObject, hand); hold off

% UIWAIT makes tsSolver wait for user response (see UIRESUME)

% uiwait(hand.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = tsSolver_OutputFcn(hObject, eventdata, hand);

varargout{1} = hand.output;

%CREATES
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function chooseTS_CreateFcn(hObject, eventdata, hand) function

chooseEQ_CreateFcn(hObject, eventdata, hand) function

chooseDeriv_CreateFcn(hObject, eventdata, hand) function

axesTS_CreateFcn(hObject, eventdata, hand) function

axesSol_CreateFcn(hObject, eventdata, hand) function

x0_CreateFcn(hObject, eventdata, hand)

%CALLBACKS

%POP-UP MENUS

function chooseTS_Callback(hObject, eventdata, hand) stringTS =

get(hObject,’String’); hand.type =

lower(char(stringTS(get(hObject, ’Value’)))); guidata(hObject,

hand);

function chooseDeriv_Callback(hObject, eventdata, hand)

stringDeriv = get(hObject, ’String’); hand.deriv =

lower(char(stringDeriv(get(hObject, ’Value’)))); guidata(hObject,

hand);

function chooseEQ_Callback(hObject, eventdata, hand) stringEQ =

get(hObject,’String’); hand.eq = lower(char(stringEQ(get(hObject,

’Value’)))); guidata(hObject, hand);

%PUSHBUTTON CALLBACKS

function plotTS_Callback(hObject, eventdata, hand) ts =

getTS(hand.type); len = length(ts); t = zeros(len);

axes(hand.axesTS) if isequal(hand.type, ’continuous’)

plot(ts, t, ’b’)

set(hand.axesTS,’YTick’, [])

hold off

elseif isequal(hand.type, ’hybrid’)

tdi = 0:.05:0.3;
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xdi = zeros(1,length(tdi));

tci = 0.4:0.01:0.7;

xci = zeros(1,length(tci));

td2 = [0.7000 0.7200 0.7600 0.7700 0.8500 0.9300 0.9800];

xd2 = zeros(1,length(td2));

plot(tdi, xdi, ’.’)

hold on

plot(tci, xci, ’b’)

hold on

plot(td2,xd2, ’.’)

set(hand.axesTS,’YTick’, [])

hold off

else

plot(ts,t,’b.’)

set(hand.axesTS,’YTick’, [])

hold off

end

function plotSol_Callback(hObject, eventdata, hand)

axes(hand.axesSol) if isequal(hand.type, ’continuous’)

[ts, x] = solveIt(hand.type, hand.deriv, hand.eq, hand.x0);

plot(ts, x, ’r’)

elseif isequal(hand.type, ’hybrid’)

[tdi,xdi,tci,xci,td2,xd2,q,q2] = hybrid(hand.deriv, hand.eq, hand.x0);

plot(tdi(1:q + 1), xdi(1:q + 1), ’r’)

hold on

plot(tdi(1:q + 1), xdi(1:q + 1), ’k.’)

hold on

plot(tci, xci, ’k’)

hold on

plot(td2(1:q2),xd2(1:q2), ’r’)

hold on
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plot(td2(1:q2),xd2(1:q2), ’k.’)

else

[ts, x] = solveIt(hand.type, hand.deriv, hand.eq, hand.x0);

plot(ts, x, ’r-’)

hold on

plot(ts, x, ’k.’)

end hold off

%EDIT TEXT BOXES

function x0_Callback(hObject, eventdata, hand) hand.x0 =

str2double(get(hObject, ’String’)); guidata(hObject, hand);

B.2.2 getTS.m

function ts = getTS(type)

switch type

case ’continuous’

a = 0;

b = 1;

ts = a:0.01:b;

case ’uniform’

ts = linspace(0,1,20);

case ’hybrid’

tdi = 0:.05:0.3;

tci = linspace(0.4,0.7,7);

td2 = [0.7100 0.7200 0.7600 0.7700 0.8500 0.9300 0.9800];

a = length(tdi); b = length(tci); c = length(td2); d= a+b; e = a+b+c;

ts = zeros(1,e);

ts(1:a)= tdi; ts(a+1:d)=tci; ts(d+1:e) = td2;

ts = ts;

case ’harmonic’

t = 1:100;
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for j = 1:100;

ts(j) = 1 - 1/t(j);

end

ts(100) = 1;

case ’exponential’

t = linspace(0,5,20);

ts = exp(t);

val = norm(ts, inf);

ts = ts./val;

case ’log’

t = linspace(0.01,exp(1),20);

ts = log(t);

case ’cgl (cheb-gauss-lobato)’

t = linspace(0,pi,20);

ts = cos(t);

case ’random’

t = randn(1,20);

ts = sort(t);

maxTS = max(abs(ts));

ts = ts./maxTS;

end

B.2.3 SolveIt.m

function [ts, x] = solveIt(TS, Deriv, eqn, x0)

ts = getTS(TS)’; n = length(ts);

if isequal(TS, ’continuous’)

a = ts(1); b = ts(n);

