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ABSTRACT

TRANSMISSION RATE IN PARTIAL DIFFERENTIAL EQUATION IN EPIDEMIC

MODELS

Alaa Elkadry

The rate at which susceptible individuals become infected is called the transmission rate.

It is important to know this rate in order to study the spread and the effect of an infectious

disease in a population. This study aims at providing an understanding of estimating the

transmission rate from mathematical models representing the population dynamics of an

infectious diseases using two different methods. Throughout, it is assumed that the number

of infected individuals is known. In the first chapter, it includes historical background

for infectious diseases and epidemic models and some terminology needed to understand

the problems. Specifically, the partial differential equations SIR model is presented which

represents a disease assuming that it varies with respect to time and a one dimensional space.

Later, in the second chapter, it presents some processes for recovering the transmission rate

from some different SIR models in the ordinary differential equation case, and from the

PDE-SIR model using some similar techniques. Later, in the third chapter, it includes

some terminology needed to understand “inverse problems” and Tikhonov regularization,

and the process followed to recover the transmission rate using the Tikhonov regularization

in the non-linear case. And finally, in the fourth chapter, it has an introduction to an

optimal control method followed to use Tikhonov regularization to recover the transmission

rate.

vii



Chapter 1

INTRODUCTION

Infectious diseases have been responsible for the death of millions of peoples all around

the world [9]. Today, infectious diseases are still a major causes of mortality. This is why

people are concerned and want to know more about each infectious disease. Epidemiology

is the study of health and disease in a particular population in order to control associated

health problems. In this paper we use mathematical models to study the transmission

rate of some infectious diseases. We start by introducing terminology and describing some

models.

1.1 INFECTIOUS DISEASES

Infectious diseases, also known as transmissible diseases or communicable diseases, are a

great human concern. By the first wave of the bubonic plague pandemic, the Black Death,

between 1348 and 1350, at least a third of the population of Europe had died, between 75

million and 200 million people [9].A lot of people die every year because of diseases such as

AIDS, malaria and measles Millions of others suffer from the infection.

Infectious diseases are caused by pathogenic microorganisms or simply “germs.” Germs

are tiny living things that can be found almost everywhere such as in the air or in water.

An infectious disease is an illness which arises through transmission of the infectious agent.

You can get infected by touching, eating, drinking or breathing something that contains a

germ. Infectious diseases are spread through both direct (Figure 1.1) and indirect contact
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Figure 1.1: Disease transmission schematic with direct contact

Figure 1.2: Disease transmission schematic with indirect contact

(Figure 1.2) [5].

Direct contact transmission occurs when there is physical contact between an infected

person or animal and a susceptible person. Germs can pass from one person to another

through physical contact, coughing, through a blood transfusion, or even through the ex-

change of body fluids from sexual contact. Also, a pregnant woman may pass germs that

cause infectious diseases to her unborn baby. AIDS, Anthrax and Plagues are some exam-

ples of disease that spread by direct contact.

Indirect contact transmission occurs when there is no direct contact between the holder

of the disease and the one that this disease is transmitted to. Germs can be found on

inanimate objects such as doorknobs. When you touch a doorknob after someone with the

flu has touched it, you can pick up the germs he or she left behind, and you may become

infected. Also, a disease can spread by airborne dispersal, like droplet transmission, when

someone is sick and he sneezes, he expels droplets into the air around him; the droplets

he expels contain the germ that caused his illness. A disease can also spread through food

2



contamination or insect bites. Some germs use insects such as mosquitoes, fleas, lice or ticks

to move from host to host [5]. Malaria and Tapeworm are some examples of disease that

spread by indirect contact.

Table 1.1: Infectious Diseases and How They Are Spread

Disease Transmission

Contact of body fluid with that of an infected person.
AIDS Sexual contact and sharing of unclean

paraphernalia for intravenous drugs.
Blastomycosis Inhaling contaminated dust

Botulism Consuming contaminated food
Hepatitis Direct or indirect contact with infected person

Common cold Direct or indirect contact with infected person
Encephalitis Mosquito bite
Gonorrhea Sexual contact

Malaria Mosquito bite
Measles Direct or indirect contact with infected person

Tapeworm Consuming infected meat or fish
Typhus Lice, flea, tick bite

Infectious diseases are classified by frequency of occurrence; an infectious disease can be

an epidemic, endemic or pandemic. An endemic is an infectious disease that is constantly

present in a population. For example, malaria is endemic in Brazil. A disease that quickly

and severely affects a large number of people and then subsides is an epidemic. For epidemics

we have many cases of infection in a given area in short period. Seasonal influenza is an

example of an epidemic. A pandemic disease is a world-wide epidemic that may affect entire

continents or even the world. Influenza is occasionally pandemic, such as the pandemic of

1918. Throughout the Middle Ages, successive pandemics of the plague killed millions.

Thus, from an epidemiologists point of view, the Black Death in Europe and AIDS in

sub-Saharan Africa are pandemic rather than epidemics.

It is true that the health system has been improved, but now, people could be in contact

easily with many others due to the development in the transportation system [3]. This why

the risk of pandemics is still high. Though we know more about diseases, we are much more

exposed to the risk.
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1.2 MATHEMATICAL MODELING

Mathematical modeling is an activity of translating a real world situation into the ab-

stract language of mathematics for subsequent analysis of this problem. A mathematical

model is a mathematical description of the situation, typically in the form of a system of

equations. The systems are solved to get solutions and then compared to experimental

results.

Each involvement in developing other sciences is a success for Mathematics, and, for

mathematicians, biology opens up many new branches of study. Biology provides interesting

topics and mathematics provides models to help in understanding these topics. Infectious

diseases are one of the interesting topics. Mathematical modeling helps in the understanding

of the spread of an infectious disease and provides a platform to study how to control the

spread and thus control health problems.

Mathematical models help in the study of patterns of infections, and therefore they

are valuable tools in order to detect and prevent a disease. Mathematical modeling in

epidemiology provides an understanding of the underlying mechanisms that influence the

spread of disease and, in the process, it suggests control strategies. The disease transmission

could be studied from different perspective such as animal to human transmission, but let

us fix our attention on human to human transmission.

In order to study an infectious disease, many factors should be considered. Some of these

factors are related to the population, such as age, sex, genetics and immunity status. Other

factors are more related to the disease itself, such as the type of this disease. Finally, some

other factors are related to the environment, such as pollution and temperature. Each factor

could affect the speed and the spread of a disease in a different way. As with all modeling,

mathematical modeling requires simplifying assumptions. It is hard to include all factors

in the model because it will make the model more complicated and harder to solve and

all factors may be unknown. On the other hand, if the model is too simple it may fail to

provide a reasonable platform for testing hypotheses.

Mathematical models have been used to study the dynamics of infectious diseases at
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the population level. Most models are in the form of ordinary differential equation(ODEs)

[16] due to their simplicity and the limited computational tools that were available in the

past. But as mentioned before, most of the time a more realistic description requires a more

complicated system of equations to be analyzed mathematically. Advances in computational

tools have opened the door for mathematical analysis of more complicated systems.

In order to make a model for a disease in a population, we divide the population into

different classes and we study the variation in numbers in these classes with respect to

time. The choice of these classes is related to the disease studied. The most used classes

are, S, the number of susceptible individuals, E, the number of exposed individuals, I, the

number of infected individuals and R, the number of recovered individuals. For example, if

a model considers “flu” as disease, this model would be an SIS model because individuals

recover with no immunity to the disease; that is, individuals are immediately susceptible

once they have recovered. Some of the well studied epidemic models are: SI, SIR, SIS,

SEIR, SEIS,...[See table 1.2]

Table 1.2: Different epidemiology models

Model name Special Property Example of a disease

SI No recovery AIDS
SIR Permanent immunity after recovery Influenza
SIS No immunity after recovery H1N5
SEIR Latent period where the infected is not infectious yet Measles
SEIS SIS + latent period Malaria

1.3 SIR MODEL

When we model a disease we need to understand the way this disease spreads, be able

to predict the future of this disease and understand how we may control the spread of this

disease. This why any model should describe the behavior of the disease in a correct way.

Different researchers provided different models that describe different cases; in this paper,

we will mention or describe some of those models.
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In 1927 Kermack and McKendrick [8] provided an epidemic model that was considered a

generalized model at the time. In this model, the total population is assumed to be constant

and divided into three classes. Susceptible class contains individuals who have no immunity

to the infectious agent; any member of the susceptible class could become infected. Infec-

tious class contains individuals who are currently infected and can transmit the infection

to susceptible individuals who they contact. Recovered class contains individuals who have

returned to a normal state of health after being infected and those individuals have gained

permanent immunity. This model is called the SIR model. In this model we assume that:

1. The way a person can leave the susceptible group, S, is to become infected. The way

a person can leave the infected group, I, is to recover from the disease.

2. The recovery rate r and the transmission rate β are the same for all individuals and

are supposed positive.

3. There is homogeneous mixing, which means that individuals of the population make

contact at random and do not mix mostly in a smaller subgroup.

4. The disease is novel, so no vaccination is available.

5. The population size, N , is constant and large.

6. Any recovered person in R has permanent immunity.

Given these assumptions, Kermack and McKendrick presented the following system:

dS(t)

dt
=− βS(t)I(t) (1.1)

dI(t)

dt
=βS(t)I(t)− rI(t) (1.2)

dR(t)

dt
=rI(t) (1.3)

with the initial conditions: 
S(0) = S0 > 0

I(0) = I0 > 0

R(0) = 0

(1.4)
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S(t) is the number of susceptible individuals at time t, I(t) is the number of infected indi-

viduals at time t, R(t) is the number of removed individuals at time t. β is the transmission

rate and r is the recovery rate [See table 1.3]. This model represents an epidemic which

quickly infects many people then subsides. Therefore it is reasonable to assume that the

class of susceptible individuals, S, does not include new incoming people from births or

recovered individuals who lost their immunity to the disease. The term βS(t)I(t) is the

incidence rate or the rate of new infections; it is a bilinear incidence which is considered as

a good model for disease spread in urban settings.

The total population N(t) = S(t) + I(t) + R(t) is assumed to be constant. It is clear that

dN
dt = d(S+I+R)

dt = 0. Therefore it is true that N(t) is a constant, N .

Table 1.3: Units for the SIR ODE model
Variable description unit

β Transmission rate 1
people×days

r Recovery rate 1
days

t Time days
S Number of susceptible people people
I Number of infected people people
R Number of recovered people people
N Total number of people people

The SIR model is a simple model that does not take in consideration age, sex, spatial

position or any other factors. But it opened the door to the development of other extended

models that describe various types of epidemics.

1.4 SIR MODEL INCLUDING SPATIAL POSITION

Webb [17] proposed and analyzed a disease model structured by spatial position. He

assumed that spatial mobility is governed by random diffusion coefficients respectively DS ,

DI and DR for the susceptible, infected and recovered classes.

7



We assume here that the spatial position is a bounded one-dimensional environment,

[0, L], with L > 0.

Let S = S(t, x), I = I(t, x); and R = R(t, x) represent, respectively, the number of

susceptible, infected, and recovered individuals at location x at time t. The transmission

rate β and the recovery rate r are supposed positive [See table 1.4]. We get the system:

dS

dt
=− βSI +DSSxx (1.5)

dI

dt
=βSI − rI +DRIxx (1.6)

dR

dt
=rI +DRRxx (1.7)

We assume homogeneous Neumann boundary conditions representing a closed environ-

ment where individuals are not allowed to leave or enter the studied environment:

Sx(t, 0) = Sx(t, L) = Ix(t, 0) = Ix(t, L) = Rx(t, 0) = Rx(t, L) = 0

with the initial conditions: 
S(0) = S0 > 0

I(0) = I0 > 0

R(0) = 0

(1.8)

Table 1.4: Units for the SIR PDE case
Variable description unit

β Transmission rate 1
people×days

t Time days
r Recovery rate 1

days

S(t, x) Number of susceptible people at time t and space x people
I(t, x) Number of infected people at time t and space x people
R(t, x) Number of recovered people at time t and space x people
N(t, x) The population at time t and space x people

DS , DI , DR Diffusion rates people2

days

The spatial factor, x, can be spatially discrete or spatially continuous. In either case,

8



the spatial factor is used to describe the mobility of the population. This mobility can

be due to travel and migration, and it could be between cities, towns or even countries,

depending on the studied case.