F = inline(eqn,’t’,’x’);

[ts, x] = ode45(F, [a, b], x0);
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else

%calculates missing data point for appropriate DyEqns using classic RK4

h = (ts(2)-ts(1))/24; tTemp = ts(1):h:ts(2); xRK(1) = x0; for m =

1:24

s1 = equation(eqn, tTemp(m), xRK(m));

s2 = equation(eqn, tTemp(m), xRK(m)) + 0.5*h*s1;

s3 = equation(eqn, tTemp(m), xRK(m)) + 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRK(m)) + h*s3;

xRK(m + 1) = xRK(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

%calculates a second missing data point for appropriate DyEqns using classic RK4

h = (ts(3)-ts(2))/24; tTemp = ts(2):h:ts(3); xRK2(1) = xRK(25);

for m = 1:24

s1 = equation(eqn, tTemp(m), xRK2(m));

s2 = equation(eqn, tTemp(m), xRK2(m)) + 0.5*h*s1;

s3 = equation(eqn, tTemp(m), xRK2(m)) + 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRK2(m)) + h*s3;

xRK2(m + 1) = xRK2(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

%calculates missing data point in backwards direction using a modified RK4

h = (ts(2)-ts(1))/24; tTemp = ts(1):h:ts(2); xRKb(1) = x0;

for m =1:24

s1 = equation(eqn, tTemp(m), xRKb(m));

s2 = equation(eqn, tTemp(m), xRKb(m)) - 0.5*h*s1;

s3 = equation(eqn, tTemp(m), xRKb(m)) - 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRKb(m)) - h*s3;

xRKb(m + 1) = xRKb(m) - h/6*(s1 + 2*s2 + 2*s3 + s4);

end

t1 = ts(1:n-2); t2 = ts(2:n-1); t3 = ts(1:n-1); t4 = ts(2:n); mu =
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t2 - t1; nu = t4 - t3;

switch Deriv

case ’x ^ delta’

x(1) = x0;

for j = 1:n-2

x(j + 1) = x(j) + mu(j)*equation(eqn, ts(j), x(j));

end

ts = ts(1:n-1);

x = x’;

case ’x ^ nabla’

x(n) = x0;

for j = 1:n-1

x(n - j) = x(n - j + 1) - nu(n - j)*equation(eqn, ts(n - j + 1), x(n - j + 1));

end

ts = ts(2:n);

x = x(2:n)’;

case ’x ^ diamond-alpha’

alpha = 0.5;

x(1) = x0; x(2) = xRK(25);

for j = 1:n-3

x(j + 2) = (1/(alpha*nu(j +1)))*(equation(eqn,ts(j+1),x(j+1))*mu(j+1)*nu(j+1)

- mu(j + 1)*(1 - alpha)*(x(j + 1) - x(j)) + nu(j + 1)*alpha*x(j + 1));

end

ts = ts(2:n-1)

x = x(2:n-1)’

case ’x ^ delta delta’

x(1) = x0; x(2) = xRK(25);

for j = 1:n-4;

x(j + 2)= (1/mu(j))*(mu(j)*x(j + 1) + mu(j + 1)*x(j + 1) - mu(j + 1)*x(j) +

equation(eqn, ts(j), x(j))*mu(j)^2*mu(j+1));

end
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ts = ts(1:n-2);

x = x’;

case ’x ^ nabla nabla’

x(n) = x0; x(n - 1) = xRKb(25);

for j = 1:n-2

x(n - j - 1) = (1/nu(n-j))*(equation(eqn,ts(n-j+1),x(n-j+1))*nu(n-j)^2*nu(n-j-1)