1.5 TRANSMISSION RATE

An infectious disease is transmitted from some source to some susceptible individual.

The rate at which susceptibles become infected is called the transmission rate. The trans-

mission rate of many infectious diseases varies in time. A good example of this variation is

the transmission rate of influenza, which is thought to vary seasonally due to changing sea-

sonal humidity. A disease transmission from infected individuals to susceptible individuals

defines the dynamic of an infectious disease. Transmission rate is defined as the product of

the total contact rate by the probability of transmission occurring. The transmission rate is

impossible to measure for most infections, but we need to know this rate in order to study

the changes in a population due to an infectious disease.

One of the principal challenges in epidemiological modeling is to parameterize models

with realistic estimates for all parameters including the transmission rates. More accurate

parameter values will lead to more realistic models which allow for better analysis of strate-

gies for control and predictions of disease outcomes. The recovery rate can be measured in

a laboratory, for example if people, on average, stay sick for two days the recovery rate is

r = 1
2 . But the transmission rate is hard to predict.

During a disease outbreak we could count people getting infected such as those in hospi-

tals, we can assume that we know I(t). In this paper we assume that the number of infected

I(t, x) is known and we want to find the spatiotime-dependent transmission rate function

β(x, t).
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1.6 LATENT PERIOD

For some diseases, when a person becomes infected, he does not become infectious until

the virus or bacteri develops and gets stronger. In this case, the infected will be a disease

holder who cannot transmit it to any other person until the infection matures. The period

that starts when the person becomes infected, until the person becomes infectious is called

the latent period.

If there is a latent period then we should divide our population into four classes:

Susceptible class contains individuals who have no immunity to the infectious agent, so

might become infected if exposed. Exposed or Latent class contains individuals who are

infected but cannot infect other individuals. Infectious class contains individuals who are

currently infected and can transmit the infection to susceptible individuals who they contact.

Recovered class contains individuals who returned to a normal state of health after being

infected. The model is called the SEIR model.

In our case we will assume that the individual becomes infectious as soon as he get infected,

the SIR model.

1.7 DESCRIPTION OF THE SITUATION

Consider an infectious disease with no latent period (no temporal delay in infection)

and no available vaccination. The total population is divided into three classes: susceptible

class “S”, infected class “I”, and removed class “R.” Assume that the infected class has full

immunity after recovery which means that as soon as an infected individual recovers from

the infection he will be immune, he will not be susceptible or infected again. Therefore this

individual will move from the infectious class, I, to the recovered class, R.

Assume that we know the number of births, also, we assume that we know the death rate.

Also we will assume that newborns are not protected from the disease and they could

become infected; they are susceptibles.

This system describes an endemic i.e. the disease is present in the population for a long

period of time where the susceptible class, S, includes new income from births.
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We have an SIR disease model in a spatially continuous environment. We consider the

one dimensional space Ω = [−1, 1].

Consider the notations:

Let x ∈ Ω.

S = S(t, x), the number of susceptible people at time t and in position x,

I = I(t, x), the number of infected people at time t and in position x,

R = R(t, x), the number of recovered people at time t and in position x.

N(t, x) the total number of people at time t and in position x.

S(t) =
∫

Ω S(t, x) dx, number of susceptible people at time t,

I(t) =
∫

Ω I(t, x) dx, the number of infected people at time t,

R(t) =
∫

ΩR(t, x) dx, the number of recovered people at time t,

N(t) =
∫

Ω S(t, x) + I(t, x) +R(t, x) dx, the number of people at time t.

The partial derivative of the population N(t, x) with respect to time, t, will be given by

∂N(t, x)

∂t
= B(t, x) +DS

∂2S(t, x)

∂x2
+DI

∂2I(t, x)

∂x2
+DR

∂2R(t, x)

∂x2
−dN(t, x)−γI(t, x) (1.9)

where N(t, x) is the population at time t in space x,

B(t, x) is the number of new born in space x at time t,

DS is the diffusion rate for the susceptible class, which is constant for all susceptible people,

DI is the diffusion rate for the infected class, which is constant for all infected people,

DR is the diffusion rate for the recovered class, which is constant for all recovered people,

d is the death rate,

γ is the extra death rate due to the disease.

1.8 SIR MODEL IN THIS SITUATION

Figure 1.3 describes our situation.
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Figure 1.3: SIR-model figure with population demographics

The assumptions lead us to a set of partial differential equations.

∂S(t, x)

∂t
=B(t, x)− dS(t, x)− β(t, x)S(t, x)I(t, x) +DSSxx(t, x) (1.10)

∂I(t, x)

∂t
=β(t, x)S(t, x)I(t, x)− (d+ γ)I(t, x)− rI(t, x) +DIIxx(t, x) (1.11)

∂R(t, x)

∂t
=rI(t, x)− dR(t, x) +DRRxx(t, x) (1.12)

We will consider a closed environment. All individuals are not allowed to escape or leave out

of the studied environment; i.e, for this model we have homogeneous Neumann boundary

conditions:

Sx(t, 0) = Sx(t, 1) = Ix(t, 0) = Ix(t, 1) = Rx(t, 0) = Rx(t, 1) = 0

The expected duration of the disease is 1
r time units . The parameters d, r, γ are greater

or equal to zero.

1.9 NUMERICAL SIMULATION - SOLUTION TO THE SIR-PDE

The SIR-PDE system has three time-dependent partial differential equations. In this

section we will assume that the transmission rate β is known and show that the SIR-PDE

system can be solved. And as we know, we can solve time-dependent partial differential

equations numerically using different methods. In this paper we will use a Runge-Kutta
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Table 1.5: Units for the SIR PDE model with demographics

Variable description unit

β Transmission rate 1
people×days

γ Extra death rate due to the infection 1
days

t Time Days
r Recovery rate 1

days

S(t, x) Number of susceptible people at time t and space x people
I(t, x) Number of infected people at time t and space x people
R(t, x) Number of recovered people at time t and space x people

B(t, x) Number of birth at time t and space x people
days

N(t, x) The population at time t and space x people

DS , DI , DR Diffusion rates location2

days

method to solve our SIR-PDE system. The space derivatives of the system are discretized

with a finite difference method and then the resulting system of ODEs is advanced in time

with a fourth order Runge-Kutta method.

We will consider different situations and show the graphical solution in each situation.

In all the situations we will assume that:

1. All the diffusion rates are equal and constant(DS = DI = DR = 0.01).

2. The recovery rate is constant(r=0.3).

3. Initially, the number of infected people in each space is one(I(0, x) = 1 for all x ∈ Ω).

4. We will consider the time interval [0, 5].

5. Initially the population distribution has a sine shape.

6. The death rate is constant d = 0.001.

7. The extra death rate due to the infection is constant.

(For more information about the code refer to A.1)

1.9.1 SITUATION 1

Here we consider a disease that does not cause death. Then the extra death rate due to

the infection, γ, is equal to zero.
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Figure 1.4(a) shows the initial condition in this situation. Figures 1.4(b), 1.4(c) and

1.4(d) refer respectively to t = 1, 3, 4.5.

1.9.2 SITUATION 2

Here we consider a disease that does cause death. Then the extra death rate due to the

infection, γ, is not equal to zero. We will assume that γ is constant, γ = 0.3.

Figure 1.5(a) shows the initial condition in this situation. Figures 1.5(b), 1.5(c) and

1.5(d) refer respectively to t = 1, 3, 4.5.

Note

1. The effect of the diffusion is clear; the population distribution is changing from the

sine shape ( Figures 1.4(a) and 1.5(a)) to be more straight ( Figures 1.4(d) and

1.5(d)).

2. The number of susceptible people is decreasing, while the number of recovered and

infected people is increasing.

1.10 SEIR MODEL IN THIS SITUATION

As we can see from its name, the SEIR model contains one more compartment, the

exposed compartment ‘E’. An SEIR model is a general case of SIR model. For some

diseases, the virus needs some time ( 1
ν , where ν is the rate at which people moves from

exposed to infectious class) to develop and become stronger. During this time, the infected

person is not infectious, this why we separate those two groups.

We make the following assumptions

1. The SEIR model represents infection dynamics in a population of size N and includes

the spatial position, with a natural death rate and a birth rate.

2. N(t, x) = S(t, x) + E(t, x) + I(t, x) +R(t, x), not constant.
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3. The infection may cause mortality. We have an extra death rate due to the disease.

4. Individuals are moved directly into the susceptible class at birth.

5. We have homogeneous mixing, i.e., individuals of the population make contact at

random and do not mix mostly in a smaller subgroup.

6. The model assumes that recovered individuals are immune from infection.

7. Infected individuals move into the Exposed class and after an average latent period

( 1
ν ), if they escape mortality, they move to the infectious class.

8. We assume that spatial mobility is governed by random diffusion coefficients, DS , DE ,

DI and DR for the susceptible, exposed, infectious and recovered classes respectively.

The spatial position is a bounded one-dimensional environment, [0, 1]

9. We are going to consider that the disease is new or simply no vaccination is available.

All individuals are not allowed to escape or leave the studied environment, i.e. for this model

we have homogeneous Neumann boundary conditions representing a closed environment:

Sx(t, 0) = Sx(t, 1) = Ex(t, 0) = Ex(t, 1) = Ix(t, 0) = Ix(t, 1) = Rx(t, 0) = Rx(t, 1) = 0

with the initial conditions: 

S(0) = S0 > 0

E(0) = 0

I(0) = I0 > 0

R(0) = 0

(1.13)

Under the assumptions we get:
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Table 1.6: Units
Variable description unit

β Transmission rate 1
people×days

γ Extra death rate due to the infection 1
days

ν Rate at which people moves from exposed to infectious class 1
days

t Time Days
r Recovery rate 1

days

S(t, x) Number of susceptible people at time t and space x people
E(t, x) Number of exposed people at time t and space x people
I(t, x) Number of infectious people at time t and space x people
R(t, x) Number of recovered people at time t and space x people
N(t, x) The population at time t and space x people

DS , DE , DI , DR Diffusion rates location2

days

∂S(t, x)

∂t
=B(t, x)− dS(t, x)− β(t, x)S(t, x)I(t, x) +DSSxx(t, x) (1.14)

∂E(t, x)

∂t
=β(t, x)S(t, x)I(t, x)− (d+ γ)E(t, x)− νE(t, x) +DEExx(t, x) (1.15)

∂I(t, x)

∂t
=− dI(t, x)− (r + γ)I(t, x) +DIIxx(t, x) + νE(t, x) (1.16)

∂R(t, x)

∂t
=rI(t, x)− dR(t, x) +DRRxx(t, x) (1.17)

Figure 1.6 represents an SEIR model.

In this paper we will concentrate on SIR model.

1.11 FORWARD PROBLEM

The forward problem is the mathematical process of predicting data based on some

mathematical model with a given set of model parameters. In general , we have the following

equation

Ax = y, (1.18)

where A is an operator between two spaces X and Y , A : X → Y such that x ∈ X and

y ∈ Y
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‘x’ is the set of known model parameters,

‘y’ the estimated data,

the operator ‘A’ represents the model.

The forward problem is the estimation or computation of ‘y’ given the model parameter ‘x’

and the model ‘A’ in the equation Ax = y

Figure 1.7 describes the forward problem.

Note

In the SIR-PDE model case, we have the forward problem of knowing all the parameter

values (β, d, γ, B, DS , . . .) and using that to get the values of S, I and R.

1.12 HADAMARD’S PRINCIPLE

Given the mapping A : X −→ Y , with X and Y two given spaces, the equation Ax = y

is said to be well-posed if:

1. A solution exists, for each y ∈ Y,∃ x ∈ X, such that Ax = y.

2. The solution is unique; ‘Ax1 = Ax2 =⇒ x1 = x2 ’.

3. The solution is stable, which means that x ∈ X depends continuously on y ∈ Y .

These conditions are known as Hadamard principles.

An equation is ill-posed if it is not well-posed, i.e, “one at least of the conditions is not

satisfied.” In the past, a problem that failed to satisfy Hadamard principles was classified

by mathematicians under the title of “not correctly set” problem. With time progress, it

was clear that some important problems failed at least one of Hadamard principles like the

Cauchy problem for the heat equation in reversed time.

1.13 DEFINITIONS

In this section we have some definitions of some mathematical terms that we will use in

this paper, especially in chapter three.

17



Definition 1.13.1. Let X be a vector space over the <. X is a normed space if there exist

a function ‖.‖:X −→ < called norm, and satisfy the following:

1. ‖f‖ ≥ 0, ‖f‖ = 0 if and only if f = 0.(positive definite)

2. ‖αf‖ = |α|‖f‖ for any real α.(homogeneity)

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖. (the triangle inequality)

Definition 1.13.2. Let X be a vector space over the field <. The inner product is a

mapping < ., . >: X ×X −→ < with the following properties:

1. < x+ y, z >=< x, z > + < y, z > for all x, y, z ∈ X

2. < αx, y >= α < x, y > for all x, y ∈ X and α ∈ <

3. < x, y >=< y, x > for all x, y ∈ X

4. < x, x >∈ < and < x, x >≥ 0 for all x ∈ X

5. < x, y + z >=< x, y > + < x, z > for all x, y, z ∈ X

6. < x,αy >= α < x, y > for all x, y ∈ X and α ∈ <

Definition 1.13.3. A vector space X over < with inner product < ., . > is called a pre-

Hilbert space over <.

Definition 1.13.4. A normed space X over < is called complete or a Banach space if every

Cauchy sequence converges in X.

Definition 1.13.5. A is a compact operator if it is a linear operator from a Banach space

X to a Banach space Y such that the image under A for any bounded subset of X is a

relatively compact set (its closure is compact).

Definition 1.13.6. A complete pre-Hilbert space is called a Hilbert space.

Definition 1.13.7. A sequence of vectors in an inner product space X is called weakly

convergent to a vector x in X, xn ⇀ x, if: < xn, y >−→< x, y > for all y ∈ X

Definition 1.13.8. F : X −→ Y is weakly sequentially closed if for a sequence xn ∈ D(F )

the domain of F , xn ⇀ x (weak convergence) and F (xn) ⇀ y in Y imply x ∈ D(F ) and
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F (x) = y

Definition 1.13.9. Let V and W be Banach spaces, and U ⊂ V be an open subset of V .

A function f : U → W is called Fréchet differentiable at x ∈ U if there exists a bounded

linear operator Ax : V →W such that

lim
h→0

‖f(x+ h)− f(x) +Ax(h)‖W
‖h‖V

= 0

If the limit exists, we write Df(x) = Ax and call it the Fréchet derivative of f at x.

Definition 1.13.10. Suppose H is a Hilbert space, with inner product < ., . > . Consider

a continuous linear operator A : H → H. There exists a unique continuous linear operator

A∗ : H → H with the following property:

< Ax, y >=< x,A∗y >

for all x, y ∈ H. This operator A∗ is the adjoint of A.

1.14 PLAN

The transmission rate β(t, x) is an important factor in the study of the spread of any dis-

ease. In this paper we want to recover the transmission rate β(t, x) using different method.

In Chapter 2 we will review the transmission rate recovery procedure for the ordinary

differential equation case and try to identify the transmission rate in the partial differential

equations system using similar procedures.

In Chapter 3 we will discuss the inverse problem procedure and the Tikhonov regular-

ization and apply it to our system in order to find an approximation of the transmission

rate β(t, x).
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In Chapter 4 we will introduce the Optimal Control Theory and apply it to our system

in order to find some numerical approximation of the transmission rate β(t, x).

20



(a) Initial condition when γ = 0.3

(b) t = 1 when γ = 0.3

(c) t = 3 when γ = 0.3

(d) t = 4.5 when γ = 0.3

Figure 1.4: When γ = 0
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(a) Initial condition when γ = 0.3

(b) t = 1 when γ = 0.3

(c) t = 3 when γ = 0.3

(d) t = 4.5 when γ = 0.3

Figure 1.5: When γ = 0.3
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Figure 1.6: SEIR-model figure
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Figure 1.7: Forward Problem
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Chapter 2

DIRECT TRANSMISSION RATE IDENTIFICATION

PROCEDURES

The transmission rate parameter depends on the total contact rate and the probability

of transmission occurring during a contact. The transmission rate is impossible to measure

due to the challenges of measuring both the total contact rate and the probability of trans-

mission, but we need to know this parameter in order to effectively study infectious diseases.

The transmission rate of infectious diseases vary in time, for example, due to seasonal

contact rates among school children. It is also true that this rate may vary from one place

to another. For example, it may change due to different humidities in different places. In

this study, we assume that the transmission rate varies in both time and space and we want

to identify the rate given infection data.

We will start this chapter by discussing some time-dependent procedures for recovering

the transmission rate for the classical ordinary differential equation SIR model. Then we

extend these methods to the SIR partial differential equation system.

2.1 TIME DEPENDENT TRANSMISSION RATE FUNCTION

Starting with the classical ordinary differential equation SIR model and assuming the

transmission rate varies in time, Pollicot, Wang, and Weiss [14] describe a procedure to

extract the time dependent transmission rate, β(t), given information on the number of
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infected people I(t).

2.1.1 EXTRACTING THE TIME DEPENDENT TRANSMISSION RATE

Pollicott, Wang, and Weiss [14] used Kermack and McKendrick [8] SIR model (men-

tioned in Section 1.3) and allowed the transmission rate to be a time-dependent function

β(t) and derived a procedure to recover this β(t) (see also [4, 12]). Data on the numbers in-

fected by many diseases are collected by the United States Centers for Disease Control and

Prevention, ‘CDC’. Thus, the authors considered I(t) as known. The extraction procedure

in the ODE case begins with finding an expression for S(t) using the differential equation for

I(t) [ 1.2]. Then take the derivative of this equation and substitute those expressions in the

differential equation for S(t). The resulting equation is a non linear Bernoulli differential

equation for β. Use the change of variable 1
β(t) to get a linear Bernoulli differential equation

and solve it using the method of integrating factors to get an expression for β(t).

The β(t) recovery algorithm has four steps and requires two conditions

Step1

Generate a smooth function f(t) using the infection data.

Check Condition 1

f ′(t)

f(t)
> −r,

where r is the recovery rate.

Step2

Compute

p(t) =
f ′′(t)f(t)− f ′(t)2

f(t)(f ′(t) + rf(t))

where f ′ refers to df
dt and f ′′ refers to d2f

dt2
.

Condition 1 guarantees that the denominator in p(t) is not equal to zero,and therefore β(t)

is well defined.

Step3

Compute P (t) =
∫ t

0 p(τ)dτ
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Check Condition 2:

β(0) <
1∫ T

0 ep(s)f(s)ds
,

where T is the time length of the infection data.

A priori β(0) is unkown, so choose β(0) sufficiently small to satisfy condition 2.

Step4

Apply the formula

β(t) =
1

e−P (t)

β(0) − e−P (t)
∫ t

0 eP (s)f(s) ds

to compute β(t) on the given interval [0, T ]. Condition 2 guarantees that β(t) is greater

than zero because it does not make any biological sense to have a negative transmission rate.

A second method for extracting the transmission rate is provided by Hadeler [4]. Hadeler’s

method leads to a formula for β(t) that is equivalent to the formula that Pollicott, Wang,

and Weiss [4] described . Hadeler also used Kermack and McKendrick [8] SIR system

mentioned in Section 1.3 with normalized total population size as S(t) + I(t) +R(t) = 1.

This second extraction method begins with adding the first two equations to get a

differential equation for S + I, integrating both sides gives an equation for S(t) + I(t) in

which all but S(t) is assumed to be known, then solving for S(t). In the I ′(t) equation

of the system, solve for S(t). Equate the two expressions of S(t) and solve for β(t). The

following simplified expression for β(t) is:

β(t) =

I′(t)
I(t) + r

S(0) + I(0)− I(t)− r
∫ t

0 I(s)ds
(2.1)

where I ′ refers to dI
dt .

2.1.2 EXTENDING THE RECOVERY PROCEDURE TO OTHER RE-

SULTS

In their paper, Pollicott, Wang, and Weiss [14] showed that analogous results and in-

version formulae hold for some extended models. One of those extended models is the SIR
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model with demographic rates.

dS(t)

dt
= d− βS(t)I(t)− dS (2.2)

dI(t)

dt
= βS(t)I(t)− rI(t)− dI (2.3)

dR(t)

dt
= rI(t)− dR (2.4)

where d is the birth and death rate.

The necessary and sufficient condition for recovering β(t) given d and r is
f ′(t)

f(t)
> −(d+ r)

Also, in his paper, Hadeler [4] shows that the parameter estimation method works also

for the model with demographic replacement (when the birth rate is not equal to the death

rate).

In 2012 Mummert [12] extend the recovery procedures to heterogeneous populations

with two population classes. Extending the recovery procedure to more than two popula-

tions can be done in a similar way (see also Hadeler [7]).

For two population classes the model has six equations:

dS1(t)

dt
=− β11S1(t)I1(t)− β12S1(t)I2(t) (2.5)

dI1(t)

dt
= β11S1(t)I1(t) + β12S1(t)I2(t)− γ1I1(t) (2.6)

dR1(t)

dt
= γ1I1(t) (2.7)

dS2(t)

dt
=− β21S1(t)I1(t)− β22S1(t)I2(t) (2.8)

dI2(t)

dt
= β21S1(t)I1(t) + β22S1(t)I2(t)− γ2I2(t) (2.9)

dR2(t)

dt
= γ2I2(t) (2.10)

The model has four transmission rates: β11(t) the time dependent transmission rate

function within the first class, β22(t) the time dependent transmission rate function within
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the second class, β12(t) the time dependent transmission rate function between the first

and the second classes, β21(t) the time dependent transmission rate function between the

second and the first classes.

Mummert solved for the transmission rates in two different cases. The first case considers

the situation when the transmission rate within the first class and the transmission rate

between the first and the second classes are equal to the same time dependent transmission

rate β1(t) = β11(t) = β12(t) = β21(t), but those are different from the transmission rate

within the second class β2(t) = β22. The second case considers when the transmission rate

within the first class and the transmission rate between the first and the second classes are

equal, β11 = β12, and the transmission rate between the second and the first classes and

the transmission rate within the second class are equals β21 = β22(t). Mummert got the

solutions in those two cases and found that in order to have those solutions we have four

conditions:

Condition 1:

dI1(t)

dt
+ γ1I(t) > 0, for all t.

Condition 2:

dI2(t)

dt
+ γ2I(t) > 0, for all t.

Condition 3:

S1(0)−
∫ t

0
g1(s)ds > 0

for all t where

g1(t) =
dI1(t)

dt
+ γ1I1(t)

Condition 4:

S2(0)−
∫ t

0
g2(s)ds > 0

for all t where

g2(t) =
dI2(t)

dt
+ γ2I2(t)
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2.2 TRANSMISSION RATE IN SPATIAL-TIME SYSTEM

People travel by foot, road or air between cities and even rural areas, so diseases can be

spread between distant places. It is obvious that disease parameters may vary spatially.

We want to study a model that includes the diffusion of people in one dimension and extract

the transmission rate in this case.