- nu(n-j-1)*(x(n-j+1)-x(n-j)) + nu(n-j)*x(n-j));

end

ts = ts(2:n);

x = x(2:n)’;

end

end

B.2.4 equation.m

function eq = equation(eqn, ts, x)

a = eqn; b = ts; c = x;

switch eqn

case ’0’

f = 0;

case ’t’

f = ts;

case ’x’

f = x;

case ’-x’

f = -1*x;

case ’x^2’

f = x.^2;

case ’cos(t)’

f = cos(ts);

end eq = f;
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B.2.5 hybrid.m

function [tdi,xdi,tci,xci,td2,xd2,q,q2] = hybrid(Deriv,eqn,x0)

tdi = 0:.05:0.3; tci = linspace(0.4,0.7,7); td2 = [0.7000 0.7200

0.7600 0.7700 0.8500 0.9300 0.9800]; n = length(tdi);

%calculates missing data point for appropriate DyEqns using classic RK4

h = (tdi(2)-tdi(1))/24; tTemp = tdi(1):h:tdi(2); xRK(1) = x0; for

m = 1:24

s1 = equation(eqn, tTemp(m), xRK(m));

s2 = equation(eqn, tTemp(m), xRK(m)) + 0.5*h*s1;

s3 = equation(eqn, tTemp(m), xRK(m)) + 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRK(m)) + h*s3;

xRK(m + 1) = xRK(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

%calculates a second missing data point for appropriate DyEqns using classic RK4

h = (tdi(3)-tdi(2))/24; tTemp = tdi(2):h:tdi(3); xRK2(1) =

xRK(25); for m = 1:24

s1 = equation(eqn, tTemp(m), xRK2(m));

s2 = equation(eqn, tTemp(m), xRK2(m)) + 0.5*h*s1;

s3 = equation(eqn, tTemp(m), xRK2(m)) + 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRK2(m)) + h*s3;

xRK2(m + 1) = xRK2(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

%calculates missing data point in backwards direction using a modified RK4

h = (tdi(2)-tdi(1))/24; tTemp = tdi(1):h:tdi(2); xRKb(1) = x0;

for m = 1:24

s1 = equation(eqn, tTemp(m), xRKb(m));

s2 = equation(eqn, tTemp(m), xRKb(m)) - 0.5*h*s1;
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s3 = equation(eqn, tTemp(m), xRKb(m)) - 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRKb(m)) - h*s3;

xRKb(m + 1) = xRKb(m) - h/6*(s1 + 2*s2 + 2*s3 + s4);

end

t1 = tdi(1:n-1); t2 = tdi(2:n); t3 = zeros(1, n+1); t4 = t3;

t3(2:n+1) = tdi; t4(1:n) = tdi;

mu = t2 - t1; nu = t4 - t3;

t12 = td2(1:n-1); t22 = td2(2:n); t32 = zeros(1,n+1); t42 = t32;

t32(2:n+1) = td2; t42(1:n) = td2;

mu2 = t22 - t12; nu2 = t42 - t32;

switch Deriv

case ’x ^ delta’

xdi(1) = x0;

for j = 1:n-1

xdi(j + 1) = xdi(j) + mu(j)*equation(eqn, tdi(j), xdi(j));

end

tdi = tdi’;

xdi = xdi’

case ’x ^ nabla’

xd2(n) = x0;

for j = 1:n-1

xd2(n - j) = xd2(n-j+1) - nu2(n-j+1)*equation(eqn,td2(n-j+1),xd2(n-j+1));

end

td2 = td2’;

xd2 = xd2’;

case ’x ^ diamond-alpha’

alpha = 0.5;

xdi(1) = x0; xdi(2) = xRK(25);
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for j = 1:n-2

xdi(j + 2) = (1/(alpha*nu(j+1)))*(equation(eqn,tdi(j+1),xdi(j+1))*mu(j+1)*nu(j+1)

- mu(j + 1)*(1 - alpha)*(xdi(j + 1) - xdi(j)) + nu(j + 1)*alpha*xdi(j + 1));

end

tdi = tdi(2:n)’;

xdi = xdi(2:n)’;

case ’x ^ delta delta’

xdi(1) = x0; xdi(2) = xRK(25);

for j = 1:n-4;

xdi(j + 2)= (1/mu(j))*(mu(j)*xdi(j + 1) + mu(j + 1)*xdi(j + 1) - mu(j + 1)*xdi(j)