In this model we will assume that I(t, x) is known for all x ∈ Ω, and for all t in the

time interval [0, 1]. We also assume that the prevalence data function I(t, x) is sufficiently

differentiable. We will follow the procedure described by Pollicott, Wang, and Weiss [14].

We will use the fact that I(t, x) is known to solve for S(t, x). Then substitute this expres-

sion and its derivatives into the equation of S(t, x). The result will be a partial differential

equation for the function β. Solving this equation gives the transmission function. Recall,

we are working with the following system of partial differential equations:

∂S(t, x)

∂t
=B(t, x)− dS(t, x)− β(t, x)S(t, x)I(t, x) +DSSxx(t, x) (2.11)

∂I(t, x)

∂t
=β(t, x)S(t, x)I(t, x)− (d+ γ + r)I(t, x) +DIIxx(t, x) (2.12)

∂R(t, x)

∂t
=rI(t, x)− dR(t, x) +DRRxx(t, x) (2.13)

Theorem For the partial differential equations SIR model given by Equations 2.11 -

2.13, there exists t∗ > 0, such that, for all t ∈ [0, t∗) the transmission function satisfies the

following equation:

(DSg)zxx + (2DSgx)zx − gzt + (DSgxx − dg − gt)z +B − g = 0 (2.14)

where z =
1

βI
and g = g(t, x) = It + (d+ γ + r)I −DIIxx

if and only if

It + (d+ γ + r)I −DIIxx > 0. (2.15)

Proof.
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Because β(0, x) > 0 we know that there exists a t∗ > 0 such that β(t, x) > 0 for 0 ≤ t < t∗

and β(t∗, x) = 0. The transmission rate determined by solving 2.20 will be valid on the

interval [0, t∗). The rate will fail to be the desired rate for t ≥ t∗. Which corresponds to

Condition 2 in classical ODE SIR model.

Solve Equation 2.12 for S to find that

S(t, x) =
It + (d+ γ + r)I −DIIxx

βI
. (2.16)

S represents the number of susceptible people, then S(t, x) should be positive for all x, and

all t.

Since I(t, x) > 0 for all x, and all t and same for β, then we need to have

It + (d+ γ + r)I −DIIxx > 0 for all x, and all t, to ensure that S(t, x) is positive for all x,

and all t.

Set the numerator and denominator in 2.16 to be functions g(t, x) and h(t, x), respec-

tively:

g = g(t, x) = It + (d+ γ + r)I −DIIxx (2.17)

h = h(t, x) = βI (2.18)

Differentiate S(t, x) =
g(t, x)

h(t, x)
with respect to t, and replace in 2.11 :

∂S(t)

∂t
=

∂

∂t

(
g(t, x)

h(t, x)

)
=
gth− htg

h2
.

Replace also βSI by g(t, x) since

S(t, x) =
g

h
=

g

β(t, x)I(t, x)

Implies

g = β(t, x)S(t, x)I(t, x).

31



Then we get

gth− htg
h2

= B(t, x)− dg
h
− g +DS(

g

h
)xx.

Simplify to find that

gt
1

h
− g ht

h2
= B(t, x)− dg 1

h
− g +DS(

g

h
)xx.

Making the substitution z(t, x) =
1

h(t, x)
, yields the equation

gtz + gzt = B(t, x)− dgz − g +DS(gz)xx.

Differentiate (gz) with respect to x twice and simplify to find that β satisfies the partial

differential equation

(DSg)zxx + (2DSgx)zx − gzt + (DSgxx − dg − gt)z +B(t, x)− g = 0 (2.19)

or

zt =
(DSg)zxx + (2DSgx)zx + (DSgxx − dg − gt)z +B(t, x)− g

g
(2.20)

Note

2.15 corresponds to Condition 1 in classical ODE SIR model.

We assume that we know β(0, x) = β0 > 0, and since we know I, we know I0, then we know

z0.

2.3 CONSTANT POPULATION SIZE

Call N(t) the total population in the universe Ω at time t. The position of people in

the universe does not affect the the total population in the universe. As we know

N(t, x) = S(t, x) + I(t, x) +R(t, x).
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The population size at time t is given by

N(t) =

∫
Ω
N(t, x)dx. (2.21)

Now let us suppose that the population at each x ∈ Ω is constant and does not change

with time. Then

N(t, x) = S(t, x) + I(t, x) +R(t, x) = N(x)

is independent of time, and

N(t) =

∫
Ω
N(t, x)dx = N,

with N a constant.

In this case we have

∂N(t, x)

∂t
=
∂S(t, x)

∂t
+
∂I(t, x)

∂t
+
∂R(t, x)

∂t
=
∂N(x)

∂t
= 0. (2.22)

Then N(x)− (S(t, x) + I(t, x)) = R(t, x)

In 2.13 replace R(t, x) by N(x)− (S(t, x) + I(t, x))

∂(N(x)− (S(t, x) + I(t, x)))

∂t

= rI(t, x) +DR(N(x)− (S(t, x) + I(t, x)))xx − d[N(x)− (S(t, x) + I(t, x))]

After simplifying we get
∂(S(t, x) + I(t, x)))

∂t

= −rI(t, x)−DR(N(x)− (S(t, x) + I(t, x)))xx + d[N(x)− (S(t, x) + I(t, x))]

Also we could get another expression for
∂(S(t, x) + I(t, x))

∂t
by adding 2.11 and 2.12

together:

∂(S(t, x) + I(t, x)))

∂t
= B(t, x)−dS(t, x)+DSSxx(t, x)−(d+γ+r)I(t, x)+DIIxx(t, x) (2.23)

Combining the two expressions for
∂(S + I)

∂t
yields:

−rI(t, x)−DR(N(x)− (S(t, x) + I(t, x)))xx + d[N(x)− (S(t, x) + I(t, x))]
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= B(t, x)− dS(t, x) +DSSxx(t, x)− (d+ γ + r)I(t, x) +DIIxx(t, x).

After simplification, we are left with

(DS −DR)Sxx(t, x) = (DR−DI)Ixx(t, x) + dN(x)−B(t, x)−DRNxx(x) + γI(t, x), (2.24)

which is equivalent to

Sxx(t, x) =
(DR −DI)Ixx(t, x) + dN(x)−B(t, x)−DRNxx(x)

DS −DR
(2.25)

Which is true when DS 6= DR. This expression is known and can be computed because all

the terms of the second side are known. Let T (t, x) = Sxx(t, x)

Replacing Sxx in equation 2.14 of the previous section by this value will leave us with

(gt + dg)z + gzt −B(t, x) + g −DST (t, x) = 0. (2.26)

2.26 is an equation for z, and it is easy to solve since we just have z and zt.

2.4 NOTE

1. The method of section 2.3 is similar to Hadeler’s[4] method.

2. Finding β from the data is an example of inverse problem.

3. Finding β from the data in this way requires a lot of derivative, which leads us to a

solution that is not exact.

2.4.1 SUMMARY

In this case, recovering the transmission rate, β(t, x), requires a lot of derivatives of

the data function. This is why we have to think about some other methods to recover the

transmission rate, β(t, x). Because recovering the transmission rate, β(t, x), is an ill-posed

inverse problem, we will discuss inverse problems in the next Chapter and apply Tikhonov

regularization to recover the transmission rate, β(t, x).
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Chapter 3

INVERSE PROBLEM PROCEDURE

An inverse problem begins with the solution or observational data and attempts to

estimate the parameters present in the model. Recently, a remarkable number of partial

differential equation problems have been solved using the inverse problem procedure [6],

taking advantage of the high speed processors allows computation of solutions to high scales

inverse problems. We will use inverse problems procedure to solve for the transmission rate.

3.1 INVERSE PROBLEM

In the past, ill-posed problems were considered unnatural and impossible to be solved.

Today such problems exist in many fields and technology allows us to solve them. We will

consider the following mathematical model form:

Ax = y (3.1)

with A is a bounded linear operator, given two Hilbert spaces X and Y , A : X → Y with

x ∈ X and y ∈ Y . The model is the mathematical relationship between model parameters

and the data; it may be linear or nonlinear. The direct problem is to find the value of the

measurable parameters (data), y, given the value of the model parameters, x. An inverse

problem is to determine the model parameters having instead the data.

Figure 3.1 describes the Inverse Problem.

35



Figure 3.1: Inverse Problem

When the problem is well-posed, the operator A has a continuous inverse A−1 that we

can find. And for y ∈ Y , we can find the unique x ∈ X using the fact that x = A−1y. Our

aim is to approximate a solution ‘x’ given y ∈ Y numerically when the problem is ill-posed,

if A−1 does not exist or it is not continuous. In real life, x cannot take all possible values;

x may be subject to some restriction such as x ≥ 0, to ensure that the estimated value of x

has a physical meaning and to ensure that the operator A is well defined [1, 6]. This why

we consider the set M ∈ X. When the problem is ill-posed, and since we know ‘y’, we need

to consider all the possible x ∈ X that makes the problem well defined and has a physical

meaning such that Ax = y; we will suppose that all the possible x are in M . We need to

find x∗1 ∈M such that

‖Ax∗1 − y‖Y = inf
x∈M
‖Ax− y‖Y , (3.2)

where ‖.‖Y is the norm over the space Y .

Ill-posedness causes that a very small errors, such as those caused by rounding, can

lead to a large deviations from the exact solution. To address this problem we need to use

regularization.

3.1.1 NOISY DATA

Inverse problems are often unstable, i.e., a small error in one of the data values could

be responsible for a big variation in the model. Therefore, in practice we need to worry

about the fact that most of the time we do not have the exact data “y.” Instead, usually we

have some discrete noisy measurement yδ such that ‖y−yδ‖ ≤ δ, where δ is called noise level.
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In this paper we avoid this added complication and assume that the data are perfect.

3.2 TIKHONOVREGULARIZATION FOR LINEAR ILL-POSED PROB-

LEMS

In order to solve an ill-posed inverse problem in a stable manner, we need to construct a

regularized solution. Tikhonov Regularization is probably the most successful regularization

technique of all time. This technique is used to solve many problems in different fields of

study [2, 10]. When the operator A is linear and the problem is ill-posed in the sense that

the inverse operator A−1 of A exists but it is not continuous [13], we say that we have a

linear ill-posed problem . In order to find a solution in stable manner, we will use Tikhonov

regularization and instead of solving 3.2 we need to find

xα = min
x∈X

Jα(x) = min
x∈X

(‖Ax− yδ‖2Y + α‖x− x∗‖X) (3.3)

where ‖.‖X is the norm over the space X, x∗ is our initial guess for the solution and α is

the regularization parameter. In case we do not have any guess we consider x∗ = 0.

It can be shown that for every positive parameter α there exists a unique xα ∈ X for

which the functional Jα attains its minimum [18].

3.3 TIKHONOV REGULARIZATION FOR NON-LINEAR ILL-POSED

PROBLEMS

Nonlinear ill-posed inverse problems can be represented by the form

F (x) = y, (3.4)

where F is a nonlinear compact and continuous operator that acts between two Hilbert

spaces X and Y . The basic assumptions are that F is continuous and is weakly sequen-

tially closed. In order to solve this problem we use Tikhonov regularization [15]. Tikhonov

37



regularization consists of finding a solution xδα of the following minimization problem:

xα = arg min
x∈M

Jα(x) (3.5)

where

Jα(x) = ‖F (x)− y‖2Y + α‖x− x∗‖X (3.6)

with x∗ ∈ X an initial guess for a solution of 3.4.

The existence and uniqueness of a minimizer in the nonlinear case is not as clear as

in the linear case. For a positive regularization parameter α, minimizers exist under the

assumptions that F is weakly closed, continuous and Frechet differentiable with convex M,

but need not to be unique due to the nonlinearity of the operator F . The element x∗ is an

initial guess of xα and it plays the role of telling us which solution we want to find.

3.4 NUMERICAL SIMULATION

In this section we will be using Matlab to recover β(t, x) numerically.

3.4.1 TIKHONOV REGULARIZATION

In order to use Tikhonov regularization we will use the ‘RegTools’ package (byPer Chris-

tian Hansen 16 Apr 1998(Updated 18 Mar 2008)). We will apply Tikhonov regularization

in two ways: first we will recover S, βS and R, and get the transmission rate β by dividing

βS by S. After, and to confirm the first result, we will add the first two equations in our

SIR system, and recover S and use this S in the second equation, 1.11, to get β.
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Figure 3.2: β for t = 2

RECOVERING S, βS AND R

Our system is

∂S(t, x)

∂t
=B(t, x)− dS(t, x)− β(t, x)S(t, x)I(t, x) +DSSxx(t, x) (3.7)

∂I(t, x)

∂t
=β(t, x)S(t, x)I(t, x)− (d+ γ)I(t, x)− rI(t, x) +DIIxx(t, x) (3.8)

∂R(t, x)

∂t
=rI(t, x) +DRRxx(t, x)− dR(t, x) (3.9)

We will rewrite this system by isolating the terms that we consider that we know

B(t, x) =
∂S(t, x)

∂t
+ dS(t, x) + β(t, x)S(t, x)I(t, x)−DSSxx(t, x) (3.10)

g(t, x) =β(t, x)S(t, x)I(t, x) (3.11)

rI(t, x) =
∂R(t, x)

∂t
−DRRxx(t, x) + dR(t, x) (3.12)

with

g(t, x) =
∂I(t, x)

∂t
+ (d+ γ)I(t, x) + rI(t, x)−DIIxx(t, x)

By applying the Tikhonov regularization(for more information about the code, refer to

A.2 to this system we will get S, βS and R,

and by dividing βS by S we will get β.

For some created data, Figure 3.2 shows the result for t = 2, and Figure 3.3 shows the

result for t = 3.
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Figure 3.3: β for t = 3

RECOVERING S

We will add the first two equations in the system:

∂S(t, x)

∂t
=B(t, x)− dS(t, x)− β(t, x)S(t, x)I(t, x) +DSSxx(t, x) (3.13)

∂I(t, x)

∂t
=β(t, x)S(t, x)I(t, x)− (d+ γ)I(t, x)− rI(t, x) +DIIxx(t, x) (3.14)

∂R(t, x)

∂t
=rI(t, x) +DRRxx(t, x)− dR(t, x) (3.15)

We get

∂S(t, x)

∂t
+
∂I(t, x)

∂t

= B(t, x)− dS(t, x) +DSSxx(t, x)− (d+ γ)I(t, x)− rI(t, x) +DIIxx(t, x) or

∂S(t, x)

∂t
+ dS(t, x)−DSSxx(t, x) = B(t, x)− g(t, x) (3.16)

with

g(t, x) =
∂I(t, x)

∂t
+ (d+ γ)I(t, x) + rI(t, x)−DIIxx(t, x).

Also we will apply the Thikhonov regularization to this equation and recover S.

The second equation in the system will give us

β(t, x)S(t, x)I(t, x) = g(t, x). (3.17)

Therefore
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Figure 3.4: β for t = 2

Figure 3.5: β for t = 3

β(t, x) =
g(t, x)

S(t, x)I(t, x)
(3.18)

For the same data used before, Figure 3.4 shows the result for t = 2, and Figure 3.5

shows the result for t = 3.

Note

Now let us compare both methods.

Comparing results from both method (Figure 3.4.1) we could say that both methods

are giving some similar results; results are the same except on the boundaries, where the

error is of order 10−5 (For more information about the code refer to A.2)

3.5 SUMMARY

In this chapter, we recovered the transmission rate, β(t, x), but not directly. We recov-

ered S and R and then we found the transmission rate, β(t, x). This is why we we need to
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think about some method to recover the transmission rate, β(t, x), directly. This is why, in

the next chapter, we will introduce the optimal control method and recover the transmission

rate, β(t, x), using Tikhonov regularization.
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(a) t = 2 first method

(b) t = 2 second method

(c) t = 3 first method

(d) t = 3 second method

Figure 3.6: Comparing both method
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Chapter 4

OPTIMAL CONTROL METHOD

Optimal control theory is an extension of the calculus of variations, a field of mathe-

matical analysis that deals with maximizing or minimizing functionals. In optimal control

theory the goal is to determine the control law for a given system that optimizes a stated

criterion.

In this paper we are interested in optimal control of partial differential equations which

was developed by J.L. Lions in the 1970’s [11]. We continue to work with the SIR-PDE

2.11, 2.12 and 2.13, and we consider β(t, x) the control.

4.1 OVERVIEW

Optimal control theory was developed first for the ordinary differential equations case.

The optimal control in the ordinary differential equations case can be derived using Pontrya-

gin’s maximum principle which gives a necessary condition for the control [11]. But there

is no complete generalization of the Pontryagin’s maximum principle to partial differential

equations.

Let Ω be an open, connected subset of <n, where x is the space variable such that x ∈ Ω.

For u and v, two integrable functions (in the Lebesgue sense) on Ω, we say v is the weak

xi-derivative of u if

∫
Ω
uφxidx = −

∫
Ω
vφdx (4.1)
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for all φ in C∞c (Ω), the set of all infinitely differentiable functions on Ω with compact sup-

port.

The general idea of optimal control of partial differential equations starts with a partial

differential equation with state solution w and control u. Let A be a partial differential

operator

Aw = f(w, u) (4.2)

in Ω×[0, T ], with appropriate initial conditions and boundary conditions, with space variable

x, and time variable t. We want to find the optimal control u∗ such that

J(u∗) = min
u
J(u) (4.3)

with

J(u) =

∫ T

0

∫
Ω
g(t, x, w(t, x), u(t, x))dt dx (4.4)

for an appropriate chosen function g.

For a given control u, there exists a state solution w depending on u. Therefore we

define the sensitivity of the state on the control as

ψ = lim
ε→0

w(u+ εl)− w(u)

ε
(4.5)

This sensitivity is the directional (Gateaux) derivative of w with respect to u in the direc-

tional l. The sensitivity ψ solves a partial differential equation which is a linearized version

of the state partial differential equation

Lψ = F (w, l, u) (4.6)

with appropriate initial conditions and boundary conditions.

The linear operator L comes from linearizing the state partial differential equation operator

A.
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The PDE that we will use to find the optimal control is formed using the adjoint operator

of L. The operator L and the adjoint operator L∗ are related by

< λ,Lψ >=< L∗λ, ψ >, (4.7)

where < ., . > is the inner product as defined in chapter1.

The adjoint PDE is

L∗λ =
∂(g)

∂w
, (4.8)

where g is from equation 4.4.

If u∗ is the desired minimum control, then we have

0 ≤ lim
ε→0+

J(u∗ + εl)− J(u∗)

ε
. (4.9)

The boundary and initial conditions are chosen to have desirable properties (see Section

4.2). Assuming u∗ minimize J(u), starting from 4.9 and using the property 4.7 of the

adjoint, we will get an expression for u∗ which will be called “the optimal characterization.”

4.2 USE THE OPTIMAL CONTROL THEORY TO RECOVER β

Let us recall our SIR system of partial differential equations

∂S(t, x)

∂t
=B(t, x)− dS(t, x)− β(t, x)S(t, x)I(t, x) +DSSxx(t, x) (4.10)

∂I(t, x)

∂t
=β(t, x)S(t, x)I(t, x)− (d+ γ)I(t, x)− rI(t, x) +DIIxx(t, x) (4.11)

∂R(t, x)

∂t
=rI(t, x) +DRRxx(t, x)− dR(t, x) (4.12)

Because N(t, x) = S(t, x) + R(t, x) + I(t, x) and B(t, x) = µN(t, x), with µ the birth

rate in the population, we will rewrite our system as
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St =µ(S +R+ I)− dS − βSI +DSSxx (4.13)

It =βSI − dI − γI − rI +DIIxx (4.14)

Rt =rI +DRRxx − dR (4.15)

We will consider the space Ω = [0, 1], the time [0, T ], and set Q = Ω × [0, T ]. The initial

conditions are S(0, x) = S0(x), I(0, x) = I0(x), R(0, x) = R0(x). The boundary conditions

are Neumann conditions

Sx(t, 0) = Sx(t, L) = Ix(t, 0) = Ix(t, L) = Rx(t, 0) = Rx(t, L) = 0.

We are going to assume that we know the infection data Z(x, t) for (x, t) ∈ Q. We want

to find β(t, x) so that the state output matches the data, and such that β(t, x) > 0

min
β

∫
Q

(I(t, x)− Z(t, x))2dtdx, (4.16)

which is an ill-posed problem. Therefore we need to apply Tikhonov regularization, and

this why we will minimize

Jα(β) = min
β

[
1

2

∫
Q

(I(t, x)− Z(t, x))2dtdx+
α

2

∫
Q
β2dtdx

]
(4.17)

with h the regularization parameter.

Now let us apply the optimal control theory to find β.

The derivative of the states with respect to β are

lim
ε→0

S(β + εk)− S(β)

ε
=ψ1 (4.18)

lim
ε→0

I(β + εk)− I(β)

ε
=ψ2 (4.19)

lim
ε→0

R(β + εk)−R(β)

ε
=ψ3 (4.20)
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and ψ1, ψ2, ψ3, satisfy the linearized state partial differential equations

(ψ1)t =µψ1 + µψ2 + µψ3 − dψ1 − β(Sψ1 + ψ1I)− kSI +DS(ψ1)xx (4.21)

(ψ2)t =β(Sψ2 + ψ1I) + kSI − dψ1 − γψ2 − rψ2 +DI(ψ2)xx (4.22)

(ψ3)t =rψ2 +DR(ψ3)xx − dψ3 (4.23)

with the initial conditions:

ψ1(0, x) = 0, ψ1(0, x) = 0, ψ3(0, x) = 0

and the boundary conditions

∂ψ1

∂x
(t, 0) =

∂ψ1

∂x
(t, 1) =

∂ψ2

∂x
(t, 0) =

∂ψ2

∂x
(t, 1) =

∂ψ3

∂x
(t, 0) =

∂ψ3

∂x
(t, 1) = 0.

In the operator form, the linearized system becomes

L


ψ1

ψ2

ψ3

 =


−kSI

kSI

0

 (4.24)

where

L =(L̂+ η) (4.25)

L̂ =
∂

∂t
−D ∂2

∂x∂x
(4.26)

η =


−d− βI + µ −βS + µ µ

βI βS − d− r − γ 0

0 r −d

 (4.27)

We want to find the adjoint, such that

< Lψ, λ >= 〈ψ,L∗λ〉 (4.28)
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or ∫
Q

(Lψ)λdtdx =

∫
Q
ψ(L∗λ)dtdx (4.29)

It will lead us to an integral, and by integration by part we get the result. We assume that

λi(T ) = 0 so that the state equations and the adjoint equations match. The state equations

and the adjoint equations have opposite time orientations.

The adjoint operator is

L̂∗ = − ∂

∂t
−D ∂2

∂x∂x
(4.30)

η∗ = ηT =


−d− βI + µ βI 0

−βS + µ βS − d− r − γ r

µ 0 −d

 (4.31)

and

L∗ = L̂∗ + ηT (4.32)

The adjoint partial differential equations becomes

L∗


λ1

λ2

λ3

 =


J(β)S

J(β)I

J(β)R

 =


0

I − Z

0

 (4.33)

with λi(x, T ) = 0 and ∂λi
∂x (0, t) = frac∂λi∂x(1, t) = 0 for i = 1, 2 and 3.