+ equation(eqn, tdi(j), xdi(j))*mu(j)^2*mu(j+1));

end

tdi = tdi(1:n-2)’;

xdi = xdi’;

case ’x ^ nabla nabla’

xdi(n) = x0; xdi(n - 1) = xRKb(25);

for j = 1:n-2

xdi(n-j-1) = (1/nu(n-j))*(equation(eqn,tdi(n-j+1),xdi(n-j+1))*nu(n-j)^2*nu(n-j-1)

- nu(n-j-1)*(xdi(n-j+1)-xdi(n-j)) + nu(n-j)*xdi(n-j));

end

tdi = tdi(2:n)’;

xdi = xdi(2:n)’;

end

q = length(tdi); q2 = length(td2); q3 = length(tci);

%solves on continuous part

if isequal(Deriv, ’x ^ nabla’)

a = tci(q3); b = tci(1); c = xd2(1);

F = inline(eqn,’t’,’x’);

[tci,xci] = ode45(F, [a, b], c)

sizer = length(tci);
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for i = 1:sizer

rev(i) = sizer - i + 1;

end

xci = xci(rev);

tci = tci(rev);

else

a = tci(1); b = tci(q3); c = xdi(q);

F = inline(eqn,’t’,’x’);

[tci,xci] = ode45(F, [a, b], c);

sizer = length(tci);

end

tdi(q + 1:sizer) = 0; xdi(q + 1:sizer) = 0;

%calculates missing data point for appropriate DyEqns using classic RK4

h = (td2(2)-td2(1))/24; tTemp = td2(1):h:td2(2); xRK(1) =

xci(sizer); for m = 1:24

s1 = equation(eqn, tTemp(m), xRK(m));

s2 = equation(eqn, tTemp(m), xRK(m)) + 0.5*h*s1;

s3 = equation(eqn, tTemp(m), xRK(m)) + 0.5*h*s2;

s4 = equation(eqn, tTemp(m), xRK(m)) + h*s3;

xRK(m + 1) = xRK(m) + h/6*(s1 + 2*s2 + 2*s3 + s4);

end

switch Deriv

case ’x ^ delta’

xd2(1) = xci(sizer);

for j = 1:n-2

xd2(j + 1) = xd2(j) + mu2(j)*equation(eqn, td2(j), xd2(j));

end

td2 = td2(1:n-1)’;

xd2 = xd2’;
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case ’x ^ nabla’

xdi(n) = xci(1);

for j = 1:n-1

xdi(n - j) = xdi(n - j + 1) -

nu(n - j + 1)*equation(eqn,tdi(n - j + 1),xdi(n - j + 1));

end

tdi = tdi(2:n)’;

xdi = xdi(2:n)’;

q = length(tdi);

tdi(q + 1:sizer) = 0;

xdi(q + 1:sizer) = 0;

case ’x ^ diamond-alpha’

alpha = 0.5;

xd2(1) = xci(sizer); xd2(2) = xRK(25);

for j = 1:n-2

xd2(j+2) = (1/(alpha*nu2(j+1)))*(equation(eqn,td2(j+1),xd2(j+1))*mu2(j+1)*nu2(j+1)

- mu2(j + 1)*(1 - alpha)*(xd2(j + 1) - xd2(j)) + nu2(j + 1)*alpha*xd2(j + 1));

end

td2 = td2(1:n-1)’;

xd2 = xd2(1:n-1)’;

case ’x ^ delta delta’

xd2(1) = xci(sizer); xd2(2) = xRK(25);

for j = 1:n-4;

xd2(j+2) = (1/mu2(j))*(mu2(j)*xd2(j+1) + mu2(j+1)*xd2(j+1) - mu2(j+1)*xd2(j)

+ equation(eqn, td2(j), xd2(j))*mu2(j)^2*mu2(j+1));

end

td2 = td2(1:n-2)’;

xd2 = xd2’;

case ’x ^ nabla nabla’

xd2(n) = xci(sizer); xd2(n - 1) = xRKb(25);

for j = 1:n-2

xd2(n-j-1)=(1/nu2(n-j))*(equation(eqn,td2(n-j+1),xd2(n-j+1))*nu2(n-j)^2*nu2(n-j-1)
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- nu2(n-j-1)*(xd2(n-j+1)-xd2(n-j)) + nu2(n-j)*xd2(n-j));

end

td2 = td2(2:n)’;

xd2 = xd2(2:n)’;

end

q2 = length(td2); td2(q2 + 1:sizer) = 0; xd2(q2 + 1:sizer) = 0;

xdi(q + 1) = xci(1) tdi(q+1) = tci(1);
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