Now let us assume that β∗ minimize Jα(β) ( 4.17). Then for any direction k (We choose

49



the same arbitrary direction as in the derivatives 4.18, 4.19 and 4.20)

0 ≤ lim
ε→0+

J(β∗ + εk)− J(β∗)

ε
(4.34)

= lim
ε→0+

1

ε
[
1

2

∫
Q

[I(β∗ + εk)− Z]2 − [I(β∗)− Z]2 dxdt (4.35)

+
α

2

∫
Q

(β∗ + εk)2 − (β∗)2 dxdt] (4.36)

=

∫
Q
ψ2(I(β∗)− Z) dxdt+ α

∫
Q
β∗k dxdt (4.37)

=

∫
Q

(
ψ1 ψ2 ψ3

)
L∗


0

I − Z

0

 dxdt+ α

∫
Q
β∗k dxdt (4.38)

=

∫
Q

(
ψ1 ψ2 ψ3

)
L∗


λ1

λ2

λ3

 dxdt+ α

∫
Q
β∗k dxdt (4.39)

=

∫
Q

(
λ1 λ2 λ3

)
L


ψ1

ψ2

ψ3

 dxdt+ α

∫
Q
β∗k dxdt (4.40)

=

∫
Q

(
λ1 λ2 λ3

)
−kSI

kSI

0

 dxdt+ α

∫
Q
β∗k dxdt (4.41)

=

∫
Q
k(−λ1SI + λ2SI + αβ∗)dxdt (4.42)

Then we have

0 ≤
∫
Q
k(−λ1SI + λ2SI + αβ∗)dxdt (4.43)

and it holds for every function k. Because k can be positive, negative, zero or any combi-

nation of those, for the inequality to hold we must have that the integrand is zero. So

− λ1SI + λ2SI + αβ∗ = 0 (4.44)

50



Figure 4.1: β for t = 0.25

This leads us to the optimal control characterization

β∗ =
1

α
(λ1 − λ2)SI. (4.45)

4.3 NUMERICAL SIMULATION

In Matlab, we code the following: for a fixed α

1. interpolate the known data Z to a function Z(x, t) on all of Q

2. choose initial guess for β(x, t) (Here we choose the constant function 0.03 )

3. solve state PDE system forward in time

4. solve adjoint PDE system backward in time

5. update β using the optimal control characterization.

6. Repeat (3), (4) and (5) until state, adjoint, and β are closed to previous iteration.

(For more information about the code refer to A.3) Figure 4.1 shows the result for t = 0.25.

Figure 4.2 shows the result for t = 0.75.

4.4 CONCLUSION

We have different methods of recovering the transmission rate in the PDE case. Nu-

merical method are good but not as accurate as we want. In order to get better results, we

51



Figure 4.2: β for t = 0.75

may think of different methods; for example, instead of using RK4, use some more accurate

method; and instead of using the finite difference method, we may think of the Chebyshev

pseudo-spectral or any more accurate method.

52



Appendix A

CODE EXPLANATION

A.1 PDE-SIR CODE

We want to solve the PDE-SIR system. We have a time derivative, which is why we will

use the Runge-Kutta 4 to solve this PDE system. Also, because we have space derivatives,

we need to use the finite difference method to get them. We used the following:

1. For the population N we used a sine function.

2. t ∈ [0, 5].

3. x ∈ [−1, 1].

4. The number of infected people at time t = 0 is 1, I(0, x) = 1 for all x ∈ [−1, 1].

5. The number of recovered people at time t = 0 is 0, R(0, x) = 0 for all x ∈ [−1, 1].

6. The birth rate is the same as the death rate is µ = 0.001.

7. The transmission rate is β = 0.03.

8. Diffusions are DS = DI = DR = 0.01.

9. The recovery rate is r = 0.3.

10. The extra death rate due to infection, when it is used, is γ = 0.3.
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We use a loop because of the diffusion terms which has a second order space derivative.

The PDE is solved by fixing a space location and using RK4 to solve forward in time. For

the Runge-Kutta method we only need one starting value, and since we have S0, I0 and R0

we could solve this system.

The Matlab code used is
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%In this file the Beta Identification Formula 
%is tested using a known beta(x,t). 
%This is joint work with Alaa Elkadry.   

  
%Anna Mummert February 2013 

  
function SIR_PDE_Beta_02282013_v1 
clc %clear command window 
format longG %displays numbers fully 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SOLVE THE PDE WITH KNOWN BETA 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% the model parameter values %%%%%%%%%%%%%%%%%% 

  
t0 = 0; 
tf = 5; 
dt = 0.01; 
time = t0 : dt : tf; 

  
x0 = -1; 
xf = 1; 
dx = 0.1; 
space = x0 : dx : xf; 

  
N = 1000; 
PopTemp = N*sin(space* (2*pi))+N; 
% PopTemp = N; 
S = sum(PopTemp); 
PopInitial = N / S *PopTemp;  

  
InfInitial = ones(size(space)) ; 
SusInitial = PopInitial - InfInitial; 
RecInitial = zeros(size(space)); 

  
mu = 0.001; 
beta = 0.03; 
diffusion = 0.01; 
recovery = 0.3; 
infdeath = 0.0; 

  
Beta = beta * ones(length(space),length(time)); 
Death = mu * ones(length(space),length(time)); 
SusDiff = diffusion * ones(length(space),length(time)); 
InfDiff = SusDiff; 
RecDiff = SusDiff; 
Recovery = recovery * ones(length(space),length(time)); 
InfDeath = infdeath * ones(length(space),length(time)); 

  

  
State = zeros(3,length(space),length(time)); 
State(:,:,1) = [ SusInitial; InfInitial; RecInitial ]; 



  
SIRxx = zeros(3,length(space),length(time)); 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% an iterated loop to solve the pde.  The loop is 
% required because the diffusion terms SIRxx are 
% estimated.  The estimation improves after each 
% iteration.   

  
% The pde is solved by fixing a space location 
% and using RK4 to solve forward in time.   

  
iter = 1; 
maxiter = 500; 
while iter < maxiter 
    oldState = State; 

     
for j = 1 : length(space) 
for i = 1 : length(time) - 1 

     
    if j ~= 1 && j ~= length(space) 
            SIRxx(:,j,i) = (State(:,j+1,i) - 2 * State(:,j,i) + State(:,j-

1,i)) / (dx ^ 2); 
    end % end creation of SIRxx 

     
    State(:,j,i+1) = rk4(State(:,j,i),SIRxx(:,j,i)); 

     
end % end time loop 
end % end space loop 

  
err = max(max(max(abs(oldState - State)))); 
if err < 0.01 
    break; 
end 
iter = iter + 1; 
if iter == maxiter 
    warning('Convergence not reached') 
end 
end 
 

% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % The solution to the pde is graphed as a movie 
% % going forward in time.   
reruns = 3; 
framespersec = 5; 
numframes = length(time); 

  
Frames = moviein(numframes); 

  
for i = 1 : length(time) 
plot(space,squeeze(State(:,:,i))'); 
axis([x0 xf 0 max(SusInitial)]); 
Frames(1) = getframe; 
end 



  
movie(Frames,reruns,framespersec) 
 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Nested functions  
function v = rk4(SIRState,SIRxx) 

            
        m1 = Xpde(SIRState,SIRxx); 
        m2 = Xpde(SIRState + (dt/2)*m1,SIRxx); 
        m3 = Xpde(SIRState + (dt/2)*m2,SIRxx); 
        m4 = Xpde(SIRState + dt*m3,SIRxx); 

         
        v = SIRState + (dt/6)*(m1 + 2*m2 + 2*m3 + m4); 
end 

  
function Xprime = Xpde(SIRState,SIRxx) 

   
Xprime = [ 
         birth(SIRState) - Death(j,i) * SIRState(1) - Beta(j,i) * SIRState(1) 

* SIRState(2) + SusDiff(j,i) * SIRxx(1); 
         Beta(j,i) * SIRState(1) * SIRState(2) - (Death(j,i) + InfDeath(j,i) 

+ Recovery(j,i)) * SIRState(2) + InfDiff(j,i) * SIRxx(2); 
         Recovery(j,i) * SIRState(2) - Death(j,i) * SIRState(3) + 

RecDiff(j,i) * SIRxx(3) 
          ]; 
end 

  
function Birth = birth(SIRState) 
    Birth = mu * sum(SIRState); 
end 

  
function v = rk4_R(RgivenI,Rxx,ifunction,recdiff) 

            
        m1 = Rpde(RgivenI,Rxx,ifunction,recdiff); 
        m2 = Rpde(RgivenI + (dt/2)*m1,Rxx,ifunction,recdiff); 
        m3 = Rpde(RgivenI + (dt/2)*m2,Rxx,ifunction,recdiff); 
        m4 = Rpde(RgivenI + dt*m3,Rxx,ifunction,recdiff); 

         
        v = RgivenI + (dt/6)*(m1 + 2*m2 + 2*m3 + m4); 
end 

  
function Rprime = Rpde(RgivenI,Rxx,ifunction,recdiff) 

   
Rprime = [ recovery * ifunction - mu * RgivenI + recdiff * Rxx 
          ]; 
end 

  
function v = 

rk4_g(functiong,functiongx,functiongxx,functionf,functionfx,functionfxx,funct

ionft,ifunction,rgiveni,susdiff) 

            



        m1 = 

Fpde(functiong,functiongx,functiongxx,functionf,functionfx,functionfxx,functi

onft,ifunction,rgiveni,susdiff); 
        m2 = Fpde(functiong + 

(dt/2)*m1,functiongx,functiongxx,functionf,functionfx,functionfxx,functionft,

ifunction,rgiveni,susdiff); 
        m3 = Fpde(functiong + 

(dt/2)*m2,functiongx,functiongxx,functionf,functionfx,functionfxx,functionft,

ifunction,rgiveni,susdiff); 
        m4 = Fpde(functiong + 

dt*m3,functiongx,functiongxx,functionf,functionfx,functionfxx,functionft,ifun

ction,rgiveni,susdiff); 

         
        v = functiong + (dt/6)*(m1 + 2*m2 + 2*m3 + m4); 
end 

  
function Fprime = 

Fpde(functiong,functiongx,functiongxx,functionf,functionfx,functionfxx,functi

onft,ifunction,rgiveni,susdiff) 

   
Fprime = [(- susdiff * functiong ^2 * functionf) * functiongxx + (susdiff * 2 

* functionf * functiong) * functiongx ^ 2 + (- susdiff * 2 * functiong ^ 2 * 

functionfx) * functiongx + (mu * ifunction + mu * rgiveni - functionf) * 

functiong ^ 4 + (susdiff * functionfxx - functionft ) * functiong ^ 3 
         ]; 
end 

  
function v = rk4_B(StateBeta,SIRxxBeta,IdentifiedBeta) 

            
        m1 = Bpde(StateBeta,SIRxxBeta,IdentifiedBeta); 
        m2 = Bpde(StateBeta + (dt/2)*m1,SIRxxBeta,IdentifiedBeta); 
        m3 = Bpde(StateBeta + (dt/2)*m2,SIRxxBeta,IdentifiedBeta); 
        m4 = Bpde(StateBeta + dt*m3,SIRxxBeta,IdentifiedBeta); 

         
        v = StateBeta + (dt/6)*(m1 + 2*m2 + 2*m3 + m4); 
end 

  
function Bprime = Bpde(StateBeta,SIRxxBeta,IdentifiedBeta) 

   
Bprime = [ 
         birth(StateBeta) - Death(j,i) * StateBeta(1) - IdentifiedBeta * 

StateBeta(1) * StateBeta(2) + SusDiff(j,i) * SIRxxBeta(1); 
         IdentifiedBeta * StateBeta(1) * StateBeta(2) - (Death(j,i) + 

InfDeath(j,i) + Recovery(j,i)) * StateBeta(2) + InfDiff(j,i) * SIRxxBeta(2); 
         Recovery(j,i) * StateBeta(2) - Death(j,i) * StateBeta(3) + 

RecDiff(j,i) * SIRxxBeta(3) 
          ]; 
end 

  
end 

 



A.2 TIKHONOV CODE

We want to recover the transmission rate, β(t, x) using Tikhonov regularization. This

is why, we will use the “RegTools” package (byPer Christian Hansen 16 Apr 1998(Updated

18 Mar 2008)). We used the following:

1. t ∈ [0, 1].

2. x ∈ [0, 1].

3. For the population N we used a constant function at time t = 0, N(0, x) = 250 for

all x ∈ [0, 1].

4. The number of infected people at time t = 0 is 1, I(0, x) = 1 for all x ∈ [0, 1].

5. The number of recovered people at time t = 0 is 0, R(0, x) = 0 for all x ∈ [0, 1].

6. The birth rate is the same as the death rate is µ = 0.001.

7. The transmission rate is β = 0.03.

8. Diffusions are DS = DI = DR = 0.01.

9. The recovery rate is r = 0.3.

10. The extra death rate due to infection, when it is used, is γ = 0.3.

We will rewrite this system by isolating all the terms that we consider that we know.

We will rewrite our system as

Ax = b,

with A the matrix that has all the coefficients of the unknown x, and b is the column vector

that has all the known values. And by applying the Tikhonov regularization function from

the package, we will get our results.

The Matlab code used is
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%In this file we are estimating Beta  
%using Tikhonov Regularization  

  
I = [1 1 1 1 1 1; 5 7 6 5 7 6; 25 35 42 24 31 28; 45 50 60 33 52 49; 104 113 

93 102 94 92; 193 201 188 175 190 188]; %Random Data 
[n, m]= size(I); % Size of the Data matrix 
II=ones(n,m); 
N = 250*II; 
Rp = [0 0 0 0 0 0; 1 1 1 1 1 1; 4 5 3 4 4 4; 12 11 13 10 9 10; 25 30 20 45 30 

35; 30 35 30 55 50 52]; % our guess for the number of recovered 
BE = 0.003; % Our guess for beta  
Sp = N - I - Rp;  % Our guess for the number of Susceptible 
BSp=BE*Sp; 

  
It = zeros(n,m); 
It(1:n-1,:)=diff(I); % time derivative of the data matrix 
d = 0.001*II; 
gamma = 0.001*II; 
r = 0.3*II; 
a=0.01; 
D_I = a*II; 
D_S = a*II; 
D_R = a*II; 
Bi = 12*II; 

  
I_xx = zeros(n,m); 
dx = 0.2; 
I1 = ones(1,m); 
S0 = 250*I1 - I(1,:); 
R0 = zeros(1,m); 
g1=r.*I; 
for i = 1 : n - 1 
for j = 1 : m 

     
    if j ~= 1 && j ~= m 
            I_xx(i,j) = (I(i,j+1) - 2 * I(i,j) + I(i,j-1)) / (dx ^ 2); 
    end  

     
end  
end  

  
g = It + (d + gamma + r).*I - D_I.*I_xx; 

  
B_S1 = g./I; 
B0 = g(1,:)./(I(1,:).*S0); 

  

  
BS0=B_S1(1,:); 

  
rs = 3*m*(n-1); 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% contruction of the matrix of all known values 



  
Bi1 = zeros(rs,1); 
for i = 1:m; 
    for j = 1:n-1; 
            Bi1(j+(i-1)*(n-1))=Bi(j+1,i); 
            Bi1(j+(i-1)*(n-1)+(n-1)*m)=g(j+1,i); 
            Bi1(j+(i-1)*(n-1)+2*(n-1)*m)=g1(j+1,i); 
    end 
end 

 

 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% contruction of the vector of all estimations of the unknowns 

 

 
x0 = zeros(rs,1); 
for i = 1:m; 
    for j = 1:n-1; 
            x0(j+(i-1)*(n-1))=Sp(j+1,i); 
            x0(j+(i-1)*(n-1)+(n-1)*m)=BSp(j+1,i); 
            x0(j+(i-1)*(n-1)+2*(n-1)*m)=Rp(j+1,i); 
    end 
end 

 

 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% contruction of the matrix of all coefficients of the unknowns 

 

 
MSR_xx=zeros(rs,rs); 
for i=1:m-2 
for j=1:n-2 
        MSR_xx(j+i*(n-1),j+i*(n-1))=2*D_S(i+1,j+1)/(dx^2); 
        MSR_xx(j+i*(n-1),j+i*(n-1)-(n-1))=-D_S(i+1,j+1)/(dx^2); 
        MSR_xx(j+i*(n-1),j+i*(n-1)+(n-1))=-D_S(i+1,j+1)/(dx^2); 
        MSR_xx(j+i*(n-1)+2*m*(n-1),j+i*(n-1)+2*m*(n-

1))=2*D_R(i+1,j+1)/(dx^2); 
        MSR_xx(j+i*(n-1)+2*m*(n-1),j+i*(n-1)-(n-1)+2*m*(n-1))=-

D_R(i+1,j+1)/(dx^2); 
        MSR_xx(j+i*(n-1)+2*m*(n-1),j+i*(n-1)+(n-1)+2*m*(n-1))=-

D_R(i+1,j+1)/(dx^2); 
end 
end 
MSR_t=zeros(rs,rs); 
for i=1:m-1 
    for j=1:n-2 
        MSR_t(j+(i-1)*(n-1),j+(i-1)*(n-1))=-1; 
        MSR_t(j+(i-1)*(n-1),j+(i-1)*(n-1)+1)=1; 
        MSR_t(j+(i-1)*(n-1)+2*m*(n-1),j+(i-1)*(n-1)+2*m*(n-1))=-1; 
        MSR_t(j+(i-1)*(n-1)+2*m*(n-1),j+(i-1)*(n-1)+1+2*m*(n-1))=1; 
    end     
end 

  



  
MdSR = zeros(rs,rs); 
for i=1:n 
    for j=1:m-1 
        MdSR(j+(i-1)*(n-1),j+(i-1)*(n-1))=d(j+1,i); 
        MdSR(j+(i-1)*(n-1)+2*m*(n-1),j+(i-1)*(n-1)+2*m*(n-1))=d(j+1,i); 
    end     
end 
MISB = zeros(rs,rs); 
for i=1:n 
    for j=1:m-1 
        MISB(j+(i-1)*(n-1),j+(i-1)*(n-1)+m*(n-1))=I(j+1,i); 
        MISB(j+(i-1)*(n-1)+m*(n-1),j+(i-1)*(n-1)+m*(n-1))=I(j+1,i); 
    end     
end 
Z = zeros(rs,rs); 
A = MdSR + MSR_t + MSR_xx +MISB;  
S=zeros(n,m); 
BS=zeros(n,m); 
R=zeros(n,m); 
S(1,:)=S0; 
BS(1,:)=BS0; 
R(1,:)=R0; 

 

 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solve using regTools package 

 

 
[U,s,V] = csvd(A); 
lambda = 0.3; 
b = Bi1; 
[x_lambda,rho,eta] = tikhonov(U,s,V,b,lambda,x0); 

 

 
for k=1:m; 
    S(2:n,k)=x_lambda(1+(k-1)*(n-1):n-1+(k-1)*(n-1)); 
    BS(2:n,k)=x_lambda(1+(k-1)*(n-1)+m*(n-1):n-1+(k-1)*(n-1)+m*(n-1)); 
    R(2:n,k)=x_lambda(1+(k-1)*(n-1)+2*m*(n-1):n-1+(k-1)*(n-1)+2*m*(n-1)); 
end  

  

  
beta1=BS./S; % matrix for beta 

 



A.3 OPTIMAL CONTROL CODE

We want to recover the transmission rate using the optimal control method. We assume

the following:

1. t ∈ [0, 1].

2. x ∈ [0, 1].

3. For the population N we used a constant function at time t = 0, N(0, x) = 250 for

all x ∈ [0, 1].

4. The number of infected people at time t = 0 is 1, I(0, x) = 1 for all x ∈ [0, 1].

5. The number of recovered people at time t = 0 is 0, R(0, x) = 0 for all x ∈ [0, 1].

6. The birth rate is the same as the death rate is µ = 0.001.

7. The transmission rate is β = 0.03.

8. Diffusions are DS = DI = DR = 0.01.

9. The recovery rate is r = 0.3.

10. The extra death rate due to infection, when it is used, is γ = 0.3.

We used Matlab to do the following:

1. interpolate the known data Z to a function Z(x, t) on all of Q

2. choose initial guess for β(x, t) (Here we choose the constant function 0.03 )

3. solve state PDE system forward in time. We use a loop because of the diffusion

terms which has a second order space derivative. The PDE is solved by fixing a space

location and using RK4 to solve forward in time.

4. solve adjoint PDE system backward in time

5. update β using the optimal control characterization.
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6. Repeat (3), (4) and (5) until state, adjoint, and β are closed to previous iteration.

This method will give us β(t, x) that we found.

The Matlab code used is
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%In this file the Beta Identification Formula 
%using Tikhonov Regularization via Optimal 
%Control theory 
%is tested using a known beta(x,t). 
%This is joint work with Alaa Elkadry.   

  
%Anna Mummert April 2013 

  
function SIR_PDE_Beta_OptCntl_04042013_v1 
clear %reinitialize all variables 
clc %clear command window 
%format longG %displays numbers fully 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SOLVE THE PDE WITH KNOWN BETA 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% the model parameter values %%%%%%%%%%%%%%%%%% 

  
% NOTE: if the solution to the pde with a known 
% beta is used to generate the known data function, 
% then length(time) must be one more than a multiple 
% of m and length(space) must be one more than a  
% multiple of n.    

  
m = 3; % must be a positive integer 
n = 2; % must be a positive integer 

  
t0 = 0; 
dt = 0.01;  
tf = 1-dt; 
time = t0 : dt : tf; 

  
x0 = 0; 
dx = 0.1; %cannot be 0.01 if dt = 0.01 
xf = 1; 
space = x0 : dx : xf; 

  
N = 1000; 
PopTemp = N*sin(space* (2*pi))+N; 
S = sum(PopTemp); 
PopInitial = N / S *PopTemp;  

  
InfInitial = ones(size(space)) ; 
SusInitial = PopInitial - InfInitial; 
RecInitial = zeros(size(space)); 

  
mu = 0.001; 
beta = 0.03; 
diffusion = 0.01; 
recovery = 0.3; 
infdeath = 0; 

  



Beta = beta * ones(length(space),length(time)); 
Death = mu * ones(length(space),length(time)); 
SusDiff = diffusion * ones(length(space),length(time)); 
InfDiff = SusDiff; 
RecDiff = SusDiff; 
Recovery = recovery * ones(length(space),length(time)); 
InfDeath = infdeath * ones(length(space),length(time)); 

  
MaxBeta = 0.5; 
MinBeta = 0.005; 
delta = 0.05; 
h = 1; 

  
State = zeros(3,length(space),length(time)); 
State(:,:,1) = [ SusInitial; InfInitial; RecInitial ]; 

  
SIRxx = zeros(3,length(space),length(time)); 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% an iterated loop to solve the pde.  The loop is 
% required because the diffusion terms SIRxx are 
% estimated.  The estimation improves after each 
% iteration.   

  
% The pde is solved by fixing a space location 
% and using RK4 to solve forward in time.   

  
iter = 1; 
maxiter = 500; 
while iter < maxiter 
    oldState = State; 

     
for j = 1 : length(space) 
for i = 1 : length(time) - 1 

     
    if j ~= 1 && j ~= length(space) 
            SIRxx(:,j,i) = (State(:,j+1,i) - 2 * State(:,j,i) + State(:,j-

1,i)) / (dx ^ 2); 
    end % end creation of SIRxx 

     
    Cntl = [Beta(j,i),Beta(j,i)]; 
    SecDeriv = [SIRxx(:,j,i),SIRxx(:,j,i)]; 
    State(:,j,i+1) = rk4(State(:,j,i),SecDeriv,Cntl); 

     
end % end time loop 
end % end space loop 

  

  
err = max(max(max(abs(oldState - State)))); 
if err < 0.01 
    break; 
end 
iter = iter + 1; 
if iter == maxiter 



    warning('Convergence not reached') 
end 
end 

  
if min(min(min(State(:,:,:)))) < 0 
display(min(min(min(State(:,:,:))))) 
end 
 

dt2 = dt*m; 
time2 = t0 : dt2 : tf; 

  
dx2 = dx*n; 
space2 = x0 : dx2 : xf; 

  
IData = zeros(length(space2),length(time2)); 
for i = 1 : length(time2) 
for j = 1 : length(space2) 
    IData(j,i) = State(2,(j-1)*n+1,(i-1)*m+1); 
end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INTERPOLATE I(x,t) DATA 
% Interpolate I(x,t) by hand - linear 
IFunction = zeros(length(space),length(time)); 

  
for j = 1 : length(space2) 
IFunction((j-1)*n+1,:) = interp1(time2,IData(j,:),time); 
end 
for i = 1 : length(time2) 
IFunction(:,(i-1)*m+1) = interp1(space2,IData(:,i),space); 
end 
for j = 1 : length(space) 
for i = 1 : length(time) 
    if IFunction(j,i) == 0 
        IFunction(j,i) = (IFunction(j-1,i) + IFunction(j+1,i)) / 2; 
    end 
end 
end 
% display(IFunction) 
if isnan(IFunction(length(space),length(time))) 
display('IFunction contains NaN') 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Choose Initial Guess for beta(x,t) 
% Define adjoint variables 

  
OptBeta =  beta * ones(length(space),length(time)); 

  
OptState = zeros(3,length(space),length(time)); 
OptState(:,:,1) = [ SusInitial; InfInitial; RecInitial ]; 

  
OptSIRxx = zeros(3,length(space),length(time)); 



  
Lambda = zeros(3,length(space),length(time)); 
Lambda(:,:,end) = zeros(3,length(space)); 

  
Lambdaxx = zeros(3,length(space),length(time)); 

  
test = -1; 
count = 0; 
endcount = 20; 
while (test < 0 && count < endcount) 

     
oldBeta = OptBeta; 
oldState = OptState; 
oldLambda = Lambda; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solve the state PDE forward in time 
% using the guessed or updated beta(x,t) 

  
iter = 1; 
maxiter = 500; 
while iter < maxiter 
    oldOptState = OptState; 

     
for j = 1 : length(space) 
for i = 1 : length(time) - 1 

     
    if j ~= 1 && j ~= length(space) 
            OptSIRxx(:,j,i) = (OptState(:,j+1,i) - 2 * OptState(:,j,i) + 

OptState(:,j-1,i)) / (dx ^ 2); 
    end % end creation of SIRxx 

     
    Cntl = [OptBeta(j,i),OptBeta(j,i)]; 
    SecDeriv = [OptSIRxx(:,j,i),OptSIRxx(:,j,i)]; 
    OptState(:,j,i+1) = rk4(OptState(:,j,i),SecDeriv,Cntl); 

     
end % end time loop 
end % end space loop 

  
err = max(max(max(abs(oldOptState - OptState)))); 
if err < 0.01 
    break; 
end 
iter = iter + 1; 
if iter == maxiter 
    warning('Convergence not reached') 
end 
end 

  
if min(min(min(OptState(:,:,:)))) < 0 
display(min(min(min(OptState(:,:,:))))) 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solve the adjoint PDE backward in time 
% using the guessed or updated beta(x,t) 

  
iter = 1; 
maxiter = 500; 
while iter < maxiter 
    oldAdjoint2 = Lambda; 

     
for j = 1 : length(space) 
for i = 1 : length(time) - 1 
    backtime = (length(time) -1) + 2 - i; 
    if j ~= 1 && j ~= length(space) 
            Lambdaxx(:,j,backtime) = (Lambda(:,j+1,backtime) - 2 * 

Lambda(:,j,backtime) + Lambda(:,j-1,backtime)) / (dx ^ 2); 
    end % end creation of Adjointxx 

     
    Cntl = [OptBeta(j,backtime),OptBeta(j,backtime)]; 
    SecDeriv = [Lambdaxx(:,j,backtime),Lambdaxx(:,j,backtime)]; 
    NewSt = [OptState(:,j,backtime),OptState(:,j,backtime)]; 
    Data = [IFunction(j,backtime),IFunction(j,backtime)]; 
    Lambda(:,j,backtime-1) = 

rk4back(Lambda(:,j,backtime),SecDeriv,NewSt,Cntl,Data); 

     
end % end time loop 
end % end space loop 

  
err = max(max(max(abs(oldAdjoint2 - Lambda)))); 
if err < 0.01 
    break; 
end 
iter = iter + 1; 
if iter == maxiter 
    warning('Convergence not reached') 
end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Update the control.  Check convergence. 

  
tempControl = (1 / h) * ( Lambda(1,:,:) - Lambda(2,:,:) ) .* OptState(1,:,:) 

.* OptState(2,:,:); 
Controltemp = squeeze(min(MaxBeta,max(MinBeta,tempControl))); 
OptBeta = 0.5*(Controltemp + oldBeta); 

  
temp1 = delta*sum(sum(abs(OptBeta),2),3) - sum(sum(abs(oldBeta - 

OptBeta),2),3); 
temp2 = delta*sum(sum(abs(OptState),2),3) - sum(sum(abs(oldState - 

OptState),2),3); 
temp3 = delta*sum(sum(abs(Lambda),2),3) - sum(sum(abs(oldLambda - 

Lambda),2),3); 

  
test = min(min(min(temp1),min(temp2)),min(temp3)); 

  



count = count + 1; 
end 

  
IdentifiedBeta = OptBeta; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% USE IDENTIFIED beta(x,t) IN PDE 

  
StateBeta = zeros(3,length(space),length(time)); 
StateBeta(:,:,1) = [ SusInitial; InfInitial; RecInitial ]; 

  
SIRxxBeta = zeros(3,length(space),length(time)); 

  
iter = 1; 
maxiter = 500; 
while iter < maxiter 
    oldStateBeta = StateBeta; 

     
for j = 1 : length(space) 
for i = 1 : length(time) - 1 

     
    if j ~= 1 && j ~= length(space) 
            SIRxxBeta(:,j,i) = (StateBeta(:,j+1,i) - 2 * StateBeta(:,j,i) + 

StateBeta(:,j-1,i)) / (dx ^ 2); 
    end % end creation of SIRxx 

     
    Cntl = [IdentifiedBeta(j,i),IdentifiedBeta(j,i+1)]; 
    SecDeriv = [SIRxxBeta(:,j,i),SIRxxBeta(:,j,i)]; 
    StateBeta(:,j,i+1) = rk4(StateBeta(:,j,i),SecDeriv,Cntl); 

     
end % end time loop 
end % end space loop 

  
err = max(max(max(abs(oldStateBeta - StateBeta)))); 
if err < 0.01 
    break; 
end 
iter = iter + 1; 
if iter == maxiter 
    warning('Convergence not reached') 
end 
end 

  
if min(min(min(StateBeta(:,:,:)))) < 0 
display(min(min(min(StateBeta(:,:,:))))) 
end 
 

 

reruns = 3; 
framespersec = 5; 
numframes = length(time); 

  
Frames = moviein(numframes); 

  



% %%% Compare the beta functions 
if max(max(IdentifiedBeta)) > max(max(Beta)) 
    yf = max(max(IdentifiedBeta))+MinBeta; 
else 
    yf = max(max(Beta))+MinBeta; 
end 

  
if min(min(IdentifiedBeta)) < min(min(Beta)) 
    y0 = min(min(IdentifiedBeta)); 
else 
    y0 = min(min(Beta)); 
end 

  
for i = 1 : length(time) 
plot(space,Beta(:,75)',space,IdentifiedBeta(:,75)'); 
axis([x0 xf 0 yf]); 
Frames(50) = getframe; 
end 
%  
movie(Frames,reruns,framespersec) 

  
plot(space,Beta(:,1)',space,IdentifiedBeta(:,1)'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Nested functions  
function v = rk4(SIRState,SIRxx,CntlBeta) 
        SecDerAvg = (SIRxx(:,1) + SIRxx(:,2)) / 2; 
        CntlBetaAvg = (CntlBeta(1) + CntlBeta(2)) / 2; 

     

            
        m1 = Xpde(SIRState,SIRxx(:,1),CntlBeta(1)); 
        m2 = Xpde(SIRState + (dt/2)*m1,SecDerAvg,CntlBetaAvg); 
        m3 = Xpde(SIRState + (dt/2)*m2,SecDerAvg,CntlBetaAvg); 
        m4 = Xpde(SIRState + dt*m3,SIRxx(:,2),CntlBeta(2)); 

         
        v = SIRState + (dt/6)*(m1 + 2*m2 + 2*m3 + m4); 
end 

  
function Xprime = Xpde(SIRState,SIRxx,Beta) 

   
Xprime = [ 
         birth(SIRState) - Death(j,i) * SIRState(1) - Beta * SIRState(1) * 

SIRState(2) + SusDiff(j,i) * SIRxx(1); 
         Beta * SIRState(1) * SIRState(2) - (Death(j,i) + InfDeath(j,i) + 

Recovery(j,i)) * SIRState(2) + InfDiff(j,i) * SIRxx(2); 
         Recovery(j,i) * SIRState(2) - Death(j,i) * SIRState(3) + 

RecDiff(j,i) * SIRxx(3) 
          ]; 
end 

  
function Birth = birth(SIRState) 
    Birth = mu * sum(SIRState); 
end 

  



function v = rk4back(SIRAdjoint,SecDeriv,StateVals,Cntl,Data) 
        SecDerAvg = (SecDeriv(:,1) + SecDeriv(:,2)) / 2; 
        StValAvg = (StateVals(:,1) + StateVals(:,2)) / 2; 
        CntlAvg = (Cntl(1) + Cntl(2)) / 2; 
        DataAvg = (Data(1) + Data(2)) / 2; 

                
        m1 = 

Adjointpde(SIRAdjoint,SecDeriv(:,2),StateVals(:,2),Cntl(2),Data(2)); 
        m2 = Adjointpde(SIRAdjoint - 

dt/2*m1,SecDerAvg,StValAvg,CntlAvg,DataAvg); 
        m3 = Adjointpde(SIRAdjoint - 

dt/2*m2,SecDerAvg,StValAvg,CntlAvg,DataAvg); 
        m4 = Adjointpde(SIRAdjoint - 

dt*m3,SecDeriv(:,1),StateVals(:,1),Cntl(1),Data(1)); 

         
        v = SIRAdjoint - (dt/6)*(m1 + 2*m2 + 2*m3 + m4); 
end 

  
function Adjointprime = Adjointpde(SIRAdjoint,Adjointxx,SIRState,Beta,Data) 

       
Adjointprime = [ 
         (Death(j,i) + Beta * SIRState(2) - mu) * SIRAdjoint(1) + ( -Beta * 

SIRState(2)) * SIRAdjoint(2) + 0 * SIRAdjoint(3) - SusDiff(j,i) * 

Adjointxx(1); 
         (SIRState(2) - Data) + (Beta * SIRState(1) - mu) * SIRAdjoint(1) + ( 

-Beta * SIRState(1) + Death(j,i) + Recovery(j,i) + InfDeath(j,i)) * 

SIRAdjoint(2) - Recovery(j,i) * SIRAdjoint(3) - InfDiff(j,i) * Adjointxx(2); 
         ( -mu ) * SIRAdjoint(1) + ( 0 ) * SIRAdjoint(2) + ( Death(j,i) ) * 

SIRAdjoint(3) - RecDiff(j,i) * Adjointxx(3) 
          ]; 
end 

  
end 

  

 

 



Appendix B

LETTER FROM INSTITUTIONAL RESEARCH BOARD

The letter of IRB approval follows.
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